提交 7e7c5e4c 编写于 作者: B balrog

Nokia N800 machine support (ARM).

Also add various peripherals: two miscellaneous Nokia CBUS chips,
EPSON S1D13745 LCD/TV remote-framebuffer controller,
TWL92230 - standard OMAP2 power management companion chip on i2c.
Generic OneNAND flash memory,
TMP105 temperature sensor on i2c.


git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@4215 c046a42c-6fe2-441c-8c8c-71466251a162
上级 a5d7eb65
......@@ -51,7 +51,8 @@ OBJS+=block.o
OBJS+=irq.o
OBJS+=i2c.o smbus.o smbus_eeprom.o max7310.o max111x.o wm8750.o
OBJS+=ssd0303.o ssd0323.o ads7846.o stellaris_input.o
OBJS+=ssd0303.o ssd0323.o ads7846.o stellaris_input.o twl92230.o
OBJS+=tmp105.o
OBJS+=scsi-disk.o cdrom.o
OBJS+=scsi-generic.o
OBJS+=usb.o usb-hub.o usb-linux.o usb-hid.o usb-msd.o usb-wacom.o usb-serial.o
......
......@@ -612,6 +612,7 @@ OBJS+= spitz.o ide.o serial.o nand.o ecc.o
OBJS+= omap1.o omap_lcdc.o omap_dma.o omap_clk.o omap_mmc.o omap_i2c.o
OBJS+= omap2.o omap_dss.o
OBJS+= palm.o tsc210x.o
OBJS+= nseries.o blizzard.o onenand.o vga.o cbus.o
OBJS+= mst_fpga.o mainstone.o
CPPFLAGS += -DHAS_AUDIO
endif
......
/*
* Epson S1D13744/S1D13745 (Blizzard/Hailstorm/Tornado) LCD/TV controller.
*
* Copyright (C) 2008 Nokia Corporation
* Written by Andrzej Zaborowski <andrew@openedhand.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 or
* (at your option) version 3 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include "qemu-common.h"
#include "sysemu.h"
#include "console.h"
#include "devices.h"
#include "vga_int.h"
#include "pixel_ops.h"
typedef void (*blizzard_fn_t)(uint8_t *, const uint8_t *, unsigned int);
struct blizzard_s {
uint8_t reg;
uint32_t addr;
int swallow;
int pll;
int pll_range;
int pll_ctrl;
uint8_t pll_mode;
uint8_t clksel;
int memenable;
int memrefresh;
uint8_t timing[3];
int priority;
uint8_t lcd_config;
int x;
int y;
int skipx;
int skipy;
uint8_t hndp;
uint8_t vndp;
uint8_t hsync;
uint8_t vsync;
uint8_t pclk;
uint8_t u;
uint8_t v;
uint8_t yrc[2];
int ix[2];
int iy[2];
int ox[2];
int oy[2];
int enable;
int blank;
int bpp;
int invalidate;
int mx[2];
int my[2];
uint8_t mode;
uint8_t effect;
uint8_t iformat;
uint8_t source;
DisplayState *state;
blizzard_fn_t *line_fn_tab[2];
void *fb;
uint8_t hssi_config[3];
uint8_t tv_config;
uint8_t tv_timing[4];
uint8_t vbi;
uint8_t tv_x;
uint8_t tv_y;
uint8_t tv_test;
uint8_t tv_filter_config;
uint8_t tv_filter_idx;
uint8_t tv_filter_coeff[0x20];
uint8_t border_r;
uint8_t border_g;
uint8_t border_b;
uint8_t gamma_config;
uint8_t gamma_idx;
uint8_t gamma_lut[0x100];
uint8_t matrix_ena;
uint8_t matrix_coeff[0x12];
uint8_t matrix_r;
uint8_t matrix_g;
uint8_t matrix_b;
uint8_t pm;
uint8_t status;
uint8_t rgbgpio_dir;
uint8_t rgbgpio;
uint8_t gpio_dir;
uint8_t gpio;
uint8_t gpio_edge[2];
uint8_t gpio_irq;
uint8_t gpio_pdown;
struct {
int x;
int y;
int dx;
int dy;
int len;
int buflen;
void *buf;
void *data;
uint16_t *ptr;
int angle;
int pitch;
blizzard_fn_t line_fn;
} data;
};
/* Bytes(!) per pixel */
static const int blizzard_iformat_bpp[0x10] = {
0,
2, /* RGB 5:6:5*/
3, /* RGB 6:6:6 mode 1 */
3, /* RGB 8:8:8 mode 1 */
0, 0,
4, /* RGB 6:6:6 mode 2 */
4, /* RGB 8:8:8 mode 2 */
0, /* YUV 4:2:2 */
0, /* YUV 4:2:0 */
0, 0, 0, 0, 0, 0,
};
static inline void blizzard_rgb2yuv(int r, int g, int b,
int *y, int *u, int *v)
{
*y = 0x10 + ((0x838 * r + 0x1022 * g + 0x322 * b) >> 13);
*u = 0x80 + ((0xe0e * b - 0x04c1 * r - 0x94e * g) >> 13);
*v = 0x80 + ((0xe0e * r - 0x0bc7 * g - 0x247 * b) >> 13);
}
static void blizzard_window(struct blizzard_s *s)
{
uint8_t *src, *dst;
int bypp[2];
int bypl[3];
int y;
blizzard_fn_t fn = s->data.line_fn;
if (!fn)
return;
if (s->mx[0] > s->data.x)
s->mx[0] = s->data.x;
if (s->my[0] > s->data.y)
s->my[0] = s->data.y;
if (s->mx[1] < s->data.x + s->data.dx)
s->mx[1] = s->data.x + s->data.dx;
if (s->my[1] < s->data.y + s->data.dy)
s->my[1] = s->data.y + s->data.dy;
bypp[0] = s->bpp;
bypp[1] = (s->state->depth + 7) >> 3;
bypl[0] = bypp[0] * s->data.pitch;
bypl[1] = bypp[1] * s->x;
bypl[2] = bypp[0] * s->data.dx;
src = s->data.data;
dst = s->fb + bypl[1] * s->data.y + bypp[1] * s->data.x;
for (y = s->data.dy; y > 0; y --, src += bypl[0], dst += bypl[1])
fn(dst, src, bypl[2]);
}
static int blizzard_transfer_setup(struct blizzard_s *s)
{
if (s->source > 3 || !s->bpp ||
s->ix[1] < s->ix[0] || s->iy[1] < s->iy[0])
return 0;
s->data.angle = s->effect & 3;
s->data.line_fn = s->line_fn_tab[!!s->data.angle][s->iformat];
s->data.x = s->ix[0];
s->data.y = s->iy[0];
s->data.dx = s->ix[1] - s->ix[0] + 1;
s->data.dy = s->iy[1] - s->iy[0] + 1;
s->data.len = s->bpp * s->data.dx * s->data.dy;
s->data.pitch = s->data.dx;
if (s->data.len > s->data.buflen) {
s->data.buf = realloc(s->data.buf, s->data.len);
s->data.buflen = s->data.len;
}
s->data.ptr = s->data.buf;
s->data.data = s->data.buf;
s->data.len /= 2;
return 1;
}
static void blizzard_reset(struct blizzard_s *s)
{
s->reg = 0;
s->swallow = 0;
s->pll = 9;
s->pll_range = 1;
s->pll_ctrl = 0x14;
s->pll_mode = 0x32;
s->clksel = 0x00;
s->memenable = 0;
s->memrefresh = 0x25c;
s->timing[0] = 0x3f;
s->timing[1] = 0x13;
s->timing[2] = 0x21;
s->priority = 0;
s->lcd_config = 0x74;
s->x = 8;
s->y = 1;
s->skipx = 0;
s->skipy = 0;
s->hndp = 3;
s->vndp = 2;
s->hsync = 1;
s->vsync = 1;
s->pclk = 0x80;
s->ix[0] = 0;
s->ix[1] = 0;
s->iy[0] = 0;
s->iy[1] = 0;
s->ox[0] = 0;
s->ox[1] = 0;
s->oy[0] = 0;
s->oy[1] = 0;
s->yrc[0] = 0x00;
s->yrc[1] = 0x30;
s->u = 0;
s->v = 0;
s->iformat = 3;
s->source = 0;
s->bpp = blizzard_iformat_bpp[s->iformat];
s->hssi_config[0] = 0x00;
s->hssi_config[1] = 0x00;
s->hssi_config[2] = 0x01;
s->tv_config = 0x00;
s->tv_timing[0] = 0x00;
s->tv_timing[1] = 0x00;
s->tv_timing[2] = 0x00;
s->tv_timing[3] = 0x00;
s->vbi = 0x10;
s->tv_x = 0x14;
s->tv_y = 0x03;
s->tv_test = 0x00;
s->tv_filter_config = 0x80;
s->tv_filter_idx = 0x00;
s->border_r = 0x10;
s->border_g = 0x80;
s->border_b = 0x80;
s->gamma_config = 0x00;
s->gamma_idx = 0x00;
s->matrix_ena = 0x00;
memset(&s->matrix_coeff, 0, sizeof(s->matrix_coeff));
s->matrix_r = 0x00;
s->matrix_g = 0x00;
s->matrix_b = 0x00;
s->pm = 0x02;
s->status = 0x00;
s->rgbgpio_dir = 0x00;
s->gpio_dir = 0x00;
s->gpio_edge[0] = 0x00;
s->gpio_edge[1] = 0x00;
s->gpio_irq = 0x00;
s->gpio_pdown = 0xff;
}
static inline void blizzard_invalidate_display(void *opaque) {
struct blizzard_s *s = (struct blizzard_s *) opaque;
s->invalidate = 1;
}
static uint16_t blizzard_reg_read(void *opaque, uint8_t reg)
{
struct blizzard_s *s = (struct blizzard_s *) opaque;
switch (reg) {
case 0x00: /* Revision Code */
return 0xa5;
case 0x02: /* Configuration Readback */
return 0x83; /* Macrovision OK, CNF[2:0] = 3 */
case 0x04: /* PLL M-Divider */
return (s->pll - 1) | (1 << 7);
case 0x06: /* PLL Lock Range Control */
return s->pll_range;
case 0x08: /* PLL Lock Synthesis Control 0 */
return s->pll_ctrl & 0xff;
case 0x0a: /* PLL Lock Synthesis Control 1 */
return s->pll_ctrl >> 8;
case 0x0c: /* PLL Mode Control 0 */
return s->pll_mode;
case 0x0e: /* Clock-Source Select */
return s->clksel;
case 0x10: /* Memory Controller Activate */
case 0x14: /* Memory Controller Bank 0 Status Flag */
return s->memenable;
case 0x18: /* Auto-Refresh Interval Setting 0 */
return s->memrefresh & 0xff;
case 0x1a: /* Auto-Refresh Interval Setting 1 */
return s->memrefresh >> 8;
case 0x1c: /* Power-On Sequence Timing Control */
return s->timing[0];
case 0x1e: /* Timing Control 0 */
return s->timing[1];
case 0x20: /* Timing Control 1 */
return s->timing[2];
case 0x24: /* Arbitration Priority Control */
return s->priority;
case 0x28: /* LCD Panel Configuration */
return s->lcd_config;
case 0x2a: /* LCD Horizontal Display Width */
return s->x >> 3;
case 0x2c: /* LCD Horizontal Non-display Period */
return s->hndp;
case 0x2e: /* LCD Vertical Display Height 0 */
return s->y & 0xff;
case 0x30: /* LCD Vertical Display Height 1 */
return s->y >> 8;
case 0x32: /* LCD Vertical Non-display Period */
return s->vndp;
case 0x34: /* LCD HS Pulse-width */
return s->hsync;
case 0x36: /* LCd HS Pulse Start Position */
return s->skipx >> 3;
case 0x38: /* LCD VS Pulse-width */
return s->vsync;
case 0x3a: /* LCD VS Pulse Start Position */
return s->skipy;
case 0x3c: /* PCLK Polarity */
return s->pclk;
case 0x3e: /* High-speed Serial Interface Tx Configuration Port 0 */
return s->hssi_config[0];
case 0x40: /* High-speed Serial Interface Tx Configuration Port 1 */
return s->hssi_config[1];
case 0x42: /* High-speed Serial Interface Tx Mode */
return s->hssi_config[2];
case 0x44: /* TV Display Configuration */
return s->tv_config;
case 0x46 ... 0x4c: /* TV Vertical Blanking Interval Data bits */
return s->tv_timing[(reg - 0x46) >> 1];
case 0x4e: /* VBI: Closed Caption / XDS Control / Status */
return s->vbi;
case 0x50: /* TV Horizontal Start Position */
return s->tv_x;
case 0x52: /* TV Vertical Start Position */
return s->tv_y;
case 0x54: /* TV Test Pattern Setting */
return s->tv_test;
case 0x56: /* TV Filter Setting */
return s->tv_filter_config;
case 0x58: /* TV Filter Coefficient Index */
return s->tv_filter_idx;
case 0x5a: /* TV Filter Coefficient Data */
if (s->tv_filter_idx < 0x20)
return s->tv_filter_coeff[s->tv_filter_idx ++];
return 0;
case 0x60: /* Input YUV/RGB Translate Mode 0 */
return s->yrc[0];
case 0x62: /* Input YUV/RGB Translate Mode 1 */
return s->yrc[1];
case 0x64: /* U Data Fix */
return s->u;
case 0x66: /* V Data Fix */
return s->v;
case 0x68: /* Display Mode */
return s->mode;
case 0x6a: /* Special Effects */
return s->effect;
case 0x6c: /* Input Window X Start Position 0 */
return s->ix[0] & 0xff;
case 0x6e: /* Input Window X Start Position 1 */
return s->ix[0] >> 3;
case 0x70: /* Input Window Y Start Position 0 */
return s->ix[0] & 0xff;
case 0x72: /* Input Window Y Start Position 1 */
return s->ix[0] >> 3;
case 0x74: /* Input Window X End Position 0 */
return s->ix[1] & 0xff;
case 0x76: /* Input Window X End Position 1 */
return s->ix[1] >> 3;
case 0x78: /* Input Window Y End Position 0 */
return s->ix[1] & 0xff;
case 0x7a: /* Input Window Y End Position 1 */
return s->ix[1] >> 3;
case 0x7c: /* Output Window X Start Position 0 */
return s->ox[0] & 0xff;
case 0x7e: /* Output Window X Start Position 1 */
return s->ox[0] >> 3;
case 0x80: /* Output Window Y Start Position 0 */
return s->oy[0] & 0xff;
case 0x82: /* Output Window Y Start Position 1 */
return s->oy[0] >> 3;
case 0x84: /* Output Window X End Position 0 */
return s->ox[1] & 0xff;
case 0x86: /* Output Window X End Position 1 */
return s->ox[1] >> 3;
case 0x88: /* Output Window Y End Position 0 */
return s->oy[1] & 0xff;
case 0x8a: /* Output Window Y End Position 1 */
return s->oy[1] >> 3;
case 0x8c: /* Input Data Format */
return s->iformat;
case 0x8e: /* Data Source Select */
return s->source;
case 0x90: /* Display Memory Data Port */
return 0;
case 0xa8: /* Border Color 0 */
return s->border_r;
case 0xaa: /* Border Color 1 */
return s->border_g;
case 0xac: /* Border Color 2 */
return s->border_b;
case 0xb4: /* Gamma Correction Enable */
return s->gamma_config;
case 0xb6: /* Gamma Correction Table Index */
return s->gamma_idx;
case 0xb8: /* Gamma Correction Table Data */
return s->gamma_lut[s->gamma_idx ++];
case 0xba: /* 3x3 Matrix Enable */
return s->matrix_ena;
case 0xbc ... 0xde: /* Coefficient Registers */
return s->matrix_coeff[(reg - 0xbc) >> 1];
case 0xe0: /* 3x3 Matrix Red Offset */
return s->matrix_r;
case 0xe2: /* 3x3 Matrix Green Offset */
return s->matrix_g;
case 0xe4: /* 3x3 Matrix Blue Offset */
return s->matrix_b;
case 0xe6: /* Power-save */
return s->pm;
case 0xe8: /* Non-display Period Control / Status */
return s->status | (1 << 5);
case 0xea: /* RGB Interface Control */
return s->rgbgpio_dir;
case 0xec: /* RGB Interface Status */
return s->rgbgpio;
case 0xee: /* General-purpose IO Pins Configuration */
return s->gpio_dir;
case 0xf0: /* General-purpose IO Pins Status / Control */
return s->gpio;
case 0xf2: /* GPIO Positive Edge Interrupt Trigger */
return s->gpio_edge[0];
case 0xf4: /* GPIO Negative Edge Interrupt Trigger */
return s->gpio_edge[1];
case 0xf6: /* GPIO Interrupt Status */
return s->gpio_irq;
case 0xf8: /* GPIO Pull-down Control */
return s->gpio_pdown;
default:
fprintf(stderr, "%s: unknown register %02x\n", __FUNCTION__, reg);
return 0;
}
}
static void blizzard_reg_write(void *opaque, uint8_t reg, uint16_t value)
{
struct blizzard_s *s = (struct blizzard_s *) opaque;
switch (reg) {
case 0x04: /* PLL M-Divider */
s->pll = (value & 0x3f) + 1;
break;
case 0x06: /* PLL Lock Range Control */
s->pll_range = value & 3;
break;
case 0x08: /* PLL Lock Synthesis Control 0 */
s->pll_ctrl &= 0xf00;
s->pll_ctrl |= (value << 0) & 0x0ff;
break;
case 0x0a: /* PLL Lock Synthesis Control 1 */
s->pll_ctrl &= 0x0ff;
s->pll_ctrl |= (value << 8) & 0xf00;
break;
case 0x0c: /* PLL Mode Control 0 */
s->pll_mode = value & 0x77;
if ((value & 3) == 0 || (value & 3) == 3)
fprintf(stderr, "%s: wrong PLL Control bits (%i)\n",
__FUNCTION__, value & 3);
break;
case 0x0e: /* Clock-Source Select */
s->clksel = value & 0xff;
break;
case 0x10: /* Memory Controller Activate */
s->memenable = value & 1;
break;
case 0x14: /* Memory Controller Bank 0 Status Flag */
break;
case 0x18: /* Auto-Refresh Interval Setting 0 */
s->memrefresh &= 0xf00;
s->memrefresh |= (value << 0) & 0x0ff;
break;
case 0x1a: /* Auto-Refresh Interval Setting 1 */
s->memrefresh &= 0x0ff;
s->memrefresh |= (value << 8) & 0xf00;
break;
case 0x1c: /* Power-On Sequence Timing Control */
s->timing[0] = value & 0x7f;
break;
case 0x1e: /* Timing Control 0 */
s->timing[1] = value & 0x17;
break;
case 0x20: /* Timing Control 1 */
s->timing[2] = value & 0x35;
break;
case 0x24: /* Arbitration Priority Control */
s->priority = value & 1;
break;
case 0x28: /* LCD Panel Configuration */
s->lcd_config = value & 0xff;
if (value & (1 << 7))
fprintf(stderr, "%s: data swap not supported!\n", __FUNCTION__);
break;
case 0x2a: /* LCD Horizontal Display Width */
s->x = value << 3;
break;
case 0x2c: /* LCD Horizontal Non-display Period */
s->hndp = value & 0xff;
break;
case 0x2e: /* LCD Vertical Display Height 0 */
s->y &= 0x300;
s->y |= (value << 0) & 0x0ff;
break;
case 0x30: /* LCD Vertical Display Height 1 */
s->y &= 0x0ff;
s->y |= (value << 8) & 0x300;
break;
case 0x32: /* LCD Vertical Non-display Period */
s->vndp = value & 0xff;
break;
case 0x34: /* LCD HS Pulse-width */
s->hsync = value & 0xff;
break;
case 0x36: /* LCD HS Pulse Start Position */
s->skipx = value & 0xff;
break;
case 0x38: /* LCD VS Pulse-width */
s->vsync = value & 0xbf;
break;
case 0x3a: /* LCD VS Pulse Start Position */
s->skipy = value & 0xff;
break;
case 0x3c: /* PCLK Polarity */
s->pclk = value & 0x82;
/* Affects calculation of s->hndp, s->hsync and s->skipx. */
break;
case 0x3e: /* High-speed Serial Interface Tx Configuration Port 0 */
s->hssi_config[0] = value;
break;
case 0x40: /* High-speed Serial Interface Tx Configuration Port 1 */
s->hssi_config[1] = value;
if (((value >> 4) & 3) == 3)
fprintf(stderr, "%s: Illegal active-data-links value\n",
__FUNCTION__);
break;
case 0x42: /* High-speed Serial Interface Tx Mode */
s->hssi_config[2] = value & 0xbd;
break;
case 0x44: /* TV Display Configuration */
s->tv_config = value & 0xfe;
break;
case 0x46 ... 0x4c: /* TV Vertical Blanking Interval Data bits 0 */
s->tv_timing[(reg - 0x46) >> 1] = value;
break;
case 0x4e: /* VBI: Closed Caption / XDS Control / Status */
s->vbi = value;
break;
case 0x50: /* TV Horizontal Start Position */
s->tv_x = value;
break;
case 0x52: /* TV Vertical Start Position */
s->tv_y = value & 0x7f;
break;
case 0x54: /* TV Test Pattern Setting */
s->tv_test = value;
break;
case 0x56: /* TV Filter Setting */
s->tv_filter_config = value & 0xbf;
break;
case 0x58: /* TV Filter Coefficient Index */
s->tv_filter_idx = value & 0x1f;
break;
case 0x5a: /* TV Filter Coefficient Data */
if (s->tv_filter_idx < 0x20)
s->tv_filter_coeff[s->tv_filter_idx ++] = value;
break;
case 0x60: /* Input YUV/RGB Translate Mode 0 */
s->yrc[0] = value & 0xb0;
break;
case 0x62: /* Input YUV/RGB Translate Mode 1 */
s->yrc[1] = value & 0x30;
break;
case 0x64: /* U Data Fix */
s->u = value & 0xff;
break;
case 0x66: /* V Data Fix */
s->v = value & 0xff;
break;
case 0x68: /* Display Mode */
if ((s->mode ^ value) & 3)
s->invalidate = 1;
s->mode = value & 0xb7;
s->enable = value & 1;
s->blank = (value >> 1) & 1;
if (value & (1 << 4))
fprintf(stderr, "%s: Macrovision enable attempt!\n", __FUNCTION__);
break;
case 0x6a: /* Special Effects */
s->effect = value & 0xfb;
break;
case 0x6c: /* Input Window X Start Position 0 */
s->ix[0] &= 0x300;
s->ix[0] |= (value << 0) & 0x0ff;
break;
case 0x6e: /* Input Window X Start Position 1 */
s->ix[0] &= 0x0ff;
s->ix[0] |= (value << 8) & 0x300;
break;
case 0x70: /* Input Window Y Start Position 0 */
s->iy[0] &= 0x300;
s->iy[0] |= (value << 0) & 0x0ff;
break;
case 0x72: /* Input Window Y Start Position 1 */
s->iy[0] &= 0x0ff;
s->iy[0] |= (value << 8) & 0x300;
break;
case 0x74: /* Input Window X End Position 0 */
s->ix[1] &= 0x300;
s->ix[1] |= (value << 0) & 0x0ff;
break;
case 0x76: /* Input Window X End Position 1 */
s->ix[1] &= 0x0ff;
s->ix[1] |= (value << 8) & 0x300;
break;
case 0x78: /* Input Window Y End Position 0 */
s->iy[1] &= 0x300;
s->iy[1] |= (value << 0) & 0x0ff;
break;
case 0x7a: /* Input Window Y End Position 1 */
s->iy[1] &= 0x0ff;
s->iy[1] |= (value << 8) & 0x300;
break;
case 0x7c: /* Output Window X Start Position 0 */
s->ox[0] &= 0x300;
s->ox[0] |= (value << 0) & 0x0ff;
break;
case 0x7e: /* Output Window X Start Position 1 */
s->ox[0] &= 0x0ff;
s->ox[0] |= (value << 8) & 0x300;
break;
case 0x80: /* Output Window Y Start Position 0 */
s->oy[0] &= 0x300;
s->oy[0] |= (value << 0) & 0x0ff;
break;
case 0x82: /* Output Window Y Start Position 1 */
s->oy[0] &= 0x0ff;
s->oy[0] |= (value << 8) & 0x300;
break;
case 0x84: /* Output Window X End Position 0 */
s->ox[1] &= 0x300;
s->ox[1] |= (value << 0) & 0x0ff;
break;
case 0x86: /* Output Window X End Position 1 */
s->ox[1] &= 0x0ff;
s->ox[1] |= (value << 8) & 0x300;
break;
case 0x88: /* Output Window Y End Position 0 */
s->oy[1] &= 0x300;
s->oy[1] |= (value << 0) & 0x0ff;
break;
case 0x8a: /* Output Window Y End Position 1 */
s->oy[1] &= 0x0ff;
s->oy[1] |= (value << 8) & 0x300;
break;
case 0x8c: /* Input Data Format */
s->iformat = value & 0xf;
s->bpp = blizzard_iformat_bpp[s->iformat];
if (!s->bpp)
fprintf(stderr, "%s: Illegal or unsupported input format %x\n",
__FUNCTION__, s->iformat);
break;
case 0x8e: /* Data Source Select */
s->source = value & 7;
/* Currently all windows will be "destructive overlays". */
if ((!(s->effect & (1 << 3)) && (s->ix[0] != s->ox[0] ||
s->iy[0] != s->oy[0] ||
s->ix[1] != s->ox[1] ||
s->iy[1] != s->oy[1])) ||
!((s->ix[1] - s->ix[0]) & (s->iy[1] - s->iy[0]) &
(s->ox[1] - s->ox[0]) & (s->oy[1] - s->oy[0]) & 1))
fprintf(stderr, "%s: Illegal input/output window positions\n",
__FUNCTION__);
blizzard_transfer_setup(s);
break;
case 0x90: /* Display Memory Data Port */
if (!s->data.len && !blizzard_transfer_setup(s))
break;
*s->data.ptr ++ = value;
if (-- s->data.len == 0)
blizzard_window(s);
break;
case 0xa8: /* Border Color 0 */
s->border_r = value;
break;
case 0xaa: /* Border Color 1 */
s->border_g = value;
break;
case 0xac: /* Border Color 2 */
s->border_b = value;
break;
case 0xb4: /* Gamma Correction Enable */
s->gamma_config = value & 0x87;
break;
case 0xb6: /* Gamma Correction Table Index */
s->gamma_idx = value;
break;
case 0xb8: /* Gamma Correction Table Data */
s->gamma_lut[s->gamma_idx ++] = value;
break;
case 0xba: /* 3x3 Matrix Enable */
s->matrix_ena = value & 1;
break;
case 0xbc ... 0xde: /* Coefficient Registers */
s->matrix_coeff[(reg - 0xbc) >> 1] = value & ((reg & 2) ? 0x80 : 0xff);
break;
case 0xe0: /* 3x3 Matrix Red Offset */
s->matrix_r = value;
break;
case 0xe2: /* 3x3 Matrix Green Offset */
s->matrix_g = value;
break;
case 0xe4: /* 3x3 Matrix Blue Offset */
s->matrix_b = value;
break;
case 0xe6: /* Power-save */
s->pm = value & 0x83;
if (value & s->mode & 1)
fprintf(stderr, "%s: The display must be disabled before entering "
"Standby Mode\n", __FUNCTION__);
break;
case 0xe8: /* Non-display Period Control / Status */
s->status = value & 0x1b;
break;
case 0xea: /* RGB Interface Control */
s->rgbgpio_dir = value & 0x8f;
break;
case 0xec: /* RGB Interface Status */
s->rgbgpio = value & 0xcf;
break;
case 0xee: /* General-purpose IO Pins Configuration */
s->gpio_dir = value;
break;
case 0xf0: /* General-purpose IO Pins Status / Control */
s->gpio = value;
break;
case 0xf2: /* GPIO Positive Edge Interrupt Trigger */
s->gpio_edge[0] = value;
break;
case 0xf4: /* GPIO Negative Edge Interrupt Trigger */
s->gpio_edge[1] = value;
break;
case 0xf6: /* GPIO Interrupt Status */
s->gpio_irq &= value;
break;
case 0xf8: /* GPIO Pull-down Control */
s->gpio_pdown = value;
break;
default:
fprintf(stderr, "%s: unknown register %02x\n", __FUNCTION__, reg);
break;
}
}
uint16_t s1d13745_read(void *opaque, int dc)
{
struct blizzard_s *s = (struct blizzard_s *) opaque;
uint16_t value = blizzard_reg_read(s, s->reg);
if (s->swallow -- > 0)
return 0;
if (dc)
s->reg ++;
return value;
}
void s1d13745_write(void *opaque, int dc, uint16_t value)
{
struct blizzard_s *s = (struct blizzard_s *) opaque;
if (s->swallow -- > 0)
return;
if (dc) {
blizzard_reg_write(s, s->reg, value);
if (s->reg != 0x90 && s->reg != 0x5a && s->reg != 0xb8)
s->reg += 2;
} else
s->reg = value & 0xff;
}
void s1d13745_write_block(void *opaque, int dc,
void *buf, size_t len, int pitch)
{
struct blizzard_s *s = (struct blizzard_s *) opaque;
while (len > 0) {
if (s->reg == 0x90 && dc &&
(s->data.len || blizzard_transfer_setup(s)) &&
len >= (s->data.len << 1)) {
len -= s->data.len << 1;
s->data.len = 0;
s->data.data = buf;
if (pitch)
s->data.pitch = pitch;
blizzard_window(s);
s->data.data = s->data.buf;
continue;
}
s1d13745_write(opaque, dc, *(uint16_t *) buf);
len -= 2;
buf += 2;
}
return;
}
static void blizzard_update_display(void *opaque)
{
struct blizzard_s *s = (struct blizzard_s *) opaque;
int y, bypp, bypl, bwidth;
uint8_t *src, *dst;
if (!s->enable)
return;
if (s->x != s->state->width || s->y != s->state->height) {
s->invalidate = 1;
dpy_resize(s->state, s->x, s->y);
}
if (s->invalidate) {
s->invalidate = 0;
if (s->blank) {
bypp = (s->state->depth + 7) >> 3;
memset(s->state->data, 0, bypp * s->x * s->y);
return;
}
s->mx[0] = 0;
s->mx[1] = s->x;
s->my[0] = 0;
s->my[1] = s->y;
}
if (s->mx[1] <= s->mx[0])
return;
bypp = (s->state->depth + 7) >> 3;
bypl = bypp * s->x;
bwidth = bypp * (s->mx[1] - s->mx[0]);
y = s->my[0];
src = s->fb + bypl * y + bypp * s->mx[0];
dst = s->state->data + bypl * y + bypp * s->mx[0];
for (; y < s->my[1]; y ++, src += bypl, dst += bypl)
memcpy(dst, src, bwidth);
dpy_update(s->state, s->mx[0], s->my[0],
s->mx[1] - s->mx[0], y - s->my[0]);
s->mx[0] = s->x;
s->mx[1] = 0;
s->my[0] = s->y;
s->my[1] = 0;
}
static void blizzard_screen_dump(void *opaque, const char *filename) {
struct blizzard_s *s = (struct blizzard_s *) opaque;
blizzard_update_display(opaque);
if (s && s->state->data)
ppm_save(filename, s->state->data, s->x, s->y, s->state->linesize);
}
#define DEPTH 8
#include "blizzard_template.h"
#define DEPTH 15
#include "blizzard_template.h"
#define DEPTH 16
#include "blizzard_template.h"
#define DEPTH 24
#include "blizzard_template.h"
#define DEPTH 32
#include "blizzard_template.h"
void *s1d13745_init(qemu_irq gpio_int, DisplayState *ds)
{
struct blizzard_s *s = (struct blizzard_s *) qemu_mallocz(sizeof(*s));
s->state = ds;
s->fb = qemu_malloc(0x180000);
switch (s->state->depth) {
case 0:
s->line_fn_tab[0] = s->line_fn_tab[1] =
qemu_mallocz(sizeof(blizzard_fn_t) * 0x10);
break;
case 8:
s->line_fn_tab[0] = blizzard_draw_fn_8;
s->line_fn_tab[1] = blizzard_draw_fn_r_8;
break;
case 15:
s->line_fn_tab[0] = blizzard_draw_fn_15;
s->line_fn_tab[1] = blizzard_draw_fn_r_15;
break;
case 16:
s->line_fn_tab[0] = blizzard_draw_fn_16;
s->line_fn_tab[1] = blizzard_draw_fn_r_16;
break;
case 24:
s->line_fn_tab[0] = blizzard_draw_fn_24;
s->line_fn_tab[1] = blizzard_draw_fn_r_24;
break;
case 32:
s->line_fn_tab[0] = blizzard_draw_fn_32;
s->line_fn_tab[1] = blizzard_draw_fn_r_32;
break;
default:
fprintf(stderr, "%s: Bad color depth\n", __FUNCTION__);
exit(1);
}
blizzard_reset(s);
graphic_console_init(s->state, blizzard_update_display,
blizzard_invalidate_display, blizzard_screen_dump,
NULL, s);
return s;
}
/*
* QEMU Epson S1D13744/S1D13745 templates
*
* Copyright (C) 2008 Nokia Corporation
* Written by Andrzej Zaborowski <andrew@openedhand.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 or
* (at your option) version 3 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#define SKIP_PIXEL(to) to += deststep
#if DEPTH == 8
# define PIXEL_TYPE uint8_t
# define COPY_PIXEL(to, from) *to = from; SKIP_PIXEL(to)
# define COPY_PIXEL1(to, from) *to ++ = from
#elif DEPTH == 15 || DEPTH == 16
# define PIXEL_TYPE uint16_t
# define COPY_PIXEL(to, from) *to = from; SKIP_PIXEL(to)
# define COPY_PIXEL1(to, from) *to ++ = from
#elif DEPTH == 24
# define PIXEL_TYPE uint8_t
# define COPY_PIXEL(to, from) \
to[0] = from; to[1] = (from) >> 8; to[2] = (from) >> 16; SKIP_PIXEL(to)
# define COPY_PIXEL1(to, from) \
*to ++ = from; *to ++ = (from) >> 8; *to ++ = (from) >> 16
#elif DEPTH == 32
# define PIXEL_TYPE uint32_t
# define COPY_PIXEL(to, from) *to = from; SKIP_PIXEL(to)
# define COPY_PIXEL1(to, from) *to ++ = from
#else
# error unknown bit depth
#endif
#ifdef WORDS_BIGENDIAN
# define SWAP_WORDS 1
#endif
static void glue(blizzard_draw_line16_, DEPTH)(PIXEL_TYPE *dest,
const uint16_t *src, unsigned int width)
{
#if !defined(SWAP_WORDS) && DEPTH == 16
memcpy(dest, src, width << 1);
#else
uint16_t data;
unsigned int r, g, b;
const uint16_t *end = (void *) src + width;
while (src < end) {
data = lduw_raw(src ++);
b = (data & 0x1f) << 3;
data >>= 5;
g = (data & 0x3f) << 2;
data >>= 6;
r = (data & 0x1f) << 3;
data >>= 5;
COPY_PIXEL1(dest, glue(rgb_to_pixel, DEPTH)(r, g, b));
}
#endif
}
static void glue(blizzard_draw_line24mode1_, DEPTH)(PIXEL_TYPE *dest,
const uint8_t *src, unsigned int width)
{
/* TODO: check if SDL 24-bit planes are not in the same format and
* if so, use memcpy */
unsigned int r[2], g[2], b[2];
const uint8_t *end = src + width;
while (src < end) {
g[0] = *src ++;
r[0] = *src ++;
r[1] = *src ++;
b[0] = *src ++;
COPY_PIXEL1(dest, glue(rgb_to_pixel, DEPTH)(r[0], g[0], b[0]));
b[1] = *src ++;
g[1] = *src ++;
COPY_PIXEL1(dest, glue(rgb_to_pixel, DEPTH)(r[1], g[1], b[1]));
}
}
static void glue(blizzard_draw_line24mode2_, DEPTH)(PIXEL_TYPE *dest,
const uint8_t *src, unsigned int width)
{
unsigned int r, g, b;
const uint8_t *end = src + width;
while (src < end) {
r = *src ++;
src ++;
b = *src ++;
g = *src ++;
COPY_PIXEL1(dest, glue(rgb_to_pixel, DEPTH)(r, g, b));
}
}
/* No rotation */
static blizzard_fn_t glue(blizzard_draw_fn_, DEPTH)[0x10] = {
NULL,
/* RGB 5:6:5*/
(blizzard_fn_t) glue(blizzard_draw_line16_, DEPTH),
/* RGB 6:6:6 mode 1 */
(blizzard_fn_t) glue(blizzard_draw_line24mode1_, DEPTH),
/* RGB 8:8:8 mode 1 */
(blizzard_fn_t) glue(blizzard_draw_line24mode1_, DEPTH),
NULL, NULL,
/* RGB 6:6:6 mode 2 */
(blizzard_fn_t) glue(blizzard_draw_line24mode2_, DEPTH),
/* RGB 8:8:8 mode 2 */
(blizzard_fn_t) glue(blizzard_draw_line24mode2_, DEPTH),
/* YUV 4:2:2 */
NULL,
/* YUV 4:2:0 */
NULL,
NULL, NULL, NULL, NULL, NULL, NULL,
};
/* 90deg, 180deg and 270deg rotation */
static blizzard_fn_t glue(blizzard_draw_fn_r_, DEPTH)[0x10] = {
/* TODO */
[0 ... 0xf] = NULL,
};
#undef DEPTH
#undef SKIP_PIXEL
#undef COPY_PIXEL
#undef COPY_PIXEL1
#undef PIXEL_TYPE
#undef SWAP_WORDS
......@@ -81,6 +81,9 @@ extern QEMUMachine terrierpda_machine;
/* palm.c */
extern QEMUMachine palmte_machine;
/* nseries.c */
extern QEMUMachine n800_machine;
/* gumstix.c */
extern QEMUMachine connex_machine;
extern QEMUMachine verdex_machine;
......
/*
* CBUS three-pin bus and the Retu / Betty / Tahvo / Vilma / Avilma /
* Hinku / Vinku / Ahne / Pihi chips used in various Nokia platforms.
* Based on reverse-engineering of a linux driver.
*
* Copyright (C) 2008 Nokia Corporation
* Written by Andrzej Zaborowski <andrew@openedhand.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 or
* (at your option) version 3 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include "qemu-common.h"
#include "irq.h"
#include "devices.h"
#include "sysemu.h"
//#define DEBUG
struct cbus_slave_s;
struct cbus_priv_s {
struct cbus_s cbus;
int sel;
int dat;
int clk;
int bit;
int dir;
uint16_t val;
qemu_irq dat_out;
int addr;
int reg;
int rw;
enum {
cbus_address,
cbus_value,
} cycle;
struct cbus_slave_s *slave[8];
};
struct cbus_slave_s {
void *opaque;
void (*io)(void *opaque, int rw, int reg, uint16_t *val);
int addr;
};
static void cbus_io(struct cbus_priv_s *s)
{
if (s->slave[s->addr])
s->slave[s->addr]->io(s->slave[s->addr]->opaque,
s->rw, s->reg, &s->val);
else
cpu_abort(cpu_single_env, "%s: bad slave address %i\n",
__FUNCTION__, s->addr);
}
static void cbus_cycle(struct cbus_priv_s *s)
{
switch (s->cycle) {
case cbus_address:
s->addr = (s->val >> 6) & 7;
s->rw = (s->val >> 5) & 1;
s->reg = (s->val >> 0) & 0x1f;
s->cycle = cbus_value;
s->bit = 15;
s->dir = !s->rw;
s->val = 0;
if (s->rw)
cbus_io(s);
break;
case cbus_value:
if (!s->rw)
cbus_io(s);
s->cycle = cbus_address;
s->bit = 8;
s->dir = 1;
s->val = 0;
break;
}
}
static void cbus_clk(void *opaque, int line, int level)
{
struct cbus_priv_s *s = (struct cbus_priv_s *) opaque;
if (!s->sel && level && !s->clk) {
if (s->dir)
s->val |= s->dat << (s->bit --);
else
qemu_set_irq(s->dat_out, (s->val >> (s->bit --)) & 1);
if (s->bit < 0)
cbus_cycle(s);
}
s->clk = level;
}
static void cbus_dat(void *opaque, int line, int level)
{
struct cbus_priv_s *s = (struct cbus_priv_s *) opaque;
s->dat = level;
}
static void cbus_sel(void *opaque, int line, int level)
{
struct cbus_priv_s *s = (struct cbus_priv_s *) opaque;
if (!level) {
s->dir = 1;
s->bit = 8;
s->val = 0;
}
s->sel = level;
}
struct cbus_s *cbus_init(qemu_irq dat)
{
struct cbus_priv_s *s = (struct cbus_priv_s *) qemu_mallocz(sizeof(*s));
s->dat_out = dat;
s->cbus.clk = qemu_allocate_irqs(cbus_clk, s, 1)[0];
s->cbus.dat = qemu_allocate_irqs(cbus_dat, s, 1)[0];
s->cbus.sel = qemu_allocate_irqs(cbus_sel, s, 1)[0];
s->sel = 1;
s->clk = 0;
s->dat = 0;
return &s->cbus;
}
void cbus_attach(struct cbus_s *bus, void *slave_opaque)
{
struct cbus_slave_s *slave = (struct cbus_slave_s *) slave_opaque;
struct cbus_priv_s *s = (struct cbus_priv_s *) bus;
s->slave[slave->addr] = slave;
}
/* Retu/Vilma */
struct cbus_retu_s {
uint16_t irqst;
uint16_t irqen;
uint16_t cc[2];
int channel;
uint16_t result[16];
uint16_t sample;
uint16_t status;
struct {
uint16_t cal;
} rtc;
int is_vilma;
qemu_irq irq;
struct cbus_slave_s cbus;
};
static void retu_interrupt_update(struct cbus_retu_s *s)
{
qemu_set_irq(s->irq, s->irqst & ~s->irqen);
}
#define RETU_REG_ASICR 0x00 /* (RO) ASIC ID & revision */
#define RETU_REG_IDR 0x01 /* (T) Interrupt ID */
#define RETU_REG_IMR 0x02 /* (RW) Interrupt mask */
#define RETU_REG_RTCDSR 0x03 /* (RW) RTC seconds register */
#define RETU_REG_RTCHMR 0x04 /* (RO) RTC hours and minutes reg */
#define RETU_REG_RTCHMAR 0x05 /* (RW) RTC hours and minutes set reg */
#define RETU_REG_RTCCALR 0x06 /* (RW) RTC calibration register */
#define RETU_REG_ADCR 0x08 /* (RW) ADC result register */
#define RETU_REG_ADCSCR 0x09 /* (RW) ADC sample control register */
#define RETU_REG_AFCR 0x0a /* (RW) AFC register */
#define RETU_REG_ANTIFR 0x0b /* (RW) AntiF register */
#define RETU_REG_CALIBR 0x0c /* (RW) CalibR register*/
#define RETU_REG_CCR1 0x0d /* (RW) Common control register 1 */
#define RETU_REG_CCR2 0x0e /* (RW) Common control register 2 */
#define RETU_REG_RCTRL_CLR 0x0f /* (T) Regulator clear register */
#define RETU_REG_RCTRL_SET 0x10 /* (T) Regulator set register */
#define RETU_REG_TXCR 0x11 /* (RW) TxC register */
#define RETU_REG_STATUS 0x16 /* (RO) Status register */
#define RETU_REG_WATCHDOG 0x17 /* (RW) Watchdog register */
#define RETU_REG_AUDTXR 0x18 /* (RW) Audio Codec Tx register */
#define RETU_REG_AUDPAR 0x19 /* (RW) AudioPA register */
#define RETU_REG_AUDRXR1 0x1a /* (RW) Audio receive register 1 */
#define RETU_REG_AUDRXR2 0x1b /* (RW) Audio receive register 2 */
#define RETU_REG_SGR1 0x1c /* (RW) */
#define RETU_REG_SCR1 0x1d /* (RW) */
#define RETU_REG_SGR2 0x1e /* (RW) */
#define RETU_REG_SCR2 0x1f /* (RW) */
/* Retu Interrupt sources */
enum {
retu_int_pwr = 0, /* Power button */
retu_int_char = 1, /* Charger */
retu_int_rtcs = 2, /* Seconds */
retu_int_rtcm = 3, /* Minutes */
retu_int_rtcd = 4, /* Days */
retu_int_rtca = 5, /* Alarm */
retu_int_hook = 6, /* Hook */
retu_int_head = 7, /* Headset */
retu_int_adcs = 8, /* ADC sample */
};
/* Retu ADC channel wiring */
enum {
retu_adc_bsi = 1, /* BSI */
retu_adc_batt_temp = 2, /* Battery temperature */
retu_adc_chg_volt = 3, /* Charger voltage */
retu_adc_head_det = 4, /* Headset detection */
retu_adc_hook_det = 5, /* Hook detection */
retu_adc_rf_gp = 6, /* RF GP */
retu_adc_tx_det = 7, /* Wideband Tx detection */
retu_adc_batt_volt = 8, /* Battery voltage */
retu_adc_sens = 10, /* Light sensor */
retu_adc_sens_temp = 11, /* Light sensor temperature */
retu_adc_bbatt_volt = 12, /* Backup battery voltage */
retu_adc_self_temp = 13, /* RETU temperature */
};
static inline uint16_t retu_read(struct cbus_retu_s *s, int reg)
{
#ifdef DEBUG
printf("RETU read at %02x\n", reg);
#endif
switch (reg) {
case RETU_REG_ASICR:
return 0x0215 | (s->is_vilma << 7);
case RETU_REG_IDR: /* TODO: Or is this ffs(s->irqst)? */
return s->irqst;
case RETU_REG_IMR:
return s->irqen;
case RETU_REG_RTCDSR:
case RETU_REG_RTCHMR:
case RETU_REG_RTCHMAR:
/* TODO */
return 0x0000;
case RETU_REG_RTCCALR:
return s->rtc.cal;
case RETU_REG_ADCR:
return (s->channel << 10) | s->result[s->channel];
case RETU_REG_ADCSCR:
return s->sample;
case RETU_REG_AFCR:
case RETU_REG_ANTIFR:
case RETU_REG_CALIBR:
/* TODO */
return 0x0000;
case RETU_REG_CCR1:
return s->cc[0];
case RETU_REG_CCR2:
return s->cc[1];
case RETU_REG_RCTRL_CLR:
case RETU_REG_RCTRL_SET:
case RETU_REG_TXCR:
/* TODO */
return 0x0000;
case RETU_REG_STATUS:
return s->status;
case RETU_REG_WATCHDOG:
case RETU_REG_AUDTXR:
case RETU_REG_AUDPAR:
case RETU_REG_AUDRXR1:
case RETU_REG_AUDRXR2:
case RETU_REG_SGR1:
case RETU_REG_SCR1:
case RETU_REG_SGR2:
case RETU_REG_SCR2:
/* TODO */
return 0x0000;
default:
cpu_abort(cpu_single_env, "%s: bad register %02x\n",
__FUNCTION__, reg);
}
}
static inline void retu_write(struct cbus_retu_s *s, int reg, uint16_t val)
{
#ifdef DEBUG
printf("RETU write of %04x at %02x\n", val, reg);
#endif
switch (reg) {
case RETU_REG_IDR:
s->irqst ^= val;
retu_interrupt_update(s);
break;
case RETU_REG_IMR:
s->irqen = val;
retu_interrupt_update(s);
break;
case RETU_REG_RTCDSR:
case RETU_REG_RTCHMAR:
/* TODO */
break;
case RETU_REG_RTCCALR:
s->rtc.cal = val;
break;
case RETU_REG_ADCR:
s->channel = (val >> 10) & 0xf;
s->irqst |= 1 << retu_int_adcs;
retu_interrupt_update(s);
break;
case RETU_REG_ADCSCR:
s->sample &= ~val;
break;
case RETU_REG_AFCR:
case RETU_REG_ANTIFR:
case RETU_REG_CALIBR:
case RETU_REG_CCR1:
s->cc[0] = val;
break;
case RETU_REG_CCR2:
s->cc[1] = val;
break;
case RETU_REG_RCTRL_CLR:
case RETU_REG_RCTRL_SET:
/* TODO */
break;
case RETU_REG_WATCHDOG:
if (val == 0 && (s->cc[0] & 2))
qemu_system_shutdown_request();
break;
case RETU_REG_TXCR:
case RETU_REG_AUDTXR:
case RETU_REG_AUDPAR:
case RETU_REG_AUDRXR1:
case RETU_REG_AUDRXR2:
case RETU_REG_SGR1:
case RETU_REG_SCR1:
case RETU_REG_SGR2:
case RETU_REG_SCR2:
/* TODO */
break;
default:
cpu_abort(cpu_single_env, "%s: bad register %02x\n",
__FUNCTION__, reg);
}
}
static void retu_io(void *opaque, int rw, int reg, uint16_t *val)
{
struct cbus_retu_s *s = (struct cbus_retu_s *) opaque;
if (rw)
*val = retu_read(s, reg);
else
retu_write(s, reg, *val);
}
void *retu_init(qemu_irq irq, int vilma)
{
struct cbus_retu_s *s = (struct cbus_retu_s *) qemu_mallocz(sizeof(*s));
s->irq = irq;
s->irqen = 0xffff;
s->irqst = 0x0000;
s->status = 0x0020;
s->is_vilma = !!vilma;
s->rtc.cal = 0x01;
s->result[retu_adc_bsi] = 0x3c2;
s->result[retu_adc_batt_temp] = 0x0fc;
s->result[retu_adc_chg_volt] = 0x165;
s->result[retu_adc_head_det] = 123;
s->result[retu_adc_hook_det] = 1023;
s->result[retu_adc_rf_gp] = 0x11;
s->result[retu_adc_tx_det] = 0x11;
s->result[retu_adc_batt_volt] = 0x250;
s->result[retu_adc_sens] = 2;
s->result[retu_adc_sens_temp] = 0x11;
s->result[retu_adc_bbatt_volt] = 0x3d0;
s->result[retu_adc_self_temp] = 0x330;
s->cbus.opaque = s;
s->cbus.io = retu_io;
s->cbus.addr = 1;
return &s->cbus;
}
void retu_key_event(void *retu, int state)
{
struct cbus_slave_s *slave = (struct cbus_slave_s *) retu;
struct cbus_retu_s *s = (struct cbus_retu_s *) slave->opaque;
s->irqst |= 1 << retu_int_pwr;
retu_interrupt_update(s);
if (state)
s->status &= ~(1 << 5);
else
s->status |= 1 << 5;
}
void retu_head_event(void *retu, int state)
{
struct cbus_slave_s *slave = (struct cbus_slave_s *) retu;
struct cbus_retu_s *s = (struct cbus_retu_s *) slave->opaque;
if ((s->cc[0] & 0x500) == 0x500) { /* TODO: Which bits? */
/* TODO: reissue the interrupt every 100ms or so. */
s->irqst |= 1 << retu_int_head;
retu_interrupt_update(s);
}
if (state)
s->result[retu_adc_head_det] = 50;
else
s->result[retu_adc_head_det] = 123;
}
void retu_hook_event(void *retu, int state)
{
struct cbus_slave_s *slave = (struct cbus_slave_s *) retu;
struct cbus_retu_s *s = (struct cbus_retu_s *) slave->opaque;
if ((s->cc[0] & 0x500) == 0x500) {
/* TODO: reissue the interrupt every 100ms or so. */
s->irqst |= 1 << retu_int_hook;
retu_interrupt_update(s);
}
if (state)
s->result[retu_adc_hook_det] = 50;
else
s->result[retu_adc_hook_det] = 123;
}
/* Tahvo/Betty */
struct cbus_tahvo_s {
uint16_t irqst;
uint16_t irqen;
uint8_t charger;
uint8_t backlight;
uint16_t usbr;
uint16_t power;
int is_betty;
qemu_irq irq;
struct cbus_slave_s cbus;
};
static void tahvo_interrupt_update(struct cbus_tahvo_s *s)
{
qemu_set_irq(s->irq, s->irqst & ~s->irqen);
}
#define TAHVO_REG_ASICR 0x00 /* (RO) ASIC ID & revision */
#define TAHVO_REG_IDR 0x01 /* (T) Interrupt ID */
#define TAHVO_REG_IDSR 0x02 /* (RO) Interrupt status */
#define TAHVO_REG_IMR 0x03 /* (RW) Interrupt mask */
#define TAHVO_REG_CHAPWMR 0x04 /* (RW) Charger PWM */
#define TAHVO_REG_LEDPWMR 0x05 /* (RW) LED PWM */
#define TAHVO_REG_USBR 0x06 /* (RW) USB control */
#define TAHVO_REG_RCR 0x07 /* (RW) Some kind of power management */
#define TAHVO_REG_CCR1 0x08 /* (RW) Common control register 1 */
#define TAHVO_REG_CCR2 0x09 /* (RW) Common control register 2 */
#define TAHVO_REG_TESTR1 0x0a /* (RW) Test register 1 */
#define TAHVO_REG_TESTR2 0x0b /* (RW) Test register 2 */
#define TAHVO_REG_NOPR 0x0c /* (RW) Number of periods */
#define TAHVO_REG_FRR 0x0d /* (RO) FR */
static inline uint16_t tahvo_read(struct cbus_tahvo_s *s, int reg)
{
#ifdef DEBUG
printf("TAHVO read at %02x\n", reg);
#endif
switch (reg) {
case TAHVO_REG_ASICR:
return 0x0021 | (s->is_betty ? 0x0b00 : 0x0300); /* 22 in N810 */
case TAHVO_REG_IDR:
case TAHVO_REG_IDSR: /* XXX: what does this do? */
return s->irqst;
case TAHVO_REG_IMR:
return s->irqen;
case TAHVO_REG_CHAPWMR:
return s->charger;
case TAHVO_REG_LEDPWMR:
return s->backlight;
case TAHVO_REG_USBR:
return s->usbr;
case TAHVO_REG_RCR:
return s->power;
case TAHVO_REG_CCR1:
case TAHVO_REG_CCR2:
case TAHVO_REG_TESTR1:
case TAHVO_REG_TESTR2:
case TAHVO_REG_NOPR:
case TAHVO_REG_FRR:
return 0x0000;
default:
cpu_abort(cpu_single_env, "%s: bad register %02x\n",
__FUNCTION__, reg);
}
}
static inline void tahvo_write(struct cbus_tahvo_s *s, int reg, uint16_t val)
{
#ifdef DEBUG
printf("TAHVO write of %04x at %02x\n", val, reg);
#endif
switch (reg) {
case TAHVO_REG_IDR:
s->irqst ^= val;
tahvo_interrupt_update(s);
break;
case TAHVO_REG_IMR:
s->irqen = val;
tahvo_interrupt_update(s);
break;
case TAHVO_REG_CHAPWMR:
s->charger = val;
break;
case TAHVO_REG_LEDPWMR:
if (s->backlight != (val & 0x7f)) {
s->backlight = val & 0x7f;
printf("%s: LCD backlight now at %i / 127\n",
__FUNCTION__, s->backlight);
}
break;
case TAHVO_REG_USBR:
s->usbr = val;
break;
case TAHVO_REG_RCR:
s->power = val;
break;
case TAHVO_REG_CCR1:
case TAHVO_REG_CCR2:
case TAHVO_REG_TESTR1:
case TAHVO_REG_TESTR2:
case TAHVO_REG_NOPR:
case TAHVO_REG_FRR:
break;
default:
cpu_abort(cpu_single_env, "%s: bad register %02x\n",
__FUNCTION__, reg);
}
}
static void tahvo_io(void *opaque, int rw, int reg, uint16_t *val)
{
struct cbus_tahvo_s *s = (struct cbus_tahvo_s *) opaque;
if (rw)
*val = tahvo_read(s, reg);
else
tahvo_write(s, reg, *val);
}
void *tahvo_init(qemu_irq irq, int betty)
{
struct cbus_tahvo_s *s = (struct cbus_tahvo_s *) qemu_mallocz(sizeof(*s));
s->irq = irq;
s->irqen = 0xffff;
s->irqst = 0x0000;
s->is_betty = !!betty;
s->cbus.opaque = s;
s->cbus.io = tahvo_io;
s->cbus.addr = 2;
return &s->cbus;
}
......@@ -31,4 +31,25 @@ void tsc210x_key_event(struct uwire_slave_s *chip, int key, int down);
/* stellaris_input.c */
void stellaris_gamepad_init(int n, qemu_irq *irq, const int *keycode);
/* blizzard.c */
void *s1d13745_init(qemu_irq gpio_int, DisplayState *ds);
void s1d13745_write(void *opaque, int dc, uint16_t value);
void s1d13745_write_block(void *opaque, int dc,
void *buf, size_t len, int pitch);
uint16_t s1d13745_read(void *opaque, int dc);
/* cbus.c */
struct cbus_s {
qemu_irq clk;
qemu_irq dat;
qemu_irq sel;
};
struct cbus_s *cbus_init(qemu_irq dat_out);
void cbus_attach(struct cbus_s *bus, void *slave_opaque);
void *retu_init(qemu_irq irq, int vilma);
void *tahvo_init(qemu_irq irq, int betty);
void retu_key_event(void *retu, int state);
#endif
......@@ -34,6 +34,11 @@ uint8_t nand_getio(struct nand_flash_s *s);
#define NAND_MFR_HYNIX 0xad
#define NAND_MFR_MICRON 0x2c
/* onenand.c */
void onenand_base_update(void *opaque, target_phys_addr_t new);
void onenand_base_unmap(void *opaque);
void *onenand_init(uint32_t id, int regshift, qemu_irq irq);
/* ecc.c */
struct ecc_state_s {
uint8_t cp; /* Column parity */
......
......@@ -71,4 +71,14 @@ uint32_t wm8750_adc_dat(void *opaque);
/* ssd0303.c */
void ssd0303_init(DisplayState *ds, i2c_bus *bus, int address);
/* twl92230.c */
i2c_slave *twl92230_init(i2c_bus *bus, qemu_irq irq);
qemu_irq *twl92230_gpio_in_get(i2c_slave *i2c);
void twl92230_gpio_out_set(i2c_slave *i2c, int line, qemu_irq handler);
/* tmp105.c */
struct i2c_slave *tmp105_init(i2c_bus *bus, qemu_irq alarm);
void tmp105_reset(i2c_slave *i2c);
void tmp105_set(i2c_slave *i2c, int temp);
#endif
/*
* Nokia N-series internet tablets.
*
* Copyright (C) 2007 Nokia Corporation
* Written by Andrzej Zaborowski <andrew@openedhand.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 or
* (at your option) version 3 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include "qemu-common.h"
#include "sysemu.h"
#include "omap.h"
#include "arm-misc.h"
#include "irq.h"
#include "console.h"
#include "boards.h"
#include "i2c.h"
#include "devices.h"
#include "flash.h"
#include "hw.h"
/* Nokia N8x0 support */
struct n800_s {
struct omap_mpu_state_s *cpu;
struct rfbi_chip_s blizzard;
struct uwire_slave_s *ts;
i2c_bus *i2c;
int keymap[0x80];
void *retu;
void *tahvo;
};
/* GPIO pins */
#define N800_TUSB_ENABLE_GPIO 0
#define N800_MMC2_WP_GPIO 8
#define N800_UNKNOWN_GPIO0 9 /* out */
#define N800_UNKNOWN_GPIO1 10 /* out */
#define N800_CAM_TURN_GPIO 12
#define N800_BLIZZARD_POWERDOWN_GPIO 15
#define N800_MMC1_WP_GPIO 23
#define N8X0_ONENAND_GPIO 26
#define N800_UNKNOWN_GPIO2 53 /* out */
#define N8X0_TUSB_INT_GPIO 58
#define N800_BT_WKUP_GPIO 61
#define N800_STI_GPIO 62
#define N8X0_CBUS_SEL_GPIO 64
#define N8X0_CBUS_CLK_GPIO 65 /* sure? */
#define N8X0_CBUS_DAT_GPIO 66
#define N800_WLAN_IRQ_GPIO 87
#define N800_BT_RESET_GPIO 92
#define N800_TEA5761_CS_GPIO 93
#define N800_UNKNOWN_GPIO 94
#define N800_CAM_ACT_GPIO 95
#define N800_MMC_CS_GPIO 96
#define N800_WLAN_PWR_GPIO 97
#define N8X0_BT_HOST_WKUP_GPIO 98
#define N800_UNKNOWN_GPIO3 101 /* out */
#define N810_KB_LOCK_GPIO 102
#define N800_TSC_TS_GPIO 103
#define N810_TSC2005_GPIO 106
#define N800_HEADPHONE_GPIO 107
#define N8X0_RETU_GPIO 108
#define N800_TSC_KP_IRQ_GPIO 109
#define N810_KEYBOARD_GPIO 109
#define N800_BAT_COVER_GPIO 110
#define N810_SLIDE_GPIO 110
#define N8X0_TAHVO_GPIO 111
#define N800_UNKNOWN_GPIO4 112 /* out */
#define N810_TSC_RESET_GPIO 118
#define N800_TSC_RESET_GPIO 119 /* ? */
#define N8X0_TMP105_GPIO 125
/* Config */
#define XLDR_LL_UART 1
/* Addresses on the I2C bus */
#define N8X0_TMP105_ADDR 0x48
#define N8X0_MENELAUS_ADDR 0x72
/* Chipselects on GPMC NOR interface */
#define N8X0_ONENAND_CS 0
#define N8X0_USB_ASYNC_CS 1
#define N8X0_USB_SYNC_CS 4
static void n800_mmc_cs_cb(void *opaque, int line, int level)
{
/* TODO: this seems to actually be connected to the menelaus, to
* which also both MMC slots connect. */
omap_mmc_enable((struct omap_mmc_s *) opaque, !level);
printf("%s: MMC slot %i active\n", __FUNCTION__, level + 1);
}
static void n800_gpio_setup(struct n800_s *s)
{
qemu_irq *mmc_cs = qemu_allocate_irqs(n800_mmc_cs_cb, s->cpu->mmc, 1);
omap2_gpio_out_set(s->cpu->gpif, N800_MMC_CS_GPIO, mmc_cs[0]);
qemu_irq_lower(omap2_gpio_in_get(s->cpu->gpif, N800_BAT_COVER_GPIO)[0]);
}
static void n8x0_nand_setup(struct n800_s *s)
{
/* Either ec40xx or ec48xx are OK for the ID */
omap_gpmc_attach(s->cpu->gpmc, N8X0_ONENAND_CS, 0, onenand_base_update,
onenand_base_unmap,
onenand_init(0xec4800, 1,
omap2_gpio_in_get(s->cpu->gpif,
N8X0_ONENAND_GPIO)[0]));
}
static void n800_i2c_setup(struct n800_s *s)
{
qemu_irq tmp_irq = omap2_gpio_in_get(s->cpu->gpif, N8X0_TMP105_GPIO)[0];
/* Attach the CPU on one end of our I2C bus. */
s->i2c = omap_i2c_bus(s->cpu->i2c[0]);
/* Attach a menelaus PM chip */
i2c_set_slave_address(
twl92230_init(s->i2c,
s->cpu->irq[0][OMAP_INT_24XX_SYS_NIRQ]),
N8X0_MENELAUS_ADDR);
/* Attach a TMP105 PM chip (A0 wired to ground) */
i2c_set_slave_address(tmp105_init(s->i2c, tmp_irq), N8X0_TMP105_ADDR);
}
/* Touchscreen and keypad controller */
#define RETU_KEYCODE 61 /* F3 */
static void n800_key_event(void *opaque, int keycode)
{
struct n800_s *s = (struct n800_s *) opaque;
int code = s->keymap[keycode & 0x7f];
if (code == -1) {
if ((keycode & 0x7f) == RETU_KEYCODE)
retu_key_event(s->retu, !(keycode & 0x80));
return;
}
tsc210x_key_event(s->ts, code, !(keycode & 0x80));
}
static const int n800_keys[16] = {
-1,
72, /* Up */
63, /* Home (F5) */
-1,
75, /* Left */
28, /* Enter */
77, /* Right */
-1,
1, /* Cycle (ESC) */
80, /* Down */
62, /* Menu (F4) */
-1,
66, /* Zoom- (F8) */
64, /* FS (F6) */
65, /* Zoom+ (F7) */
-1,
};
static struct mouse_transform_info_s n800_pointercal = {
.x = 800,
.y = 480,
.a = { 14560, -68, -3455208, -39, -9621, 35152972, 65536 },
};
static void n800_tsc_setup(struct n800_s *s)
{
int i;
/* XXX: are the three pins inverted inside the chip between the
* tsc and the cpu (N4111)? */
qemu_irq penirq = 0; /* NC */
qemu_irq kbirq = omap2_gpio_in_get(s->cpu->gpif, N800_TSC_KP_IRQ_GPIO)[0];
qemu_irq dav = omap2_gpio_in_get(s->cpu->gpif, N800_TSC_TS_GPIO)[0];
s->ts = tsc2301_init(penirq, kbirq, dav, 0);
for (i = 0; i < 0x80; i ++)
s->keymap[i] = -1;
for (i = 0; i < 0x10; i ++)
if (n800_keys[i] >= 0)
s->keymap[n800_keys[i]] = i;
qemu_add_kbd_event_handler(n800_key_event, s);
tsc210x_set_transform(s->ts, &n800_pointercal);
}
/* LCD MIPI DBI-C controller (URAL) */
struct mipid_s {
int resp[4];
int param[4];
int p;
int pm;
int cmd;
int sleep;
int booster;
int te;
int selfcheck;
int partial;
int normal;
int vscr;
int invert;
int onoff;
int gamma;
uint32_t id;
};
static void mipid_reset(struct mipid_s *s)
{
if (!s->sleep)
fprintf(stderr, "%s: Display off\n", __FUNCTION__);
s->pm = 0;
s->cmd = 0;
s->sleep = 1;
s->booster = 0;
s->selfcheck =
(1 << 7) | /* Register loading OK. */
(1 << 5) | /* The chip is attached. */
(1 << 4); /* Display glass still in one piece. */
s->te = 0;
s->partial = 0;
s->normal = 1;
s->vscr = 0;
s->invert = 0;
s->onoff = 1;
s->gamma = 0;
}
static uint32_t mipid_txrx(void *opaque, uint32_t cmd)
{
struct mipid_s *s = (struct mipid_s *) opaque;
uint8_t ret;
if (s->p >= sizeof(s->resp) / sizeof(*s->resp))
ret = 0;
else
ret = s->resp[s->p ++];
if (s->pm --> 0)
s->param[s->pm] = cmd;
else
s->cmd = cmd;
switch (s->cmd) {
case 0x00: /* NOP */
break;
case 0x01: /* SWRESET */
mipid_reset(s);
break;
case 0x02: /* BSTROFF */
s->booster = 0;
break;
case 0x03: /* BSTRON */
s->booster = 1;
break;
case 0x04: /* RDDID */
s->p = 0;
s->resp[0] = (s->id >> 16) & 0xff;
s->resp[1] = (s->id >> 8) & 0xff;
s->resp[2] = (s->id >> 0) & 0xff;
break;
case 0x06: /* RD_RED */
case 0x07: /* RD_GREEN */
/* XXX the bootloader sometimes issues RD_BLUE meaning RDDID so
* for the bootloader one needs to change this. */
case 0x08: /* RD_BLUE */
s->p = 0;
/* TODO: return first pixel components */
s->resp[0] = 0x01;
break;
case 0x09: /* RDDST */
s->p = 0;
s->resp[0] = s->booster << 7;
s->resp[1] = (5 << 4) | (s->partial << 2) |
(s->sleep << 1) | s->normal;
s->resp[2] = (s->vscr << 7) | (s->invert << 5) |
(s->onoff << 2) | (s->te << 1) | (s->gamma >> 2);
s->resp[3] = s->gamma << 6;
break;
case 0x0a: /* RDDPM */
s->p = 0;
s->resp[0] = (s->onoff << 2) | (s->normal << 3) | (s->sleep << 4) |
(s->partial << 5) | (s->sleep << 6) | (s->booster << 7);
break;
case 0x0b: /* RDDMADCTR */
s->p = 0;
s->resp[0] = 0;
break;
case 0x0c: /* RDDCOLMOD */
s->p = 0;
s->resp[0] = 5; /* 65K colours */
break;
case 0x0d: /* RDDIM */
s->p = 0;
s->resp[0] = (s->invert << 5) | (s->vscr << 7) | s->gamma;
break;
case 0x0e: /* RDDSM */
s->p = 0;
s->resp[0] = s->te << 7;
break;
case 0x0f: /* RDDSDR */
s->p = 0;
s->resp[0] = s->selfcheck;
break;
case 0x10: /* SLPIN */
s->sleep = 1;
break;
case 0x11: /* SLPOUT */
s->sleep = 0;
s->selfcheck ^= 1 << 6; /* POFF self-diagnosis Ok */
break;
case 0x12: /* PTLON */
s->partial = 1;
s->normal = 0;
s->vscr = 0;
break;
case 0x13: /* NORON */
s->partial = 0;
s->normal = 1;
s->vscr = 0;
break;
case 0x20: /* INVOFF */
s->invert = 0;
break;
case 0x21: /* INVON */
s->invert = 1;
break;
case 0x22: /* APOFF */
case 0x23: /* APON */
goto bad_cmd;
case 0x25: /* WRCNTR */
if (s->pm < 0)
s->pm = 1;
goto bad_cmd;
case 0x26: /* GAMSET */
if (!s->pm)
s->gamma = ffs(s->param[0] & 0xf) - 1;
else if (s->pm < 0)
s->pm = 1;
break;
case 0x28: /* DISPOFF */
s->onoff = 0;
fprintf(stderr, "%s: Display off\n", __FUNCTION__);
break;
case 0x29: /* DISPON */
s->onoff = 1;
fprintf(stderr, "%s: Display on\n", __FUNCTION__);
break;
case 0x2a: /* CASET */
case 0x2b: /* RASET */
case 0x2c: /* RAMWR */
case 0x2d: /* RGBSET */
case 0x2e: /* RAMRD */
case 0x30: /* PTLAR */
case 0x33: /* SCRLAR */
goto bad_cmd;
case 0x34: /* TEOFF */
s->te = 0;
break;
case 0x35: /* TEON */
if (!s->pm)
s->te = 1;
else if (s->pm < 0)
s->pm = 1;
break;
case 0x36: /* MADCTR */
goto bad_cmd;
case 0x37: /* VSCSAD */
s->partial = 0;
s->normal = 0;
s->vscr = 1;
break;
case 0x38: /* IDMOFF */
case 0x39: /* IDMON */
case 0x3a: /* COLMOD */
goto bad_cmd;
case 0xb0: /* CLKINT / DISCTL */
case 0xb1: /* CLKEXT */
if (s->pm < 0)
s->pm = 2;
break;
case 0xb4: /* FRMSEL */
break;
case 0xb5: /* FRM8SEL */
case 0xb6: /* TMPRNG / INIESC */
case 0xb7: /* TMPHIS / NOP2 */
case 0xb8: /* TMPREAD / MADCTL */
case 0xba: /* DISTCTR */
case 0xbb: /* EPVOL */
goto bad_cmd;
case 0xbd: /* Unknown */
s->p = 0;
s->resp[0] = 0;
s->resp[1] = 1;
break;
case 0xc2: /* IFMOD */
if (s->pm < 0)
s->pm = 2;
break;
case 0xc6: /* PWRCTL */
case 0xc7: /* PPWRCTL */
case 0xd0: /* EPWROUT */
case 0xd1: /* EPWRIN */
case 0xd4: /* RDEV */
case 0xd5: /* RDRR */
goto bad_cmd;
case 0xda: /* RDID1 */
s->p = 0;
s->resp[0] = (s->id >> 16) & 0xff;
break;
case 0xdb: /* RDID2 */
s->p = 0;
s->resp[0] = (s->id >> 8) & 0xff;
break;
case 0xdc: /* RDID3 */
s->p = 0;
s->resp[0] = (s->id >> 0) & 0xff;
break;
default:
bad_cmd:
fprintf(stderr, "%s: unknown command %02x\n", __FUNCTION__, s->cmd);
break;
}
return ret;
}
static void *mipid_init(void)
{
struct mipid_s *s = (struct mipid_s *) qemu_mallocz(sizeof(*s));
s->id = 0x838f03;
mipid_reset(s);
return s;
}
static void n800_spi_setup(struct n800_s *s)
{
void *tsc2301 = s->ts->opaque;
void *mipid = mipid_init();
omap_mcspi_attach(s->cpu->mcspi[0], tsc210x_txrx, tsc2301, 0);
omap_mcspi_attach(s->cpu->mcspi[0], mipid_txrx, mipid, 1);
}
/* This task is normally performed by the bootloader. If we're loading
* a kernel directly, we need to enable the Blizzard ourselves. */
static void n800_dss_init(struct rfbi_chip_s *chip)
{
uint8_t *fb_blank;
chip->write(chip->opaque, 0, 0x2a); /* LCD Width register */
chip->write(chip->opaque, 1, 0x64);
chip->write(chip->opaque, 0, 0x2c); /* LCD HNDP register */
chip->write(chip->opaque, 1, 0x1e);
chip->write(chip->opaque, 0, 0x2e); /* LCD Height 0 register */
chip->write(chip->opaque, 1, 0xe0);
chip->write(chip->opaque, 0, 0x30); /* LCD Height 1 register */
chip->write(chip->opaque, 1, 0x01);
chip->write(chip->opaque, 0, 0x32); /* LCD VNDP register */
chip->write(chip->opaque, 1, 0x06);
chip->write(chip->opaque, 0, 0x68); /* Display Mode register */
chip->write(chip->opaque, 1, 1); /* Enable bit */
chip->write(chip->opaque, 0, 0x6c);
chip->write(chip->opaque, 1, 0x00); /* Input X Start Position */
chip->write(chip->opaque, 1, 0x00); /* Input X Start Position */
chip->write(chip->opaque, 1, 0x00); /* Input Y Start Position */
chip->write(chip->opaque, 1, 0x00); /* Input Y Start Position */
chip->write(chip->opaque, 1, 0x1f); /* Input X End Position */
chip->write(chip->opaque, 1, 0x03); /* Input X End Position */
chip->write(chip->opaque, 1, 0xdf); /* Input Y End Position */
chip->write(chip->opaque, 1, 0x01); /* Input Y End Position */
chip->write(chip->opaque, 1, 0x00); /* Output X Start Position */
chip->write(chip->opaque, 1, 0x00); /* Output X Start Position */
chip->write(chip->opaque, 1, 0x00); /* Output Y Start Position */
chip->write(chip->opaque, 1, 0x00); /* Output Y Start Position */
chip->write(chip->opaque, 1, 0x1f); /* Output X End Position */
chip->write(chip->opaque, 1, 0x03); /* Output X End Position */
chip->write(chip->opaque, 1, 0xdf); /* Output Y End Position */
chip->write(chip->opaque, 1, 0x01); /* Output Y End Position */
chip->write(chip->opaque, 1, 0x01); /* Input Data Format */
chip->write(chip->opaque, 1, 0x01); /* Data Source Select */
fb_blank = memset(qemu_malloc(800 * 480 * 2), 0xff, 800 * 480 * 2);
/* Display Memory Data Port */
chip->block(chip->opaque, 1, fb_blank, 800 * 480 * 2, 800);
free(fb_blank);
}
static void n800_dss_setup(struct n800_s *s, DisplayState *ds)
{
s->blizzard.opaque = s1d13745_init(0, ds);
s->blizzard.block = s1d13745_write_block;
s->blizzard.write = s1d13745_write;
s->blizzard.read = s1d13745_read;
omap_rfbi_attach(s->cpu->dss, 0, &s->blizzard);
}
static void n800_cbus_setup(struct n800_s *s)
{
qemu_irq dat_out = omap2_gpio_in_get(s->cpu->gpif, N8X0_CBUS_DAT_GPIO)[0];
qemu_irq retu_irq = omap2_gpio_in_get(s->cpu->gpif, N8X0_RETU_GPIO)[0];
qemu_irq tahvo_irq = omap2_gpio_in_get(s->cpu->gpif, N8X0_TAHVO_GPIO)[0];
struct cbus_s *cbus = cbus_init(dat_out);
omap2_gpio_out_set(s->cpu->gpif, N8X0_CBUS_CLK_GPIO, cbus->clk);
omap2_gpio_out_set(s->cpu->gpif, N8X0_CBUS_DAT_GPIO, cbus->dat);
omap2_gpio_out_set(s->cpu->gpif, N8X0_CBUS_SEL_GPIO, cbus->sel);
cbus_attach(cbus, s->retu = retu_init(retu_irq, 1));
cbus_attach(cbus, s->tahvo = tahvo_init(tahvo_irq, 1));
}
/* This task is normally performed by the bootloader. If we're loading
* a kernel directly, we need to set up GPMC mappings ourselves. */
static void n800_gpmc_init(struct n800_s *s)
{
uint32_t config7 =
(0xf << 8) | /* MASKADDRESS */
(1 << 6) | /* CSVALID */
(4 << 0); /* BASEADDRESS */
cpu_physical_memory_write(0x6800a078, /* GPMC_CONFIG7_0 */
(void *) &config7, sizeof(config7));
}
/* Setup sequence done by the bootloader */
static void n800_boot_init(void *opaque)
{
struct n800_s *s = (struct n800_s *) opaque;
uint32_t buf;
/* PRCM setup */
#define omap_writel(addr, val) \
buf = (val); \
cpu_physical_memory_write(addr, (void *) &buf, sizeof(buf))
omap_writel(0x48008060, 0x41); /* PRCM_CLKSRC_CTRL */
omap_writel(0x48008070, 1); /* PRCM_CLKOUT_CTRL */
omap_writel(0x48008078, 0); /* PRCM_CLKEMUL_CTRL */
omap_writel(0x48008090, 0); /* PRCM_VOLTSETUP */
omap_writel(0x48008094, 0); /* PRCM_CLKSSETUP */
omap_writel(0x48008098, 0); /* PRCM_POLCTRL */
omap_writel(0x48008140, 2); /* CM_CLKSEL_MPU */
omap_writel(0x48008148, 0); /* CM_CLKSTCTRL_MPU */
omap_writel(0x48008158, 1); /* RM_RSTST_MPU */
omap_writel(0x480081c8, 0x15); /* PM_WKDEP_MPU */
omap_writel(0x480081d4, 0x1d4); /* PM_EVGENCTRL_MPU */
omap_writel(0x480081d8, 0); /* PM_EVEGENONTIM_MPU */
omap_writel(0x480081dc, 0); /* PM_EVEGENOFFTIM_MPU */
omap_writel(0x480081e0, 0xc); /* PM_PWSTCTRL_MPU */
omap_writel(0x48008200, 0x047e7ff7); /* CM_FCLKEN1_CORE */
omap_writel(0x48008204, 0x00000004); /* CM_FCLKEN2_CORE */
omap_writel(0x48008210, 0x047e7ff1); /* CM_ICLKEN1_CORE */
omap_writel(0x48008214, 0x00000004); /* CM_ICLKEN2_CORE */
omap_writel(0x4800821c, 0x00000000); /* CM_ICLKEN4_CORE */
omap_writel(0x48008230, 0); /* CM_AUTOIDLE1_CORE */
omap_writel(0x48008234, 0); /* CM_AUTOIDLE2_CORE */
omap_writel(0x48008238, 7); /* CM_AUTOIDLE3_CORE */
omap_writel(0x4800823c, 0); /* CM_AUTOIDLE4_CORE */
omap_writel(0x48008240, 0x04360626); /* CM_CLKSEL1_CORE */
omap_writel(0x48008244, 0x00000014); /* CM_CLKSEL2_CORE */
omap_writel(0x48008248, 0); /* CM_CLKSTCTRL_CORE */
omap_writel(0x48008300, 0x00000000); /* CM_FCLKEN_GFX */
omap_writel(0x48008310, 0x00000000); /* CM_ICLKEN_GFX */
omap_writel(0x48008340, 0x00000001); /* CM_CLKSEL_GFX */
omap_writel(0x48008400, 0x00000004); /* CM_FCLKEN_WKUP */
omap_writel(0x48008410, 0x00000004); /* CM_ICLKEN_WKUP */
omap_writel(0x48008440, 0x00000000); /* CM_CLKSEL_WKUP */
omap_writel(0x48008500, 0x000000cf); /* CM_CLKEN_PLL */
omap_writel(0x48008530, 0x0000000c); /* CM_AUTOIDLE_PLL */
omap_writel(0x48008540, /* CM_CLKSEL1_PLL */
(0x78 << 12) | (6 << 8));
omap_writel(0x48008544, 2); /* CM_CLKSEL2_PLL */
/* GPMC setup */
n800_gpmc_init(s);
/* Video setup */
n800_dss_init(&s->blizzard);
/* CPU setup */
s->cpu->env->regs[15] = s->cpu->env->boot_info->loader_start;
s->cpu->env->GE = 0x5;
}
#define OMAP_TAG_NOKIA_BT 0x4e01
#define OMAP_TAG_WLAN_CX3110X 0x4e02
#define OMAP_TAG_CBUS 0x4e03
#define OMAP_TAG_EM_ASIC_BB5 0x4e04
static int n800_atag_setup(struct arm_boot_info *info, void *p)
{
uint8_t *b;
uint16_t *w;
uint32_t *l;
w = p;
stw_raw(w ++, OMAP_TAG_UART); /* u16 tag */
stw_raw(w ++, 4); /* u16 len */
stw_raw(w ++, (1 << 2) | (1 << 1) | (1 << 0)); /* uint enabled_uarts */
w ++;
stw_raw(w ++, OMAP_TAG_EM_ASIC_BB5); /* u16 tag */
stw_raw(w ++, 4); /* u16 len */
stw_raw(w ++, N8X0_RETU_GPIO); /* s16 retu_irq_gpio */
stw_raw(w ++, N8X0_TAHVO_GPIO); /* s16 tahvo_irq_gpio */
stw_raw(w ++, OMAP_TAG_CBUS); /* u16 tag */
stw_raw(w ++, 8); /* u16 len */
stw_raw(w ++, N8X0_CBUS_CLK_GPIO); /* s16 clk_gpio */
stw_raw(w ++, N8X0_CBUS_DAT_GPIO); /* s16 dat_gpio */
stw_raw(w ++, N8X0_CBUS_SEL_GPIO); /* s16 sel_gpio */
w ++;
stw_raw(w ++, OMAP_TAG_GPIO_SWITCH); /* u16 tag */
stw_raw(w ++, 20); /* u16 len */
strcpy((void *) w, "bat_cover"); /* char name[12] */
w += 6;
stw_raw(w ++, N800_BAT_COVER_GPIO); /* u16 gpio */
stw_raw(w ++, 0x01);
stw_raw(w ++, 0);
stw_raw(w ++, 0);
stw_raw(w ++, OMAP_TAG_GPIO_SWITCH); /* u16 tag */
stw_raw(w ++, 20); /* u16 len */
strcpy((void *) w, "cam_act"); /* char name[12] */
w += 6;
stw_raw(w ++, N800_CAM_ACT_GPIO); /* u16 gpio */
stw_raw(w ++, 0x20);
stw_raw(w ++, 0);
stw_raw(w ++, 0);
stw_raw(w ++, OMAP_TAG_GPIO_SWITCH); /* u16 tag */
stw_raw(w ++, 20); /* u16 len */
strcpy((void *) w, "cam_turn"); /* char name[12] */
w += 6;
stw_raw(w ++, N800_CAM_TURN_GPIO); /* u16 gpio */
stw_raw(w ++, 0x21);
stw_raw(w ++, 0);
stw_raw(w ++, 0);
stw_raw(w ++, OMAP_TAG_GPIO_SWITCH); /* u16 tag */
stw_raw(w ++, 20); /* u16 len */
strcpy((void *) w, "headphone"); /* char name[12] */
w += 6;
stw_raw(w ++, N800_HEADPHONE_GPIO); /* u16 gpio */
stw_raw(w ++, 0x11);
stw_raw(w ++, 0);
stw_raw(w ++, 0);
stw_raw(w ++, OMAP_TAG_NOKIA_BT); /* u16 tag */
stw_raw(w ++, 12); /* u16 len */
b = (void *) w;
stb_raw(b ++, 0x01); /* u8 chip_type (CSR) */
stb_raw(b ++, N800_BT_WKUP_GPIO); /* u8 bt_wakeup_gpio */
stb_raw(b ++, N8X0_BT_HOST_WKUP_GPIO); /* u8 host_wakeup_gpio */
stb_raw(b ++, N800_BT_RESET_GPIO); /* u8 reset_gpio */
stb_raw(b ++, 1); /* u8 bt_uart */
memset(b, 0, 6); /* u8 bd_addr[6] */
b += 6;
stb_raw(b ++, 0x02); /* u8 bt_sysclk (38.4) */
w = (void *) b;
stw_raw(w ++, OMAP_TAG_WLAN_CX3110X); /* u16 tag */
stw_raw(w ++, 8); /* u16 len */
stw_raw(w ++, 0x25); /* u8 chip_type */
stw_raw(w ++, N800_WLAN_PWR_GPIO); /* s16 power_gpio */
stw_raw(w ++, N800_WLAN_IRQ_GPIO); /* s16 irq_gpio */
stw_raw(w ++, -1); /* s16 spi_cs_gpio */
stw_raw(w ++, OMAP_TAG_MMC); /* u16 tag */
stw_raw(w ++, 16); /* u16 len */
stw_raw(w ++, 0xf); /* unsigned flags */
stw_raw(w ++, -1); /* s16 power_pin */
stw_raw(w ++, -1); /* s16 switch_pin */
stw_raw(w ++, -1); /* s16 wp_pin */
stw_raw(w ++, 0); /* unsigned flags */
stw_raw(w ++, 0); /* s16 power_pin */
stw_raw(w ++, 0); /* s16 switch_pin */
stw_raw(w ++, 0); /* s16 wp_pin */
stw_raw(w ++, OMAP_TAG_TEA5761); /* u16 tag */
stw_raw(w ++, 4); /* u16 len */
stw_raw(w ++, N800_TEA5761_CS_GPIO); /* u16 enable_gpio */
w ++;
stw_raw(w ++, OMAP_TAG_PARTITION); /* u16 tag */
stw_raw(w ++, 28); /* u16 len */
strcpy((void *) w, "bootloader"); /* char name[16] */
l = (void *) (w + 8);
stl_raw(l ++, 0x00020000); /* unsigned int size */
stl_raw(l ++, 0x00000000); /* unsigned int offset */
stl_raw(l ++, 0x3); /* unsigned int mask_flags */
w = (void *) l;
stw_raw(w ++, OMAP_TAG_PARTITION); /* u16 tag */
stw_raw(w ++, 28); /* u16 len */
strcpy((void *) w, "config"); /* char name[16] */
l = (void *) (w + 8);
stl_raw(l ++, 0x00060000); /* unsigned int size */
stl_raw(l ++, 0x00020000); /* unsigned int offset */
stl_raw(l ++, 0x0); /* unsigned int mask_flags */
w = (void *) l;
stw_raw(w ++, OMAP_TAG_PARTITION); /* u16 tag */
stw_raw(w ++, 28); /* u16 len */
strcpy((void *) w, "kernel"); /* char name[16] */
l = (void *) (w + 8);
stl_raw(l ++, 0x00200000); /* unsigned int size */
stl_raw(l ++, 0x00080000); /* unsigned int offset */
stl_raw(l ++, 0x0); /* unsigned int mask_flags */
w = (void *) l;
stw_raw(w ++, OMAP_TAG_PARTITION); /* u16 tag */
stw_raw(w ++, 28); /* u16 len */
strcpy((void *) w, "initfs"); /* char name[16] */
l = (void *) (w + 8);
stl_raw(l ++, 0x00200000); /* unsigned int size */
stl_raw(l ++, 0x00280000); /* unsigned int offset */
stl_raw(l ++, 0x3); /* unsigned int mask_flags */
w = (void *) l;
stw_raw(w ++, OMAP_TAG_PARTITION); /* u16 tag */
stw_raw(w ++, 28); /* u16 len */
strcpy((void *) w, "rootfs"); /* char name[16] */
l = (void *) (w + 8);
stl_raw(l ++, 0x0fb80000); /* unsigned int size */
stl_raw(l ++, 0x00480000); /* unsigned int offset */
stl_raw(l ++, 0x3); /* unsigned int mask_flags */
w = (void *) l;
stw_raw(w ++, OMAP_TAG_BOOT_REASON); /* u16 tag */
stw_raw(w ++, 12); /* u16 len */
#if 0
strcpy((void *) w, "por"); /* char reason_str[12] */
strcpy((void *) w, "charger"); /* char reason_str[12] */
strcpy((void *) w, "32wd_to"); /* char reason_str[12] */
strcpy((void *) w, "sw_rst"); /* char reason_str[12] */
strcpy((void *) w, "mbus"); /* char reason_str[12] */
strcpy((void *) w, "unknown"); /* char reason_str[12] */
strcpy((void *) w, "swdg_to"); /* char reason_str[12] */
strcpy((void *) w, "sec_vio"); /* char reason_str[12] */
strcpy((void *) w, "pwr_key"); /* char reason_str[12] */
strcpy((void *) w, "rtc_alarm"); /* char reason_str[12] */
#else
strcpy((void *) w, "pwr_key"); /* char reason_str[12] */
#endif
w += 6;
#if 0 /* N810 */
stw_raw(w ++, OMAP_TAG_VERSION_STR); /* u16 tag */
stw_raw(w ++, 24); /* u16 len */
strcpy((void *) w, "product"); /* char component[12] */
w += 6;
strcpy((void *) w, "RX-44"); /* char version[12] */
w += 6;
stw_raw(w ++, OMAP_TAG_VERSION_STR); /* u16 tag */
stw_raw(w ++, 24); /* u16 len */
strcpy((void *) w, "hw-build"); /* char component[12] */
w += 6;
strcpy((void *) w, "QEMU"); /* char version[12] */
w += 6;
stw_raw(w ++, OMAP_TAG_VERSION_STR); /* u16 tag */
stw_raw(w ++, 24); /* u16 len */
strcpy((void *) w, "nolo"); /* char component[12] */
w += 6;
strcpy((void *) w, "1.1.10-qemu"); /* char version[12] */
w += 6;
#else
stw_raw(w ++, OMAP_TAG_VERSION_STR); /* u16 tag */
stw_raw(w ++, 24); /* u16 len */
strcpy((void *) w, "product"); /* char component[12] */
w += 6;
strcpy((void *) w, "RX-34"); /* char version[12] */
w += 6;
stw_raw(w ++, OMAP_TAG_VERSION_STR); /* u16 tag */
stw_raw(w ++, 24); /* u16 len */
strcpy((void *) w, "hw-build"); /* char component[12] */
w += 6;
strcpy((void *) w, "QEMU"); /* char version[12] */
w += 6;
stw_raw(w ++, OMAP_TAG_VERSION_STR); /* u16 tag */
stw_raw(w ++, 24); /* u16 len */
strcpy((void *) w, "nolo"); /* char component[12] */
w += 6;
strcpy((void *) w, "1.1.6-qemu"); /* char version[12] */
w += 6;
#endif
stw_raw(w ++, OMAP_TAG_LCD); /* u16 tag */
stw_raw(w ++, 36); /* u16 len */
strcpy((void *) w, "QEMU LCD panel"); /* char panel_name[16] */
w += 8;
strcpy((void *) w, "blizzard"); /* char ctrl_name[16] */
w += 8;
stw_raw(w ++, 5); /* TODO s16 nreset_gpio */
stw_raw(w ++, 16); /* u8 data_lines */
return (void *) w - p;
}
static struct arm_boot_info n800_binfo = {
.loader_start = OMAP2_Q2_BASE,
/* Actually two chips of 0x4000000 bytes each */
.ram_size = 0x08000000,
.board_id = 0x4f7,
.atag_board = n800_atag_setup,
};
static void n800_init(int ram_size, int vga_ram_size,
const char *boot_device, DisplayState *ds,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
struct n800_s *s = (struct n800_s *) qemu_mallocz(sizeof(*s));
int sdram_size = n800_binfo.ram_size;
int onenandram_size = 0x00010000;
if (ram_size < sdram_size + onenandram_size + OMAP242X_SRAM_SIZE) {
fprintf(stderr, "This architecture uses %i bytes of memory\n",
sdram_size + onenandram_size + OMAP242X_SRAM_SIZE);
exit(1);
}
s->cpu = omap2420_mpu_init(sdram_size, NULL, cpu_model);
n800_gpio_setup(s);
n8x0_nand_setup(s);
n800_i2c_setup(s);
n800_tsc_setup(s);
n800_spi_setup(s);
n800_dss_setup(s, ds);
n800_cbus_setup(s);
/* Setup initial (reset) machine state */
/* Start at the OneNAND bootloader. */
s->cpu->env->regs[15] = 0;
if (kernel_filename) {
/* Or at the linux loader. */
n800_binfo.kernel_filename = kernel_filename;
n800_binfo.kernel_cmdline = kernel_cmdline;
n800_binfo.initrd_filename = initrd_filename;
arm_load_kernel(s->cpu->env, &n800_binfo);
qemu_register_reset(n800_boot_init, s);
n800_boot_init(s);
}
dpy_resize(ds, 800, 480);
}
QEMUMachine n800_machine = {
"n800",
"Nokia N800 aka. RX-34 tablet (OMAP2420)",
n800_init,
};
......@@ -3496,7 +3496,7 @@ struct omap_mpu_state_s *omap2420_mpu_init(unsigned long sdram_size,
{
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *)
qemu_mallocz(sizeof(struct omap_mpu_state_s));
ram_addr_t sram_base, q3_base;
ram_addr_t sram_base, q2_base;
qemu_irq *cpu_irq;
qemu_irq dma_irqs[4];
omap_clk gpio_clks[4];
......@@ -3520,7 +3520,7 @@ struct omap_mpu_state_s *omap2420_mpu_init(unsigned long sdram_size,
/* Memory-mapped stuff */
cpu_register_physical_memory(OMAP2_Q2_BASE, s->sdram_size,
(q3_base = qemu_ram_alloc(s->sdram_size)) | IO_MEM_RAM);
(q2_base = qemu_ram_alloc(s->sdram_size)) | IO_MEM_RAM);
cpu_register_physical_memory(OMAP2_SRAM_BASE, s->sram_size,
(sram_base = qemu_ram_alloc(s->sram_size)) | IO_MEM_RAM);
......
/*
* OneNAND flash memories emulation.
*
* Copyright (C) 2008 Nokia Corporation
* Written by Andrzej Zaborowski <andrew@openedhand.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 or
* (at your option) version 3 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include "qemu-common.h"
#include "flash.h"
#include "irq.h"
#include "sysemu.h"
#include "block.h"
/* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
#define PAGE_SHIFT 11
/* Fixed */
#define BLOCK_SHIFT (PAGE_SHIFT + 6)
struct onenand_s {
uint32_t id;
int shift;
target_phys_addr_t base;
qemu_irq intr;
qemu_irq rdy;
BlockDriverState *bdrv;
BlockDriverState *bdrv_cur;
uint8_t *image;
uint8_t *otp;
uint8_t *current;
ram_addr_t ram;
uint8_t *boot[2];
uint8_t *data[2][2];
int iomemtype;
int cycle;
int otpmode;
uint16_t addr[8];
uint16_t unladdr[8];
int bufaddr;
int count;
uint16_t command;
uint16_t config[2];
uint16_t status;
uint16_t intstatus;
uint16_t wpstatus;
struct ecc_state_s ecc;
int density_mask;
int secs;
int secs_cur;
int blocks;
uint8_t *blockwp;
};
enum {
ONEN_BUF_BLOCK = 0,
ONEN_BUF_BLOCK2 = 1,
ONEN_BUF_DEST_BLOCK = 2,
ONEN_BUF_DEST_PAGE = 3,
ONEN_BUF_PAGE = 7,
};
enum {
ONEN_ERR_CMD = 1 << 10,
ONEN_ERR_ERASE = 1 << 11,
ONEN_ERR_PROG = 1 << 12,
ONEN_ERR_LOAD = 1 << 13,
};
enum {
ONEN_INT_RESET = 1 << 4,
ONEN_INT_ERASE = 1 << 5,
ONEN_INT_PROG = 1 << 6,
ONEN_INT_LOAD = 1 << 7,
ONEN_INT = 1 << 15,
};
enum {
ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
ONEN_LOCK_LOCKED = 1 << 1,
ONEN_LOCK_UNLOCKED = 1 << 2,
};
void onenand_base_update(void *opaque, target_phys_addr_t new)
{
struct onenand_s *s = (struct onenand_s *) opaque;
s->base = new;
/* XXX: We should use IO_MEM_ROMD but we broke it earlier...
* Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
* write boot commands. Also take note of the BWPS bit. */
cpu_register_physical_memory(s->base + (0x0000 << s->shift),
0x0200 << s->shift, s->iomemtype);
cpu_register_physical_memory(s->base + (0x0200 << s->shift),
0xbe00 << s->shift,
(s->ram +(0x0200 << s->shift)) | IO_MEM_RAM);
if (s->iomemtype)
cpu_register_physical_memory(s->base + (0xc000 << s->shift),
0x4000 << s->shift, s->iomemtype);
}
void onenand_base_unmap(void *opaque)
{
struct onenand_s *s = (struct onenand_s *) opaque;
cpu_register_physical_memory(s->base,
0x10000 << s->shift, IO_MEM_UNASSIGNED);
}
static void onenand_intr_update(struct onenand_s *s)
{
qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
}
/* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
static void onenand_reset(struct onenand_s *s, int cold)
{
memset(&s->addr, 0, sizeof(s->addr));
s->command = 0;
s->count = 1;
s->bufaddr = 0;
s->config[0] = 0x40c0;
s->config[1] = 0x0000;
onenand_intr_update(s);
qemu_irq_raise(s->rdy);
s->status = 0x0000;
s->intstatus = cold ? 0x8080 : 0x8010;
s->unladdr[0] = 0;
s->unladdr[1] = 0;
s->wpstatus = 0x0002;
s->cycle = 0;
s->otpmode = 0;
s->bdrv_cur = s->bdrv;
s->current = s->image;
s->secs_cur = s->secs;
if (cold) {
/* Lock the whole flash */
memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
if (s->bdrv && bdrv_read(s->bdrv, 0, s->boot[0], 8) < 0)
cpu_abort(cpu_single_env, "%s: Loading the BootRAM failed.\n",
__FUNCTION__);
}
}
static inline int onenand_load_main(struct onenand_s *s, int sec, int secn,
void *dest)
{
if (s->bdrv_cur)
return bdrv_read(s->bdrv_cur, sec, dest, secn) < 0;
else if (sec + secn > s->secs_cur)
return 1;
memcpy(dest, s->current + (sec << 9), secn << 9);
return 0;
}
static inline int onenand_prog_main(struct onenand_s *s, int sec, int secn,
void *src)
{
if (s->bdrv_cur)
return bdrv_write(s->bdrv_cur, sec, src, secn) < 0;
else if (sec + secn > s->secs_cur)
return 1;
memcpy(s->current + (sec << 9), src, secn << 9);
return 0;
}
static inline int onenand_load_spare(struct onenand_s *s, int sec, int secn,
void *dest)
{
uint8_t buf[512];
if (s->bdrv_cur) {
if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0)
return 1;
memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
} else if (sec + secn > s->secs_cur)
return 1;
else
memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
return 0;
}
static inline int onenand_prog_spare(struct onenand_s *s, int sec, int secn,
void *src)
{
uint8_t buf[512];
if (s->bdrv_cur) {
if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0)
return 1;
memcpy(buf + ((sec & 31) << 4), src, secn << 4);
return bdrv_write(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0;
} else if (sec + secn > s->secs_cur)
return 1;
memcpy(s->current + (s->secs_cur << 9) + (sec << 4), src, secn << 4);
return 0;
}
static inline int onenand_erase(struct onenand_s *s, int sec, int num)
{
/* TODO: optimise */
uint8_t buf[512];
memset(buf, 0xff, sizeof(buf));
for (; num > 0; num --, sec ++) {
if (onenand_prog_main(s, sec, 1, buf))
return 1;
if (onenand_prog_spare(s, sec, 1, buf))
return 1;
}
return 0;
}
static void onenand_command(struct onenand_s *s, int cmd)
{
int b;
int sec;
void *buf;
#define SETADDR(block, page) \
sec = (s->addr[page] & 3) + \
((((s->addr[page] >> 2) & 0x3f) + \
(((s->addr[block] & 0xfff) | \
(s->addr[block] >> 15 ? \
s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
#define SETBUF_M() \
buf = (s->bufaddr & 8) ? \
s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0]; \
buf += (s->bufaddr & 3) << 9;
#define SETBUF_S() \
buf = (s->bufaddr & 8) ? \
s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1]; \
buf += (s->bufaddr & 3) << 4;
switch (cmd) {
case 0x00: /* Load single/multiple sector data unit into buffer */
SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
SETBUF_M()
if (onenand_load_main(s, sec, s->count, buf))
s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
#if 0
SETBUF_S()
if (onenand_load_spare(s, sec, s->count, buf))
s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
#endif
/* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
* or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
* then we need two split the read/write into two chunks.
*/
s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
break;
case 0x13: /* Load single/multiple spare sector into buffer */
SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
SETBUF_S()
if (onenand_load_spare(s, sec, s->count, buf))
s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
/* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
* or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
* then we need two split the read/write into two chunks.
*/
s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
break;
case 0x80: /* Program single/multiple sector data unit from buffer */
SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
SETBUF_M()
if (onenand_prog_main(s, sec, s->count, buf))
s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
#if 0
SETBUF_S()
if (onenand_prog_spare(s, sec, s->count, buf))
s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
#endif
/* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
* or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
* then we need two split the read/write into two chunks.
*/
s->intstatus |= ONEN_INT | ONEN_INT_PROG;
break;
case 0x1a: /* Program single/multiple spare area sector from buffer */
SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
SETBUF_S()
if (onenand_prog_spare(s, sec, s->count, buf))
s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
/* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
* or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
* then we need two split the read/write into two chunks.
*/
s->intstatus |= ONEN_INT | ONEN_INT_PROG;
break;
case 0x1b: /* Copy-back program */
SETBUF_S()
SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
if (onenand_load_main(s, sec, s->count, buf))
s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
if (onenand_prog_main(s, sec, s->count, buf))
s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
/* TODO: spare areas */
s->intstatus |= ONEN_INT | ONEN_INT_PROG;
break;
case 0x23: /* Unlock NAND array block(s) */
s->intstatus |= ONEN_INT;
/* XXX the previous (?) area should be locked automatically */
for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
if (b >= s->blocks) {
s->status |= ONEN_ERR_CMD;
break;
}
if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
break;
s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
}
break;
case 0x2a: /* Lock NAND array block(s) */
s->intstatus |= ONEN_INT;
for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
if (b >= s->blocks) {
s->status |= ONEN_ERR_CMD;
break;
}
if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
break;
s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
}
break;
case 0x2c: /* Lock-tight NAND array block(s) */
s->intstatus |= ONEN_INT;
for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
if (b >= s->blocks) {
s->status |= ONEN_ERR_CMD;
break;
}
if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
continue;
s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
}
break;
case 0x71: /* Erase-Verify-Read */
s->intstatus |= ONEN_INT;
break;
case 0x95: /* Multi-block erase */
qemu_irq_pulse(s->intr);
/* Fall through. */
case 0x94: /* Block erase */
sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
(s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
<< (BLOCK_SHIFT - 9);
if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;
s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
break;
case 0xb0: /* Erase suspend */
break;
case 0x30: /* Erase resume */
s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
break;
case 0xf0: /* Reset NAND Flash core */
onenand_reset(s, 0);
break;
case 0xf3: /* Reset OneNAND */
onenand_reset(s, 0);
break;
case 0x65: /* OTP Access */
s->intstatus |= ONEN_INT;
s->bdrv_cur = 0;
s->current = s->otp;
s->secs_cur = 1 << (BLOCK_SHIFT - 9);
s->addr[ONEN_BUF_BLOCK] = 0;
s->otpmode = 1;
break;
default:
s->status |= ONEN_ERR_CMD;
s->intstatus |= ONEN_INT;
fprintf(stderr, "%s: unknown OneNAND command %x\n",
__FUNCTION__, cmd);
}
onenand_intr_update(s);
}
static uint32_t onenand_read(void *opaque, target_phys_addr_t addr)
{
struct onenand_s *s = (struct onenand_s *) opaque;
int offset = (addr - s->base) >> s->shift;
switch (offset) {
case 0x0000 ... 0xc000:
return lduw_le_p(s->boot[0] + (addr - s->base));
case 0xf000: /* Manufacturer ID */
return (s->id >> 16) & 0xff;
case 0xf001: /* Device ID */
return (s->id >> 8) & 0xff;
/* TODO: get the following values from a real chip! */
case 0xf002: /* Version ID */
return (s->id >> 0) & 0xff;
case 0xf003: /* Data Buffer size */
return 1 << PAGE_SHIFT;
case 0xf004: /* Boot Buffer size */
return 0x200;
case 0xf005: /* Amount of buffers */
return 1 | (2 << 8);
case 0xf006: /* Technology */
return 0;
case 0xf100 ... 0xf107: /* Start addresses */
return s->addr[offset - 0xf100];
case 0xf200: /* Start buffer */
return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));
case 0xf220: /* Command */
return s->command;
case 0xf221: /* System Configuration 1 */
return s->config[0] & 0xffe0;
case 0xf222: /* System Configuration 2 */
return s->config[1];
case 0xf240: /* Controller Status */
return s->status;
case 0xf241: /* Interrupt */
return s->intstatus;
case 0xf24c: /* Unlock Start Block Address */
return s->unladdr[0];
case 0xf24d: /* Unlock End Block Address */
return s->unladdr[1];
case 0xf24e: /* Write Protection Status */
return s->wpstatus;
case 0xff00: /* ECC Status */
return 0x00;
case 0xff01: /* ECC Result of main area data */
case 0xff02: /* ECC Result of spare area data */
case 0xff03: /* ECC Result of main area data */
case 0xff04: /* ECC Result of spare area data */
cpu_abort(cpu_single_env, "%s: imeplement ECC\n", __FUNCTION__);
return 0x0000;
}
fprintf(stderr, "%s: unknown OneNAND register %x\n",
__FUNCTION__, offset);
return 0;
}
static void onenand_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct onenand_s *s = (struct onenand_s *) opaque;
int offset = (addr - s->base) >> s->shift;
int sec;
switch (offset) {
case 0x0000 ... 0x01ff:
case 0x8000 ... 0x800f:
if (s->cycle) {
s->cycle = 0;
if (value == 0x0000) {
SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
onenand_load_main(s, sec,
1 << (PAGE_SHIFT - 9), s->data[0][0]);
s->addr[ONEN_BUF_PAGE] += 4;
s->addr[ONEN_BUF_PAGE] &= 0xff;
}
break;
}
switch (value) {
case 0x00f0: /* Reset OneNAND */
onenand_reset(s, 0);
break;
case 0x00e0: /* Load Data into Buffer */
s->cycle = 1;
break;
case 0x0090: /* Read Identification Data */
memset(s->boot[0], 0, 3 << s->shift);
s->boot[0][0 << s->shift] = (s->id >> 16) & 0xff;
s->boot[0][1 << s->shift] = (s->id >> 8) & 0xff;
s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
break;
default:
fprintf(stderr, "%s: unknown OneNAND boot command %x\n",
__FUNCTION__, value);
}
break;
case 0xf100 ... 0xf107: /* Start addresses */
s->addr[offset - 0xf100] = value;
break;
case 0xf200: /* Start buffer */
s->bufaddr = (value >> 8) & 0xf;
if (PAGE_SHIFT == 11)
s->count = (value & 3) ?: 4;
else if (PAGE_SHIFT == 10)
s->count = (value & 1) ?: 2;
break;
case 0xf220: /* Command */
if (s->intstatus & (1 << 15))
break;
s->command = value;
onenand_command(s, s->command);
break;
case 0xf221: /* System Configuration 1 */
s->config[0] = value;
onenand_intr_update(s);
qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
break;
case 0xf222: /* System Configuration 2 */
s->config[1] = value;
break;
case 0xf241: /* Interrupt */
s->intstatus &= value;
if ((1 << 15) & ~s->intstatus)
s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
ONEN_ERR_PROG | ONEN_ERR_LOAD);
onenand_intr_update(s);
break;
case 0xf24c: /* Unlock Start Block Address */
s->unladdr[0] = value & (s->blocks - 1);
/* For some reason we have to set the end address to by default
* be same as start because the software forgets to write anything
* in there. */
s->unladdr[1] = value & (s->blocks - 1);
break;
case 0xf24d: /* Unlock End Block Address */
s->unladdr[1] = value & (s->blocks - 1);
break;
default:
fprintf(stderr, "%s: unknown OneNAND register %x\n",
__FUNCTION__, offset);
}
}
static CPUReadMemoryFunc *onenand_readfn[] = {
onenand_read, /* TODO */
onenand_read,
onenand_read,
};
static CPUWriteMemoryFunc *onenand_writefn[] = {
onenand_write, /* TODO */
onenand_write,
onenand_write,
};
void *onenand_init(uint32_t id, int regshift, qemu_irq irq)
{
struct onenand_s *s = (struct onenand_s *) qemu_mallocz(sizeof(*s));
int bdrv_index = drive_get_index(IF_MTD, 0, 0);
uint32_t size = 1 << (24 + ((id >> 12) & 7));
void *ram;
s->shift = regshift;
s->intr = irq;
s->rdy = 0;
s->id = id;
s->blocks = size >> BLOCK_SHIFT;
s->secs = size >> 9;
s->blockwp = qemu_malloc(s->blocks);
s->density_mask = (id & (1 << 11)) ? (1 << (6 + ((id >> 12) & 7))) : 0;
s->iomemtype = cpu_register_io_memory(0, onenand_readfn,
onenand_writefn, s);
if (bdrv_index == -1)
s->image = memset(qemu_malloc(size + (size >> 5)),
0xff, size + (size >> 5));
else
s->bdrv = drives_table[bdrv_index].bdrv;
s->otp = memset(qemu_malloc((64 + 2) << PAGE_SHIFT),
0xff, (64 + 2) << PAGE_SHIFT);
s->ram = qemu_ram_alloc(0xc000 << s->shift);
ram = phys_ram_base + s->ram;
s->boot[0] = ram + (0x0000 << s->shift);
s->boot[1] = ram + (0x8000 << s->shift);
s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
onenand_reset(s, 1);
return s;
}
/*
* Texas Instruments TMP105 temperature sensor.
*
* Copyright (C) 2008 Nokia Corporation
* Written by Andrzej Zaborowski <andrew@openedhand.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 or
* (at your option) version 3 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include "hw.h"
#include "i2c.h"
struct tmp105_s {
i2c_slave i2c;
int len;
uint8_t buf[2];
qemu_irq pin;
uint8_t pointer;
uint8_t config;
int16_t temperature;
int16_t limit[2];
int faults;
int alarm;
};
static void tmp105_interrupt_update(struct tmp105_s *s)
{
qemu_set_irq(s->pin, s->alarm ^ ((~s->config >> 2) & 1)); /* POL */
}
static void tmp105_alarm_update(struct tmp105_s *s)
{
if ((s->config >> 0) & 1) { /* SD */
if ((s->config >> 7) & 1) /* OS */
s->config &= ~(1 << 7); /* OS */
else
return;
}
if ((s->config >> 1) & 1) { /* TM */
if (s->temperature >= s->limit[1])
s->alarm = 1;
else if (s->temperature < s->limit[0])
s->alarm = 1;
} else {
if (s->temperature >= s->limit[1])
s->alarm = 1;
else if (s->temperature < s->limit[0])
s->alarm = 0;
}
tmp105_interrupt_update(s);
}
/* Units are 0.001 centigrades relative to 0 C. */
void tmp105_set(i2c_slave *i2c, int temp)
{
struct tmp105_s *s = (struct tmp105_s *) i2c;
if (temp >= 128000 || temp < -128000) {
fprintf(stderr, "%s: values is out of range (%i.%03i C)\n",
__FUNCTION__, temp / 1000, temp % 1000);
exit(-1);
}
s->temperature = ((int16_t) (temp * 0x800 / 128000)) << 4;
tmp105_alarm_update(s);
}
static const int tmp105_faultq[4] = { 1, 2, 4, 6 };
static void tmp105_read(struct tmp105_s *s)
{
s->len = 0;
if ((s->config >> 1) & 1) { /* TM */
s->alarm = 0;
tmp105_interrupt_update(s);
}
switch (s->pointer & 3) {
case 0: /* Temperature */
s->buf[s->len ++] = (((uint16_t) s->temperature) >> 8);
s->buf[s->len ++] = (((uint16_t) s->temperature) >> 0) &
(0xf0 << ((~s->config >> 5) & 3)); /* R */
break;
case 1: /* Configuration */
s->buf[s->len ++] = s->config;
break;
case 2: /* T_LOW */
s->buf[s->len ++] = ((uint16_t) s->limit[0]) >> 8;
s->buf[s->len ++] = ((uint16_t) s->limit[0]) >> 0;
break;
case 3: /* T_HIGH */
s->buf[s->len ++] = ((uint16_t) s->limit[1]) >> 8;
s->buf[s->len ++] = ((uint16_t) s->limit[1]) >> 0;
break;
}
}
static void tmp105_write(struct tmp105_s *s)
{
switch (s->pointer & 3) {
case 0: /* Temperature */
break;
case 1: /* Configuration */
if (s->buf[0] & ~s->config & (1 << 0)) /* SD */
printf("%s: TMP105 shutdown\n", __FUNCTION__);
s->config = s->buf[0];
s->faults = tmp105_faultq[(s->config >> 3) & 3]; /* F */
tmp105_alarm_update(s);
break;
case 2: /* T_LOW */
case 3: /* T_HIGH */
if (s->len >= 3)
s->limit[s->pointer & 1] = (int16_t)
((((uint16_t) s->buf[0]) << 8) | s->buf[1]);
tmp105_alarm_update(s);
break;
}
}
static int tmp105_rx(i2c_slave *i2c)
{
struct tmp105_s *s = (struct tmp105_s *) i2c;
if (s->len < 2)
return s->buf[s->len ++];
else
return 0xff;
}
static int tmp105_tx(i2c_slave *i2c, uint8_t data)
{
struct tmp105_s *s = (struct tmp105_s *) i2c;
if (!s->len ++)
s->pointer = data;
else {
if (s->len <= 2)
s->buf[s->len - 1] = data;
tmp105_write(s);
}
return 0;
}
static void tmp105_event(i2c_slave *i2c, enum i2c_event event)
{
struct tmp105_s *s = (struct tmp105_s *) i2c;
if (event == I2C_START_RECV)
tmp105_read(s);
s->len = 0;
}
static void tmp105_save(QEMUFile *f, void *opaque)
{
struct tmp105_s *s = (struct tmp105_s *) opaque;
qemu_put_byte(f, s->len);
qemu_put_8s(f, &s->buf[0]);
qemu_put_8s(f, &s->buf[1]);
qemu_put_8s(f, &s->pointer);
qemu_put_8s(f, &s->config);
qemu_put_be16s(f, &s->temperature);
qemu_put_be16s(f, &s->limit[0]);
qemu_put_be16s(f, &s->limit[1]);
qemu_put_byte(f, s->alarm);
s->faults = tmp105_faultq[(s->config >> 3) & 3]; /* F */
i2c_slave_save(f, &s->i2c);
}
static int tmp105_load(QEMUFile *f, void *opaque, int version_id)
{
struct tmp105_s *s = (struct tmp105_s *) opaque;
s->len = qemu_get_byte(f);
qemu_get_8s(f, &s->buf[0]);
qemu_get_8s(f, &s->buf[1]);
qemu_get_8s(f, &s->pointer);
qemu_get_8s(f, &s->config);
qemu_get_be16s(f, &s->temperature);
qemu_get_be16s(f, &s->limit[0]);
qemu_get_be16s(f, &s->limit[1]);
s->alarm = qemu_get_byte(f);
tmp105_interrupt_update(s);
i2c_slave_load(f, &s->i2c);
return 0;
}
void tmp105_reset(i2c_slave *i2c)
{
struct tmp105_s *s = (struct tmp105_s *) i2c;
s->temperature = 0;
s->pointer = 0;
s->config = 0;
s->faults = tmp105_faultq[(s->config >> 3) & 3];
s->alarm = 0;
tmp105_interrupt_update(s);
}
static int tmp105_iid = 0;
struct i2c_slave *tmp105_init(i2c_bus *bus, qemu_irq alarm)
{
struct tmp105_s *s = (struct tmp105_s *)
i2c_slave_init(bus, 0, sizeof(struct tmp105_s));
s->i2c.event = tmp105_event;
s->i2c.recv = tmp105_rx;
s->i2c.send = tmp105_tx;
s->pin = alarm;
tmp105_reset(&s->i2c);
register_savevm("TMP105", tmp105_iid ++, 0,
tmp105_save, tmp105_load, s);
return &s->i2c;
}
/*
* TI TWL92230C energy-management companion device for the OMAP24xx.
* Aka. Menelaus (N4200 MENELAUS1_V2.2)
*
* Copyright (C) 2008 Nokia Corporation
* Written by Andrzej Zaborowski <andrew@openedhand.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 or
* (at your option) version 3 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include "hw.h"
#include "qemu-timer.h"
#include "i2c.h"
#include "sysemu.h"
#include "console.h"
#define VERBOSE 1
struct menelaus_s {
i2c_slave i2c;
qemu_irq irq;
int firstbyte;
uint8_t reg;
uint8_t vcore[5];
uint8_t dcdc[3];
uint8_t ldo[8];
uint8_t sleep[2];
uint8_t osc;
uint8_t detect;
uint16_t mask;
uint16_t status;
uint8_t dir;
uint8_t inputs;
uint8_t outputs;
uint8_t bbsms;
uint8_t pull[4];
uint8_t mmc_ctrl[3];
uint8_t mmc_debounce;
struct {
uint8_t ctrl;
uint16_t comp;
QEMUTimer *hz;
int64_t next;
struct tm tm;
struct tm new;
struct tm alm;
time_t sec;
time_t alm_sec;
time_t next_comp;
struct tm *(*gettime)(const time_t *timep, struct tm *result);
} rtc;
qemu_irq handler[3];
qemu_irq *in;
int pwrbtn_state;
qemu_irq pwrbtn;
};
static inline void menelaus_update(struct menelaus_s *s)
{
qemu_set_irq(s->irq, s->status & ~s->mask);
}
static inline void menelaus_rtc_start(struct menelaus_s *s)
{
s->rtc.next =+ qemu_get_clock(rt_clock);
qemu_mod_timer(s->rtc.hz, s->rtc.next);
}
static inline void menelaus_rtc_stop(struct menelaus_s *s)
{
qemu_del_timer(s->rtc.hz);
s->rtc.next =- qemu_get_clock(rt_clock);
if (s->rtc.next < 1)
s->rtc.next = 1;
}
static void menelaus_rtc_update(struct menelaus_s *s)
{
s->rtc.gettime(&s->rtc.sec, &s->rtc.tm);
}
static void menelaus_alm_update(struct menelaus_s *s)
{
if ((s->rtc.ctrl & 3) == 3)
s->rtc.alm_sec = mktime(&s->rtc.alm);
}
static void menelaus_rtc_hz(void *opaque)
{
struct menelaus_s *s = (struct menelaus_s *) opaque;
s->rtc.sec ++;
s->rtc.next += 1000;
qemu_mod_timer(s->rtc.hz, s->rtc.next);
if ((s->rtc.ctrl >> 3) & 3) { /* EVERY */
menelaus_rtc_update(s);
if (((s->rtc.ctrl >> 3) & 3) == 1 && !s->rtc.tm.tm_sec)
s->status |= 1 << 8; /* RTCTMR */
else if (((s->rtc.ctrl >> 3) & 3) == 2 && !s->rtc.tm.tm_min)
s->status |= 1 << 8; /* RTCTMR */
else if (!s->rtc.tm.tm_hour)
s->status |= 1 << 8; /* RTCTMR */
} else
s->status |= 1 << 8; /* RTCTMR */
if ((s->rtc.ctrl >> 1) & 1) { /* RTC_AL_EN */
if (s->rtc.sec == s->rtc.alm_sec)
s->status |= 1 << 9; /* RTCALM */
/* TODO: wake-up */
}
if (s->rtc.next_comp >= s->rtc.sec) {
s->rtc.next -= muldiv64((int16_t) s->rtc.comp, 1000, 0x8000);
s->rtc.next_comp = s->rtc.sec + 3600;
}
menelaus_update(s);
}
void menelaus_reset(i2c_slave *i2c)
{
struct menelaus_s *s = (struct menelaus_s *) i2c;
time_t ti;
s->reg = 0x00;
s->vcore[0] = 0x0c; /* XXX: X-loader needs 0x8c? check! */
s->vcore[1] = 0x05;
s->vcore[2] = 0x02;
s->vcore[3] = 0x0c;
s->vcore[4] = 0x03;
s->dcdc[0] = 0x33; /* Depends on wiring */
s->dcdc[1] = 0x03;
s->dcdc[2] = 0x00;
s->ldo[0] = 0x95;
s->ldo[1] = 0x7e;
s->ldo[2] = 0x00;
s->ldo[3] = 0x00; /* Depends on wiring */
s->ldo[4] = 0x03; /* Depends on wiring */
s->ldo[5] = 0x00;
s->ldo[6] = 0x00;
s->ldo[7] = 0x00;
s->sleep[0] = 0x00;
s->sleep[1] = 0x00;
s->osc = 0x01;
s->detect = 0x09;
s->mask = 0x0fff;
s->status = 0;
s->dir = 0x07;
s->outputs = 0x00;
s->bbsms = 0x00;
s->pull[0] = 0x00;
s->pull[1] = 0x00;
s->pull[2] = 0x00;
s->pull[3] = 0x00;
s->mmc_ctrl[0] = 0x03;
s->mmc_ctrl[1] = 0xc0;
s->mmc_ctrl[2] = 0x00;
s->mmc_debounce = 0x05;
time(&ti);
if (s->rtc.ctrl & 1)
menelaus_rtc_stop(s);
s->rtc.ctrl = 0x00;
s->rtc.comp = 0x0000;
s->rtc.next = 1000;
s->rtc.sec = ti;
s->rtc.next_comp = s->rtc.sec + 1800;
s->rtc.alm.tm_sec = 0x00;
s->rtc.alm.tm_min = 0x00;
s->rtc.alm.tm_hour = 0x00;
s->rtc.alm.tm_mday = 0x01;
s->rtc.alm.tm_mon = 0x00;
s->rtc.alm.tm_year = 2004;
menelaus_update(s);
}
static inline uint8_t to_bcd(int val)
{
return ((val / 10) << 4) | (val % 10);
}
static inline int from_bcd(uint8_t val)
{
return ((val >> 4) * 10) + (val & 0x0f);
}
static void menelaus_gpio_set(void *opaque, int line, int level)
{
struct menelaus_s *s = (struct menelaus_s *) opaque;
/* No interrupt generated */
s->inputs &= ~(1 << line);
s->inputs |= level << line;
}
static void menelaus_pwrbtn_set(void *opaque, int line, int level)
{
struct menelaus_s *s = (struct menelaus_s *) opaque;
if (!s->pwrbtn_state && level) {
s->status |= 1 << 11; /* PSHBTN */
menelaus_update(s);
}
s->pwrbtn_state = level;
}
#define MENELAUS_REV 0x01
#define MENELAUS_VCORE_CTRL1 0x02
#define MENELAUS_VCORE_CTRL2 0x03
#define MENELAUS_VCORE_CTRL3 0x04
#define MENELAUS_VCORE_CTRL4 0x05
#define MENELAUS_VCORE_CTRL5 0x06
#define MENELAUS_DCDC_CTRL1 0x07
#define MENELAUS_DCDC_CTRL2 0x08
#define MENELAUS_DCDC_CTRL3 0x09
#define MENELAUS_LDO_CTRL1 0x0a
#define MENELAUS_LDO_CTRL2 0x0b
#define MENELAUS_LDO_CTRL3 0x0c
#define MENELAUS_LDO_CTRL4 0x0d
#define MENELAUS_LDO_CTRL5 0x0e
#define MENELAUS_LDO_CTRL6 0x0f
#define MENELAUS_LDO_CTRL7 0x10
#define MENELAUS_LDO_CTRL8 0x11
#define MENELAUS_SLEEP_CTRL1 0x12
#define MENELAUS_SLEEP_CTRL2 0x13
#define MENELAUS_DEVICE_OFF 0x14
#define MENELAUS_OSC_CTRL 0x15
#define MENELAUS_DETECT_CTRL 0x16
#define MENELAUS_INT_MASK1 0x17
#define MENELAUS_INT_MASK2 0x18
#define MENELAUS_INT_STATUS1 0x19
#define MENELAUS_INT_STATUS2 0x1a
#define MENELAUS_INT_ACK1 0x1b
#define MENELAUS_INT_ACK2 0x1c
#define MENELAUS_GPIO_CTRL 0x1d
#define MENELAUS_GPIO_IN 0x1e
#define MENELAUS_GPIO_OUT 0x1f
#define MENELAUS_BBSMS 0x20
#define MENELAUS_RTC_CTRL 0x21
#define MENELAUS_RTC_UPDATE 0x22
#define MENELAUS_RTC_SEC 0x23
#define MENELAUS_RTC_MIN 0x24
#define MENELAUS_RTC_HR 0x25
#define MENELAUS_RTC_DAY 0x26
#define MENELAUS_RTC_MON 0x27
#define MENELAUS_RTC_YR 0x28
#define MENELAUS_RTC_WKDAY 0x29
#define MENELAUS_RTC_AL_SEC 0x2a
#define MENELAUS_RTC_AL_MIN 0x2b
#define MENELAUS_RTC_AL_HR 0x2c
#define MENELAUS_RTC_AL_DAY 0x2d
#define MENELAUS_RTC_AL_MON 0x2e
#define MENELAUS_RTC_AL_YR 0x2f
#define MENELAUS_RTC_COMP_MSB 0x30
#define MENELAUS_RTC_COMP_LSB 0x31
#define MENELAUS_S1_PULL_EN 0x32
#define MENELAUS_S1_PULL_DIR 0x33
#define MENELAUS_S2_PULL_EN 0x34
#define MENELAUS_S2_PULL_DIR 0x35
#define MENELAUS_MCT_CTRL1 0x36
#define MENELAUS_MCT_CTRL2 0x37
#define MENELAUS_MCT_CTRL3 0x38
#define MENELAUS_MCT_PIN_ST 0x39
#define MENELAUS_DEBOUNCE1 0x3a
static uint8_t menelaus_read(void *opaque, uint8_t addr)
{
struct menelaus_s *s = (struct menelaus_s *) opaque;
int reg = 0;
switch (addr) {
case MENELAUS_REV:
return 0x22;
case MENELAUS_VCORE_CTRL5: reg ++;
case MENELAUS_VCORE_CTRL4: reg ++;
case MENELAUS_VCORE_CTRL3: reg ++;
case MENELAUS_VCORE_CTRL2: reg ++;
case MENELAUS_VCORE_CTRL1:
return s->vcore[reg];
case MENELAUS_DCDC_CTRL3: reg ++;
case MENELAUS_DCDC_CTRL2: reg ++;
case MENELAUS_DCDC_CTRL1:
return s->dcdc[reg];
case MENELAUS_LDO_CTRL8: reg ++;
case MENELAUS_LDO_CTRL7: reg ++;
case MENELAUS_LDO_CTRL6: reg ++;
case MENELAUS_LDO_CTRL5: reg ++;
case MENELAUS_LDO_CTRL4: reg ++;
case MENELAUS_LDO_CTRL3: reg ++;
case MENELAUS_LDO_CTRL2: reg ++;
case MENELAUS_LDO_CTRL1:
return s->ldo[reg];
case MENELAUS_SLEEP_CTRL2: reg ++;
case MENELAUS_SLEEP_CTRL1:
return s->sleep[reg];
case MENELAUS_DEVICE_OFF:
return 0;
case MENELAUS_OSC_CTRL:
return s->osc | (1 << 7); /* CLK32K_GOOD */
case MENELAUS_DETECT_CTRL:
return s->detect;
case MENELAUS_INT_MASK1:
return (s->mask >> 0) & 0xff;
case MENELAUS_INT_MASK2:
return (s->mask >> 8) & 0xff;
case MENELAUS_INT_STATUS1:
return (s->status >> 0) & 0xff;
case MENELAUS_INT_STATUS2:
return (s->status >> 8) & 0xff;
case MENELAUS_INT_ACK1:
case MENELAUS_INT_ACK2:
return 0;
case MENELAUS_GPIO_CTRL:
return s->dir;
case MENELAUS_GPIO_IN:
return s->inputs | (~s->dir & s->outputs);
case MENELAUS_GPIO_OUT:
return s->outputs;
case MENELAUS_BBSMS:
return s->bbsms;
case MENELAUS_RTC_CTRL:
return s->rtc.ctrl;
case MENELAUS_RTC_UPDATE:
return 0x00;
case MENELAUS_RTC_SEC:
menelaus_rtc_update(s);
return to_bcd(s->rtc.tm.tm_sec);
case MENELAUS_RTC_MIN:
menelaus_rtc_update(s);
return to_bcd(s->rtc.tm.tm_min);
case MENELAUS_RTC_HR:
menelaus_rtc_update(s);
if ((s->rtc.ctrl >> 2) & 1) /* MODE12_n24 */
return to_bcd((s->rtc.tm.tm_hour % 12) + 1) |
(!!(s->rtc.tm.tm_hour >= 12) << 7); /* PM_nAM */
else
return to_bcd(s->rtc.tm.tm_hour);
case MENELAUS_RTC_DAY:
menelaus_rtc_update(s);
return to_bcd(s->rtc.tm.tm_mday);
case MENELAUS_RTC_MON:
menelaus_rtc_update(s);
return to_bcd(s->rtc.tm.tm_mon + 1);
case MENELAUS_RTC_YR:
menelaus_rtc_update(s);
return to_bcd(s->rtc.tm.tm_year - 2000);
case MENELAUS_RTC_WKDAY:
menelaus_rtc_update(s);
return to_bcd(s->rtc.tm.tm_wday);
case MENELAUS_RTC_AL_SEC:
return to_bcd(s->rtc.alm.tm_sec);
case MENELAUS_RTC_AL_MIN:
return to_bcd(s->rtc.alm.tm_min);
case MENELAUS_RTC_AL_HR:
if ((s->rtc.ctrl >> 2) & 1) /* MODE12_n24 */
return to_bcd((s->rtc.alm.tm_hour % 12) + 1) |
(!!(s->rtc.alm.tm_hour >= 12) << 7);/* AL_PM_nAM */
else
return to_bcd(s->rtc.alm.tm_hour);
case MENELAUS_RTC_AL_DAY:
return to_bcd(s->rtc.alm.tm_mday);
case MENELAUS_RTC_AL_MON:
return to_bcd(s->rtc.alm.tm_mon + 1);
case MENELAUS_RTC_AL_YR:
return to_bcd(s->rtc.alm.tm_year - 2000);
case MENELAUS_RTC_COMP_MSB:
return (s->rtc.comp >> 8) & 0xff;
case MENELAUS_RTC_COMP_LSB:
return (s->rtc.comp >> 0) & 0xff;
case MENELAUS_S1_PULL_EN:
return s->pull[0];
case MENELAUS_S1_PULL_DIR:
return s->pull[1];
case MENELAUS_S2_PULL_EN:
return s->pull[2];
case MENELAUS_S2_PULL_DIR:
return s->pull[3];
case MENELAUS_MCT_CTRL3: reg ++;
case MENELAUS_MCT_CTRL2: reg ++;
case MENELAUS_MCT_CTRL1:
return s->mmc_ctrl[reg];
case MENELAUS_MCT_PIN_ST:
/* TODO: return the real Card Detect */
return 0;
case MENELAUS_DEBOUNCE1:
return s->mmc_debounce;
default:
#ifdef VERBOSE
printf("%s: unknown register %02x\n", __FUNCTION__, addr);
#endif
break;
}
return 0;
}
static void menelaus_write(void *opaque, uint8_t addr, uint8_t value)
{
struct menelaus_s *s = (struct menelaus_s *) opaque;
int line;
int reg = 0;
struct tm tm;
switch (addr) {
case MENELAUS_VCORE_CTRL1:
s->vcore[0] = (value & 0xe) | MIN(value & 0x1f, 0x12);
break;
case MENELAUS_VCORE_CTRL2:
s->vcore[1] = value;
break;
case MENELAUS_VCORE_CTRL3:
s->vcore[2] = MIN(value & 0x1f, 0x12);
break;
case MENELAUS_VCORE_CTRL4:
s->vcore[3] = MIN(value & 0x1f, 0x12);
break;
case MENELAUS_VCORE_CTRL5:
s->vcore[4] = value & 3;
/* XXX
* auto set to 3 on M_Active, nRESWARM
* auto set to 0 on M_WaitOn, M_Backup
*/
break;
case MENELAUS_DCDC_CTRL1:
s->dcdc[0] = value & 0x3f;
break;
case MENELAUS_DCDC_CTRL2:
s->dcdc[1] = value & 0x07;
/* XXX
* auto set to 3 on M_Active, nRESWARM
* auto set to 0 on M_WaitOn, M_Backup
*/
break;
case MENELAUS_DCDC_CTRL3:
s->dcdc[2] = value & 0x07;
break;
case MENELAUS_LDO_CTRL1:
s->ldo[0] = value;
break;
case MENELAUS_LDO_CTRL2:
s->ldo[1] = value & 0x7f;
/* XXX
* auto set to 0x7e on M_WaitOn, M_Backup
*/
break;
case MENELAUS_LDO_CTRL3:
s->ldo[2] = value & 3;
/* XXX
* auto set to 3 on M_Active, nRESWARM
* auto set to 0 on M_WaitOn, M_Backup
*/
break;
case MENELAUS_LDO_CTRL4:
s->ldo[3] = value & 3;
/* XXX
* auto set to 3 on M_Active, nRESWARM
* auto set to 0 on M_WaitOn, M_Backup
*/
break;
case MENELAUS_LDO_CTRL5:
s->ldo[4] = value & 3;
/* XXX
* auto set to 3 on M_Active, nRESWARM
* auto set to 0 on M_WaitOn, M_Backup
*/
break;
case MENELAUS_LDO_CTRL6:
s->ldo[5] = value & 3;
break;
case MENELAUS_LDO_CTRL7:
s->ldo[6] = value & 3;
break;
case MENELAUS_LDO_CTRL8:
s->ldo[7] = value & 3;
break;
case MENELAUS_SLEEP_CTRL2: reg ++;
case MENELAUS_SLEEP_CTRL1:
s->sleep[reg] = value;
break;
case MENELAUS_DEVICE_OFF:
if (value & 1)
menelaus_reset(&s->i2c);
break;
case MENELAUS_OSC_CTRL:
s->osc = value & 7;
break;
case MENELAUS_DETECT_CTRL:
s->detect = value & 0x7f;
break;
case MENELAUS_INT_MASK1:
s->mask &= 0xf00;
s->mask |= value << 0;
menelaus_update(s);
break;
case MENELAUS_INT_MASK2:
s->mask &= 0x0ff;
s->mask |= value << 8;
menelaus_update(s);
break;
case MENELAUS_INT_ACK1:
s->status &= ~(((uint16_t) value) << 0);
menelaus_update(s);
break;
case MENELAUS_INT_ACK2:
s->status &= ~(((uint16_t) value) << 8);
menelaus_update(s);
break;
case MENELAUS_GPIO_CTRL:
for (line = 0; line < 3; line ++)
if (((s->dir ^ value) >> line) & 1)
if (s->handler[line])
qemu_set_irq(s->handler[line],
((s->outputs & ~s->dir) >> line) & 1);
s->dir = value & 0x67;
break;
case MENELAUS_GPIO_OUT:
for (line = 0; line < 3; line ++)
if ((((s->outputs ^ value) & ~s->dir) >> line) & 1)
if (s->handler[line])
qemu_set_irq(s->handler[line], (s->outputs >> line) & 1);
s->outputs = value & 0x07;
break;
case MENELAUS_BBSMS:
s->bbsms = 0x0d;
break;
case MENELAUS_RTC_CTRL:
if ((s->rtc.ctrl ^ value) & 1) { /* RTC_EN */
if (value & 1)
menelaus_rtc_start(s);
else
menelaus_rtc_stop(s);
}
s->rtc.ctrl = value & 0x1f;
menelaus_alm_update(s);
break;
case MENELAUS_RTC_UPDATE:
menelaus_rtc_update(s);
memcpy(&tm, &s->rtc.tm, sizeof(tm));
switch (value & 0xf) {
case 0:
break;
case 1:
tm.tm_sec = s->rtc.new.tm_sec;
break;
case 2:
tm.tm_min = s->rtc.new.tm_min;
break;
case 3:
if (s->rtc.new.tm_hour > 23)
goto rtc_badness;
tm.tm_hour = s->rtc.new.tm_hour;
break;
case 4:
if (s->rtc.new.tm_mday < 1)
goto rtc_badness;
/* TODO check range */
tm.tm_mday = s->rtc.new.tm_mday;
break;
case 5:
if (s->rtc.new.tm_mon < 0 || s->rtc.new.tm_mon > 11)
goto rtc_badness;
tm.tm_mon = s->rtc.new.tm_mon;
break;
case 6:
tm.tm_year = s->rtc.new.tm_year;
break;
case 7:
/* TODO set .tm_mday instead */
tm.tm_wday = s->rtc.new.tm_wday;
break;
case 8:
if (s->rtc.new.tm_hour > 23)
goto rtc_badness;
if (s->rtc.new.tm_mday < 1)
goto rtc_badness;
if (s->rtc.new.tm_mon < 0 || s->rtc.new.tm_mon > 11)
goto rtc_badness;
tm.tm_sec = s->rtc.new.tm_sec;
tm.tm_min = s->rtc.new.tm_min;
tm.tm_hour = s->rtc.new.tm_hour;
tm.tm_mday = s->rtc.new.tm_mday;
tm.tm_mon = s->rtc.new.tm_mon;
tm.tm_year = s->rtc.new.tm_year;
break;
rtc_badness:
default:
fprintf(stderr, "%s: bad RTC_UPDATE value %02x\n",
__FUNCTION__, value);
s->status |= 1 << 10; /* RTCERR */
menelaus_update(s);
}
s->rtc.sec += difftime(mktime(&tm), mktime(&s->rtc.tm));
break;
case MENELAUS_RTC_SEC:
s->rtc.tm.tm_sec = from_bcd(value & 0x7f);
break;
case MENELAUS_RTC_MIN:
s->rtc.tm.tm_min = from_bcd(value & 0x7f);
break;
case MENELAUS_RTC_HR:
s->rtc.tm.tm_hour = (s->rtc.ctrl & (1 << 2)) ? /* MODE12_n24 */
MIN(from_bcd(value & 0x3f), 12) + ((value >> 7) ? 11 : -1) :
from_bcd(value & 0x3f);
break;
case MENELAUS_RTC_DAY:
s->rtc.tm.tm_mday = from_bcd(value);
break;
case MENELAUS_RTC_MON:
s->rtc.tm.tm_mon = MAX(1, from_bcd(value)) - 1;
break;
case MENELAUS_RTC_YR:
s->rtc.tm.tm_year = 2000 + from_bcd(value);
break;
case MENELAUS_RTC_WKDAY:
s->rtc.tm.tm_mday = from_bcd(value);
break;
case MENELAUS_RTC_AL_SEC:
s->rtc.alm.tm_sec = from_bcd(value & 0x7f);
menelaus_alm_update(s);
break;
case MENELAUS_RTC_AL_MIN:
s->rtc.alm.tm_min = from_bcd(value & 0x7f);
menelaus_alm_update(s);
break;
case MENELAUS_RTC_AL_HR:
s->rtc.alm.tm_hour = (s->rtc.ctrl & (1 << 2)) ? /* MODE12_n24 */
MIN(from_bcd(value & 0x3f), 12) + ((value >> 7) ? 11 : -1) :
from_bcd(value & 0x3f);
menelaus_alm_update(s);
break;
case MENELAUS_RTC_AL_DAY:
s->rtc.alm.tm_mday = from_bcd(value);
menelaus_alm_update(s);
break;
case MENELAUS_RTC_AL_MON:
s->rtc.alm.tm_mon = MAX(1, from_bcd(value)) - 1;
menelaus_alm_update(s);
break;
case MENELAUS_RTC_AL_YR:
s->rtc.alm.tm_year = 2000 + from_bcd(value);
menelaus_alm_update(s);
break;
case MENELAUS_RTC_COMP_MSB:
s->rtc.comp &= 0xff;
s->rtc.comp |= value << 8;
break;
case MENELAUS_RTC_COMP_LSB:
s->rtc.comp &= 0xff << 8;
s->rtc.comp |= value;
break;
case MENELAUS_S1_PULL_EN:
s->pull[0] = value;
break;
case MENELAUS_S1_PULL_DIR:
s->pull[1] = value & 0x1f;
break;
case MENELAUS_S2_PULL_EN:
s->pull[2] = value;
break;
case MENELAUS_S2_PULL_DIR:
s->pull[3] = value & 0x1f;
break;
case MENELAUS_MCT_CTRL1:
s->mmc_ctrl[0] = value & 0x7f;
break;
case MENELAUS_MCT_CTRL2:
s->mmc_ctrl[1] = value;
/* TODO update Card Detect interrupts */
break;
case MENELAUS_MCT_CTRL3:
s->mmc_ctrl[2] = value & 0xf;
break;
case MENELAUS_DEBOUNCE1:
s->mmc_debounce = value & 0x3f;
break;
default:
#ifdef VERBOSE
printf("%s: unknown register %02x\n", __FUNCTION__, addr);
#endif
}
}
static void menelaus_event(i2c_slave *i2c, enum i2c_event event)
{
struct menelaus_s *s = (struct menelaus_s *) i2c;
if (event == I2C_START_SEND)
s->firstbyte = 1;
}
static int menelaus_tx(i2c_slave *i2c, uint8_t data)
{
struct menelaus_s *s = (struct menelaus_s *) i2c;
/* Interpret register address byte */
if (s->firstbyte) {
s->reg = data;
s->firstbyte = 0;
} else
menelaus_write(s, s->reg ++, data);
return 0;
}
static int menelaus_rx(i2c_slave *i2c)
{
struct menelaus_s *s = (struct menelaus_s *) i2c;
return menelaus_read(s, s->reg ++);
}
static void tm_put(QEMUFile *f, struct tm *tm) {
qemu_put_be16(f, tm->tm_sec);
qemu_put_be16(f, tm->tm_min);
qemu_put_be16(f, tm->tm_hour);
qemu_put_be16(f, tm->tm_mday);
qemu_put_be16(f, tm->tm_min);
qemu_put_be16(f, tm->tm_year);
}
static void tm_get(QEMUFile *f, struct tm *tm) {
tm->tm_sec = qemu_get_be16(f);
tm->tm_min = qemu_get_be16(f);
tm->tm_hour = qemu_get_be16(f);
tm->tm_mday = qemu_get_be16(f);
tm->tm_min = qemu_get_be16(f);
tm->tm_year = qemu_get_be16(f);
}
static void menelaus_save(QEMUFile *f, void *opaque)
{
struct menelaus_s *s = (struct menelaus_s *) opaque;
qemu_put_be32(f, s->firstbyte);
qemu_put_8s(f, &s->reg);
qemu_put_8s(f, &s->vcore[0]);
qemu_put_8s(f, &s->vcore[1]);
qemu_put_8s(f, &s->vcore[2]);
qemu_put_8s(f, &s->vcore[3]);
qemu_put_8s(f, &s->vcore[4]);
qemu_put_8s(f, &s->dcdc[3]);
qemu_put_8s(f, &s->dcdc[3]);
qemu_put_8s(f, &s->dcdc[3]);
qemu_put_8s(f, &s->ldo[0]);
qemu_put_8s(f, &s->ldo[1]);
qemu_put_8s(f, &s->ldo[2]);
qemu_put_8s(f, &s->ldo[3]);
qemu_put_8s(f, &s->ldo[4]);
qemu_put_8s(f, &s->ldo[5]);
qemu_put_8s(f, &s->ldo[6]);
qemu_put_8s(f, &s->ldo[7]);
qemu_put_8s(f, &s->sleep[0]);
qemu_put_8s(f, &s->sleep[1]);
qemu_put_8s(f, &s->osc);
qemu_put_8s(f, &s->detect);
qemu_put_be16s(f, &s->mask);
qemu_put_be16s(f, &s->status);
qemu_put_8s(f, &s->dir);
qemu_put_8s(f, &s->inputs);
qemu_put_8s(f, &s->outputs);
qemu_put_8s(f, &s->bbsms);
qemu_put_8s(f, &s->pull[0]);
qemu_put_8s(f, &s->pull[1]);
qemu_put_8s(f, &s->pull[2]);
qemu_put_8s(f, &s->pull[3]);
qemu_put_8s(f, &s->mmc_ctrl[0]);
qemu_put_8s(f, &s->mmc_ctrl[1]);
qemu_put_8s(f, &s->mmc_ctrl[2]);
qemu_put_8s(f, &s->mmc_debounce);
qemu_put_8s(f, &s->rtc.ctrl);
qemu_put_be16s(f, &s->rtc.comp);
/* Should be <= 1000 */
qemu_put_be16(f, s->rtc.next - qemu_get_clock(rt_clock));
tm_put(f, &s->rtc.new);
tm_put(f, &s->rtc.alm);
qemu_put_byte(f, s->pwrbtn_state);
i2c_slave_save(f, &s->i2c);
}
static int menelaus_load(QEMUFile *f, void *opaque, int version_id)
{
struct menelaus_s *s = (struct menelaus_s *) opaque;
s->firstbyte = qemu_get_be32(f);
qemu_get_8s(f, &s->reg);
if (s->rtc.ctrl & 1) /* RTC_EN */
menelaus_rtc_stop(s);
qemu_get_8s(f, &s->vcore[0]);
qemu_get_8s(f, &s->vcore[1]);
qemu_get_8s(f, &s->vcore[2]);
qemu_get_8s(f, &s->vcore[3]);
qemu_get_8s(f, &s->vcore[4]);
qemu_get_8s(f, &s->dcdc[3]);
qemu_get_8s(f, &s->dcdc[3]);
qemu_get_8s(f, &s->dcdc[3]);
qemu_get_8s(f, &s->ldo[0]);
qemu_get_8s(f, &s->ldo[1]);
qemu_get_8s(f, &s->ldo[2]);
qemu_get_8s(f, &s->ldo[3]);
qemu_get_8s(f, &s->ldo[4]);
qemu_get_8s(f, &s->ldo[5]);
qemu_get_8s(f, &s->ldo[6]);
qemu_get_8s(f, &s->ldo[7]);
qemu_get_8s(f, &s->sleep[0]);
qemu_get_8s(f, &s->sleep[1]);
qemu_get_8s(f, &s->osc);
qemu_get_8s(f, &s->detect);
qemu_get_be16s(f, &s->mask);
qemu_get_be16s(f, &s->status);
qemu_get_8s(f, &s->dir);
qemu_get_8s(f, &s->inputs);
qemu_get_8s(f, &s->outputs);
qemu_get_8s(f, &s->bbsms);
qemu_get_8s(f, &s->pull[0]);
qemu_get_8s(f, &s->pull[1]);
qemu_get_8s(f, &s->pull[2]);
qemu_get_8s(f, &s->pull[3]);
qemu_get_8s(f, &s->mmc_ctrl[0]);
qemu_get_8s(f, &s->mmc_ctrl[1]);
qemu_get_8s(f, &s->mmc_ctrl[2]);
qemu_get_8s(f, &s->mmc_debounce);
qemu_get_8s(f, &s->rtc.ctrl);
qemu_get_be16s(f, &s->rtc.comp);
s->rtc.next = qemu_get_be16(f);
tm_get(f, &s->rtc.new);
tm_get(f, &s->rtc.alm);
s->pwrbtn_state = qemu_get_byte(f);
menelaus_alm_update(s);
menelaus_update(s);
if (s->rtc.ctrl & 1) /* RTC_EN */
menelaus_rtc_start(s);
i2c_slave_load(f, &s->i2c);
return 0;
}
static int menelaus_iid = 0;
i2c_slave *twl92230_init(i2c_bus *bus, qemu_irq irq)
{
struct menelaus_s *s = (struct menelaus_s *)
i2c_slave_init(bus, 0, sizeof(struct menelaus_s));
s->i2c.event = menelaus_event;
s->i2c.recv = menelaus_rx;
s->i2c.send = menelaus_tx;
/* TODO: use the qemu gettime functions */
s->rtc.gettime = localtime_r;
s->irq = irq;
s->rtc.hz = qemu_new_timer(rt_clock, menelaus_rtc_hz, s);
s->in = qemu_allocate_irqs(menelaus_gpio_set, s, 3);
s->pwrbtn = qemu_allocate_irqs(menelaus_pwrbtn_set, s, 1)[0];
menelaus_reset(&s->i2c);
register_savevm("menelaus", menelaus_iid ++,
0, menelaus_save, menelaus_load, s);
return &s->i2c;
}
qemu_irq *twl92230_gpio_in_get(i2c_slave *i2c)
{
struct menelaus_s *s = (struct menelaus_s *) i2c;
return s->in;
}
void twl92230_gpio_out_set(i2c_slave *i2c, int line, qemu_irq handler)
{
struct menelaus_s *s = (struct menelaus_s *) i2c;
if (line >= 3 || line < 0) {
fprintf(stderr, "%s: No GPO line %i\n", __FUNCTION__, line);
exit(-1);
}
s->handler[line] = handler;
}
......@@ -8051,6 +8051,7 @@ static void register_machines(void)
qemu_register_machine(&borzoipda_machine);
qemu_register_machine(&terrierpda_machine);
qemu_register_machine(&palmte_machine);
qemu_register_machine(&n800_machine);
qemu_register_machine(&lm3s811evb_machine);
qemu_register_machine(&lm3s6965evb_machine);
qemu_register_machine(&connex_machine);
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册