diff --git a/target-ppc/Makefile.objs b/target-ppc/Makefile.objs index 5bea9c3377fa103ab43a772ad5116c97ff561ee0..97e440be852f361ef88724c109c0dc383a613cdb 100644 --- a/target-ppc/Makefile.objs +++ b/target-ppc/Makefile.objs @@ -4,5 +4,7 @@ obj-$(CONFIG_KVM) += kvm.o kvm_ppc.o obj-y += op_helper.o helper.o obj-y += excp_helper.o obj-y += fpu_helper.o +obj-y += int_helper.o +$(obj)/int_helper.o: QEMU_CFLAGS += $(HELPER_CFLAGS) $(obj)/op_helper.o: QEMU_CFLAGS += $(HELPER_CFLAGS) diff --git a/target-ppc/int_helper.c b/target-ppc/int_helper.c new file mode 100644 index 0000000000000000000000000000000000000000..71c7304b57fa0439aeb4f22a076d73a7ac297c11 --- /dev/null +++ b/target-ppc/int_helper.c @@ -0,0 +1,1538 @@ +/* + * PowerPC integer and vector emulation helpers for QEMU. + * + * Copyright (c) 2003-2007 Jocelyn Mayer + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see . + */ +#include "cpu.h" +#include "dyngen-exec.h" +#include "host-utils.h" +#include "helper.h" + +#include "helper_regs.h" +/*****************************************************************************/ +/* Fixed point operations helpers */ +#if defined(TARGET_PPC64) + +/* multiply high word */ +uint64_t helper_mulhd(uint64_t arg1, uint64_t arg2) +{ + uint64_t tl, th; + + muls64(&tl, &th, arg1, arg2); + return th; +} + +/* multiply high word unsigned */ +uint64_t helper_mulhdu(uint64_t arg1, uint64_t arg2) +{ + uint64_t tl, th; + + mulu64(&tl, &th, arg1, arg2); + return th; +} + +uint64_t helper_mulldo(uint64_t arg1, uint64_t arg2) +{ + int64_t th; + uint64_t tl; + + muls64(&tl, (uint64_t *)&th, arg1, arg2); + /* If th != 0 && th != -1, then we had an overflow */ + if (likely((uint64_t)(th + 1) <= 1)) { + env->xer &= ~(1 << XER_OV); + } else { + env->xer |= (1 << XER_OV) | (1 << XER_SO); + } + return (int64_t)tl; +} +#endif + +target_ulong helper_cntlzw(target_ulong t) +{ + return clz32(t); +} + +#if defined(TARGET_PPC64) +target_ulong helper_cntlzd(target_ulong t) +{ + return clz64(t); +} +#endif + +/* shift right arithmetic helper */ +target_ulong helper_sraw(target_ulong value, target_ulong shift) +{ + int32_t ret; + + if (likely(!(shift & 0x20))) { + if (likely((uint32_t)shift != 0)) { + shift &= 0x1f; + ret = (int32_t)value >> shift; + if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) { + env->xer &= ~(1 << XER_CA); + } else { + env->xer |= (1 << XER_CA); + } + } else { + ret = (int32_t)value; + env->xer &= ~(1 << XER_CA); + } + } else { + ret = (int32_t)value >> 31; + if (ret) { + env->xer |= (1 << XER_CA); + } else { + env->xer &= ~(1 << XER_CA); + } + } + return (target_long)ret; +} + +#if defined(TARGET_PPC64) +target_ulong helper_srad(target_ulong value, target_ulong shift) +{ + int64_t ret; + + if (likely(!(shift & 0x40))) { + if (likely((uint64_t)shift != 0)) { + shift &= 0x3f; + ret = (int64_t)value >> shift; + if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) { + env->xer &= ~(1 << XER_CA); + } else { + env->xer |= (1 << XER_CA); + } + } else { + ret = (int64_t)value; + env->xer &= ~(1 << XER_CA); + } + } else { + ret = (int64_t)value >> 63; + if (ret) { + env->xer |= (1 << XER_CA); + } else { + env->xer &= ~(1 << XER_CA); + } + } + return ret; +} +#endif + +#if defined(TARGET_PPC64) +target_ulong helper_popcntb(target_ulong val) +{ + val = (val & 0x5555555555555555ULL) + ((val >> 1) & + 0x5555555555555555ULL); + val = (val & 0x3333333333333333ULL) + ((val >> 2) & + 0x3333333333333333ULL); + val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) & + 0x0f0f0f0f0f0f0f0fULL); + return val; +} + +target_ulong helper_popcntw(target_ulong val) +{ + val = (val & 0x5555555555555555ULL) + ((val >> 1) & + 0x5555555555555555ULL); + val = (val & 0x3333333333333333ULL) + ((val >> 2) & + 0x3333333333333333ULL); + val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) & + 0x0f0f0f0f0f0f0f0fULL); + val = (val & 0x00ff00ff00ff00ffULL) + ((val >> 8) & + 0x00ff00ff00ff00ffULL); + val = (val & 0x0000ffff0000ffffULL) + ((val >> 16) & + 0x0000ffff0000ffffULL); + return val; +} + +target_ulong helper_popcntd(target_ulong val) +{ + return ctpop64(val); +} +#else +target_ulong helper_popcntb(target_ulong val) +{ + val = (val & 0x55555555) + ((val >> 1) & 0x55555555); + val = (val & 0x33333333) + ((val >> 2) & 0x33333333); + val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f); + return val; +} + +target_ulong helper_popcntw(target_ulong val) +{ + val = (val & 0x55555555) + ((val >> 1) & 0x55555555); + val = (val & 0x33333333) + ((val >> 2) & 0x33333333); + val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f); + val = (val & 0x00ff00ff) + ((val >> 8) & 0x00ff00ff); + val = (val & 0x0000ffff) + ((val >> 16) & 0x0000ffff); + return val; +} +#endif + +/*****************************************************************************/ +/* PowerPC 601 specific instructions (POWER bridge) */ +target_ulong helper_div(target_ulong arg1, target_ulong arg2) +{ + uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ]; + + if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) || + (int32_t)arg2 == 0) { + env->spr[SPR_MQ] = 0; + return INT32_MIN; + } else { + env->spr[SPR_MQ] = tmp % arg2; + return tmp / (int32_t)arg2; + } +} + +target_ulong helper_divo(target_ulong arg1, target_ulong arg2) +{ + uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ]; + + if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) || + (int32_t)arg2 == 0) { + env->xer |= (1 << XER_OV) | (1 << XER_SO); + env->spr[SPR_MQ] = 0; + return INT32_MIN; + } else { + env->spr[SPR_MQ] = tmp % arg2; + tmp /= (int32_t)arg2; + if ((int32_t)tmp != tmp) { + env->xer |= (1 << XER_OV) | (1 << XER_SO); + } else { + env->xer &= ~(1 << XER_OV); + } + return tmp; + } +} + +target_ulong helper_divs(target_ulong arg1, target_ulong arg2) +{ + if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) || + (int32_t)arg2 == 0) { + env->spr[SPR_MQ] = 0; + return INT32_MIN; + } else { + env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2; + return (int32_t)arg1 / (int32_t)arg2; + } +} + +target_ulong helper_divso(target_ulong arg1, target_ulong arg2) +{ + if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) || + (int32_t)arg2 == 0) { + env->xer |= (1 << XER_OV) | (1 << XER_SO); + env->spr[SPR_MQ] = 0; + return INT32_MIN; + } else { + env->xer &= ~(1 << XER_OV); + env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2; + return (int32_t)arg1 / (int32_t)arg2; + } +} + +/*****************************************************************************/ +/* 602 specific instructions */ +/* mfrom is the most crazy instruction ever seen, imho ! */ +/* Real implementation uses a ROM table. Do the same */ +/* Extremely decomposed: + * -arg / 256 + * return 256 * log10(10 + 1.0) + 0.5 + */ +#if !defined(CONFIG_USER_ONLY) +target_ulong helper_602_mfrom(target_ulong arg) +{ + if (likely(arg < 602)) { +#include "mfrom_table.c" + return mfrom_ROM_table[arg]; + } else { + return 0; + } +} +#endif + +/*****************************************************************************/ +/* Altivec extension helpers */ +#if defined(HOST_WORDS_BIGENDIAN) +#define HI_IDX 0 +#define LO_IDX 1 +#else +#define HI_IDX 1 +#define LO_IDX 0 +#endif + +#if defined(HOST_WORDS_BIGENDIAN) +#define VECTOR_FOR_INORDER_I(index, element) \ + for (index = 0; index < ARRAY_SIZE(r->element); index++) +#else +#define VECTOR_FOR_INORDER_I(index, element) \ + for (index = ARRAY_SIZE(r->element)-1; index >= 0; index--) +#endif + +/* If X is a NaN, store the corresponding QNaN into RESULT. Otherwise, + * execute the following block. */ +#define DO_HANDLE_NAN(result, x) \ + if (float32_is_any_nan(x)) { \ + CPU_FloatU __f; \ + __f.f = x; \ + __f.l = __f.l | (1 << 22); /* Set QNaN bit. */ \ + result = __f.f; \ + } else + +#define HANDLE_NAN1(result, x) \ + DO_HANDLE_NAN(result, x) +#define HANDLE_NAN2(result, x, y) \ + DO_HANDLE_NAN(result, x) DO_HANDLE_NAN(result, y) +#define HANDLE_NAN3(result, x, y, z) \ + DO_HANDLE_NAN(result, x) DO_HANDLE_NAN(result, y) DO_HANDLE_NAN(result, z) + +/* Saturating arithmetic helpers. */ +#define SATCVT(from, to, from_type, to_type, min, max) \ + static inline to_type cvt##from##to(from_type x, int *sat) \ + { \ + to_type r; \ + \ + if (x < (from_type)min) { \ + r = min; \ + *sat = 1; \ + } else if (x > (from_type)max) { \ + r = max; \ + *sat = 1; \ + } else { \ + r = x; \ + } \ + return r; \ + } +#define SATCVTU(from, to, from_type, to_type, min, max) \ + static inline to_type cvt##from##to(from_type x, int *sat) \ + { \ + to_type r; \ + \ + if (x > (from_type)max) { \ + r = max; \ + *sat = 1; \ + } else { \ + r = x; \ + } \ + return r; \ + } +SATCVT(sh, sb, int16_t, int8_t, INT8_MIN, INT8_MAX) +SATCVT(sw, sh, int32_t, int16_t, INT16_MIN, INT16_MAX) +SATCVT(sd, sw, int64_t, int32_t, INT32_MIN, INT32_MAX) + +SATCVTU(uh, ub, uint16_t, uint8_t, 0, UINT8_MAX) +SATCVTU(uw, uh, uint32_t, uint16_t, 0, UINT16_MAX) +SATCVTU(ud, uw, uint64_t, uint32_t, 0, UINT32_MAX) +SATCVT(sh, ub, int16_t, uint8_t, 0, UINT8_MAX) +SATCVT(sw, uh, int32_t, uint16_t, 0, UINT16_MAX) +SATCVT(sd, uw, int64_t, uint32_t, 0, UINT32_MAX) +#undef SATCVT +#undef SATCVTU + +void helper_lvsl(ppc_avr_t *r, target_ulong sh) +{ + int i, j = (sh & 0xf); + + VECTOR_FOR_INORDER_I(i, u8) { + r->u8[i] = j++; + } +} + +void helper_lvsr(ppc_avr_t *r, target_ulong sh) +{ + int i, j = 0x10 - (sh & 0xf); + + VECTOR_FOR_INORDER_I(i, u8) { + r->u8[i] = j++; + } +} + +void helper_mtvscr(ppc_avr_t *r) +{ +#if defined(HOST_WORDS_BIGENDIAN) + env->vscr = r->u32[3]; +#else + env->vscr = r->u32[0]; +#endif + set_flush_to_zero(vscr_nj, &env->vec_status); +} + +void helper_vaddcuw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) +{ + int i; + + for (i = 0; i < ARRAY_SIZE(r->u32); i++) { + r->u32[i] = ~a->u32[i] < b->u32[i]; + } +} + +#define VARITH_DO(name, op, element) \ + void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ + { \ + int i; \ + \ + for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ + r->element[i] = a->element[i] op b->element[i]; \ + } \ + } +#define VARITH(suffix, element) \ + VARITH_DO(add##suffix, +, element) \ + VARITH_DO(sub##suffix, -, element) +VARITH(ubm, u8) +VARITH(uhm, u16) +VARITH(uwm, u32) +#undef VARITH_DO +#undef VARITH + +#define VARITHFP(suffix, func) \ + void helper_v##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ + { \ + int i; \ + \ + for (i = 0; i < ARRAY_SIZE(r->f); i++) { \ + HANDLE_NAN2(r->f[i], a->f[i], b->f[i]) { \ + r->f[i] = func(a->f[i], b->f[i], &env->vec_status); \ + } \ + } \ + } +VARITHFP(addfp, float32_add) +VARITHFP(subfp, float32_sub) +#undef VARITHFP + +#define VARITHSAT_CASE(type, op, cvt, element) \ + { \ + type result = (type)a->element[i] op (type)b->element[i]; \ + r->element[i] = cvt(result, &sat); \ + } + +#define VARITHSAT_DO(name, op, optype, cvt, element) \ + void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ + { \ + int sat = 0; \ + int i; \ + \ + for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ + switch (sizeof(r->element[0])) { \ + case 1: \ + VARITHSAT_CASE(optype, op, cvt, element); \ + break; \ + case 2: \ + VARITHSAT_CASE(optype, op, cvt, element); \ + break; \ + case 4: \ + VARITHSAT_CASE(optype, op, cvt, element); \ + break; \ + } \ + } \ + if (sat) { \ + env->vscr |= (1 << VSCR_SAT); \ + } \ + } +#define VARITHSAT_SIGNED(suffix, element, optype, cvt) \ + VARITHSAT_DO(adds##suffix##s, +, optype, cvt, element) \ + VARITHSAT_DO(subs##suffix##s, -, optype, cvt, element) +#define VARITHSAT_UNSIGNED(suffix, element, optype, cvt) \ + VARITHSAT_DO(addu##suffix##s, +, optype, cvt, element) \ + VARITHSAT_DO(subu##suffix##s, -, optype, cvt, element) +VARITHSAT_SIGNED(b, s8, int16_t, cvtshsb) +VARITHSAT_SIGNED(h, s16, int32_t, cvtswsh) +VARITHSAT_SIGNED(w, s32, int64_t, cvtsdsw) +VARITHSAT_UNSIGNED(b, u8, uint16_t, cvtshub) +VARITHSAT_UNSIGNED(h, u16, uint32_t, cvtswuh) +VARITHSAT_UNSIGNED(w, u32, uint64_t, cvtsduw) +#undef VARITHSAT_CASE +#undef VARITHSAT_DO +#undef VARITHSAT_SIGNED +#undef VARITHSAT_UNSIGNED + +#define VAVG_DO(name, element, etype) \ + void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ + { \ + int i; \ + \ + for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ + etype x = (etype)a->element[i] + (etype)b->element[i] + 1; \ + r->element[i] = x >> 1; \ + } \ + } + +#define VAVG(type, signed_element, signed_type, unsigned_element, \ + unsigned_type) \ + VAVG_DO(avgs##type, signed_element, signed_type) \ + VAVG_DO(avgu##type, unsigned_element, unsigned_type) +VAVG(b, s8, int16_t, u8, uint16_t) +VAVG(h, s16, int32_t, u16, uint32_t) +VAVG(w, s32, int64_t, u32, uint64_t) +#undef VAVG_DO +#undef VAVG + +#define VCF(suffix, cvt, element) \ + void helper_vcf##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t uim) \ + { \ + int i; \ + \ + for (i = 0; i < ARRAY_SIZE(r->f); i++) { \ + float32 t = cvt(b->element[i], &env->vec_status); \ + r->f[i] = float32_scalbn(t, -uim, &env->vec_status); \ + } \ + } +VCF(ux, uint32_to_float32, u32) +VCF(sx, int32_to_float32, s32) +#undef VCF + +#define VCMP_DO(suffix, compare, element, record) \ + void helper_vcmp##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ + { \ + uint32_t ones = (uint32_t)-1; \ + uint32_t all = ones; \ + uint32_t none = 0; \ + int i; \ + \ + for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ + uint32_t result = (a->element[i] compare b->element[i] ? \ + ones : 0x0); \ + switch (sizeof(a->element[0])) { \ + case 4: \ + r->u32[i] = result; \ + break; \ + case 2: \ + r->u16[i] = result; \ + break; \ + case 1: \ + r->u8[i] = result; \ + break; \ + } \ + all &= result; \ + none |= result; \ + } \ + if (record) { \ + env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \ + } \ + } +#define VCMP(suffix, compare, element) \ + VCMP_DO(suffix, compare, element, 0) \ + VCMP_DO(suffix##_dot, compare, element, 1) +VCMP(equb, ==, u8) +VCMP(equh, ==, u16) +VCMP(equw, ==, u32) +VCMP(gtub, >, u8) +VCMP(gtuh, >, u16) +VCMP(gtuw, >, u32) +VCMP(gtsb, >, s8) +VCMP(gtsh, >, s16) +VCMP(gtsw, >, s32) +#undef VCMP_DO +#undef VCMP + +#define VCMPFP_DO(suffix, compare, order, record) \ + void helper_vcmp##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ + { \ + uint32_t ones = (uint32_t)-1; \ + uint32_t all = ones; \ + uint32_t none = 0; \ + int i; \ + \ + for (i = 0; i < ARRAY_SIZE(r->f); i++) { \ + uint32_t result; \ + int rel = float32_compare_quiet(a->f[i], b->f[i], \ + &env->vec_status); \ + if (rel == float_relation_unordered) { \ + result = 0; \ + } else if (rel compare order) { \ + result = ones; \ + } else { \ + result = 0; \ + } \ + r->u32[i] = result; \ + all &= result; \ + none |= result; \ + } \ + if (record) { \ + env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \ + } \ + } +#define VCMPFP(suffix, compare, order) \ + VCMPFP_DO(suffix, compare, order, 0) \ + VCMPFP_DO(suffix##_dot, compare, order, 1) +VCMPFP(eqfp, ==, float_relation_equal) +VCMPFP(gefp, !=, float_relation_less) +VCMPFP(gtfp, ==, float_relation_greater) +#undef VCMPFP_DO +#undef VCMPFP + +static inline void vcmpbfp_internal(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, + int record) +{ + int i; + int all_in = 0; + + for (i = 0; i < ARRAY_SIZE(r->f); i++) { + int le_rel = float32_compare_quiet(a->f[i], b->f[i], &env->vec_status); + if (le_rel == float_relation_unordered) { + r->u32[i] = 0xc0000000; + /* ALL_IN does not need to be updated here. */ + } else { + float32 bneg = float32_chs(b->f[i]); + int ge_rel = float32_compare_quiet(a->f[i], bneg, &env->vec_status); + int le = le_rel != float_relation_greater; + int ge = ge_rel != float_relation_less; + + r->u32[i] = ((!le) << 31) | ((!ge) << 30); + all_in |= (!le | !ge); + } + } + if (record) { + env->crf[6] = (all_in == 0) << 1; + } +} + +void helper_vcmpbfp(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) +{ + vcmpbfp_internal(r, a, b, 0); +} + +void helper_vcmpbfp_dot(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) +{ + vcmpbfp_internal(r, a, b, 1); +} + +#define VCT(suffix, satcvt, element) \ + void helper_vct##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t uim) \ + { \ + int i; \ + int sat = 0; \ + float_status s = env->vec_status; \ + \ + set_float_rounding_mode(float_round_to_zero, &s); \ + for (i = 0; i < ARRAY_SIZE(r->f); i++) { \ + if (float32_is_any_nan(b->f[i])) { \ + r->element[i] = 0; \ + } else { \ + float64 t = float32_to_float64(b->f[i], &s); \ + int64_t j; \ + \ + t = float64_scalbn(t, uim, &s); \ + j = float64_to_int64(t, &s); \ + r->element[i] = satcvt(j, &sat); \ + } \ + } \ + if (sat) { \ + env->vscr |= (1 << VSCR_SAT); \ + } \ + } +VCT(uxs, cvtsduw, u32) +VCT(sxs, cvtsdsw, s32) +#undef VCT + +void helper_vmaddfp(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) +{ + int i; + + for (i = 0; i < ARRAY_SIZE(r->f); i++) { + HANDLE_NAN3(r->f[i], a->f[i], b->f[i], c->f[i]) { + /* Need to do the computation in higher precision and round + * once at the end. */ + float64 af, bf, cf, t; + + af = float32_to_float64(a->f[i], &env->vec_status); + bf = float32_to_float64(b->f[i], &env->vec_status); + cf = float32_to_float64(c->f[i], &env->vec_status); + t = float64_mul(af, cf, &env->vec_status); + t = float64_add(t, bf, &env->vec_status); + r->f[i] = float64_to_float32(t, &env->vec_status); + } + } +} + +void helper_vmhaddshs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) +{ + int sat = 0; + int i; + + for (i = 0; i < ARRAY_SIZE(r->s16); i++) { + int32_t prod = a->s16[i] * b->s16[i]; + int32_t t = (int32_t)c->s16[i] + (prod >> 15); + + r->s16[i] = cvtswsh(t, &sat); + } + + if (sat) { + env->vscr |= (1 << VSCR_SAT); + } +} + +void helper_vmhraddshs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) +{ + int sat = 0; + int i; + + for (i = 0; i < ARRAY_SIZE(r->s16); i++) { + int32_t prod = a->s16[i] * b->s16[i] + 0x00004000; + int32_t t = (int32_t)c->s16[i] + (prod >> 15); + r->s16[i] = cvtswsh(t, &sat); + } + + if (sat) { + env->vscr |= (1 << VSCR_SAT); + } +} + +#define VMINMAX_DO(name, compare, element) \ + void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ + { \ + int i; \ + \ + for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ + if (a->element[i] compare b->element[i]) { \ + r->element[i] = b->element[i]; \ + } else { \ + r->element[i] = a->element[i]; \ + } \ + } \ + } +#define VMINMAX(suffix, element) \ + VMINMAX_DO(min##suffix, >, element) \ + VMINMAX_DO(max##suffix, <, element) +VMINMAX(sb, s8) +VMINMAX(sh, s16) +VMINMAX(sw, s32) +VMINMAX(ub, u8) +VMINMAX(uh, u16) +VMINMAX(uw, u32) +#undef VMINMAX_DO +#undef VMINMAX + +#define VMINMAXFP(suffix, rT, rF) \ + void helper_v##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ + { \ + int i; \ + \ + for (i = 0; i < ARRAY_SIZE(r->f); i++) { \ + HANDLE_NAN2(r->f[i], a->f[i], b->f[i]) { \ + if (float32_lt_quiet(a->f[i], b->f[i], \ + &env->vec_status)) { \ + r->f[i] = rT->f[i]; \ + } else { \ + r->f[i] = rF->f[i]; \ + } \ + } \ + } \ + } +VMINMAXFP(minfp, a, b) +VMINMAXFP(maxfp, b, a) +#undef VMINMAXFP + +void helper_vmladduhm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) +{ + int i; + + for (i = 0; i < ARRAY_SIZE(r->s16); i++) { + int32_t prod = a->s16[i] * b->s16[i]; + r->s16[i] = (int16_t) (prod + c->s16[i]); + } +} + +#define VMRG_DO(name, element, highp) \ + void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ + { \ + ppc_avr_t result; \ + int i; \ + size_t n_elems = ARRAY_SIZE(r->element); \ + \ + for (i = 0; i < n_elems / 2; i++) { \ + if (highp) { \ + result.element[i*2+HI_IDX] = a->element[i]; \ + result.element[i*2+LO_IDX] = b->element[i]; \ + } else { \ + result.element[n_elems - i * 2 - (1 + HI_IDX)] = \ + b->element[n_elems - i - 1]; \ + result.element[n_elems - i * 2 - (1 + LO_IDX)] = \ + a->element[n_elems - i - 1]; \ + } \ + } \ + *r = result; \ + } +#if defined(HOST_WORDS_BIGENDIAN) +#define MRGHI 0 +#define MRGLO 1 +#else +#define MRGHI 1 +#define MRGLO 0 +#endif +#define VMRG(suffix, element) \ + VMRG_DO(mrgl##suffix, element, MRGHI) \ + VMRG_DO(mrgh##suffix, element, MRGLO) +VMRG(b, u8) +VMRG(h, u16) +VMRG(w, u32) +#undef VMRG_DO +#undef VMRG +#undef MRGHI +#undef MRGLO + +void helper_vmsummbm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) +{ + int32_t prod[16]; + int i; + + for (i = 0; i < ARRAY_SIZE(r->s8); i++) { + prod[i] = (int32_t)a->s8[i] * b->u8[i]; + } + + VECTOR_FOR_INORDER_I(i, s32) { + r->s32[i] = c->s32[i] + prod[4 * i] + prod[4 * i + 1] + + prod[4 * i + 2] + prod[4 * i + 3]; + } +} + +void helper_vmsumshm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) +{ + int32_t prod[8]; + int i; + + for (i = 0; i < ARRAY_SIZE(r->s16); i++) { + prod[i] = a->s16[i] * b->s16[i]; + } + + VECTOR_FOR_INORDER_I(i, s32) { + r->s32[i] = c->s32[i] + prod[2 * i] + prod[2 * i + 1]; + } +} + +void helper_vmsumshs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) +{ + int32_t prod[8]; + int i; + int sat = 0; + + for (i = 0; i < ARRAY_SIZE(r->s16); i++) { + prod[i] = (int32_t)a->s16[i] * b->s16[i]; + } + + VECTOR_FOR_INORDER_I(i, s32) { + int64_t t = (int64_t)c->s32[i] + prod[2 * i] + prod[2 * i + 1]; + + r->u32[i] = cvtsdsw(t, &sat); + } + + if (sat) { + env->vscr |= (1 << VSCR_SAT); + } +} + +void helper_vmsumubm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) +{ + uint16_t prod[16]; + int i; + + for (i = 0; i < ARRAY_SIZE(r->u8); i++) { + prod[i] = a->u8[i] * b->u8[i]; + } + + VECTOR_FOR_INORDER_I(i, u32) { + r->u32[i] = c->u32[i] + prod[4 * i] + prod[4 * i + 1] + + prod[4 * i + 2] + prod[4 * i + 3]; + } +} + +void helper_vmsumuhm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) +{ + uint32_t prod[8]; + int i; + + for (i = 0; i < ARRAY_SIZE(r->u16); i++) { + prod[i] = a->u16[i] * b->u16[i]; + } + + VECTOR_FOR_INORDER_I(i, u32) { + r->u32[i] = c->u32[i] + prod[2 * i] + prod[2 * i + 1]; + } +} + +void helper_vmsumuhs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) +{ + uint32_t prod[8]; + int i; + int sat = 0; + + for (i = 0; i < ARRAY_SIZE(r->u16); i++) { + prod[i] = a->u16[i] * b->u16[i]; + } + + VECTOR_FOR_INORDER_I(i, s32) { + uint64_t t = (uint64_t)c->u32[i] + prod[2 * i] + prod[2 * i + 1]; + + r->u32[i] = cvtuduw(t, &sat); + } + + if (sat) { + env->vscr |= (1 << VSCR_SAT); + } +} + +#define VMUL_DO(name, mul_element, prod_element, evenp) \ + void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ + { \ + int i; \ + \ + VECTOR_FOR_INORDER_I(i, prod_element) { \ + if (evenp) { \ + r->prod_element[i] = a->mul_element[i * 2 + HI_IDX] * \ + b->mul_element[i * 2 + HI_IDX]; \ + } else { \ + r->prod_element[i] = a->mul_element[i * 2 + LO_IDX] * \ + b->mul_element[i * 2 + LO_IDX]; \ + } \ + } \ + } +#define VMUL(suffix, mul_element, prod_element) \ + VMUL_DO(mule##suffix, mul_element, prod_element, 1) \ + VMUL_DO(mulo##suffix, mul_element, prod_element, 0) +VMUL(sb, s8, s16) +VMUL(sh, s16, s32) +VMUL(ub, u8, u16) +VMUL(uh, u16, u32) +#undef VMUL_DO +#undef VMUL + +void helper_vnmsubfp(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) +{ + int i; + + for (i = 0; i < ARRAY_SIZE(r->f); i++) { + HANDLE_NAN3(r->f[i], a->f[i], b->f[i], c->f[i]) { + /* Need to do the computation is higher precision and round + * once at the end. */ + float64 af, bf, cf, t; + + af = float32_to_float64(a->f[i], &env->vec_status); + bf = float32_to_float64(b->f[i], &env->vec_status); + cf = float32_to_float64(c->f[i], &env->vec_status); + t = float64_mul(af, cf, &env->vec_status); + t = float64_sub(t, bf, &env->vec_status); + t = float64_chs(t); + r->f[i] = float64_to_float32(t, &env->vec_status); + } + } +} + +void helper_vperm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) +{ + ppc_avr_t result; + int i; + + VECTOR_FOR_INORDER_I(i, u8) { + int s = c->u8[i] & 0x1f; +#if defined(HOST_WORDS_BIGENDIAN) + int index = s & 0xf; +#else + int index = 15 - (s & 0xf); +#endif + + if (s & 0x10) { + result.u8[i] = b->u8[index]; + } else { + result.u8[i] = a->u8[index]; + } + } + *r = result; +} + +#if defined(HOST_WORDS_BIGENDIAN) +#define PKBIG 1 +#else +#define PKBIG 0 +#endif +void helper_vpkpx(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) +{ + int i, j; + ppc_avr_t result; +#if defined(HOST_WORDS_BIGENDIAN) + const ppc_avr_t *x[2] = { a, b }; +#else + const ppc_avr_t *x[2] = { b, a }; +#endif + + VECTOR_FOR_INORDER_I(i, u64) { + VECTOR_FOR_INORDER_I(j, u32) { + uint32_t e = x[i]->u32[j]; + + result.u16[4*i+j] = (((e >> 9) & 0xfc00) | + ((e >> 6) & 0x3e0) | + ((e >> 3) & 0x1f)); + } + } + *r = result; +} + +#define VPK(suffix, from, to, cvt, dosat) \ + void helper_vpk##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ + { \ + int i; \ + int sat = 0; \ + ppc_avr_t result; \ + ppc_avr_t *a0 = PKBIG ? a : b; \ + ppc_avr_t *a1 = PKBIG ? b : a; \ + \ + VECTOR_FOR_INORDER_I(i, from) { \ + result.to[i] = cvt(a0->from[i], &sat); \ + result.to[i+ARRAY_SIZE(r->from)] = cvt(a1->from[i], &sat); \ + } \ + *r = result; \ + if (dosat && sat) { \ + env->vscr |= (1 << VSCR_SAT); \ + } \ + } +#define I(x, y) (x) +VPK(shss, s16, s8, cvtshsb, 1) +VPK(shus, s16, u8, cvtshub, 1) +VPK(swss, s32, s16, cvtswsh, 1) +VPK(swus, s32, u16, cvtswuh, 1) +VPK(uhus, u16, u8, cvtuhub, 1) +VPK(uwus, u32, u16, cvtuwuh, 1) +VPK(uhum, u16, u8, I, 0) +VPK(uwum, u32, u16, I, 0) +#undef I +#undef VPK +#undef PKBIG + +void helper_vrefp(ppc_avr_t *r, ppc_avr_t *b) +{ + int i; + + for (i = 0; i < ARRAY_SIZE(r->f); i++) { + HANDLE_NAN1(r->f[i], b->f[i]) { + r->f[i] = float32_div(float32_one, b->f[i], &env->vec_status); + } + } +} + +#define VRFI(suffix, rounding) \ + void helper_vrfi##suffix(ppc_avr_t *r, ppc_avr_t *b) \ + { \ + int i; \ + float_status s = env->vec_status; \ + \ + set_float_rounding_mode(rounding, &s); \ + for (i = 0; i < ARRAY_SIZE(r->f); i++) { \ + HANDLE_NAN1(r->f[i], b->f[i]) { \ + r->f[i] = float32_round_to_int (b->f[i], &s); \ + } \ + } \ + } +VRFI(n, float_round_nearest_even) +VRFI(m, float_round_down) +VRFI(p, float_round_up) +VRFI(z, float_round_to_zero) +#undef VRFI + +#define VROTATE(suffix, element) \ + void helper_vrl##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ + { \ + int i; \ + \ + for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ + unsigned int mask = ((1 << \ + (3 + (sizeof(a->element[0]) >> 1))) \ + - 1); \ + unsigned int shift = b->element[i] & mask; \ + r->element[i] = (a->element[i] << shift) | \ + (a->element[i] >> (sizeof(a->element[0]) * 8 - shift)); \ + } \ + } +VROTATE(b, u8) +VROTATE(h, u16) +VROTATE(w, u32) +#undef VROTATE + +void helper_vrsqrtefp(ppc_avr_t *r, ppc_avr_t *b) +{ + int i; + + for (i = 0; i < ARRAY_SIZE(r->f); i++) { + HANDLE_NAN1(r->f[i], b->f[i]) { + float32 t = float32_sqrt(b->f[i], &env->vec_status); + + r->f[i] = float32_div(float32_one, t, &env->vec_status); + } + } +} + +void helper_vsel(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) +{ + r->u64[0] = (a->u64[0] & ~c->u64[0]) | (b->u64[0] & c->u64[0]); + r->u64[1] = (a->u64[1] & ~c->u64[1]) | (b->u64[1] & c->u64[1]); +} + +void helper_vexptefp(ppc_avr_t *r, ppc_avr_t *b) +{ + int i; + + for (i = 0; i < ARRAY_SIZE(r->f); i++) { + HANDLE_NAN1(r->f[i], b->f[i]) { + r->f[i] = float32_exp2(b->f[i], &env->vec_status); + } + } +} + +void helper_vlogefp(ppc_avr_t *r, ppc_avr_t *b) +{ + int i; + + for (i = 0; i < ARRAY_SIZE(r->f); i++) { + HANDLE_NAN1(r->f[i], b->f[i]) { + r->f[i] = float32_log2(b->f[i], &env->vec_status); + } + } +} + +#if defined(HOST_WORDS_BIGENDIAN) +#define LEFT 0 +#define RIGHT 1 +#else +#define LEFT 1 +#define RIGHT 0 +#endif +/* The specification says that the results are undefined if all of the + * shift counts are not identical. We check to make sure that they are + * to conform to what real hardware appears to do. */ +#define VSHIFT(suffix, leftp) \ + void helper_vs##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ + { \ + int shift = b->u8[LO_IDX*15] & 0x7; \ + int doit = 1; \ + int i; \ + \ + for (i = 0; i < ARRAY_SIZE(r->u8); i++) { \ + doit = doit && ((b->u8[i] & 0x7) == shift); \ + } \ + if (doit) { \ + if (shift == 0) { \ + *r = *a; \ + } else if (leftp) { \ + uint64_t carry = a->u64[LO_IDX] >> (64 - shift); \ + \ + r->u64[HI_IDX] = (a->u64[HI_IDX] << shift) | carry; \ + r->u64[LO_IDX] = a->u64[LO_IDX] << shift; \ + } else { \ + uint64_t carry = a->u64[HI_IDX] << (64 - shift); \ + \ + r->u64[LO_IDX] = (a->u64[LO_IDX] >> shift) | carry; \ + r->u64[HI_IDX] = a->u64[HI_IDX] >> shift; \ + } \ + } \ + } +VSHIFT(l, LEFT) +VSHIFT(r, RIGHT) +#undef VSHIFT +#undef LEFT +#undef RIGHT + +#define VSL(suffix, element) \ + void helper_vsl##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ + { \ + int i; \ + \ + for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ + unsigned int mask = ((1 << \ + (3 + (sizeof(a->element[0]) >> 1))) \ + - 1); \ + unsigned int shift = b->element[i] & mask; \ + \ + r->element[i] = a->element[i] << shift; \ + } \ + } +VSL(b, u8) +VSL(h, u16) +VSL(w, u32) +#undef VSL + +void helper_vsldoi(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t shift) +{ + int sh = shift & 0xf; + int i; + ppc_avr_t result; + +#if defined(HOST_WORDS_BIGENDIAN) + for (i = 0; i < ARRAY_SIZE(r->u8); i++) { + int index = sh + i; + if (index > 0xf) { + result.u8[i] = b->u8[index - 0x10]; + } else { + result.u8[i] = a->u8[index]; + } + } +#else + for (i = 0; i < ARRAY_SIZE(r->u8); i++) { + int index = (16 - sh) + i; + if (index > 0xf) { + result.u8[i] = a->u8[index - 0x10]; + } else { + result.u8[i] = b->u8[index]; + } + } +#endif + *r = result; +} + +void helper_vslo(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) +{ + int sh = (b->u8[LO_IDX*0xf] >> 3) & 0xf; + +#if defined(HOST_WORDS_BIGENDIAN) + memmove(&r->u8[0], &a->u8[sh], 16 - sh); + memset(&r->u8[16-sh], 0, sh); +#else + memmove(&r->u8[sh], &a->u8[0], 16 - sh); + memset(&r->u8[0], 0, sh); +#endif +} + +/* Experimental testing shows that hardware masks the immediate. */ +#define _SPLAT_MASKED(element) (splat & (ARRAY_SIZE(r->element) - 1)) +#if defined(HOST_WORDS_BIGENDIAN) +#define SPLAT_ELEMENT(element) _SPLAT_MASKED(element) +#else +#define SPLAT_ELEMENT(element) \ + (ARRAY_SIZE(r->element) - 1 - _SPLAT_MASKED(element)) +#endif +#define VSPLT(suffix, element) \ + void helper_vsplt##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t splat) \ + { \ + uint32_t s = b->element[SPLAT_ELEMENT(element)]; \ + int i; \ + \ + for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ + r->element[i] = s; \ + } \ + } +VSPLT(b, u8) +VSPLT(h, u16) +VSPLT(w, u32) +#undef VSPLT +#undef SPLAT_ELEMENT +#undef _SPLAT_MASKED + +#define VSPLTI(suffix, element, splat_type) \ + void helper_vspltis##suffix(ppc_avr_t *r, uint32_t splat) \ + { \ + splat_type x = (int8_t)(splat << 3) >> 3; \ + int i; \ + \ + for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ + r->element[i] = x; \ + } \ + } +VSPLTI(b, s8, int8_t) +VSPLTI(h, s16, int16_t) +VSPLTI(w, s32, int32_t) +#undef VSPLTI + +#define VSR(suffix, element) \ + void helper_vsr##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ + { \ + int i; \ + \ + for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ + unsigned int mask = ((1 << \ + (3 + (sizeof(a->element[0]) >> 1))) \ + - 1); \ + unsigned int shift = b->element[i] & mask; \ + \ + r->element[i] = a->element[i] >> shift; \ + } \ + } +VSR(ab, s8) +VSR(ah, s16) +VSR(aw, s32) +VSR(b, u8) +VSR(h, u16) +VSR(w, u32) +#undef VSR + +void helper_vsro(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) +{ + int sh = (b->u8[LO_IDX * 0xf] >> 3) & 0xf; + +#if defined(HOST_WORDS_BIGENDIAN) + memmove(&r->u8[sh], &a->u8[0], 16 - sh); + memset(&r->u8[0], 0, sh); +#else + memmove(&r->u8[0], &a->u8[sh], 16 - sh); + memset(&r->u8[16 - sh], 0, sh); +#endif +} + +void helper_vsubcuw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) +{ + int i; + + for (i = 0; i < ARRAY_SIZE(r->u32); i++) { + r->u32[i] = a->u32[i] >= b->u32[i]; + } +} + +void helper_vsumsws(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) +{ + int64_t t; + int i, upper; + ppc_avr_t result; + int sat = 0; + +#if defined(HOST_WORDS_BIGENDIAN) + upper = ARRAY_SIZE(r->s32)-1; +#else + upper = 0; +#endif + t = (int64_t)b->s32[upper]; + for (i = 0; i < ARRAY_SIZE(r->s32); i++) { + t += a->s32[i]; + result.s32[i] = 0; + } + result.s32[upper] = cvtsdsw(t, &sat); + *r = result; + + if (sat) { + env->vscr |= (1 << VSCR_SAT); + } +} + +void helper_vsum2sws(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) +{ + int i, j, upper; + ppc_avr_t result; + int sat = 0; + +#if defined(HOST_WORDS_BIGENDIAN) + upper = 1; +#else + upper = 0; +#endif + for (i = 0; i < ARRAY_SIZE(r->u64); i++) { + int64_t t = (int64_t)b->s32[upper + i * 2]; + + result.u64[i] = 0; + for (j = 0; j < ARRAY_SIZE(r->u64); j++) { + t += a->s32[2 * i + j]; + } + result.s32[upper + i * 2] = cvtsdsw(t, &sat); + } + + *r = result; + if (sat) { + env->vscr |= (1 << VSCR_SAT); + } +} + +void helper_vsum4sbs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) +{ + int i, j; + int sat = 0; + + for (i = 0; i < ARRAY_SIZE(r->s32); i++) { + int64_t t = (int64_t)b->s32[i]; + + for (j = 0; j < ARRAY_SIZE(r->s32); j++) { + t += a->s8[4 * i + j]; + } + r->s32[i] = cvtsdsw(t, &sat); + } + + if (sat) { + env->vscr |= (1 << VSCR_SAT); + } +} + +void helper_vsum4shs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) +{ + int sat = 0; + int i; + + for (i = 0; i < ARRAY_SIZE(r->s32); i++) { + int64_t t = (int64_t)b->s32[i]; + + t += a->s16[2 * i] + a->s16[2 * i + 1]; + r->s32[i] = cvtsdsw(t, &sat); + } + + if (sat) { + env->vscr |= (1 << VSCR_SAT); + } +} + +void helper_vsum4ubs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) +{ + int i, j; + int sat = 0; + + for (i = 0; i < ARRAY_SIZE(r->u32); i++) { + uint64_t t = (uint64_t)b->u32[i]; + + for (j = 0; j < ARRAY_SIZE(r->u32); j++) { + t += a->u8[4 * i + j]; + } + r->u32[i] = cvtuduw(t, &sat); + } + + if (sat) { + env->vscr |= (1 << VSCR_SAT); + } +} + +#if defined(HOST_WORDS_BIGENDIAN) +#define UPKHI 1 +#define UPKLO 0 +#else +#define UPKHI 0 +#define UPKLO 1 +#endif +#define VUPKPX(suffix, hi) \ + void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \ + { \ + int i; \ + ppc_avr_t result; \ + \ + for (i = 0; i < ARRAY_SIZE(r->u32); i++) { \ + uint16_t e = b->u16[hi ? i : i+4]; \ + uint8_t a = (e >> 15) ? 0xff : 0; \ + uint8_t r = (e >> 10) & 0x1f; \ + uint8_t g = (e >> 5) & 0x1f; \ + uint8_t b = e & 0x1f; \ + \ + result.u32[i] = (a << 24) | (r << 16) | (g << 8) | b; \ + } \ + *r = result; \ + } +VUPKPX(lpx, UPKLO) +VUPKPX(hpx, UPKHI) +#undef VUPKPX + +#define VUPK(suffix, unpacked, packee, hi) \ + void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \ + { \ + int i; \ + ppc_avr_t result; \ + \ + if (hi) { \ + for (i = 0; i < ARRAY_SIZE(r->unpacked); i++) { \ + result.unpacked[i] = b->packee[i]; \ + } \ + } else { \ + for (i = ARRAY_SIZE(r->unpacked); i < ARRAY_SIZE(r->packee); \ + i++) { \ + result.unpacked[i - ARRAY_SIZE(r->unpacked)] = b->packee[i]; \ + } \ + } \ + *r = result; \ + } +VUPK(hsb, s16, s8, UPKHI) +VUPK(hsh, s32, s16, UPKHI) +VUPK(lsb, s16, s8, UPKLO) +VUPK(lsh, s32, s16, UPKLO) +#undef VUPK +#undef UPKHI +#undef UPKLO + +#undef DO_HANDLE_NAN +#undef HANDLE_NAN1 +#undef HANDLE_NAN2 +#undef HANDLE_NAN3 +#undef VECTOR_FOR_INORDER_I +#undef HI_IDX +#undef LO_IDX + +/*****************************************************************************/ +/* SPE extension helpers */ +/* Use a table to make this quicker */ +static uint8_t hbrev[16] = { + 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE, + 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF, +}; + +static inline uint8_t byte_reverse(uint8_t val) +{ + return hbrev[val >> 4] | (hbrev[val & 0xF] << 4); +} + +static inline uint32_t word_reverse(uint32_t val) +{ + return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) | + (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24); +} + +#define MASKBITS 16 /* Random value - to be fixed (implementation dependent) */ +target_ulong helper_brinc(target_ulong arg1, target_ulong arg2) +{ + uint32_t a, b, d, mask; + + mask = UINT32_MAX >> (32 - MASKBITS); + a = arg1 & mask; + b = arg2 & mask; + d = word_reverse(1 + word_reverse(a | ~b)); + return (arg1 & ~mask) | (d & b); +} + +uint32_t helper_cntlsw32(uint32_t val) +{ + if (val & 0x80000000) { + return clz32(~val); + } else { + return clz32(val); + } +} + +uint32_t helper_cntlzw32(uint32_t val) +{ + return clz32(val); +} + +/* 440 specific */ +target_ulong helper_dlmzb(target_ulong high, target_ulong low, + uint32_t update_Rc) +{ + target_ulong mask; + int i; + + i = 1; + for (mask = 0xFF000000; mask != 0; mask = mask >> 8) { + if ((high & mask) == 0) { + if (update_Rc) { + env->crf[0] = 0x4; + } + goto done; + } + i++; + } + for (mask = 0xFF000000; mask != 0; mask = mask >> 8) { + if ((low & mask) == 0) { + if (update_Rc) { + env->crf[0] = 0x8; + } + goto done; + } + i++; + } + if (update_Rc) { + env->crf[0] = 0x2; + } + done: + env->xer = (env->xer & ~0x7F) | i; + if (update_Rc) { + env->crf[0] |= xer_so; + } + return i; +} diff --git a/target-ppc/op_helper.c b/target-ppc/op_helper.c index 3f677f6da140a416c30b44c5f28a41c0a649c19b..55b9e9dcb951077a7fcb63540cd99937cd5fcded 100644 --- a/target-ppc/op_helper.c +++ b/target-ppc/op_helper.c @@ -386,166 +386,6 @@ target_ulong helper_lscbx(target_ulong addr, uint32_t reg, uint32_t ra, return i; } -/*****************************************************************************/ -/* Fixed point operations helpers */ -#if defined(TARGET_PPC64) - -/* multiply high word */ -uint64_t helper_mulhd(uint64_t arg1, uint64_t arg2) -{ - uint64_t tl, th; - - muls64(&tl, &th, arg1, arg2); - return th; -} - -/* multiply high word unsigned */ -uint64_t helper_mulhdu(uint64_t arg1, uint64_t arg2) -{ - uint64_t tl, th; - - mulu64(&tl, &th, arg1, arg2); - return th; -} - -uint64_t helper_mulldo(uint64_t arg1, uint64_t arg2) -{ - int64_t th; - uint64_t tl; - - muls64(&tl, (uint64_t *)&th, arg1, arg2); - /* If th != 0 && th != -1, then we had an overflow */ - if (likely((uint64_t)(th + 1) <= 1)) { - env->xer &= ~(1 << XER_OV); - } else { - env->xer |= (1 << XER_OV) | (1 << XER_SO); - } - return (int64_t)tl; -} -#endif - -target_ulong helper_cntlzw(target_ulong t) -{ - return clz32(t); -} - -#if defined(TARGET_PPC64) -target_ulong helper_cntlzd(target_ulong t) -{ - return clz64(t); -} -#endif - -/* shift right arithmetic helper */ -target_ulong helper_sraw(target_ulong value, target_ulong shift) -{ - int32_t ret; - - if (likely(!(shift & 0x20))) { - if (likely((uint32_t)shift != 0)) { - shift &= 0x1f; - ret = (int32_t)value >> shift; - if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) { - env->xer &= ~(1 << XER_CA); - } else { - env->xer |= (1 << XER_CA); - } - } else { - ret = (int32_t)value; - env->xer &= ~(1 << XER_CA); - } - } else { - ret = (int32_t)value >> 31; - if (ret) { - env->xer |= (1 << XER_CA); - } else { - env->xer &= ~(1 << XER_CA); - } - } - return (target_long)ret; -} - -#if defined(TARGET_PPC64) -target_ulong helper_srad(target_ulong value, target_ulong shift) -{ - int64_t ret; - - if (likely(!(shift & 0x40))) { - if (likely((uint64_t)shift != 0)) { - shift &= 0x3f; - ret = (int64_t)value >> shift; - if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) { - env->xer &= ~(1 << XER_CA); - } else { - env->xer |= (1 << XER_CA); - } - } else { - ret = (int64_t)value; - env->xer &= ~(1 << XER_CA); - } - } else { - ret = (int64_t)value >> 63; - if (ret) { - env->xer |= (1 << XER_CA); - } else { - env->xer &= ~(1 << XER_CA); - } - } - return ret; -} -#endif - -#if defined(TARGET_PPC64) -target_ulong helper_popcntb(target_ulong val) -{ - val = (val & 0x5555555555555555ULL) + ((val >> 1) & - 0x5555555555555555ULL); - val = (val & 0x3333333333333333ULL) + ((val >> 2) & - 0x3333333333333333ULL); - val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) & - 0x0f0f0f0f0f0f0f0fULL); - return val; -} - -target_ulong helper_popcntw(target_ulong val) -{ - val = (val & 0x5555555555555555ULL) + ((val >> 1) & - 0x5555555555555555ULL); - val = (val & 0x3333333333333333ULL) + ((val >> 2) & - 0x3333333333333333ULL); - val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) & - 0x0f0f0f0f0f0f0f0fULL); - val = (val & 0x00ff00ff00ff00ffULL) + ((val >> 8) & - 0x00ff00ff00ff00ffULL); - val = (val & 0x0000ffff0000ffffULL) + ((val >> 16) & - 0x0000ffff0000ffffULL); - return val; -} - -target_ulong helper_popcntd(target_ulong val) -{ - return ctpop64(val); -} -#else -target_ulong helper_popcntb(target_ulong val) -{ - val = (val & 0x55555555) + ((val >> 1) & 0x55555555); - val = (val & 0x33333333) + ((val >> 2) & 0x33333333); - val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f); - return val; -} - -target_ulong helper_popcntw(target_ulong val) -{ - val = (val & 0x55555555) + ((val >> 1) & 0x55555555); - val = (val & 0x33333333) + ((val >> 2) & 0x33333333); - val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f); - val = (val & 0x00ff00ff) + ((val >> 8) & 0x00ff00ff); - val = (val & 0x0000ffff) + ((val >> 16) & 0x0000ffff); - return val; -} -#endif - /*****************************************************************************/ /* PowerPC 601 specific instructions (POWER bridge) */ @@ -577,67 +417,6 @@ target_ulong helper_clcs(uint32_t arg) } } -target_ulong helper_div(target_ulong arg1, target_ulong arg2) -{ - uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ]; - - if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) || - (int32_t)arg2 == 0) { - env->spr[SPR_MQ] = 0; - return INT32_MIN; - } else { - env->spr[SPR_MQ] = tmp % arg2; - return tmp / (int32_t)arg2; - } -} - -target_ulong helper_divo(target_ulong arg1, target_ulong arg2) -{ - uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ]; - - if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) || - (int32_t)arg2 == 0) { - env->xer |= (1 << XER_OV) | (1 << XER_SO); - env->spr[SPR_MQ] = 0; - return INT32_MIN; - } else { - env->spr[SPR_MQ] = tmp % arg2; - tmp /= (int32_t)arg2; - if ((int32_t)tmp != tmp) { - env->xer |= (1 << XER_OV) | (1 << XER_SO); - } else { - env->xer &= ~(1 << XER_OV); - } - return tmp; - } -} - -target_ulong helper_divs(target_ulong arg1, target_ulong arg2) -{ - if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) || - (int32_t)arg2 == 0) { - env->spr[SPR_MQ] = 0; - return INT32_MIN; - } else { - env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2; - return (int32_t)arg1 / (int32_t)arg2; - } -} - -target_ulong helper_divso(target_ulong arg1, target_ulong arg2) -{ - if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) || - (int32_t)arg2 == 0) { - env->xer |= (1 << XER_OV) | (1 << XER_SO); - env->spr[SPR_MQ] = 0; - return INT32_MIN; - } else { - env->xer &= ~(1 << XER_OV); - env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2; - return (int32_t)arg1 / (int32_t)arg2; - } -} - #if !defined(CONFIG_USER_ONLY) target_ulong helper_rac(target_ulong addr) { @@ -659,26 +438,6 @@ target_ulong helper_rac(target_ulong addr) } #endif -/*****************************************************************************/ -/* 602 specific instructions */ -/* mfrom is the most crazy instruction ever seen, imho ! */ -/* Real implementation uses a ROM table. Do the same */ -/* Extremely decomposed: - * -arg / 256 - * return 256 * log10(10 + 1.0) + 0.5 - */ -#if !defined(CONFIG_USER_ONLY) -target_ulong helper_602_mfrom(target_ulong arg) -{ - if (likely(arg < 602)) { -#include "mfrom_table.c" - return mfrom_ROM_table[arg]; - } else { - return 0; - } -} -#endif - /*****************************************************************************/ /* Embedded PowerPC specific helpers */ @@ -716,43 +475,6 @@ void helper_store_dcr(target_ulong dcrn, target_ulong val) } } -/* 440 specific */ -target_ulong helper_dlmzb(target_ulong high, target_ulong low, - uint32_t update_Rc) -{ - target_ulong mask; - int i; - - i = 1; - for (mask = 0xFF000000; mask != 0; mask = mask >> 8) { - if ((high & mask) == 0) { - if (update_Rc) { - env->crf[0] = 0x4; - } - goto done; - } - i++; - } - for (mask = 0xFF000000; mask != 0; mask = mask >> 8) { - if ((low & mask) == 0) { - if (update_Rc) { - env->crf[0] = 0x8; - } - goto done; - } - i++; - } - if (update_Rc) { - env->crf[0] = 0x2; - } - done: - env->xer = (env->xer & ~0x7F) | i; - if (update_Rc) { - env->crf[0] |= xer_so; - } - return i; -} - /*****************************************************************************/ /* Altivec extension helpers */ #if defined(HOST_WORDS_BIGENDIAN) @@ -763,74 +485,6 @@ target_ulong helper_dlmzb(target_ulong high, target_ulong low, #define LO_IDX 0 #endif -#if defined(HOST_WORDS_BIGENDIAN) -#define VECTOR_FOR_INORDER_I(index, element) \ - for (index = 0; index < ARRAY_SIZE(r->element); index++) -#else -#define VECTOR_FOR_INORDER_I(index, element) \ - for (index = ARRAY_SIZE(r->element)-1; index >= 0; index--) -#endif - -/* If X is a NaN, store the corresponding QNaN into RESULT. Otherwise, - * execute the following block. */ -#define DO_HANDLE_NAN(result, x) \ - if (float32_is_any_nan(x)) { \ - CPU_FloatU __f; \ - __f.f = x; \ - __f.l = __f.l | (1 << 22); /* Set QNaN bit. */ \ - result = __f.f; \ - } else - -#define HANDLE_NAN1(result, x) \ - DO_HANDLE_NAN(result, x) -#define HANDLE_NAN2(result, x, y) \ - DO_HANDLE_NAN(result, x) DO_HANDLE_NAN(result, y) -#define HANDLE_NAN3(result, x, y, z) \ - DO_HANDLE_NAN(result, x) DO_HANDLE_NAN(result, y) DO_HANDLE_NAN(result, z) - -/* Saturating arithmetic helpers. */ -#define SATCVT(from, to, from_type, to_type, min, max) \ - static inline to_type cvt##from##to(from_type x, int *sat) \ - { \ - to_type r; \ - \ - if (x < (from_type)min) { \ - r = min; \ - *sat = 1; \ - } else if (x > (from_type)max) { \ - r = max; \ - *sat = 1; \ - } else { \ - r = x; \ - } \ - return r; \ - } -#define SATCVTU(from, to, from_type, to_type, min, max) \ - static inline to_type cvt##from##to(from_type x, int *sat) \ - { \ - to_type r; \ - \ - if (x > (from_type)max) { \ - r = max; \ - *sat = 1; \ - } else { \ - r = x; \ - } \ - return r; \ - } -SATCVT(sh, sb, int16_t, int8_t, INT8_MIN, INT8_MAX) -SATCVT(sw, sh, int32_t, int16_t, INT16_MIN, INT16_MAX) -SATCVT(sd, sw, int64_t, int32_t, INT32_MIN, INT32_MAX) - -SATCVTU(uh, ub, uint16_t, uint8_t, 0, UINT8_MAX) -SATCVTU(uw, uh, uint32_t, uint16_t, 0, UINT16_MAX) -SATCVTU(ud, uw, uint64_t, uint32_t, 0, UINT32_MAX) -SATCVT(sh, ub, int16_t, uint8_t, 0, UINT8_MAX) -SATCVT(sw, uh, int32_t, uint16_t, 0, UINT16_MAX) -SATCVT(sd, uw, int64_t, uint32_t, 0, UINT32_MAX) -#undef SATCVT -#undef SATCVTU - #define LVE(name, access, swap, element) \ void helper_##name(ppc_avr_t *r, target_ulong addr) \ { \ @@ -854,24 +508,6 @@ LVE(lvewx, ldl, bswap32, u32) #undef I #undef LVE -void helper_lvsl(ppc_avr_t *r, target_ulong sh) -{ - int i, j = (sh & 0xf); - - VECTOR_FOR_INORDER_I(i, u8) { - r->u8[i] = j++; - } -} - -void helper_lvsr(ppc_avr_t *r, target_ulong sh) -{ - int i, j = 0x10 - (sh & 0xf); - - VECTOR_FOR_INORDER_I(i, u8) { - r->u8[i] = j++; - } -} - #define STVE(name, access, swap, element) \ void helper_##name(ppc_avr_t *r, target_ulong addr) \ { \ @@ -893,1145 +529,9 @@ STVE(stvewx, stl, bswap32, u32) #undef I #undef LVE -void helper_mtvscr(ppc_avr_t *r) -{ -#if defined(HOST_WORDS_BIGENDIAN) - env->vscr = r->u32[3]; -#else - env->vscr = r->u32[0]; -#endif - set_flush_to_zero(vscr_nj, &env->vec_status); -} - -void helper_vaddcuw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) -{ - int i; - - for (i = 0; i < ARRAY_SIZE(r->u32); i++) { - r->u32[i] = ~a->u32[i] < b->u32[i]; - } -} - -#define VARITH_DO(name, op, element) \ - void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ - { \ - int i; \ - \ - for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ - r->element[i] = a->element[i] op b->element[i]; \ - } \ - } -#define VARITH(suffix, element) \ - VARITH_DO(add##suffix, +, element) \ - VARITH_DO(sub##suffix, -, element) -VARITH(ubm, u8) -VARITH(uhm, u16) -VARITH(uwm, u32) -#undef VARITH_DO -#undef VARITH - -#define VARITHFP(suffix, func) \ - void helper_v##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ - { \ - int i; \ - \ - for (i = 0; i < ARRAY_SIZE(r->f); i++) { \ - HANDLE_NAN2(r->f[i], a->f[i], b->f[i]) { \ - r->f[i] = func(a->f[i], b->f[i], &env->vec_status); \ - } \ - } \ - } -VARITHFP(addfp, float32_add) -VARITHFP(subfp, float32_sub) -#undef VARITHFP - -#define VARITHSAT_CASE(type, op, cvt, element) \ - { \ - type result = (type)a->element[i] op (type)b->element[i]; \ - r->element[i] = cvt(result, &sat); \ - } - -#define VARITHSAT_DO(name, op, optype, cvt, element) \ - void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ - { \ - int sat = 0; \ - int i; \ - \ - for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ - switch (sizeof(r->element[0])) { \ - case 1: \ - VARITHSAT_CASE(optype, op, cvt, element); \ - break; \ - case 2: \ - VARITHSAT_CASE(optype, op, cvt, element); \ - break; \ - case 4: \ - VARITHSAT_CASE(optype, op, cvt, element); \ - break; \ - } \ - } \ - if (sat) { \ - env->vscr |= (1 << VSCR_SAT); \ - } \ - } -#define VARITHSAT_SIGNED(suffix, element, optype, cvt) \ - VARITHSAT_DO(adds##suffix##s, +, optype, cvt, element) \ - VARITHSAT_DO(subs##suffix##s, -, optype, cvt, element) -#define VARITHSAT_UNSIGNED(suffix, element, optype, cvt) \ - VARITHSAT_DO(addu##suffix##s, +, optype, cvt, element) \ - VARITHSAT_DO(subu##suffix##s, -, optype, cvt, element) -VARITHSAT_SIGNED(b, s8, int16_t, cvtshsb) -VARITHSAT_SIGNED(h, s16, int32_t, cvtswsh) -VARITHSAT_SIGNED(w, s32, int64_t, cvtsdsw) -VARITHSAT_UNSIGNED(b, u8, uint16_t, cvtshub) -VARITHSAT_UNSIGNED(h, u16, uint32_t, cvtswuh) -VARITHSAT_UNSIGNED(w, u32, uint64_t, cvtsduw) -#undef VARITHSAT_CASE -#undef VARITHSAT_DO -#undef VARITHSAT_SIGNED -#undef VARITHSAT_UNSIGNED - -#define VAVG_DO(name, element, etype) \ - void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ - { \ - int i; \ - \ - for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ - etype x = (etype)a->element[i] + (etype)b->element[i] + 1; \ - r->element[i] = x >> 1; \ - } \ - } - -#define VAVG(type, signed_element, signed_type, unsigned_element, \ - unsigned_type) \ - VAVG_DO(avgs##type, signed_element, signed_type) \ - VAVG_DO(avgu##type, unsigned_element, unsigned_type) -VAVG(b, s8, int16_t, u8, uint16_t) -VAVG(h, s16, int32_t, u16, uint32_t) -VAVG(w, s32, int64_t, u32, uint64_t) -#undef VAVG_DO -#undef VAVG - -#define VCF(suffix, cvt, element) \ - void helper_vcf##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t uim) \ - { \ - int i; \ - \ - for (i = 0; i < ARRAY_SIZE(r->f); i++) { \ - float32 t = cvt(b->element[i], &env->vec_status); \ - r->f[i] = float32_scalbn(t, -uim, &env->vec_status); \ - } \ - } -VCF(ux, uint32_to_float32, u32) -VCF(sx, int32_to_float32, s32) -#undef VCF - -#define VCMP_DO(suffix, compare, element, record) \ - void helper_vcmp##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ - { \ - uint32_t ones = (uint32_t)-1; \ - uint32_t all = ones; \ - uint32_t none = 0; \ - int i; \ - \ - for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ - uint32_t result = (a->element[i] compare b->element[i] ? \ - ones : 0x0); \ - switch (sizeof(a->element[0])) { \ - case 4: \ - r->u32[i] = result; \ - break; \ - case 2: \ - r->u16[i] = result; \ - break; \ - case 1: \ - r->u8[i] = result; \ - break; \ - } \ - all &= result; \ - none |= result; \ - } \ - if (record) { \ - env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \ - } \ - } -#define VCMP(suffix, compare, element) \ - VCMP_DO(suffix, compare, element, 0) \ - VCMP_DO(suffix##_dot, compare, element, 1) -VCMP(equb, ==, u8) -VCMP(equh, ==, u16) -VCMP(equw, ==, u32) -VCMP(gtub, >, u8) -VCMP(gtuh, >, u16) -VCMP(gtuw, >, u32) -VCMP(gtsb, >, s8) -VCMP(gtsh, >, s16) -VCMP(gtsw, >, s32) -#undef VCMP_DO -#undef VCMP - -#define VCMPFP_DO(suffix, compare, order, record) \ - void helper_vcmp##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ - { \ - uint32_t ones = (uint32_t)-1; \ - uint32_t all = ones; \ - uint32_t none = 0; \ - int i; \ - \ - for (i = 0; i < ARRAY_SIZE(r->f); i++) { \ - uint32_t result; \ - int rel = float32_compare_quiet(a->f[i], b->f[i], \ - &env->vec_status); \ - if (rel == float_relation_unordered) { \ - result = 0; \ - } else if (rel compare order) { \ - result = ones; \ - } else { \ - result = 0; \ - } \ - r->u32[i] = result; \ - all &= result; \ - none |= result; \ - } \ - if (record) { \ - env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \ - } \ - } -#define VCMPFP(suffix, compare, order) \ - VCMPFP_DO(suffix, compare, order, 0) \ - VCMPFP_DO(suffix##_dot, compare, order, 1) -VCMPFP(eqfp, ==, float_relation_equal) -VCMPFP(gefp, !=, float_relation_less) -VCMPFP(gtfp, ==, float_relation_greater) -#undef VCMPFP_DO -#undef VCMPFP - -static inline void vcmpbfp_internal(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, - int record) -{ - int i; - int all_in = 0; - - for (i = 0; i < ARRAY_SIZE(r->f); i++) { - int le_rel = float32_compare_quiet(a->f[i], b->f[i], &env->vec_status); - if (le_rel == float_relation_unordered) { - r->u32[i] = 0xc0000000; - /* ALL_IN does not need to be updated here. */ - } else { - float32 bneg = float32_chs(b->f[i]); - int ge_rel = float32_compare_quiet(a->f[i], bneg, &env->vec_status); - int le = le_rel != float_relation_greater; - int ge = ge_rel != float_relation_less; - - r->u32[i] = ((!le) << 31) | ((!ge) << 30); - all_in |= (!le | !ge); - } - } - if (record) { - env->crf[6] = (all_in == 0) << 1; - } -} - -void helper_vcmpbfp(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) -{ - vcmpbfp_internal(r, a, b, 0); -} - -void helper_vcmpbfp_dot(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) -{ - vcmpbfp_internal(r, a, b, 1); -} - -#define VCT(suffix, satcvt, element) \ - void helper_vct##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t uim) \ - { \ - int i; \ - int sat = 0; \ - float_status s = env->vec_status; \ - \ - set_float_rounding_mode(float_round_to_zero, &s); \ - for (i = 0; i < ARRAY_SIZE(r->f); i++) { \ - if (float32_is_any_nan(b->f[i])) { \ - r->element[i] = 0; \ - } else { \ - float64 t = float32_to_float64(b->f[i], &s); \ - int64_t j; \ - \ - t = float64_scalbn(t, uim, &s); \ - j = float64_to_int64(t, &s); \ - r->element[i] = satcvt(j, &sat); \ - } \ - } \ - if (sat) { \ - env->vscr |= (1 << VSCR_SAT); \ - } \ - } -VCT(uxs, cvtsduw, u32) -VCT(sxs, cvtsdsw, s32) -#undef VCT - -void helper_vmaddfp(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) -{ - int i; - - for (i = 0; i < ARRAY_SIZE(r->f); i++) { - HANDLE_NAN3(r->f[i], a->f[i], b->f[i], c->f[i]) { - /* Need to do the computation in higher precision and round - * once at the end. */ - float64 af, bf, cf, t; - - af = float32_to_float64(a->f[i], &env->vec_status); - bf = float32_to_float64(b->f[i], &env->vec_status); - cf = float32_to_float64(c->f[i], &env->vec_status); - t = float64_mul(af, cf, &env->vec_status); - t = float64_add(t, bf, &env->vec_status); - r->f[i] = float64_to_float32(t, &env->vec_status); - } - } -} - -void helper_vmhaddshs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) -{ - int sat = 0; - int i; - - for (i = 0; i < ARRAY_SIZE(r->s16); i++) { - int32_t prod = a->s16[i] * b->s16[i]; - int32_t t = (int32_t)c->s16[i] + (prod >> 15); - - r->s16[i] = cvtswsh(t, &sat); - } - - if (sat) { - env->vscr |= (1 << VSCR_SAT); - } -} - -void helper_vmhraddshs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) -{ - int sat = 0; - int i; - - for (i = 0; i < ARRAY_SIZE(r->s16); i++) { - int32_t prod = a->s16[i] * b->s16[i] + 0x00004000; - int32_t t = (int32_t)c->s16[i] + (prod >> 15); - r->s16[i] = cvtswsh(t, &sat); - } - - if (sat) { - env->vscr |= (1 << VSCR_SAT); - } -} - -#define VMINMAX_DO(name, compare, element) \ - void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ - { \ - int i; \ - \ - for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ - if (a->element[i] compare b->element[i]) { \ - r->element[i] = b->element[i]; \ - } else { \ - r->element[i] = a->element[i]; \ - } \ - } \ - } -#define VMINMAX(suffix, element) \ - VMINMAX_DO(min##suffix, >, element) \ - VMINMAX_DO(max##suffix, <, element) -VMINMAX(sb, s8) -VMINMAX(sh, s16) -VMINMAX(sw, s32) -VMINMAX(ub, u8) -VMINMAX(uh, u16) -VMINMAX(uw, u32) -#undef VMINMAX_DO -#undef VMINMAX - -#define VMINMAXFP(suffix, rT, rF) \ - void helper_v##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ - { \ - int i; \ - \ - for (i = 0; i < ARRAY_SIZE(r->f); i++) { \ - HANDLE_NAN2(r->f[i], a->f[i], b->f[i]) { \ - if (float32_lt_quiet(a->f[i], b->f[i], \ - &env->vec_status)) { \ - r->f[i] = rT->f[i]; \ - } else { \ - r->f[i] = rF->f[i]; \ - } \ - } \ - } \ - } -VMINMAXFP(minfp, a, b) -VMINMAXFP(maxfp, b, a) -#undef VMINMAXFP - -void helper_vmladduhm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) -{ - int i; - - for (i = 0; i < ARRAY_SIZE(r->s16); i++) { - int32_t prod = a->s16[i] * b->s16[i]; - r->s16[i] = (int16_t) (prod + c->s16[i]); - } -} - -#define VMRG_DO(name, element, highp) \ - void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ - { \ - ppc_avr_t result; \ - int i; \ - size_t n_elems = ARRAY_SIZE(r->element); \ - \ - for (i = 0; i < n_elems / 2; i++) { \ - if (highp) { \ - result.element[i*2+HI_IDX] = a->element[i]; \ - result.element[i*2+LO_IDX] = b->element[i]; \ - } else { \ - result.element[n_elems - i * 2 - (1 + HI_IDX)] = \ - b->element[n_elems - i - 1]; \ - result.element[n_elems - i * 2 - (1 + LO_IDX)] = \ - a->element[n_elems - i - 1]; \ - } \ - } \ - *r = result; \ - } -#if defined(HOST_WORDS_BIGENDIAN) -#define MRGHI 0 -#define MRGLO 1 -#else -#define MRGHI 1 -#define MRGLO 0 -#endif -#define VMRG(suffix, element) \ - VMRG_DO(mrgl##suffix, element, MRGHI) \ - VMRG_DO(mrgh##suffix, element, MRGLO) -VMRG(b, u8) -VMRG(h, u16) -VMRG(w, u32) -#undef VMRG_DO -#undef VMRG -#undef MRGHI -#undef MRGLO - -void helper_vmsummbm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) -{ - int32_t prod[16]; - int i; - - for (i = 0; i < ARRAY_SIZE(r->s8); i++) { - prod[i] = (int32_t)a->s8[i] * b->u8[i]; - } - - VECTOR_FOR_INORDER_I(i, s32) { - r->s32[i] = c->s32[i] + prod[4 * i] + prod[4 * i + 1] + - prod[4 * i + 2] + prod[4 * i + 3]; - } -} - -void helper_vmsumshm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) -{ - int32_t prod[8]; - int i; - - for (i = 0; i < ARRAY_SIZE(r->s16); i++) { - prod[i] = a->s16[i] * b->s16[i]; - } - - VECTOR_FOR_INORDER_I(i, s32) { - r->s32[i] = c->s32[i] + prod[2 * i] + prod[2 * i + 1]; - } -} - -void helper_vmsumshs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) -{ - int32_t prod[8]; - int i; - int sat = 0; - - for (i = 0; i < ARRAY_SIZE(r->s16); i++) { - prod[i] = (int32_t)a->s16[i] * b->s16[i]; - } - - VECTOR_FOR_INORDER_I(i, s32) { - int64_t t = (int64_t)c->s32[i] + prod[2 * i] + prod[2 * i + 1]; - - r->u32[i] = cvtsdsw(t, &sat); - } - - if (sat) { - env->vscr |= (1 << VSCR_SAT); - } -} - -void helper_vmsumubm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) -{ - uint16_t prod[16]; - int i; - - for (i = 0; i < ARRAY_SIZE(r->u8); i++) { - prod[i] = a->u8[i] * b->u8[i]; - } - - VECTOR_FOR_INORDER_I(i, u32) { - r->u32[i] = c->u32[i] + prod[4 * i] + prod[4 * i + 1] + - prod[4 * i + 2] + prod[4 * i + 3]; - } -} - -void helper_vmsumuhm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) -{ - uint32_t prod[8]; - int i; - - for (i = 0; i < ARRAY_SIZE(r->u16); i++) { - prod[i] = a->u16[i] * b->u16[i]; - } - - VECTOR_FOR_INORDER_I(i, u32) { - r->u32[i] = c->u32[i] + prod[2 * i] + prod[2 * i + 1]; - } -} - -void helper_vmsumuhs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) -{ - uint32_t prod[8]; - int i; - int sat = 0; - - for (i = 0; i < ARRAY_SIZE(r->u16); i++) { - prod[i] = a->u16[i] * b->u16[i]; - } - - VECTOR_FOR_INORDER_I(i, s32) { - uint64_t t = (uint64_t)c->u32[i] + prod[2 * i] + prod[2 * i + 1]; - - r->u32[i] = cvtuduw(t, &sat); - } - - if (sat) { - env->vscr |= (1 << VSCR_SAT); - } -} - -#define VMUL_DO(name, mul_element, prod_element, evenp) \ - void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ - { \ - int i; \ - \ - VECTOR_FOR_INORDER_I(i, prod_element) { \ - if (evenp) { \ - r->prod_element[i] = a->mul_element[i * 2 + HI_IDX] * \ - b->mul_element[i * 2 + HI_IDX]; \ - } else { \ - r->prod_element[i] = a->mul_element[i * 2 + LO_IDX] * \ - b->mul_element[i * 2 + LO_IDX]; \ - } \ - } \ - } -#define VMUL(suffix, mul_element, prod_element) \ - VMUL_DO(mule##suffix, mul_element, prod_element, 1) \ - VMUL_DO(mulo##suffix, mul_element, prod_element, 0) -VMUL(sb, s8, s16) -VMUL(sh, s16, s32) -VMUL(ub, u8, u16) -VMUL(uh, u16, u32) -#undef VMUL_DO -#undef VMUL - -void helper_vnmsubfp(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) -{ - int i; - - for (i = 0; i < ARRAY_SIZE(r->f); i++) { - HANDLE_NAN3(r->f[i], a->f[i], b->f[i], c->f[i]) { - /* Need to do the computation is higher precision and round - * once at the end. */ - float64 af, bf, cf, t; - - af = float32_to_float64(a->f[i], &env->vec_status); - bf = float32_to_float64(b->f[i], &env->vec_status); - cf = float32_to_float64(c->f[i], &env->vec_status); - t = float64_mul(af, cf, &env->vec_status); - t = float64_sub(t, bf, &env->vec_status); - t = float64_chs(t); - r->f[i] = float64_to_float32(t, &env->vec_status); - } - } -} - -void helper_vperm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) -{ - ppc_avr_t result; - int i; - - VECTOR_FOR_INORDER_I(i, u8) { - int s = c->u8[i] & 0x1f; -#if defined(HOST_WORDS_BIGENDIAN) - int index = s & 0xf; -#else - int index = 15 - (s & 0xf); -#endif - - if (s & 0x10) { - result.u8[i] = b->u8[index]; - } else { - result.u8[i] = a->u8[index]; - } - } - *r = result; -} - -#if defined(HOST_WORDS_BIGENDIAN) -#define PKBIG 1 -#else -#define PKBIG 0 -#endif -void helper_vpkpx(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) -{ - int i, j; - ppc_avr_t result; -#if defined(HOST_WORDS_BIGENDIAN) - const ppc_avr_t *x[2] = { a, b }; -#else - const ppc_avr_t *x[2] = { b, a }; -#endif - - VECTOR_FOR_INORDER_I(i, u64) { - VECTOR_FOR_INORDER_I(j, u32) { - uint32_t e = x[i]->u32[j]; - - result.u16[4*i+j] = (((e >> 9) & 0xfc00) | - ((e >> 6) & 0x3e0) | - ((e >> 3) & 0x1f)); - } - } - *r = result; -} - -#define VPK(suffix, from, to, cvt, dosat) \ - void helper_vpk##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ - { \ - int i; \ - int sat = 0; \ - ppc_avr_t result; \ - ppc_avr_t *a0 = PKBIG ? a : b; \ - ppc_avr_t *a1 = PKBIG ? b : a; \ - \ - VECTOR_FOR_INORDER_I(i, from) { \ - result.to[i] = cvt(a0->from[i], &sat); \ - result.to[i+ARRAY_SIZE(r->from)] = cvt(a1->from[i], &sat); \ - } \ - *r = result; \ - if (dosat && sat) { \ - env->vscr |= (1 << VSCR_SAT); \ - } \ - } -#define I(x, y) (x) -VPK(shss, s16, s8, cvtshsb, 1) -VPK(shus, s16, u8, cvtshub, 1) -VPK(swss, s32, s16, cvtswsh, 1) -VPK(swus, s32, u16, cvtswuh, 1) -VPK(uhus, u16, u8, cvtuhub, 1) -VPK(uwus, u32, u16, cvtuwuh, 1) -VPK(uhum, u16, u8, I, 0) -VPK(uwum, u32, u16, I, 0) -#undef I -#undef VPK -#undef PKBIG - -void helper_vrefp(ppc_avr_t *r, ppc_avr_t *b) -{ - int i; - - for (i = 0; i < ARRAY_SIZE(r->f); i++) { - HANDLE_NAN1(r->f[i], b->f[i]) { - r->f[i] = float32_div(float32_one, b->f[i], &env->vec_status); - } - } -} - -#define VRFI(suffix, rounding) \ - void helper_vrfi##suffix(ppc_avr_t *r, ppc_avr_t *b) \ - { \ - int i; \ - float_status s = env->vec_status; \ - \ - set_float_rounding_mode(rounding, &s); \ - for (i = 0; i < ARRAY_SIZE(r->f); i++) { \ - HANDLE_NAN1(r->f[i], b->f[i]) { \ - r->f[i] = float32_round_to_int (b->f[i], &s); \ - } \ - } \ - } -VRFI(n, float_round_nearest_even) -VRFI(m, float_round_down) -VRFI(p, float_round_up) -VRFI(z, float_round_to_zero) -#undef VRFI - -#define VROTATE(suffix, element) \ - void helper_vrl##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ - { \ - int i; \ - \ - for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ - unsigned int mask = ((1 << \ - (3 + (sizeof(a->element[0]) >> 1))) \ - - 1); \ - unsigned int shift = b->element[i] & mask; \ - r->element[i] = (a->element[i] << shift) | \ - (a->element[i] >> (sizeof(a->element[0]) * 8 - shift)); \ - } \ - } -VROTATE(b, u8) -VROTATE(h, u16) -VROTATE(w, u32) -#undef VROTATE - -void helper_vrsqrtefp(ppc_avr_t *r, ppc_avr_t *b) -{ - int i; - - for (i = 0; i < ARRAY_SIZE(r->f); i++) { - HANDLE_NAN1(r->f[i], b->f[i]) { - float32 t = float32_sqrt(b->f[i], &env->vec_status); - - r->f[i] = float32_div(float32_one, t, &env->vec_status); - } - } -} - -void helper_vsel(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) -{ - r->u64[0] = (a->u64[0] & ~c->u64[0]) | (b->u64[0] & c->u64[0]); - r->u64[1] = (a->u64[1] & ~c->u64[1]) | (b->u64[1] & c->u64[1]); -} - -void helper_vexptefp(ppc_avr_t *r, ppc_avr_t *b) -{ - int i; - - for (i = 0; i < ARRAY_SIZE(r->f); i++) { - HANDLE_NAN1(r->f[i], b->f[i]) { - r->f[i] = float32_exp2(b->f[i], &env->vec_status); - } - } -} - -void helper_vlogefp(ppc_avr_t *r, ppc_avr_t *b) -{ - int i; - - for (i = 0; i < ARRAY_SIZE(r->f); i++) { - HANDLE_NAN1(r->f[i], b->f[i]) { - r->f[i] = float32_log2(b->f[i], &env->vec_status); - } - } -} - -#if defined(HOST_WORDS_BIGENDIAN) -#define LEFT 0 -#define RIGHT 1 -#else -#define LEFT 1 -#define RIGHT 0 -#endif -/* The specification says that the results are undefined if all of the - * shift counts are not identical. We check to make sure that they are - * to conform to what real hardware appears to do. */ -#define VSHIFT(suffix, leftp) \ - void helper_vs##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ - { \ - int shift = b->u8[LO_IDX*15] & 0x7; \ - int doit = 1; \ - int i; \ - \ - for (i = 0; i < ARRAY_SIZE(r->u8); i++) { \ - doit = doit && ((b->u8[i] & 0x7) == shift); \ - } \ - if (doit) { \ - if (shift == 0) { \ - *r = *a; \ - } else if (leftp) { \ - uint64_t carry = a->u64[LO_IDX] >> (64 - shift); \ - \ - r->u64[HI_IDX] = (a->u64[HI_IDX] << shift) | carry; \ - r->u64[LO_IDX] = a->u64[LO_IDX] << shift; \ - } else { \ - uint64_t carry = a->u64[HI_IDX] << (64 - shift); \ - \ - r->u64[LO_IDX] = (a->u64[LO_IDX] >> shift) | carry; \ - r->u64[HI_IDX] = a->u64[HI_IDX] >> shift; \ - } \ - } \ - } -VSHIFT(l, LEFT) -VSHIFT(r, RIGHT) -#undef VSHIFT -#undef LEFT -#undef RIGHT - -#define VSL(suffix, element) \ - void helper_vsl##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ - { \ - int i; \ - \ - for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ - unsigned int mask = ((1 << \ - (3 + (sizeof(a->element[0]) >> 1))) \ - - 1); \ - unsigned int shift = b->element[i] & mask; \ - \ - r->element[i] = a->element[i] << shift; \ - } \ - } -VSL(b, u8) -VSL(h, u16) -VSL(w, u32) -#undef VSL - -void helper_vsldoi(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t shift) -{ - int sh = shift & 0xf; - int i; - ppc_avr_t result; - -#if defined(HOST_WORDS_BIGENDIAN) - for (i = 0; i < ARRAY_SIZE(r->u8); i++) { - int index = sh + i; - if (index > 0xf) { - result.u8[i] = b->u8[index - 0x10]; - } else { - result.u8[i] = a->u8[index]; - } - } -#else - for (i = 0; i < ARRAY_SIZE(r->u8); i++) { - int index = (16 - sh) + i; - if (index > 0xf) { - result.u8[i] = a->u8[index - 0x10]; - } else { - result.u8[i] = b->u8[index]; - } - } -#endif - *r = result; -} - -void helper_vslo(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) -{ - int sh = (b->u8[LO_IDX*0xf] >> 3) & 0xf; - -#if defined(HOST_WORDS_BIGENDIAN) - memmove(&r->u8[0], &a->u8[sh], 16 - sh); - memset(&r->u8[16-sh], 0, sh); -#else - memmove(&r->u8[sh], &a->u8[0], 16 - sh); - memset(&r->u8[0], 0, sh); -#endif -} - -/* Experimental testing shows that hardware masks the immediate. */ -#define _SPLAT_MASKED(element) (splat & (ARRAY_SIZE(r->element) - 1)) -#if defined(HOST_WORDS_BIGENDIAN) -#define SPLAT_ELEMENT(element) _SPLAT_MASKED(element) -#else -#define SPLAT_ELEMENT(element) \ - (ARRAY_SIZE(r->element) - 1 - _SPLAT_MASKED(element)) -#endif -#define VSPLT(suffix, element) \ - void helper_vsplt##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t splat) \ - { \ - uint32_t s = b->element[SPLAT_ELEMENT(element)]; \ - int i; \ - \ - for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ - r->element[i] = s; \ - } \ - } -VSPLT(b, u8) -VSPLT(h, u16) -VSPLT(w, u32) -#undef VSPLT -#undef SPLAT_ELEMENT -#undef _SPLAT_MASKED - -#define VSPLTI(suffix, element, splat_type) \ - void helper_vspltis##suffix(ppc_avr_t *r, uint32_t splat) \ - { \ - splat_type x = (int8_t)(splat << 3) >> 3; \ - int i; \ - \ - for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ - r->element[i] = x; \ - } \ - } -VSPLTI(b, s8, int8_t) -VSPLTI(h, s16, int16_t) -VSPLTI(w, s32, int32_t) -#undef VSPLTI - -#define VSR(suffix, element) \ - void helper_vsr##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ - { \ - int i; \ - \ - for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ - unsigned int mask = ((1 << \ - (3 + (sizeof(a->element[0]) >> 1))) \ - - 1); \ - unsigned int shift = b->element[i] & mask; \ - \ - r->element[i] = a->element[i] >> shift; \ - } \ - } -VSR(ab, s8) -VSR(ah, s16) -VSR(aw, s32) -VSR(b, u8) -VSR(h, u16) -VSR(w, u32) -#undef VSR - -void helper_vsro(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) -{ - int sh = (b->u8[LO_IDX * 0xf] >> 3) & 0xf; - -#if defined(HOST_WORDS_BIGENDIAN) - memmove(&r->u8[sh], &a->u8[0], 16 - sh); - memset(&r->u8[0], 0, sh); -#else - memmove(&r->u8[0], &a->u8[sh], 16 - sh); - memset(&r->u8[16 - sh], 0, sh); -#endif -} - -void helper_vsubcuw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) -{ - int i; - - for (i = 0; i < ARRAY_SIZE(r->u32); i++) { - r->u32[i] = a->u32[i] >= b->u32[i]; - } -} - -void helper_vsumsws(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) -{ - int64_t t; - int i, upper; - ppc_avr_t result; - int sat = 0; - -#if defined(HOST_WORDS_BIGENDIAN) - upper = ARRAY_SIZE(r->s32)-1; -#else - upper = 0; -#endif - t = (int64_t)b->s32[upper]; - for (i = 0; i < ARRAY_SIZE(r->s32); i++) { - t += a->s32[i]; - result.s32[i] = 0; - } - result.s32[upper] = cvtsdsw(t, &sat); - *r = result; - - if (sat) { - env->vscr |= (1 << VSCR_SAT); - } -} - -void helper_vsum2sws(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) -{ - int i, j, upper; - ppc_avr_t result; - int sat = 0; - -#if defined(HOST_WORDS_BIGENDIAN) - upper = 1; -#else - upper = 0; -#endif - for (i = 0; i < ARRAY_SIZE(r->u64); i++) { - int64_t t = (int64_t)b->s32[upper + i * 2]; - - result.u64[i] = 0; - for (j = 0; j < ARRAY_SIZE(r->u64); j++) { - t += a->s32[2 * i + j]; - } - result.s32[upper + i * 2] = cvtsdsw(t, &sat); - } - - *r = result; - if (sat) { - env->vscr |= (1 << VSCR_SAT); - } -} - -void helper_vsum4sbs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) -{ - int i, j; - int sat = 0; - - for (i = 0; i < ARRAY_SIZE(r->s32); i++) { - int64_t t = (int64_t)b->s32[i]; - - for (j = 0; j < ARRAY_SIZE(r->s32); j++) { - t += a->s8[4 * i + j]; - } - r->s32[i] = cvtsdsw(t, &sat); - } - - if (sat) { - env->vscr |= (1 << VSCR_SAT); - } -} - -void helper_vsum4shs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) -{ - int sat = 0; - int i; - - for (i = 0; i < ARRAY_SIZE(r->s32); i++) { - int64_t t = (int64_t)b->s32[i]; - - t += a->s16[2 * i] + a->s16[2 * i + 1]; - r->s32[i] = cvtsdsw(t, &sat); - } - - if (sat) { - env->vscr |= (1 << VSCR_SAT); - } -} - -void helper_vsum4ubs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) -{ - int i, j; - int sat = 0; - - for (i = 0; i < ARRAY_SIZE(r->u32); i++) { - uint64_t t = (uint64_t)b->u32[i]; - - for (j = 0; j < ARRAY_SIZE(r->u32); j++) { - t += a->u8[4 * i + j]; - } - r->u32[i] = cvtuduw(t, &sat); - } - - if (sat) { - env->vscr |= (1 << VSCR_SAT); - } -} - -#if defined(HOST_WORDS_BIGENDIAN) -#define UPKHI 1 -#define UPKLO 0 -#else -#define UPKHI 0 -#define UPKLO 1 -#endif -#define VUPKPX(suffix, hi) \ - void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \ - { \ - int i; \ - ppc_avr_t result; \ - \ - for (i = 0; i < ARRAY_SIZE(r->u32); i++) { \ - uint16_t e = b->u16[hi ? i : i+4]; \ - uint8_t a = (e >> 15) ? 0xff : 0; \ - uint8_t r = (e >> 10) & 0x1f; \ - uint8_t g = (e >> 5) & 0x1f; \ - uint8_t b = e & 0x1f; \ - \ - result.u32[i] = (a << 24) | (r << 16) | (g << 8) | b; \ - } \ - *r = result; \ - } -VUPKPX(lpx, UPKLO) -VUPKPX(hpx, UPKHI) -#undef VUPKPX - -#define VUPK(suffix, unpacked, packee, hi) \ - void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \ - { \ - int i; \ - ppc_avr_t result; \ - \ - if (hi) { \ - for (i = 0; i < ARRAY_SIZE(r->unpacked); i++) { \ - result.unpacked[i] = b->packee[i]; \ - } \ - } else { \ - for (i = ARRAY_SIZE(r->unpacked); i < ARRAY_SIZE(r->packee); \ - i++) { \ - result.unpacked[i - ARRAY_SIZE(r->unpacked)] = b->packee[i]; \ - } \ - } \ - *r = result; \ - } -VUPK(hsb, s16, s8, UPKHI) -VUPK(hsh, s32, s16, UPKHI) -VUPK(lsb, s16, s8, UPKLO) -VUPK(lsh, s32, s16, UPKLO) -#undef VUPK -#undef UPKHI -#undef UPKLO - -#undef DO_HANDLE_NAN -#undef HANDLE_NAN1 -#undef HANDLE_NAN2 -#undef HANDLE_NAN3 -#undef VECTOR_FOR_INORDER_I #undef HI_IDX #undef LO_IDX -/*****************************************************************************/ -/* SPE extension helpers */ -/* Use a table to make this quicker */ -static uint8_t hbrev[16] = { - 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE, - 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF, -}; - -static inline uint8_t byte_reverse(uint8_t val) -{ - return hbrev[val >> 4] | (hbrev[val & 0xF] << 4); -} - -static inline uint32_t word_reverse(uint32_t val) -{ - return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) | - (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24); -} - -#define MASKBITS 16 /* Random value - to be fixed (implementation dependent) */ -target_ulong helper_brinc(target_ulong arg1, target_ulong arg2) -{ - uint32_t a, b, d, mask; - - mask = UINT32_MAX >> (32 - MASKBITS); - a = arg1 & mask; - b = arg2 & mask; - d = word_reverse(1 + word_reverse(a | ~b)); - return (arg1 & ~mask) | (d & b); -} - -uint32_t helper_cntlsw32(uint32_t val) -{ - if (val & 0x80000000) { - return clz32(~val); - } else { - return clz32(val); - } -} - -uint32_t helper_cntlzw32(uint32_t val) -{ - return clz32(val); -} - /*****************************************************************************/ /* Softmmu support */ #if !defined(CONFIG_USER_ONLY)