提交 61007b31 编写于 作者: S Stefan Hajnoczi 提交者: Kevin Wolf

block: move I/O request processing to block/io.c

The block.c file has grown to over 6000 lines.  It is time to split this
file so there are fewer conflicts and the code is easier to maintain.

Extract I/O request processing code:
 * Read
 * Write
 * Zero writes and making the image empty
 * Flush
 * Discard
 * ioctl
 * Tracked requests and queuing
 * Throttling and copy-on-read
 * Block status and allocated functions
 * Refreshing block limits
 * Reading/writing vmstate
 * qemu_blockalign() and friends

The patch simply moves code from block.c into block/io.c.
Signed-off-by: NStefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: NKevin Wolf <kwolf@redhat.com>
上级 0eb7217e
......@@ -30,7 +30,6 @@
#include "qapi/qmp/qjson.h"
#include "sysemu/block-backend.h"
#include "sysemu/sysemu.h"
#include "sysemu/qtest.h"
#include "qemu/notify.h"
#include "block/coroutine.h"
#include "block/qapi.h"
......@@ -71,36 +70,6 @@ struct BdrvDirtyBitmap {
#define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
BlockCompletionFunc *cb, void *opaque);
static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
BlockCompletionFunc *cb, void *opaque);
static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
int64_t sector_num, int nb_sectors,
QEMUIOVector *iov);
static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
int64_t sector_num, int nb_sectors,
QEMUIOVector *iov);
static int coroutine_fn bdrv_co_do_preadv(BlockDriverState *bs,
int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
BdrvRequestFlags flags);
static int coroutine_fn bdrv_co_do_pwritev(BlockDriverState *bs,
int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
BdrvRequestFlags flags);
static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
int64_t sector_num,
QEMUIOVector *qiov,
int nb_sectors,
BdrvRequestFlags flags,
BlockCompletionFunc *cb,
void *opaque,
bool is_write);
static void coroutine_fn bdrv_co_do_rw(void *opaque);
static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
int64_t sector_num, int nb_sectors, BdrvRequestFlags flags);
static QTAILQ_HEAD(, BlockDriverState) bdrv_states =
QTAILQ_HEAD_INITIALIZER(bdrv_states);
......@@ -134,110 +103,6 @@ int is_windows_drive(const char *filename)
}
#endif
/* throttling disk I/O limits */
void bdrv_set_io_limits(BlockDriverState *bs,
ThrottleConfig *cfg)
{
int i;
throttle_config(&bs->throttle_state, cfg);
for (i = 0; i < 2; i++) {
qemu_co_enter_next(&bs->throttled_reqs[i]);
}
}
/* this function drain all the throttled IOs */
static bool bdrv_start_throttled_reqs(BlockDriverState *bs)
{
bool drained = false;
bool enabled = bs->io_limits_enabled;
int i;
bs->io_limits_enabled = false;
for (i = 0; i < 2; i++) {
while (qemu_co_enter_next(&bs->throttled_reqs[i])) {
drained = true;
}
}
bs->io_limits_enabled = enabled;
return drained;
}
void bdrv_io_limits_disable(BlockDriverState *bs)
{
bs->io_limits_enabled = false;
bdrv_start_throttled_reqs(bs);
throttle_destroy(&bs->throttle_state);
}
static void bdrv_throttle_read_timer_cb(void *opaque)
{
BlockDriverState *bs = opaque;
qemu_co_enter_next(&bs->throttled_reqs[0]);
}
static void bdrv_throttle_write_timer_cb(void *opaque)
{
BlockDriverState *bs = opaque;
qemu_co_enter_next(&bs->throttled_reqs[1]);
}
/* should be called before bdrv_set_io_limits if a limit is set */
void bdrv_io_limits_enable(BlockDriverState *bs)
{
int clock_type = QEMU_CLOCK_REALTIME;
if (qtest_enabled()) {
/* For testing block IO throttling only */
clock_type = QEMU_CLOCK_VIRTUAL;
}
assert(!bs->io_limits_enabled);
throttle_init(&bs->throttle_state,
bdrv_get_aio_context(bs),
clock_type,
bdrv_throttle_read_timer_cb,
bdrv_throttle_write_timer_cb,
bs);
bs->io_limits_enabled = true;
}
/* This function makes an IO wait if needed
*
* @nb_sectors: the number of sectors of the IO
* @is_write: is the IO a write
*/
static void bdrv_io_limits_intercept(BlockDriverState *bs,
unsigned int bytes,
bool is_write)
{
/* does this io must wait */
bool must_wait = throttle_schedule_timer(&bs->throttle_state, is_write);
/* if must wait or any request of this type throttled queue the IO */
if (must_wait ||
!qemu_co_queue_empty(&bs->throttled_reqs[is_write])) {
qemu_co_queue_wait(&bs->throttled_reqs[is_write]);
}
/* the IO will be executed, do the accounting */
throttle_account(&bs->throttle_state, is_write, bytes);
/* if the next request must wait -> do nothing */
if (throttle_schedule_timer(&bs->throttle_state, is_write)) {
return;
}
/* else queue next request for execution */
qemu_co_queue_next(&bs->throttled_reqs[is_write]);
}
size_t bdrv_opt_mem_align(BlockDriverState *bs)
{
if (!bs || !bs->drv) {
......@@ -349,24 +214,6 @@ void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz,
dest, sz, errp);
}
void bdrv_setup_io_funcs(BlockDriver *bdrv)
{
/* Block drivers without coroutine functions need emulation */
if (!bdrv->bdrv_co_readv) {
bdrv->bdrv_co_readv = bdrv_co_readv_em;
bdrv->bdrv_co_writev = bdrv_co_writev_em;
/* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
* the block driver lacks aio we need to emulate that too.
*/
if (!bdrv->bdrv_aio_readv) {
/* add AIO emulation layer */
bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
}
}
}
void bdrv_register(BlockDriver *bdrv)
{
bdrv_setup_io_funcs(bdrv);
......@@ -541,54 +388,6 @@ int bdrv_create_file(const char *filename, QemuOpts *opts, Error **errp)
return ret;
}
void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
{
BlockDriver *drv = bs->drv;
Error *local_err = NULL;
memset(&bs->bl, 0, sizeof(bs->bl));
if (!drv) {
return;
}
/* Take some limits from the children as a default */
if (bs->file) {
bdrv_refresh_limits(bs->file, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
bs->bl.opt_transfer_length = bs->file->bl.opt_transfer_length;
bs->bl.max_transfer_length = bs->file->bl.max_transfer_length;
bs->bl.opt_mem_alignment = bs->file->bl.opt_mem_alignment;
} else {
bs->bl.opt_mem_alignment = 512;
}
if (bs->backing_hd) {
bdrv_refresh_limits(bs->backing_hd, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
bs->bl.opt_transfer_length =
MAX(bs->bl.opt_transfer_length,
bs->backing_hd->bl.opt_transfer_length);
bs->bl.max_transfer_length =
MIN_NON_ZERO(bs->bl.max_transfer_length,
bs->backing_hd->bl.max_transfer_length);
bs->bl.opt_mem_alignment =
MAX(bs->bl.opt_mem_alignment,
bs->backing_hd->bl.opt_mem_alignment);
}
/* Then let the driver override it */
if (drv->bdrv_refresh_limits) {
drv->bdrv_refresh_limits(bs, errp);
}
}
/**
* Try to get @bs's logical and physical block size.
* On success, store them in @bsz struct and return 0.
......@@ -862,22 +661,6 @@ int bdrv_parse_cache_flags(const char *mode, int *flags)
return 0;
}
/**
* The copy-on-read flag is actually a reference count so multiple users may
* use the feature without worrying about clobbering its previous state.
* Copy-on-read stays enabled until all users have called to disable it.
*/
void bdrv_enable_copy_on_read(BlockDriverState *bs)
{
bs->copy_on_read++;
}
void bdrv_disable_copy_on_read(BlockDriverState *bs)
{
assert(bs->copy_on_read > 0);
bs->copy_on_read--;
}
/*
* Returns the flags that a temporary snapshot should get, based on the
* originally requested flags (the originally requested image will have flags
......@@ -1987,108 +1770,6 @@ void bdrv_close_all(void)
}
}
/* Check if any requests are in-flight (including throttled requests) */
static bool bdrv_requests_pending(BlockDriverState *bs)
{
if (!QLIST_EMPTY(&bs->tracked_requests)) {
return true;
}
if (!qemu_co_queue_empty(&bs->throttled_reqs[0])) {
return true;
}
if (!qemu_co_queue_empty(&bs->throttled_reqs[1])) {
return true;
}
if (bs->file && bdrv_requests_pending(bs->file)) {
return true;
}
if (bs->backing_hd && bdrv_requests_pending(bs->backing_hd)) {
return true;
}
return false;
}
static bool bdrv_drain_one(BlockDriverState *bs)
{
bool bs_busy;
bdrv_flush_io_queue(bs);
bdrv_start_throttled_reqs(bs);
bs_busy = bdrv_requests_pending(bs);
bs_busy |= aio_poll(bdrv_get_aio_context(bs), bs_busy);
return bs_busy;
}
/*
* Wait for pending requests to complete on a single BlockDriverState subtree
*
* See the warning in bdrv_drain_all(). This function can only be called if
* you are sure nothing can generate I/O because you have op blockers
* installed.
*
* Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
* AioContext.
*/
void bdrv_drain(BlockDriverState *bs)
{
while (bdrv_drain_one(bs)) {
/* Keep iterating */
}
}
/*
* Wait for pending requests to complete across all BlockDriverStates
*
* This function does not flush data to disk, use bdrv_flush_all() for that
* after calling this function.
*
* Note that completion of an asynchronous I/O operation can trigger any
* number of other I/O operations on other devices---for example a coroutine
* can be arbitrarily complex and a constant flow of I/O can come until the
* coroutine is complete. Because of this, it is not possible to have a
* function to drain a single device's I/O queue.
*/
void bdrv_drain_all(void)
{
/* Always run first iteration so any pending completion BHs run */
bool busy = true;
BlockDriverState *bs = NULL;
while ((bs = bdrv_next(bs))) {
AioContext *aio_context = bdrv_get_aio_context(bs);
aio_context_acquire(aio_context);
if (bs->job) {
block_job_pause(bs->job);
}
aio_context_release(aio_context);
}
while (busy) {
busy = false;
bs = NULL;
while ((bs = bdrv_next(bs))) {
AioContext *aio_context = bdrv_get_aio_context(bs);
aio_context_acquire(aio_context);
busy |= bdrv_drain_one(bs);
aio_context_release(aio_context);
}
}
bs = NULL;
while ((bs = bdrv_next(bs))) {
AioContext *aio_context = bdrv_get_aio_context(bs);
aio_context_acquire(aio_context);
if (bs->job) {
block_job_resume(bs->job);
}
aio_context_release(aio_context);
}
}
/* make a BlockDriverState anonymous by removing from bdrv_state and
* graph_bdrv_state list.
Also, NULL terminate the device_name to prevent double remove */
......@@ -2410,152 +2091,6 @@ int bdrv_commit_all(void)
return 0;
}
/**
* Remove an active request from the tracked requests list
*
* This function should be called when a tracked request is completing.
*/
static void tracked_request_end(BdrvTrackedRequest *req)
{
if (req->serialising) {
req->bs->serialising_in_flight--;
}
QLIST_REMOVE(req, list);
qemu_co_queue_restart_all(&req->wait_queue);
}
/**
* Add an active request to the tracked requests list
*/
static void tracked_request_begin(BdrvTrackedRequest *req,
BlockDriverState *bs,
int64_t offset,
unsigned int bytes, bool is_write)
{
*req = (BdrvTrackedRequest){
.bs = bs,
.offset = offset,
.bytes = bytes,
.is_write = is_write,
.co = qemu_coroutine_self(),
.serialising = false,
.overlap_offset = offset,
.overlap_bytes = bytes,
};
qemu_co_queue_init(&req->wait_queue);
QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
}
static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
{
int64_t overlap_offset = req->offset & ~(align - 1);
unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
- overlap_offset;
if (!req->serialising) {
req->bs->serialising_in_flight++;
req->serialising = true;
}
req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
}
/**
* Round a region to cluster boundaries
*/
void bdrv_round_to_clusters(BlockDriverState *bs,
int64_t sector_num, int nb_sectors,
int64_t *cluster_sector_num,
int *cluster_nb_sectors)
{
BlockDriverInfo bdi;
if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
*cluster_sector_num = sector_num;
*cluster_nb_sectors = nb_sectors;
} else {
int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
*cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
*cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
nb_sectors, c);
}
}
static int bdrv_get_cluster_size(BlockDriverState *bs)
{
BlockDriverInfo bdi;
int ret;
ret = bdrv_get_info(bs, &bdi);
if (ret < 0 || bdi.cluster_size == 0) {
return bs->request_alignment;
} else {
return bdi.cluster_size;
}
}
static bool tracked_request_overlaps(BdrvTrackedRequest *req,
int64_t offset, unsigned int bytes)
{
/* aaaa bbbb */
if (offset >= req->overlap_offset + req->overlap_bytes) {
return false;
}
/* bbbb aaaa */
if (req->overlap_offset >= offset + bytes) {
return false;
}
return true;
}
static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
{
BlockDriverState *bs = self->bs;
BdrvTrackedRequest *req;
bool retry;
bool waited = false;
if (!bs->serialising_in_flight) {
return false;
}
do {
retry = false;
QLIST_FOREACH(req, &bs->tracked_requests, list) {
if (req == self || (!req->serialising && !self->serialising)) {
continue;
}
if (tracked_request_overlaps(req, self->overlap_offset,
self->overlap_bytes))
{
/* Hitting this means there was a reentrant request, for
* example, a block driver issuing nested requests. This must
* never happen since it means deadlock.
*/
assert(qemu_coroutine_self() != req->co);
/* If the request is already (indirectly) waiting for us, or
* will wait for us as soon as it wakes up, then just go on
* (instead of producing a deadlock in the former case). */
if (!req->waiting_for) {
self->waiting_for = req;
qemu_co_queue_wait(&req->wait_queue);
self->waiting_for = NULL;
retry = true;
waited = true;
break;
}
}
}
} while (retry);
return waited;
}
/*
* Return values:
* 0 - success
......@@ -2724,2466 +2259,668 @@ exit:
return ret;
}
static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
size_t size)
/**
* Truncate file to 'offset' bytes (needed only for file protocols)
*/
int bdrv_truncate(BlockDriverState *bs, int64_t offset)
{
if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
return -EIO;
}
if (!bdrv_is_inserted(bs)) {
BlockDriver *drv = bs->drv;
int ret;
if (!drv)
return -ENOMEDIUM;
}
if (!drv->bdrv_truncate)
return -ENOTSUP;
if (bs->read_only)
return -EACCES;
if (offset < 0) {
return -EIO;
ret = drv->bdrv_truncate(bs, offset);
if (ret == 0) {
ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
bdrv_dirty_bitmap_truncate(bs);
if (bs->blk) {
blk_dev_resize_cb(bs->blk);
}
return 0;
}
return ret;
}
static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
int nb_sectors)
/**
* Length of a allocated file in bytes. Sparse files are counted by actual
* allocated space. Return < 0 if error or unknown.
*/
int64_t bdrv_get_allocated_file_size(BlockDriverState *bs)
{
if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
return -EIO;
BlockDriver *drv = bs->drv;
if (!drv) {
return -ENOMEDIUM;
}
return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
nb_sectors * BDRV_SECTOR_SIZE);
if (drv->bdrv_get_allocated_file_size) {
return drv->bdrv_get_allocated_file_size(bs);
}
if (bs->file) {
return bdrv_get_allocated_file_size(bs->file);
}
return -ENOTSUP;
}
typedef struct RwCo {
BlockDriverState *bs;
int64_t offset;
QEMUIOVector *qiov;
bool is_write;
int ret;
BdrvRequestFlags flags;
} RwCo;
static void coroutine_fn bdrv_rw_co_entry(void *opaque)
{
RwCo *rwco = opaque;
if (!rwco->is_write) {
rwco->ret = bdrv_co_do_preadv(rwco->bs, rwco->offset,
rwco->qiov->size, rwco->qiov,
rwco->flags);
} else {
rwco->ret = bdrv_co_do_pwritev(rwco->bs, rwco->offset,
rwco->qiov->size, rwco->qiov,
rwco->flags);
}
}
/*
* Process a vectored synchronous request using coroutines
/**
* Return number of sectors on success, -errno on error.
*/
static int bdrv_prwv_co(BlockDriverState *bs, int64_t offset,
QEMUIOVector *qiov, bool is_write,
BdrvRequestFlags flags)
int64_t bdrv_nb_sectors(BlockDriverState *bs)
{
Coroutine *co;
RwCo rwco = {
.bs = bs,
.offset = offset,
.qiov = qiov,
.is_write = is_write,
.ret = NOT_DONE,
.flags = flags,
};
/**
* In sync call context, when the vcpu is blocked, this throttling timer
* will not fire; so the I/O throttling function has to be disabled here
* if it has been enabled.
*/
if (bs->io_limits_enabled) {
fprintf(stderr, "Disabling I/O throttling on '%s' due "
"to synchronous I/O.\n", bdrv_get_device_name(bs));
bdrv_io_limits_disable(bs);
}
BlockDriver *drv = bs->drv;
if (qemu_in_coroutine()) {
/* Fast-path if already in coroutine context */
bdrv_rw_co_entry(&rwco);
} else {
AioContext *aio_context = bdrv_get_aio_context(bs);
if (!drv)
return -ENOMEDIUM;
co = qemu_coroutine_create(bdrv_rw_co_entry);
qemu_coroutine_enter(co, &rwco);
while (rwco.ret == NOT_DONE) {
aio_poll(aio_context, true);
if (drv->has_variable_length) {
int ret = refresh_total_sectors(bs, bs->total_sectors);
if (ret < 0) {
return ret;
}
}
return rwco.ret;
return bs->total_sectors;
}
/*
* Process a synchronous request using coroutines
/**
* Return length in bytes on success, -errno on error.
* The length is always a multiple of BDRV_SECTOR_SIZE.
*/
static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
int nb_sectors, bool is_write, BdrvRequestFlags flags)
int64_t bdrv_getlength(BlockDriverState *bs)
{
QEMUIOVector qiov;
struct iovec iov = {
.iov_base = (void *)buf,
.iov_len = nb_sectors * BDRV_SECTOR_SIZE,
};
if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
return -EINVAL;
}
qemu_iovec_init_external(&qiov, &iov, 1);
return bdrv_prwv_co(bs, sector_num << BDRV_SECTOR_BITS,
&qiov, is_write, flags);
}
int64_t ret = bdrv_nb_sectors(bs);
/* return < 0 if error. See bdrv_write() for the return codes */
int bdrv_read(BlockDriverState *bs, int64_t sector_num,
uint8_t *buf, int nb_sectors)
{
return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false, 0);
return ret < 0 ? ret : ret * BDRV_SECTOR_SIZE;
}
/* Just like bdrv_read(), but with I/O throttling temporarily disabled */
int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num,
uint8_t *buf, int nb_sectors)
/* return 0 as number of sectors if no device present or error */
void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr)
{
bool enabled;
int ret;
int64_t nb_sectors = bdrv_nb_sectors(bs);
enabled = bs->io_limits_enabled;
bs->io_limits_enabled = false;
ret = bdrv_read(bs, sector_num, buf, nb_sectors);
bs->io_limits_enabled = enabled;
return ret;
*nb_sectors_ptr = nb_sectors < 0 ? 0 : nb_sectors;
}
/* Return < 0 if error. Important errors are:
-EIO generic I/O error (may happen for all errors)
-ENOMEDIUM No media inserted.
-EINVAL Invalid sector number or nb_sectors
-EACCES Trying to write a read-only device
*/
int bdrv_write(BlockDriverState *bs, int64_t sector_num,
const uint8_t *buf, int nb_sectors)
void bdrv_set_on_error(BlockDriverState *bs, BlockdevOnError on_read_error,
BlockdevOnError on_write_error)
{
return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
bs->on_read_error = on_read_error;
bs->on_write_error = on_write_error;
}
int bdrv_write_zeroes(BlockDriverState *bs, int64_t sector_num,
int nb_sectors, BdrvRequestFlags flags)
BlockdevOnError bdrv_get_on_error(BlockDriverState *bs, bool is_read)
{
return bdrv_rw_co(bs, sector_num, NULL, nb_sectors, true,
BDRV_REQ_ZERO_WRITE | flags);
return is_read ? bs->on_read_error : bs->on_write_error;
}
/*
* Completely zero out a block device with the help of bdrv_write_zeroes.
* The operation is sped up by checking the block status and only writing
* zeroes to the device if they currently do not return zeroes. Optional
* flags are passed through to bdrv_write_zeroes (e.g. BDRV_REQ_MAY_UNMAP).
*
* Returns < 0 on error, 0 on success. For error codes see bdrv_write().
*/
int bdrv_make_zero(BlockDriverState *bs, BdrvRequestFlags flags)
BlockErrorAction bdrv_get_error_action(BlockDriverState *bs, bool is_read, int error)
{
int64_t target_sectors, ret, nb_sectors, sector_num = 0;
int n;
target_sectors = bdrv_nb_sectors(bs);
if (target_sectors < 0) {
return target_sectors;
}
BlockdevOnError on_err = is_read ? bs->on_read_error : bs->on_write_error;
for (;;) {
nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS);
if (nb_sectors <= 0) {
return 0;
}
ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n);
if (ret < 0) {
error_report("error getting block status at sector %" PRId64 ": %s",
sector_num, strerror(-ret));
return ret;
}
if (ret & BDRV_BLOCK_ZERO) {
sector_num += n;
continue;
}
ret = bdrv_write_zeroes(bs, sector_num, n, flags);
if (ret < 0) {
error_report("error writing zeroes at sector %" PRId64 ": %s",
sector_num, strerror(-ret));
return ret;
}
sector_num += n;
switch (on_err) {
case BLOCKDEV_ON_ERROR_ENOSPC:
return (error == ENOSPC) ?
BLOCK_ERROR_ACTION_STOP : BLOCK_ERROR_ACTION_REPORT;
case BLOCKDEV_ON_ERROR_STOP:
return BLOCK_ERROR_ACTION_STOP;
case BLOCKDEV_ON_ERROR_REPORT:
return BLOCK_ERROR_ACTION_REPORT;
case BLOCKDEV_ON_ERROR_IGNORE:
return BLOCK_ERROR_ACTION_IGNORE;
default:
abort();
}
}
int bdrv_pread(BlockDriverState *bs, int64_t offset, void *buf, int bytes)
static void send_qmp_error_event(BlockDriverState *bs,
BlockErrorAction action,
bool is_read, int error)
{
QEMUIOVector qiov;
struct iovec iov = {
.iov_base = (void *)buf,
.iov_len = bytes,
};
int ret;
if (bytes < 0) {
return -EINVAL;
}
qemu_iovec_init_external(&qiov, &iov, 1);
ret = bdrv_prwv_co(bs, offset, &qiov, false, 0);
if (ret < 0) {
return ret;
}
IoOperationType optype;
return bytes;
optype = is_read ? IO_OPERATION_TYPE_READ : IO_OPERATION_TYPE_WRITE;
qapi_event_send_block_io_error(bdrv_get_device_name(bs), optype, action,
bdrv_iostatus_is_enabled(bs),
error == ENOSPC, strerror(error),
&error_abort);
}
int bdrv_pwritev(BlockDriverState *bs, int64_t offset, QEMUIOVector *qiov)
/* This is done by device models because, while the block layer knows
* about the error, it does not know whether an operation comes from
* the device or the block layer (from a job, for example).
*/
void bdrv_error_action(BlockDriverState *bs, BlockErrorAction action,
bool is_read, int error)
{
int ret;
assert(error >= 0);
ret = bdrv_prwv_co(bs, offset, qiov, true, 0);
if (ret < 0) {
return ret;
}
if (action == BLOCK_ERROR_ACTION_STOP) {
/* First set the iostatus, so that "info block" returns an iostatus
* that matches the events raised so far (an additional error iostatus
* is fine, but not a lost one).
*/
bdrv_iostatus_set_err(bs, error);
return qiov->size;
/* Then raise the request to stop the VM and the event.
* qemu_system_vmstop_request_prepare has two effects. First,
* it ensures that the STOP event always comes after the
* BLOCK_IO_ERROR event. Second, it ensures that even if management
* can observe the STOP event and do a "cont" before the STOP
* event is issued, the VM will not stop. In this case, vm_start()
* also ensures that the STOP/RESUME pair of events is emitted.
*/
qemu_system_vmstop_request_prepare();
send_qmp_error_event(bs, action, is_read, error);
qemu_system_vmstop_request(RUN_STATE_IO_ERROR);
} else {
send_qmp_error_event(bs, action, is_read, error);
}
}
int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
const void *buf, int bytes)
int bdrv_is_read_only(BlockDriverState *bs)
{
QEMUIOVector qiov;
struct iovec iov = {
.iov_base = (void *) buf,
.iov_len = bytes,
};
if (bytes < 0) {
return -EINVAL;
}
qemu_iovec_init_external(&qiov, &iov, 1);
return bdrv_pwritev(bs, offset, &qiov);
return bs->read_only;
}
/*
* Writes to the file and ensures that no writes are reordered across this
* request (acts as a barrier)
*
* Returns 0 on success, -errno in error cases.
*/
int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
const void *buf, int count)
int bdrv_is_sg(BlockDriverState *bs)
{
int ret;
ret = bdrv_pwrite(bs, offset, buf, count);
if (ret < 0) {
return ret;
}
/* No flush needed for cache modes that already do it */
if (bs->enable_write_cache) {
bdrv_flush(bs);
}
return 0;
return bs->sg;
}
static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
int bdrv_enable_write_cache(BlockDriverState *bs)
{
/* Perform I/O through a temporary buffer so that users who scribble over
* their read buffer while the operation is in progress do not end up
* modifying the image file. This is critical for zero-copy guest I/O
* where anything might happen inside guest memory.
*/
void *bounce_buffer;
BlockDriver *drv = bs->drv;
struct iovec iov;
QEMUIOVector bounce_qiov;
int64_t cluster_sector_num;
int cluster_nb_sectors;
size_t skip_bytes;
int ret;
/* Cover entire cluster so no additional backing file I/O is required when
* allocating cluster in the image file.
*/
bdrv_round_to_clusters(bs, sector_num, nb_sectors,
&cluster_sector_num, &cluster_nb_sectors);
trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
cluster_sector_num, cluster_nb_sectors);
iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len);
if (bounce_buffer == NULL) {
ret = -ENOMEM;
goto err;
}
qemu_iovec_init_external(&bounce_qiov, &iov, 1);
ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
&bounce_qiov);
if (ret < 0) {
goto err;
}
if (drv->bdrv_co_write_zeroes &&
buffer_is_zero(bounce_buffer, iov.iov_len)) {
ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
cluster_nb_sectors, 0);
} else {
/* This does not change the data on the disk, it is not necessary
* to flush even in cache=writethrough mode.
*/
ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
&bounce_qiov);
}
if (ret < 0) {
/* It might be okay to ignore write errors for guest requests. If this
* is a deliberate copy-on-read then we don't want to ignore the error.
* Simply report it in all cases.
*/
goto err;
}
skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
nb_sectors * BDRV_SECTOR_SIZE);
err:
qemu_vfree(bounce_buffer);
return ret;
return bs->enable_write_cache;
}
/*
* Forwards an already correctly aligned request to the BlockDriver. This
* handles copy on read and zeroing after EOF; any other features must be
* implemented by the caller.
*/
static int coroutine_fn bdrv_aligned_preadv(BlockDriverState *bs,
BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
int64_t align, QEMUIOVector *qiov, int flags)
void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce)
{
BlockDriver *drv = bs->drv;
int ret;
int64_t sector_num = offset >> BDRV_SECTOR_BITS;
unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS;
assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
assert(!qiov || bytes == qiov->size);
/* Handle Copy on Read and associated serialisation */
if (flags & BDRV_REQ_COPY_ON_READ) {
/* If we touch the same cluster it counts as an overlap. This
* guarantees that allocating writes will be serialized and not race
* with each other for the same cluster. For example, in copy-on-read
* it ensures that the CoR read and write operations are atomic and
* guest writes cannot interleave between them. */
mark_request_serialising(req, bdrv_get_cluster_size(bs));
}
wait_serialising_requests(req);
if (flags & BDRV_REQ_COPY_ON_READ) {
int pnum;
ret = bdrv_is_allocated(bs, sector_num, nb_sectors, &pnum);
if (ret < 0) {
goto out;
}
if (!ret || pnum != nb_sectors) {
ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
goto out;
}
}
/* Forward the request to the BlockDriver */
if (!bs->zero_beyond_eof) {
ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
} else {
/* Read zeros after EOF */
int64_t total_sectors, max_nb_sectors;
total_sectors = bdrv_nb_sectors(bs);
if (total_sectors < 0) {
ret = total_sectors;
goto out;
}
max_nb_sectors = ROUND_UP(MAX(0, total_sectors - sector_num),
align >> BDRV_SECTOR_BITS);
if (nb_sectors < max_nb_sectors) {
ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
} else if (max_nb_sectors > 0) {
QEMUIOVector local_qiov;
qemu_iovec_init(&local_qiov, qiov->niov);
qemu_iovec_concat(&local_qiov, qiov, 0,
max_nb_sectors * BDRV_SECTOR_SIZE);
ret = drv->bdrv_co_readv(bs, sector_num, max_nb_sectors,
&local_qiov);
bs->enable_write_cache = wce;
qemu_iovec_destroy(&local_qiov);
/* so a reopen() will preserve wce */
if (wce) {
bs->open_flags |= BDRV_O_CACHE_WB;
} else {
ret = 0;
}
/* Reading beyond end of file is supposed to produce zeroes */
if (ret == 0 && total_sectors < sector_num + nb_sectors) {
uint64_t offset = MAX(0, total_sectors - sector_num);
uint64_t bytes = (sector_num + nb_sectors - offset) *
BDRV_SECTOR_SIZE;
qemu_iovec_memset(qiov, offset * BDRV_SECTOR_SIZE, 0, bytes);
}
bs->open_flags &= ~BDRV_O_CACHE_WB;
}
out:
return ret;
}
static inline uint64_t bdrv_get_align(BlockDriverState *bs)
int bdrv_is_encrypted(BlockDriverState *bs)
{
/* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */
return MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
if (bs->backing_hd && bs->backing_hd->encrypted)
return 1;
return bs->encrypted;
}
static inline bool bdrv_req_is_aligned(BlockDriverState *bs,
int64_t offset, size_t bytes)
int bdrv_key_required(BlockDriverState *bs)
{
int64_t align = bdrv_get_align(bs);
return !(offset & (align - 1) || (bytes & (align - 1)));
BlockDriverState *backing_hd = bs->backing_hd;
if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key)
return 1;
return (bs->encrypted && !bs->valid_key);
}
/*
* Handle a read request in coroutine context
*/
static int coroutine_fn bdrv_co_do_preadv(BlockDriverState *bs,
int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
BdrvRequestFlags flags)
int bdrv_set_key(BlockDriverState *bs, const char *key)
{
BlockDriver *drv = bs->drv;
BdrvTrackedRequest req;
uint64_t align = bdrv_get_align(bs);
uint8_t *head_buf = NULL;
uint8_t *tail_buf = NULL;
QEMUIOVector local_qiov;
bool use_local_qiov = false;
int ret;
if (!drv) {
if (bs->backing_hd && bs->backing_hd->encrypted) {
ret = bdrv_set_key(bs->backing_hd, key);
if (ret < 0)
return ret;
if (!bs->encrypted)
return 0;
}
if (!bs->encrypted) {
return -EINVAL;
} else if (!bs->drv || !bs->drv->bdrv_set_key) {
return -ENOMEDIUM;
}
ret = bdrv_check_byte_request(bs, offset, bytes);
ret = bs->drv->bdrv_set_key(bs, key);
if (ret < 0) {
return ret;
bs->valid_key = 0;
} else if (!bs->valid_key) {
bs->valid_key = 1;
if (bs->blk) {
/* call the change callback now, we skipped it on open */
blk_dev_change_media_cb(bs->blk, true);
}
if (bs->copy_on_read) {
flags |= BDRV_REQ_COPY_ON_READ;
}
/* throttling disk I/O */
if (bs->io_limits_enabled) {
bdrv_io_limits_intercept(bs, bytes, false);
}
/* Align read if necessary by padding qiov */
if (offset & (align - 1)) {
head_buf = qemu_blockalign(bs, align);
qemu_iovec_init(&local_qiov, qiov->niov + 2);
qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
use_local_qiov = true;
bytes += offset & (align - 1);
offset = offset & ~(align - 1);
}
if ((offset + bytes) & (align - 1)) {
if (!use_local_qiov) {
qemu_iovec_init(&local_qiov, qiov->niov + 1);
qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
use_local_qiov = true;
}
tail_buf = qemu_blockalign(bs, align);
qemu_iovec_add(&local_qiov, tail_buf,
align - ((offset + bytes) & (align - 1)));
bytes = ROUND_UP(bytes, align);
}
tracked_request_begin(&req, bs, offset, bytes, false);
ret = bdrv_aligned_preadv(bs, &req, offset, bytes, align,
use_local_qiov ? &local_qiov : qiov,
flags);
tracked_request_end(&req);
if (use_local_qiov) {
qemu_iovec_destroy(&local_qiov);
qemu_vfree(head_buf);
qemu_vfree(tail_buf);
}
return ret;
}
static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
BdrvRequestFlags flags)
{
if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
return -EINVAL;
}
return bdrv_co_do_preadv(bs, sector_num << BDRV_SECTOR_BITS,
nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
}
int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
int nb_sectors, QEMUIOVector *qiov)
{
trace_bdrv_co_readv(bs, sector_num, nb_sectors);
return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
}
int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
{
trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
BDRV_REQ_COPY_ON_READ);
}
#define MAX_WRITE_ZEROES_BOUNCE_BUFFER 32768
static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
int64_t sector_num, int nb_sectors, BdrvRequestFlags flags)
{
BlockDriver *drv = bs->drv;
QEMUIOVector qiov;
struct iovec iov = {0};
int ret = 0;
int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_write_zeroes,
BDRV_REQUEST_MAX_SECTORS);
while (nb_sectors > 0 && !ret) {
int num = nb_sectors;
/* Align request. Block drivers can expect the "bulk" of the request
* to be aligned.
*/
if (bs->bl.write_zeroes_alignment
&& num > bs->bl.write_zeroes_alignment) {
if (sector_num % bs->bl.write_zeroes_alignment != 0) {
/* Make a small request up to the first aligned sector. */
num = bs->bl.write_zeroes_alignment;
num -= sector_num % bs->bl.write_zeroes_alignment;
} else if ((sector_num + num) % bs->bl.write_zeroes_alignment != 0) {
/* Shorten the request to the last aligned sector. num cannot
* underflow because num > bs->bl.write_zeroes_alignment.
*/
num -= (sector_num + num) % bs->bl.write_zeroes_alignment;
}
}
/* limit request size */
if (num > max_write_zeroes) {
num = max_write_zeroes;
}
ret = -ENOTSUP;
/* First try the efficient write zeroes operation */
if (drv->bdrv_co_write_zeroes) {
ret = drv->bdrv_co_write_zeroes(bs, sector_num, num, flags);
}
if (ret == -ENOTSUP) {
/* Fall back to bounce buffer if write zeroes is unsupported */
int max_xfer_len = MIN_NON_ZERO(bs->bl.max_transfer_length,
MAX_WRITE_ZEROES_BOUNCE_BUFFER);
num = MIN(num, max_xfer_len);
iov.iov_len = num * BDRV_SECTOR_SIZE;
if (iov.iov_base == NULL) {
iov.iov_base = qemu_try_blockalign(bs, num * BDRV_SECTOR_SIZE);
if (iov.iov_base == NULL) {
ret = -ENOMEM;
goto fail;
}
memset(iov.iov_base, 0, num * BDRV_SECTOR_SIZE);
}
qemu_iovec_init_external(&qiov, &iov, 1);
ret = drv->bdrv_co_writev(bs, sector_num, num, &qiov);
/* Keep bounce buffer around if it is big enough for all
* all future requests.
*/
if (num < max_xfer_len) {
qemu_vfree(iov.iov_base);
iov.iov_base = NULL;
}
}
sector_num += num;
nb_sectors -= num;
}
fail:
qemu_vfree(iov.iov_base);
return ret;
}
/*
* Forwards an already correctly aligned write request to the BlockDriver.
*/
static int coroutine_fn bdrv_aligned_pwritev(BlockDriverState *bs,
BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
QEMUIOVector *qiov, int flags)
{
BlockDriver *drv = bs->drv;
bool waited;
int ret;
int64_t sector_num = offset >> BDRV_SECTOR_BITS;
unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS;
assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
assert(!qiov || bytes == qiov->size);
waited = wait_serialising_requests(req);
assert(!waited || !req->serialising);
assert(req->overlap_offset <= offset);
assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
!(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_write_zeroes &&
qemu_iovec_is_zero(qiov)) {
flags |= BDRV_REQ_ZERO_WRITE;
if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
flags |= BDRV_REQ_MAY_UNMAP;
}
}
if (ret < 0) {
/* Do nothing, write notifier decided to fail this request */
} else if (flags & BDRV_REQ_ZERO_WRITE) {
BLKDBG_EVENT(bs, BLKDBG_PWRITEV_ZERO);
ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors, flags);
} else {
BLKDBG_EVENT(bs, BLKDBG_PWRITEV);
ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
}
BLKDBG_EVENT(bs, BLKDBG_PWRITEV_DONE);
if (ret == 0 && !bs->enable_write_cache) {
ret = bdrv_co_flush(bs);
}
bdrv_set_dirty(bs, sector_num, nb_sectors);
block_acct_highest_sector(&bs->stats, sector_num, nb_sectors);
if (ret >= 0) {
bs->total_sectors = MAX(bs->total_sectors, sector_num + nb_sectors);
}
return ret;
}
/*
* Handle a write request in coroutine context
*/
static int coroutine_fn bdrv_co_do_pwritev(BlockDriverState *bs,
int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
BdrvRequestFlags flags)
{
BdrvTrackedRequest req;
uint64_t align = bdrv_get_align(bs);
uint8_t *head_buf = NULL;
uint8_t *tail_buf = NULL;
QEMUIOVector local_qiov;
bool use_local_qiov = false;
int ret;
if (!bs->drv) {
return -ENOMEDIUM;
}
if (bs->read_only) {
return -EACCES;
}
ret = bdrv_check_byte_request(bs, offset, bytes);
if (ret < 0) {
return ret;
}
/* throttling disk I/O */
if (bs->io_limits_enabled) {
bdrv_io_limits_intercept(bs, bytes, true);
}
/*
* Align write if necessary by performing a read-modify-write cycle.
* Pad qiov with the read parts and be sure to have a tracked request not
* only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
* Provide an encryption key for @bs.
* If @key is non-null:
* If @bs is not encrypted, fail.
* Else if the key is invalid, fail.
* Else set @bs's key to @key, replacing the existing key, if any.
* If @key is null:
* If @bs is encrypted and still lacks a key, fail.
* Else do nothing.
* On failure, store an error object through @errp if non-null.
*/
tracked_request_begin(&req, bs, offset, bytes, true);
if (offset & (align - 1)) {
QEMUIOVector head_qiov;
struct iovec head_iov;
mark_request_serialising(&req, align);
wait_serialising_requests(&req);
head_buf = qemu_blockalign(bs, align);
head_iov = (struct iovec) {
.iov_base = head_buf,
.iov_len = align,
};
qemu_iovec_init_external(&head_qiov, &head_iov, 1);
BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_HEAD);
ret = bdrv_aligned_preadv(bs, &req, offset & ~(align - 1), align,
align, &head_qiov, 0);
if (ret < 0) {
goto fail;
}
BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
qemu_iovec_init(&local_qiov, qiov->niov + 2);
qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
use_local_qiov = true;
bytes += offset & (align - 1);
offset = offset & ~(align - 1);
}
if ((offset + bytes) & (align - 1)) {
QEMUIOVector tail_qiov;
struct iovec tail_iov;
size_t tail_bytes;
bool waited;
mark_request_serialising(&req, align);
waited = wait_serialising_requests(&req);
assert(!waited || !use_local_qiov);
tail_buf = qemu_blockalign(bs, align);
tail_iov = (struct iovec) {
.iov_base = tail_buf,
.iov_len = align,
};
qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_TAIL);
ret = bdrv_aligned_preadv(bs, &req, (offset + bytes) & ~(align - 1), align,
align, &tail_qiov, 0);
if (ret < 0) {
goto fail;
}
BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
if (!use_local_qiov) {
qemu_iovec_init(&local_qiov, qiov->niov + 1);
qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
use_local_qiov = true;
}
tail_bytes = (offset + bytes) & (align - 1);
qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
bytes = ROUND_UP(bytes, align);
}
if (use_local_qiov) {
/* Local buffer may have non-zero data. */
flags &= ~BDRV_REQ_ZERO_WRITE;
}
ret = bdrv_aligned_pwritev(bs, &req, offset, bytes,
use_local_qiov ? &local_qiov : qiov,
flags);
fail:
tracked_request_end(&req);
if (use_local_qiov) {
qemu_iovec_destroy(&local_qiov);
}
qemu_vfree(head_buf);
qemu_vfree(tail_buf);
return ret;
}
static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
BdrvRequestFlags flags)
{
if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
return -EINVAL;
}
return bdrv_co_do_pwritev(bs, sector_num << BDRV_SECTOR_BITS,
nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
}
int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
int nb_sectors, QEMUIOVector *qiov)
{
trace_bdrv_co_writev(bs, sector_num, nb_sectors);
return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
}
int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
int64_t sector_num, int nb_sectors,
BdrvRequestFlags flags)
void bdrv_add_key(BlockDriverState *bs, const char *key, Error **errp)
{
int ret;
trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors, flags);
if (!(bs->open_flags & BDRV_O_UNMAP)) {
flags &= ~BDRV_REQ_MAY_UNMAP;
}
if (bdrv_req_is_aligned(bs, sector_num << BDRV_SECTOR_BITS,
nb_sectors << BDRV_SECTOR_BITS)) {
ret = bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
BDRV_REQ_ZERO_WRITE | flags);
} else {
uint8_t *buf;
QEMUIOVector local_qiov;
size_t bytes = nb_sectors << BDRV_SECTOR_BITS;
buf = qemu_memalign(bdrv_opt_mem_align(bs), bytes);
memset(buf, 0, bytes);
qemu_iovec_init(&local_qiov, 1);
qemu_iovec_add(&local_qiov, buf, bytes);
ret = bdrv_co_do_writev(bs, sector_num, nb_sectors, &local_qiov,
BDRV_REQ_ZERO_WRITE | flags);
qemu_vfree(buf);
}
return ret;
}
/**
* Truncate file to 'offset' bytes (needed only for file protocols)
*/
int bdrv_truncate(BlockDriverState *bs, int64_t offset)
{
BlockDriver *drv = bs->drv;
int ret;
if (!drv)
return -ENOMEDIUM;
if (!drv->bdrv_truncate)
return -ENOTSUP;
if (bs->read_only)
return -EACCES;
ret = drv->bdrv_truncate(bs, offset);
if (ret == 0) {
ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
bdrv_dirty_bitmap_truncate(bs);
if (bs->blk) {
blk_dev_resize_cb(bs->blk);
}
}
return ret;
}
/**
* Length of a allocated file in bytes. Sparse files are counted by actual
* allocated space. Return < 0 if error or unknown.
*/
int64_t bdrv_get_allocated_file_size(BlockDriverState *bs)
{
BlockDriver *drv = bs->drv;
if (!drv) {
return -ENOMEDIUM;
}
if (drv->bdrv_get_allocated_file_size) {
return drv->bdrv_get_allocated_file_size(bs);
}
if (bs->file) {
return bdrv_get_allocated_file_size(bs->file);
}
return -ENOTSUP;
}
/**
* Return number of sectors on success, -errno on error.
*/
int64_t bdrv_nb_sectors(BlockDriverState *bs)
{
BlockDriver *drv = bs->drv;
if (!drv)
return -ENOMEDIUM;
if (drv->has_variable_length) {
int ret = refresh_total_sectors(bs, bs->total_sectors);
if (ret < 0) {
return ret;
}
}
return bs->total_sectors;
}
/**
* Return length in bytes on success, -errno on error.
* The length is always a multiple of BDRV_SECTOR_SIZE.
*/
int64_t bdrv_getlength(BlockDriverState *bs)
{
int64_t ret = bdrv_nb_sectors(bs);
return ret < 0 ? ret : ret * BDRV_SECTOR_SIZE;
}
/* return 0 as number of sectors if no device present or error */
void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr)
{
int64_t nb_sectors = bdrv_nb_sectors(bs);
*nb_sectors_ptr = nb_sectors < 0 ? 0 : nb_sectors;
}
void bdrv_set_on_error(BlockDriverState *bs, BlockdevOnError on_read_error,
BlockdevOnError on_write_error)
{
bs->on_read_error = on_read_error;
bs->on_write_error = on_write_error;
}
BlockdevOnError bdrv_get_on_error(BlockDriverState *bs, bool is_read)
{
return is_read ? bs->on_read_error : bs->on_write_error;
}
BlockErrorAction bdrv_get_error_action(BlockDriverState *bs, bool is_read, int error)
{
BlockdevOnError on_err = is_read ? bs->on_read_error : bs->on_write_error;
switch (on_err) {
case BLOCKDEV_ON_ERROR_ENOSPC:
return (error == ENOSPC) ?
BLOCK_ERROR_ACTION_STOP : BLOCK_ERROR_ACTION_REPORT;
case BLOCKDEV_ON_ERROR_STOP:
return BLOCK_ERROR_ACTION_STOP;
case BLOCKDEV_ON_ERROR_REPORT:
return BLOCK_ERROR_ACTION_REPORT;
case BLOCKDEV_ON_ERROR_IGNORE:
return BLOCK_ERROR_ACTION_IGNORE;
default:
abort();
}
}
static void send_qmp_error_event(BlockDriverState *bs,
BlockErrorAction action,
bool is_read, int error)
{
IoOperationType optype;
optype = is_read ? IO_OPERATION_TYPE_READ : IO_OPERATION_TYPE_WRITE;
qapi_event_send_block_io_error(bdrv_get_device_name(bs), optype, action,
bdrv_iostatus_is_enabled(bs),
error == ENOSPC, strerror(error),
&error_abort);
}
/* This is done by device models because, while the block layer knows
* about the error, it does not know whether an operation comes from
* the device or the block layer (from a job, for example).
*/
void bdrv_error_action(BlockDriverState *bs, BlockErrorAction action,
bool is_read, int error)
{
assert(error >= 0);
if (action == BLOCK_ERROR_ACTION_STOP) {
/* First set the iostatus, so that "info block" returns an iostatus
* that matches the events raised so far (an additional error iostatus
* is fine, but not a lost one).
*/
bdrv_iostatus_set_err(bs, error);
/* Then raise the request to stop the VM and the event.
* qemu_system_vmstop_request_prepare has two effects. First,
* it ensures that the STOP event always comes after the
* BLOCK_IO_ERROR event. Second, it ensures that even if management
* can observe the STOP event and do a "cont" before the STOP
* event is issued, the VM will not stop. In this case, vm_start()
* also ensures that the STOP/RESUME pair of events is emitted.
*/
qemu_system_vmstop_request_prepare();
send_qmp_error_event(bs, action, is_read, error);
qemu_system_vmstop_request(RUN_STATE_IO_ERROR);
} else {
send_qmp_error_event(bs, action, is_read, error);
}
}
int bdrv_is_read_only(BlockDriverState *bs)
{
return bs->read_only;
}
int bdrv_is_sg(BlockDriverState *bs)
{
return bs->sg;
}
int bdrv_enable_write_cache(BlockDriverState *bs)
{
return bs->enable_write_cache;
}
void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce)
{
bs->enable_write_cache = wce;
/* so a reopen() will preserve wce */
if (wce) {
bs->open_flags |= BDRV_O_CACHE_WB;
} else {
bs->open_flags &= ~BDRV_O_CACHE_WB;
}
}
int bdrv_is_encrypted(BlockDriverState *bs)
{
if (bs->backing_hd && bs->backing_hd->encrypted)
return 1;
return bs->encrypted;
}
int bdrv_key_required(BlockDriverState *bs)
{
BlockDriverState *backing_hd = bs->backing_hd;
if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key)
return 1;
return (bs->encrypted && !bs->valid_key);
}
int bdrv_set_key(BlockDriverState *bs, const char *key)
{
int ret;
if (bs->backing_hd && bs->backing_hd->encrypted) {
ret = bdrv_set_key(bs->backing_hd, key);
if (ret < 0)
return ret;
if (!bs->encrypted)
return 0;
}
if (!bs->encrypted) {
return -EINVAL;
} else if (!bs->drv || !bs->drv->bdrv_set_key) {
return -ENOMEDIUM;
}
ret = bs->drv->bdrv_set_key(bs, key);
if (ret < 0) {
bs->valid_key = 0;
} else if (!bs->valid_key) {
bs->valid_key = 1;
if (bs->blk) {
/* call the change callback now, we skipped it on open */
blk_dev_change_media_cb(bs->blk, true);
}
}
return ret;
}
/*
* Provide an encryption key for @bs.
* If @key is non-null:
* If @bs is not encrypted, fail.
* Else if the key is invalid, fail.
* Else set @bs's key to @key, replacing the existing key, if any.
* If @key is null:
* If @bs is encrypted and still lacks a key, fail.
* Else do nothing.
* On failure, store an error object through @errp if non-null.
*/
void bdrv_add_key(BlockDriverState *bs, const char *key, Error **errp)
{
if (key) {
if (!bdrv_is_encrypted(bs)) {
error_setg(errp, "Node '%s' is not encrypted",
bdrv_get_device_or_node_name(bs));
} else if (bdrv_set_key(bs, key) < 0) {
error_set(errp, QERR_INVALID_PASSWORD);
if (key) {
if (!bdrv_is_encrypted(bs)) {
error_setg(errp, "Node '%s' is not encrypted",
bdrv_get_device_or_node_name(bs));
} else if (bdrv_set_key(bs, key) < 0) {
error_set(errp, QERR_INVALID_PASSWORD);
}
} else {
if (bdrv_key_required(bs)) {
error_set(errp, ERROR_CLASS_DEVICE_ENCRYPTED,
"'%s' (%s) is encrypted",
bdrv_get_device_or_node_name(bs),
bdrv_get_encrypted_filename(bs));
}
}
}
const char *bdrv_get_format_name(BlockDriverState *bs)
{
return bs->drv ? bs->drv->format_name : NULL;
}
static int qsort_strcmp(const void *a, const void *b)
{
return strcmp(a, b);
}
void bdrv_iterate_format(void (*it)(void *opaque, const char *name),
void *opaque)
{
BlockDriver *drv;
int count = 0;
int i;
const char **formats = NULL;
QLIST_FOREACH(drv, &bdrv_drivers, list) {
if (drv->format_name) {
bool found = false;
int i = count;
while (formats && i && !found) {
found = !strcmp(formats[--i], drv->format_name);
}
if (!found) {
formats = g_renew(const char *, formats, count + 1);
formats[count++] = drv->format_name;
}
}
}
qsort(formats, count, sizeof(formats[0]), qsort_strcmp);
for (i = 0; i < count; i++) {
it(opaque, formats[i]);
}
g_free(formats);
}
/* This function is to find a node in the bs graph */
BlockDriverState *bdrv_find_node(const char *node_name)
{
BlockDriverState *bs;
assert(node_name);
QTAILQ_FOREACH(bs, &graph_bdrv_states, node_list) {
if (!strcmp(node_name, bs->node_name)) {
return bs;
}
}
return NULL;
}
/* Put this QMP function here so it can access the static graph_bdrv_states. */
BlockDeviceInfoList *bdrv_named_nodes_list(Error **errp)
{
BlockDeviceInfoList *list, *entry;
BlockDriverState *bs;
list = NULL;
QTAILQ_FOREACH(bs, &graph_bdrv_states, node_list) {
BlockDeviceInfo *info = bdrv_block_device_info(bs, errp);
if (!info) {
qapi_free_BlockDeviceInfoList(list);
return NULL;
}
entry = g_malloc0(sizeof(*entry));
entry->value = info;
entry->next = list;
list = entry;
}
return list;
}
BlockDriverState *bdrv_lookup_bs(const char *device,
const char *node_name,
Error **errp)
{
BlockBackend *blk;
BlockDriverState *bs;
if (device) {
blk = blk_by_name(device);
if (blk) {
return blk_bs(blk);
}
}
if (node_name) {
bs = bdrv_find_node(node_name);
if (bs) {
return bs;
}
}
error_setg(errp, "Cannot find device=%s nor node_name=%s",
device ? device : "",
node_name ? node_name : "");
return NULL;
}
/* If 'base' is in the same chain as 'top', return true. Otherwise,
* return false. If either argument is NULL, return false. */
bool bdrv_chain_contains(BlockDriverState *top, BlockDriverState *base)
{
while (top && top != base) {
top = top->backing_hd;
}
return top != NULL;
}
BlockDriverState *bdrv_next_node(BlockDriverState *bs)
{
if (!bs) {
return QTAILQ_FIRST(&graph_bdrv_states);
}
return QTAILQ_NEXT(bs, node_list);
}
BlockDriverState *bdrv_next(BlockDriverState *bs)
{
if (!bs) {
return QTAILQ_FIRST(&bdrv_states);
}
return QTAILQ_NEXT(bs, device_list);
}
const char *bdrv_get_node_name(const BlockDriverState *bs)
{
return bs->node_name;
}
/* TODO check what callers really want: bs->node_name or blk_name() */
const char *bdrv_get_device_name(const BlockDriverState *bs)
{
return bs->blk ? blk_name(bs->blk) : "";
}
/* This can be used to identify nodes that might not have a device
* name associated. Since node and device names live in the same
* namespace, the result is unambiguous. The exception is if both are
* absent, then this returns an empty (non-null) string. */
const char *bdrv_get_device_or_node_name(const BlockDriverState *bs)
{
return bs->blk ? blk_name(bs->blk) : bs->node_name;
}
int bdrv_get_flags(BlockDriverState *bs)
{
return bs->open_flags;
}
int bdrv_flush_all(void)
{
BlockDriverState *bs = NULL;
int result = 0;
while ((bs = bdrv_next(bs))) {
AioContext *aio_context = bdrv_get_aio_context(bs);
int ret;
aio_context_acquire(aio_context);
ret = bdrv_flush(bs);
if (ret < 0 && !result) {
result = ret;
}
aio_context_release(aio_context);
}
return result;
}
int bdrv_has_zero_init_1(BlockDriverState *bs)
{
return 1;
}
int bdrv_has_zero_init(BlockDriverState *bs)
{
assert(bs->drv);
/* If BS is a copy on write image, it is initialized to
the contents of the base image, which may not be zeroes. */
if (bs->backing_hd) {
return 0;
}
if (bs->drv->bdrv_has_zero_init) {
return bs->drv->bdrv_has_zero_init(bs);
}
/* safe default */
return 0;
}
bool bdrv_unallocated_blocks_are_zero(BlockDriverState *bs)
{
BlockDriverInfo bdi;
if (bs->backing_hd) {
return false;
}
if (bdrv_get_info(bs, &bdi) == 0) {
return bdi.unallocated_blocks_are_zero;
}
return false;
}
bool bdrv_can_write_zeroes_with_unmap(BlockDriverState *bs)
{
BlockDriverInfo bdi;
if (bs->backing_hd || !(bs->open_flags & BDRV_O_UNMAP)) {
return false;
}
if (bdrv_get_info(bs, &bdi) == 0) {
return bdi.can_write_zeroes_with_unmap;
}
return false;
}
typedef struct BdrvCoGetBlockStatusData {
BlockDriverState *bs;
BlockDriverState *base;
int64_t sector_num;
int nb_sectors;
int *pnum;
int64_t ret;
bool done;
} BdrvCoGetBlockStatusData;
/*
* Returns the allocation status of the specified sectors.
* Drivers not implementing the functionality are assumed to not support
* backing files, hence all their sectors are reported as allocated.
*
* If 'sector_num' is beyond the end of the disk image the return value is 0
* and 'pnum' is set to 0.
*
* 'pnum' is set to the number of sectors (including and immediately following
* the specified sector) that are known to be in the same
* allocated/unallocated state.
*
* 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
* beyond the end of the disk image it will be clamped.
*/
static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs,
int64_t sector_num,
int nb_sectors, int *pnum)
{
int64_t total_sectors;
int64_t n;
int64_t ret, ret2;
total_sectors = bdrv_nb_sectors(bs);
if (total_sectors < 0) {
return total_sectors;
}
if (sector_num >= total_sectors) {
*pnum = 0;
return 0;
}
n = total_sectors - sector_num;
if (n < nb_sectors) {
nb_sectors = n;
}
if (!bs->drv->bdrv_co_get_block_status) {
*pnum = nb_sectors;
ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
if (bs->drv->protocol_name) {
ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE);
}
return ret;
}
ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum);
if (ret < 0) {
*pnum = 0;
return ret;
}
if (ret & BDRV_BLOCK_RAW) {
assert(ret & BDRV_BLOCK_OFFSET_VALID);
return bdrv_get_block_status(bs->file, ret >> BDRV_SECTOR_BITS,
*pnum, pnum);
}
if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
ret |= BDRV_BLOCK_ALLOCATED;
}
if (!(ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO)) {
if (bdrv_unallocated_blocks_are_zero(bs)) {
ret |= BDRV_BLOCK_ZERO;
} else if (bs->backing_hd) {
BlockDriverState *bs2 = bs->backing_hd;
int64_t nb_sectors2 = bdrv_nb_sectors(bs2);
if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) {
ret |= BDRV_BLOCK_ZERO;
}
}
}
if (bs->file &&
(ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
(ret & BDRV_BLOCK_OFFSET_VALID)) {
int file_pnum;
ret2 = bdrv_co_get_block_status(bs->file, ret >> BDRV_SECTOR_BITS,
*pnum, &file_pnum);
if (ret2 >= 0) {
/* Ignore errors. This is just providing extra information, it
* is useful but not necessary.
*/
if (!file_pnum) {
/* !file_pnum indicates an offset at or beyond the EOF; it is
* perfectly valid for the format block driver to point to such
* offsets, so catch it and mark everything as zero */
ret |= BDRV_BLOCK_ZERO;
} else {
/* Limit request to the range reported by the protocol driver */
*pnum = file_pnum;
ret |= (ret2 & BDRV_BLOCK_ZERO);
}
}
}
return ret;
}
/* Coroutine wrapper for bdrv_get_block_status() */
static void coroutine_fn bdrv_get_block_status_co_entry(void *opaque)
{
BdrvCoGetBlockStatusData *data = opaque;
BlockDriverState *bs = data->bs;
data->ret = bdrv_co_get_block_status(bs, data->sector_num, data->nb_sectors,
data->pnum);
data->done = true;
}
/*
* Synchronous wrapper around bdrv_co_get_block_status().
*
* See bdrv_co_get_block_status() for details.
*/
int64_t bdrv_get_block_status(BlockDriverState *bs, int64_t sector_num,
int nb_sectors, int *pnum)
{
Coroutine *co;
BdrvCoGetBlockStatusData data = {
.bs = bs,
.sector_num = sector_num,
.nb_sectors = nb_sectors,
.pnum = pnum,
.done = false,
};
if (qemu_in_coroutine()) {
/* Fast-path if already in coroutine context */
bdrv_get_block_status_co_entry(&data);
} else {
AioContext *aio_context = bdrv_get_aio_context(bs);
co = qemu_coroutine_create(bdrv_get_block_status_co_entry);
qemu_coroutine_enter(co, &data);
while (!data.done) {
aio_poll(aio_context, true);
}
}
return data.ret;
}
int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num,
int nb_sectors, int *pnum)
{
int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum);
if (ret < 0) {
return ret;
}
return !!(ret & BDRV_BLOCK_ALLOCATED);
}
/*
* Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
*
* Return true if the given sector is allocated in any image between
* BASE and TOP (inclusive). BASE can be NULL to check if the given
* sector is allocated in any image of the chain. Return false otherwise.
*
* 'pnum' is set to the number of sectors (including and immediately following
* the specified sector) that are known to be in the same
* allocated/unallocated state.
*
*/
int bdrv_is_allocated_above(BlockDriverState *top,
BlockDriverState *base,
int64_t sector_num,
int nb_sectors, int *pnum)
{
BlockDriverState *intermediate;
int ret, n = nb_sectors;
intermediate = top;
while (intermediate && intermediate != base) {
int pnum_inter;
ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors,
&pnum_inter);
if (ret < 0) {
return ret;
} else if (ret) {
*pnum = pnum_inter;
return 1;
}
/*
* [sector_num, nb_sectors] is unallocated on top but intermediate
* might have
*
* [sector_num+x, nr_sectors] allocated.
*/
if (n > pnum_inter &&
(intermediate == top ||
sector_num + pnum_inter < intermediate->total_sectors)) {
n = pnum_inter;
}
intermediate = intermediate->backing_hd;
}
*pnum = n;
return 0;
}
const char *bdrv_get_encrypted_filename(BlockDriverState *bs)
{
if (bs->backing_hd && bs->backing_hd->encrypted)
return bs->backing_file;
else if (bs->encrypted)
return bs->filename;
else
return NULL;
}
void bdrv_get_backing_filename(BlockDriverState *bs,
char *filename, int filename_size)
{
pstrcpy(filename, filename_size, bs->backing_file);
}
int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
const uint8_t *buf, int nb_sectors)
{
BlockDriver *drv = bs->drv;
int ret;
if (!drv) {
return -ENOMEDIUM;
}
if (!drv->bdrv_write_compressed) {
return -ENOTSUP;
}
ret = bdrv_check_request(bs, sector_num, nb_sectors);
if (ret < 0) {
return ret;
}
assert(QLIST_EMPTY(&bs->dirty_bitmaps));
return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
}
int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
{
BlockDriver *drv = bs->drv;
if (!drv)
return -ENOMEDIUM;
if (!drv->bdrv_get_info)
return -ENOTSUP;
memset(bdi, 0, sizeof(*bdi));
return drv->bdrv_get_info(bs, bdi);
}
ImageInfoSpecific *bdrv_get_specific_info(BlockDriverState *bs)
{
BlockDriver *drv = bs->drv;
if (drv && drv->bdrv_get_specific_info) {
return drv->bdrv_get_specific_info(bs);
}
return NULL;
}
int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
int64_t pos, int size)
{
QEMUIOVector qiov;
struct iovec iov = {
.iov_base = (void *) buf,
.iov_len = size,
};
qemu_iovec_init_external(&qiov, &iov, 1);
return bdrv_writev_vmstate(bs, &qiov, pos);
}
int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
{
BlockDriver *drv = bs->drv;
if (!drv) {
return -ENOMEDIUM;
} else if (drv->bdrv_save_vmstate) {
return drv->bdrv_save_vmstate(bs, qiov, pos);
} else if (bs->file) {
return bdrv_writev_vmstate(bs->file, qiov, pos);
}
return -ENOTSUP;
}
int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
int64_t pos, int size)
{
BlockDriver *drv = bs->drv;
if (!drv)
return -ENOMEDIUM;
if (drv->bdrv_load_vmstate)
return drv->bdrv_load_vmstate(bs, buf, pos, size);
if (bs->file)
return bdrv_load_vmstate(bs->file, buf, pos, size);
return -ENOTSUP;
}
void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event)
{
if (!bs || !bs->drv || !bs->drv->bdrv_debug_event) {
return;
}
bs->drv->bdrv_debug_event(bs, event);
}
int bdrv_debug_breakpoint(BlockDriverState *bs, const char *event,
const char *tag)
{
while (bs && bs->drv && !bs->drv->bdrv_debug_breakpoint) {
bs = bs->file;
}
if (bs && bs->drv && bs->drv->bdrv_debug_breakpoint) {
return bs->drv->bdrv_debug_breakpoint(bs, event, tag);
}
return -ENOTSUP;
}
int bdrv_debug_remove_breakpoint(BlockDriverState *bs, const char *tag)
{
while (bs && bs->drv && !bs->drv->bdrv_debug_remove_breakpoint) {
bs = bs->file;
}
if (bs && bs->drv && bs->drv->bdrv_debug_remove_breakpoint) {
return bs->drv->bdrv_debug_remove_breakpoint(bs, tag);
}
return -ENOTSUP;
}
int bdrv_debug_resume(BlockDriverState *bs, const char *tag)
{
while (bs && (!bs->drv || !bs->drv->bdrv_debug_resume)) {
bs = bs->file;
}
if (bs && bs->drv && bs->drv->bdrv_debug_resume) {
return bs->drv->bdrv_debug_resume(bs, tag);
}
return -ENOTSUP;
}
bool bdrv_debug_is_suspended(BlockDriverState *bs, const char *tag)
{
while (bs && bs->drv && !bs->drv->bdrv_debug_is_suspended) {
bs = bs->file;
}
if (bs && bs->drv && bs->drv->bdrv_debug_is_suspended) {
return bs->drv->bdrv_debug_is_suspended(bs, tag);
}
return false;
}
int bdrv_is_snapshot(BlockDriverState *bs)
{
return !!(bs->open_flags & BDRV_O_SNAPSHOT);
}
/* backing_file can either be relative, or absolute, or a protocol. If it is
* relative, it must be relative to the chain. So, passing in bs->filename
* from a BDS as backing_file should not be done, as that may be relative to
* the CWD rather than the chain. */
BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs,
const char *backing_file)
{
char *filename_full = NULL;
char *backing_file_full = NULL;
char *filename_tmp = NULL;
int is_protocol = 0;
BlockDriverState *curr_bs = NULL;
BlockDriverState *retval = NULL;
if (!bs || !bs->drv || !backing_file) {
return NULL;
}
filename_full = g_malloc(PATH_MAX);
backing_file_full = g_malloc(PATH_MAX);
filename_tmp = g_malloc(PATH_MAX);
is_protocol = path_has_protocol(backing_file);
for (curr_bs = bs; curr_bs->backing_hd; curr_bs = curr_bs->backing_hd) {
/* If either of the filename paths is actually a protocol, then
* compare unmodified paths; otherwise make paths relative */
if (is_protocol || path_has_protocol(curr_bs->backing_file)) {
if (strcmp(backing_file, curr_bs->backing_file) == 0) {
retval = curr_bs->backing_hd;
break;
}
} else {
/* If not an absolute filename path, make it relative to the current
* image's filename path */
path_combine(filename_tmp, PATH_MAX, curr_bs->filename,
backing_file);
/* We are going to compare absolute pathnames */
if (!realpath(filename_tmp, filename_full)) {
continue;
}
/* We need to make sure the backing filename we are comparing against
* is relative to the current image filename (or absolute) */
path_combine(filename_tmp, PATH_MAX, curr_bs->filename,
curr_bs->backing_file);
if (!realpath(filename_tmp, backing_file_full)) {
continue;
}
if (strcmp(backing_file_full, filename_full) == 0) {
retval = curr_bs->backing_hd;
break;
}
}
}
g_free(filename_full);
g_free(backing_file_full);
g_free(filename_tmp);
return retval;
}
int bdrv_get_backing_file_depth(BlockDriverState *bs)
{
if (!bs->drv) {
return 0;
}
if (!bs->backing_hd) {
return 0;
}
return 1 + bdrv_get_backing_file_depth(bs->backing_hd);
}
/**************************************************************/
/* async I/Os */
BlockAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
QEMUIOVector *qiov, int nb_sectors,
BlockCompletionFunc *cb, void *opaque)
{
trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0,
cb, opaque, false);
}
BlockAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
QEMUIOVector *qiov, int nb_sectors,
BlockCompletionFunc *cb, void *opaque)
{
trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0,
cb, opaque, true);
}
BlockAIOCB *bdrv_aio_write_zeroes(BlockDriverState *bs,
int64_t sector_num, int nb_sectors, BdrvRequestFlags flags,
BlockCompletionFunc *cb, void *opaque)
{
trace_bdrv_aio_write_zeroes(bs, sector_num, nb_sectors, flags, opaque);
return bdrv_co_aio_rw_vector(bs, sector_num, NULL, nb_sectors,
BDRV_REQ_ZERO_WRITE | flags,
cb, opaque, true);
}
typedef struct MultiwriteCB {
int error;
int num_requests;
int num_callbacks;
struct {
BlockCompletionFunc *cb;
void *opaque;
QEMUIOVector *free_qiov;
} callbacks[];
} MultiwriteCB;
static void multiwrite_user_cb(MultiwriteCB *mcb)
{
int i;
for (i = 0; i < mcb->num_callbacks; i++) {
mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
if (mcb->callbacks[i].free_qiov) {
qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
bdrv_get_encrypted_filename(bs));
}
g_free(mcb->callbacks[i].free_qiov);
}
}
static void multiwrite_cb(void *opaque, int ret)
const char *bdrv_get_format_name(BlockDriverState *bs)
{
MultiwriteCB *mcb = opaque;
trace_multiwrite_cb(mcb, ret);
if (ret < 0 && !mcb->error) {
mcb->error = ret;
}
mcb->num_requests--;
if (mcb->num_requests == 0) {
multiwrite_user_cb(mcb);
g_free(mcb);
}
return bs->drv ? bs->drv->format_name : NULL;
}
static int multiwrite_req_compare(const void *a, const void *b)
static int qsort_strcmp(const void *a, const void *b)
{
const BlockRequest *req1 = a, *req2 = b;
/*
* Note that we can't simply subtract req2->sector from req1->sector
* here as that could overflow the return value.
*/
if (req1->sector > req2->sector) {
return 1;
} else if (req1->sector < req2->sector) {
return -1;
} else {
return 0;
}
return strcmp(a, b);
}
/*
* Takes a bunch of requests and tries to merge them. Returns the number of
* requests that remain after merging.
*/
static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
int num_reqs, MultiwriteCB *mcb)
void bdrv_iterate_format(void (*it)(void *opaque, const char *name),
void *opaque)
{
int i, outidx;
// Sort requests by start sector
qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
// Check if adjacent requests touch the same clusters. If so, combine them,
// filling up gaps with zero sectors.
outidx = 0;
for (i = 1; i < num_reqs; i++) {
int merge = 0;
int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
BlockDriver *drv;
int count = 0;
int i;
const char **formats = NULL;
// Handle exactly sequential writes and overlapping writes.
if (reqs[i].sector <= oldreq_last) {
merge = 1;
QLIST_FOREACH(drv, &bdrv_drivers, list) {
if (drv->format_name) {
bool found = false;
int i = count;
while (formats && i && !found) {
found = !strcmp(formats[--i], drv->format_name);
}
if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
merge = 0;
if (!found) {
formats = g_renew(const char *, formats, count + 1);
formats[count++] = drv->format_name;
}
}
if (bs->bl.max_transfer_length && reqs[outidx].nb_sectors +
reqs[i].nb_sectors > bs->bl.max_transfer_length) {
merge = 0;
}
if (merge) {
size_t size;
QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
qemu_iovec_init(qiov,
reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
// Add the first request to the merged one. If the requests are
// overlapping, drop the last sectors of the first request.
size = (reqs[i].sector - reqs[outidx].sector) << 9;
qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size);
qsort(formats, count, sizeof(formats[0]), qsort_strcmp);
// We should need to add any zeros between the two requests
assert (reqs[i].sector <= oldreq_last);
for (i = 0; i < count; i++) {
it(opaque, formats[i]);
}
// Add the second request
qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size);
g_free(formats);
}
// Add tail of first request, if necessary
if (qiov->size < reqs[outidx].qiov->size) {
qemu_iovec_concat(qiov, reqs[outidx].qiov, qiov->size,
reqs[outidx].qiov->size - qiov->size);
}
/* This function is to find a node in the bs graph */
BlockDriverState *bdrv_find_node(const char *node_name)
{
BlockDriverState *bs;
reqs[outidx].nb_sectors = qiov->size >> 9;
reqs[outidx].qiov = qiov;
assert(node_name);
mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
} else {
outidx++;
reqs[outidx].sector = reqs[i].sector;
reqs[outidx].nb_sectors = reqs[i].nb_sectors;
reqs[outidx].qiov = reqs[i].qiov;
QTAILQ_FOREACH(bs, &graph_bdrv_states, node_list) {
if (!strcmp(node_name, bs->node_name)) {
return bs;
}
}
block_acct_merge_done(&bs->stats, BLOCK_ACCT_WRITE, num_reqs - outidx - 1);
return outidx + 1;
return NULL;
}
/*
* Submit multiple AIO write requests at once.
*
* On success, the function returns 0 and all requests in the reqs array have
* been submitted. In error case this function returns -1, and any of the
* requests may or may not be submitted yet. In particular, this means that the
* callback will be called for some of the requests, for others it won't. The
* caller must check the error field of the BlockRequest to wait for the right
* callbacks (if error != 0, no callback will be called).
*
* The implementation may modify the contents of the reqs array, e.g. to merge
* requests. However, the fields opaque and error are left unmodified as they
* are used to signal failure for a single request to the caller.
*/
int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
/* Put this QMP function here so it can access the static graph_bdrv_states. */
BlockDeviceInfoList *bdrv_named_nodes_list(Error **errp)
{
MultiwriteCB *mcb;
int i;
BlockDeviceInfoList *list, *entry;
BlockDriverState *bs;
/* don't submit writes if we don't have a medium */
if (bs->drv == NULL) {
for (i = 0; i < num_reqs; i++) {
reqs[i].error = -ENOMEDIUM;
list = NULL;
QTAILQ_FOREACH(bs, &graph_bdrv_states, node_list) {
BlockDeviceInfo *info = bdrv_block_device_info(bs, errp);
if (!info) {
qapi_free_BlockDeviceInfoList(list);
return NULL;
}
return -1;
entry = g_malloc0(sizeof(*entry));
entry->value = info;
entry->next = list;
list = entry;
}
if (num_reqs == 0) {
return 0;
}
return list;
}
BlockDriverState *bdrv_lookup_bs(const char *device,
const char *node_name,
Error **errp)
{
BlockBackend *blk;
BlockDriverState *bs;
// Create MultiwriteCB structure
mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
mcb->num_requests = 0;
mcb->num_callbacks = num_reqs;
if (device) {
blk = blk_by_name(device);
for (i = 0; i < num_reqs; i++) {
mcb->callbacks[i].cb = reqs[i].cb;
mcb->callbacks[i].opaque = reqs[i].opaque;
if (blk) {
return blk_bs(blk);
}
}
// Check for mergable requests
num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
if (node_name) {
bs = bdrv_find_node(node_name);
/* Run the aio requests. */
mcb->num_requests = num_reqs;
for (i = 0; i < num_reqs; i++) {
bdrv_co_aio_rw_vector(bs, reqs[i].sector, reqs[i].qiov,
reqs[i].nb_sectors, reqs[i].flags,
multiwrite_cb, mcb,
true);
if (bs) {
return bs;
}
}
return 0;
error_setg(errp, "Cannot find device=%s nor node_name=%s",
device ? device : "",
node_name ? node_name : "");
return NULL;
}
void bdrv_aio_cancel(BlockAIOCB *acb)
/* If 'base' is in the same chain as 'top', return true. Otherwise,
* return false. If either argument is NULL, return false. */
bool bdrv_chain_contains(BlockDriverState *top, BlockDriverState *base)
{
qemu_aio_ref(acb);
bdrv_aio_cancel_async(acb);
while (acb->refcnt > 1) {
if (acb->aiocb_info->get_aio_context) {
aio_poll(acb->aiocb_info->get_aio_context(acb), true);
} else if (acb->bs) {
aio_poll(bdrv_get_aio_context(acb->bs), true);
} else {
abort();
}
while (top && top != base) {
top = top->backing_hd;
}
qemu_aio_unref(acb);
return top != NULL;
}
/* Async version of aio cancel. The caller is not blocked if the acb implements
* cancel_async, otherwise we do nothing and let the request normally complete.
* In either case the completion callback must be called. */
void bdrv_aio_cancel_async(BlockAIOCB *acb)
BlockDriverState *bdrv_next_node(BlockDriverState *bs)
{
if (acb->aiocb_info->cancel_async) {
acb->aiocb_info->cancel_async(acb);
if (!bs) {
return QTAILQ_FIRST(&graph_bdrv_states);
}
return QTAILQ_NEXT(bs, node_list);
}
/**************************************************************/
/* async block device emulation */
typedef struct BlockAIOCBSync {
BlockAIOCB common;
QEMUBH *bh;
int ret;
/* vector translation state */
QEMUIOVector *qiov;
uint8_t *bounce;
int is_write;
} BlockAIOCBSync;
static const AIOCBInfo bdrv_em_aiocb_info = {
.aiocb_size = sizeof(BlockAIOCBSync),
};
static void bdrv_aio_bh_cb(void *opaque)
BlockDriverState *bdrv_next(BlockDriverState *bs)
{
BlockAIOCBSync *acb = opaque;
if (!acb->is_write && acb->ret >= 0) {
qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size);
if (!bs) {
return QTAILQ_FIRST(&bdrv_states);
}
qemu_vfree(acb->bounce);
acb->common.cb(acb->common.opaque, acb->ret);
qemu_bh_delete(acb->bh);
acb->bh = NULL;
qemu_aio_unref(acb);
return QTAILQ_NEXT(bs, device_list);
}
static BlockAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
int64_t sector_num,
QEMUIOVector *qiov,
int nb_sectors,
BlockCompletionFunc *cb,
void *opaque,
int is_write)
const char *bdrv_get_node_name(const BlockDriverState *bs)
{
BlockAIOCBSync *acb;
acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque);
acb->is_write = is_write;
acb->qiov = qiov;
acb->bounce = qemu_try_blockalign(bs, qiov->size);
acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_aio_bh_cb, acb);
if (acb->bounce == NULL) {
acb->ret = -ENOMEM;
} else if (is_write) {
qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
} else {
acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
}
qemu_bh_schedule(acb->bh);
return &acb->common;
return bs->node_name;
}
static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
BlockCompletionFunc *cb, void *opaque)
/* TODO check what callers really want: bs->node_name or blk_name() */
const char *bdrv_get_device_name(const BlockDriverState *bs)
{
return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
return bs->blk ? blk_name(bs->blk) : "";
}
static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
BlockCompletionFunc *cb, void *opaque)
/* This can be used to identify nodes that might not have a device
* name associated. Since node and device names live in the same
* namespace, the result is unambiguous. The exception is if both are
* absent, then this returns an empty (non-null) string. */
const char *bdrv_get_device_or_node_name(const BlockDriverState *bs)
{
return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
return bs->blk ? blk_name(bs->blk) : bs->node_name;
}
typedef struct BlockAIOCBCoroutine {
BlockAIOCB common;
BlockRequest req;
bool is_write;
bool need_bh;
bool *done;
QEMUBH* bh;
} BlockAIOCBCoroutine;
static const AIOCBInfo bdrv_em_co_aiocb_info = {
.aiocb_size = sizeof(BlockAIOCBCoroutine),
};
static void bdrv_co_complete(BlockAIOCBCoroutine *acb)
int bdrv_get_flags(BlockDriverState *bs)
{
if (!acb->need_bh) {
acb->common.cb(acb->common.opaque, acb->req.error);
qemu_aio_unref(acb);
}
return bs->open_flags;
}
static void bdrv_co_em_bh(void *opaque)
int bdrv_has_zero_init_1(BlockDriverState *bs)
{
BlockAIOCBCoroutine *acb = opaque;
assert(!acb->need_bh);
qemu_bh_delete(acb->bh);
bdrv_co_complete(acb);
return 1;
}
static void bdrv_co_maybe_schedule_bh(BlockAIOCBCoroutine *acb)
int bdrv_has_zero_init(BlockDriverState *bs)
{
acb->need_bh = false;
if (acb->req.error != -EINPROGRESS) {
BlockDriverState *bs = acb->common.bs;
assert(bs->drv);
acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_co_em_bh, acb);
qemu_bh_schedule(acb->bh);
/* If BS is a copy on write image, it is initialized to
the contents of the base image, which may not be zeroes. */
if (bs->backing_hd) {
return 0;
}
if (bs->drv->bdrv_has_zero_init) {
return bs->drv->bdrv_has_zero_init(bs);
}
/* safe default */
return 0;
}
/* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
static void coroutine_fn bdrv_co_do_rw(void *opaque)
bool bdrv_unallocated_blocks_are_zero(BlockDriverState *bs)
{
BlockAIOCBCoroutine *acb = opaque;
BlockDriverState *bs = acb->common.bs;
BlockDriverInfo bdi;
if (!acb->is_write) {
acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
} else {
acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
if (bs->backing_hd) {
return false;
}
bdrv_co_complete(acb);
if (bdrv_get_info(bs, &bdi) == 0) {
return bdi.unallocated_blocks_are_zero;
}
return false;
}
static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
int64_t sector_num,
QEMUIOVector *qiov,
int nb_sectors,
BdrvRequestFlags flags,
BlockCompletionFunc *cb,
void *opaque,
bool is_write)
bool bdrv_can_write_zeroes_with_unmap(BlockDriverState *bs)
{
Coroutine *co;
BlockAIOCBCoroutine *acb;
BlockDriverInfo bdi;
acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
acb->need_bh = true;
acb->req.error = -EINPROGRESS;
acb->req.sector = sector_num;
acb->req.nb_sectors = nb_sectors;
acb->req.qiov = qiov;
acb->req.flags = flags;
acb->is_write = is_write;
if (bs->backing_hd || !(bs->open_flags & BDRV_O_UNMAP)) {
return false;
}
co = qemu_coroutine_create(bdrv_co_do_rw);
qemu_coroutine_enter(co, acb);
if (bdrv_get_info(bs, &bdi) == 0) {
return bdi.can_write_zeroes_with_unmap;
}
bdrv_co_maybe_schedule_bh(acb);
return &acb->common;
return false;
}
static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
const char *bdrv_get_encrypted_filename(BlockDriverState *bs)
{
BlockAIOCBCoroutine *acb = opaque;
BlockDriverState *bs = acb->common.bs;
acb->req.error = bdrv_co_flush(bs);
bdrv_co_complete(acb);
if (bs->backing_hd && bs->backing_hd->encrypted)
return bs->backing_file;
else if (bs->encrypted)
return bs->filename;
else
return NULL;
}
BlockAIOCB *bdrv_aio_flush(BlockDriverState *bs,
BlockCompletionFunc *cb, void *opaque)
void bdrv_get_backing_filename(BlockDriverState *bs,
char *filename, int filename_size)
{
trace_bdrv_aio_flush(bs, opaque);
Coroutine *co;
BlockAIOCBCoroutine *acb;
acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
acb->need_bh = true;
acb->req.error = -EINPROGRESS;
co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
qemu_coroutine_enter(co, acb);
bdrv_co_maybe_schedule_bh(acb);
return &acb->common;
pstrcpy(filename, filename_size, bs->backing_file);
}
static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
{
BlockAIOCBCoroutine *acb = opaque;
BlockDriverState *bs = acb->common.bs;
acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
bdrv_co_complete(acb);
BlockDriver *drv = bs->drv;
if (!drv)
return -ENOMEDIUM;
if (!drv->bdrv_get_info)
return -ENOTSUP;
memset(bdi, 0, sizeof(*bdi));
return drv->bdrv_get_info(bs, bdi);
}
BlockAIOCB *bdrv_aio_discard(BlockDriverState *bs,
int64_t sector_num, int nb_sectors,
BlockCompletionFunc *cb, void *opaque)
ImageInfoSpecific *bdrv_get_specific_info(BlockDriverState *bs)
{
Coroutine *co;
BlockAIOCBCoroutine *acb;
trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
acb->need_bh = true;
acb->req.error = -EINPROGRESS;
acb->req.sector = sector_num;
acb->req.nb_sectors = nb_sectors;
co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
qemu_coroutine_enter(co, acb);
bdrv_co_maybe_schedule_bh(acb);
return &acb->common;
BlockDriver *drv = bs->drv;
if (drv && drv->bdrv_get_specific_info) {
return drv->bdrv_get_specific_info(bs);
}
return NULL;
}
void bdrv_init(void)
void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event)
{
module_call_init(MODULE_INIT_BLOCK);
if (!bs || !bs->drv || !bs->drv->bdrv_debug_event) {
return;
}
bs->drv->bdrv_debug_event(bs, event);
}
void bdrv_init_with_whitelist(void)
int bdrv_debug_breakpoint(BlockDriverState *bs, const char *event,
const char *tag)
{
use_bdrv_whitelist = 1;
bdrv_init();
while (bs && bs->drv && !bs->drv->bdrv_debug_breakpoint) {
bs = bs->file;
}
if (bs && bs->drv && bs->drv->bdrv_debug_breakpoint) {
return bs->drv->bdrv_debug_breakpoint(bs, event, tag);
}
return -ENOTSUP;
}
void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
BlockCompletionFunc *cb, void *opaque)
int bdrv_debug_remove_breakpoint(BlockDriverState *bs, const char *tag)
{
BlockAIOCB *acb;
while (bs && bs->drv && !bs->drv->bdrv_debug_remove_breakpoint) {
bs = bs->file;
}
acb = g_slice_alloc(aiocb_info->aiocb_size);
acb->aiocb_info = aiocb_info;
acb->bs = bs;
acb->cb = cb;
acb->opaque = opaque;
acb->refcnt = 1;
return acb;
}
if (bs && bs->drv && bs->drv->bdrv_debug_remove_breakpoint) {
return bs->drv->bdrv_debug_remove_breakpoint(bs, tag);
}
void qemu_aio_ref(void *p)
{
BlockAIOCB *acb = p;
acb->refcnt++;
return -ENOTSUP;
}
void qemu_aio_unref(void *p)
int bdrv_debug_resume(BlockDriverState *bs, const char *tag)
{
BlockAIOCB *acb = p;
assert(acb->refcnt > 0);
if (--acb->refcnt == 0) {
g_slice_free1(acb->aiocb_info->aiocb_size, acb);
while (bs && (!bs->drv || !bs->drv->bdrv_debug_resume)) {
bs = bs->file;
}
}
/**************************************************************/
/* Coroutine block device emulation */
typedef struct CoroutineIOCompletion {
Coroutine *coroutine;
int ret;
} CoroutineIOCompletion;
static void bdrv_co_io_em_complete(void *opaque, int ret)
{
CoroutineIOCompletion *co = opaque;
if (bs && bs->drv && bs->drv->bdrv_debug_resume) {
return bs->drv->bdrv_debug_resume(bs, tag);
}
co->ret = ret;
qemu_coroutine_enter(co->coroutine, NULL);
return -ENOTSUP;
}
static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
int nb_sectors, QEMUIOVector *iov,
bool is_write)
bool bdrv_debug_is_suspended(BlockDriverState *bs, const char *tag)
{
CoroutineIOCompletion co = {
.coroutine = qemu_coroutine_self(),
};
BlockAIOCB *acb;
if (is_write) {
acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
bdrv_co_io_em_complete, &co);
} else {
acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
bdrv_co_io_em_complete, &co);
while (bs && bs->drv && !bs->drv->bdrv_debug_is_suspended) {
bs = bs->file;
}
trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
if (!acb) {
return -EIO;
if (bs && bs->drv && bs->drv->bdrv_debug_is_suspended) {
return bs->drv->bdrv_debug_is_suspended(bs, tag);
}
qemu_coroutine_yield();
return co.ret;
return false;
}
static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
int64_t sector_num, int nb_sectors,
QEMUIOVector *iov)
int bdrv_is_snapshot(BlockDriverState *bs)
{
return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
return !!(bs->open_flags & BDRV_O_SNAPSHOT);
}
static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
int64_t sector_num, int nb_sectors,
QEMUIOVector *iov)
/* backing_file can either be relative, or absolute, or a protocol. If it is
* relative, it must be relative to the chain. So, passing in bs->filename
* from a BDS as backing_file should not be done, as that may be relative to
* the CWD rather than the chain. */
BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs,
const char *backing_file)
{
return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
}
char *filename_full = NULL;
char *backing_file_full = NULL;
char *filename_tmp = NULL;
int is_protocol = 0;
BlockDriverState *curr_bs = NULL;
BlockDriverState *retval = NULL;
static void coroutine_fn bdrv_flush_co_entry(void *opaque)
{
RwCo *rwco = opaque;
if (!bs || !bs->drv || !backing_file) {
return NULL;
}
rwco->ret = bdrv_co_flush(rwco->bs);
}
filename_full = g_malloc(PATH_MAX);
backing_file_full = g_malloc(PATH_MAX);
filename_tmp = g_malloc(PATH_MAX);
int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
{
int ret;
is_protocol = path_has_protocol(backing_file);
if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
return 0;
for (curr_bs = bs; curr_bs->backing_hd; curr_bs = curr_bs->backing_hd) {
/* If either of the filename paths is actually a protocol, then
* compare unmodified paths; otherwise make paths relative */
if (is_protocol || path_has_protocol(curr_bs->backing_file)) {
if (strcmp(backing_file, curr_bs->backing_file) == 0) {
retval = curr_bs->backing_hd;
break;
}
} else {
/* If not an absolute filename path, make it relative to the current
* image's filename path */
path_combine(filename_tmp, PATH_MAX, curr_bs->filename,
backing_file);
/* Write back cached data to the OS even with cache=unsafe */
BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
if (bs->drv->bdrv_co_flush_to_os) {
ret = bs->drv->bdrv_co_flush_to_os(bs);
if (ret < 0) {
return ret;
/* We are going to compare absolute pathnames */
if (!realpath(filename_tmp, filename_full)) {
continue;
}
/* We need to make sure the backing filename we are comparing against
* is relative to the current image filename (or absolute) */
path_combine(filename_tmp, PATH_MAX, curr_bs->filename,
curr_bs->backing_file);
if (!realpath(filename_tmp, backing_file_full)) {
continue;
}
/* But don't actually force it to the disk with cache=unsafe */
if (bs->open_flags & BDRV_O_NO_FLUSH) {
goto flush_parent;
if (strcmp(backing_file_full, filename_full) == 0) {
retval = curr_bs->backing_hd;
break;
}
}
}
BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
if (bs->drv->bdrv_co_flush_to_disk) {
ret = bs->drv->bdrv_co_flush_to_disk(bs);
} else if (bs->drv->bdrv_aio_flush) {
BlockAIOCB *acb;
CoroutineIOCompletion co = {
.coroutine = qemu_coroutine_self(),
};
g_free(filename_full);
g_free(backing_file_full);
g_free(filename_tmp);
return retval;
}
acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
if (acb == NULL) {
ret = -EIO;
} else {
qemu_coroutine_yield();
ret = co.ret;
}
} else {
/*
* Some block drivers always operate in either writethrough or unsafe
* mode and don't support bdrv_flush therefore. Usually qemu doesn't
* know how the server works (because the behaviour is hardcoded or
* depends on server-side configuration), so we can't ensure that
* everything is safe on disk. Returning an error doesn't work because
* that would break guests even if the server operates in writethrough
* mode.
*
* Let's hope the user knows what he's doing.
*/
ret = 0;
int bdrv_get_backing_file_depth(BlockDriverState *bs)
{
if (!bs->drv) {
return 0;
}
if (ret < 0) {
return ret;
if (!bs->backing_hd) {
return 0;
}
/* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
* in the case of cache=unsafe, so there are no useless flushes.
*/
flush_parent:
return bdrv_co_flush(bs->file);
return 1 + bdrv_get_backing_file_depth(bs->backing_hd);
}
void bdrv_init(void)
{
module_call_init(MODULE_INIT_BLOCK);
}
void bdrv_init_with_whitelist(void)
{
use_bdrv_whitelist = 1;
bdrv_init();
}
void bdrv_invalidate_cache(BlockDriverState *bs, Error **errp)
......@@ -5235,143 +2972,6 @@ void bdrv_invalidate_cache_all(Error **errp)
}
}
int bdrv_flush(BlockDriverState *bs)
{
Coroutine *co;
RwCo rwco = {
.bs = bs,
.ret = NOT_DONE,
};
if (qemu_in_coroutine()) {
/* Fast-path if already in coroutine context */
bdrv_flush_co_entry(&rwco);
} else {
AioContext *aio_context = bdrv_get_aio_context(bs);
co = qemu_coroutine_create(bdrv_flush_co_entry);
qemu_coroutine_enter(co, &rwco);
while (rwco.ret == NOT_DONE) {
aio_poll(aio_context, true);
}
}
return rwco.ret;
}
typedef struct DiscardCo {
BlockDriverState *bs;
int64_t sector_num;
int nb_sectors;
int ret;
} DiscardCo;
static void coroutine_fn bdrv_discard_co_entry(void *opaque)
{
DiscardCo *rwco = opaque;
rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
}
int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
int nb_sectors)
{
int max_discard, ret;
if (!bs->drv) {
return -ENOMEDIUM;
}
ret = bdrv_check_request(bs, sector_num, nb_sectors);
if (ret < 0) {
return ret;
} else if (bs->read_only) {
return -EROFS;
}
bdrv_reset_dirty(bs, sector_num, nb_sectors);
/* Do nothing if disabled. */
if (!(bs->open_flags & BDRV_O_UNMAP)) {
return 0;
}
if (!bs->drv->bdrv_co_discard && !bs->drv->bdrv_aio_discard) {
return 0;
}
max_discard = MIN_NON_ZERO(bs->bl.max_discard, BDRV_REQUEST_MAX_SECTORS);
while (nb_sectors > 0) {
int ret;
int num = nb_sectors;
/* align request */
if (bs->bl.discard_alignment &&
num >= bs->bl.discard_alignment &&
sector_num % bs->bl.discard_alignment) {
if (num > bs->bl.discard_alignment) {
num = bs->bl.discard_alignment;
}
num -= sector_num % bs->bl.discard_alignment;
}
/* limit request size */
if (num > max_discard) {
num = max_discard;
}
if (bs->drv->bdrv_co_discard) {
ret = bs->drv->bdrv_co_discard(bs, sector_num, num);
} else {
BlockAIOCB *acb;
CoroutineIOCompletion co = {
.coroutine = qemu_coroutine_self(),
};
acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
bdrv_co_io_em_complete, &co);
if (acb == NULL) {
return -EIO;
} else {
qemu_coroutine_yield();
ret = co.ret;
}
}
if (ret && ret != -ENOTSUP) {
return ret;
}
sector_num += num;
nb_sectors -= num;
}
return 0;
}
int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
{
Coroutine *co;
DiscardCo rwco = {
.bs = bs,
.sector_num = sector_num,
.nb_sectors = nb_sectors,
.ret = NOT_DONE,
};
if (qemu_in_coroutine()) {
/* Fast-path if already in coroutine context */
bdrv_discard_co_entry(&rwco);
} else {
AioContext *aio_context = bdrv_get_aio_context(bs);
co = qemu_coroutine_create(bdrv_discard_co_entry);
qemu_coroutine_enter(co, &rwco);
while (rwco.ret == NOT_DONE) {
aio_poll(aio_context, true);
}
}
return rwco.ret;
}
/**************************************************************/
/* removable device support */
......@@ -5437,87 +3037,11 @@ void bdrv_lock_medium(BlockDriverState *bs, bool locked)
}
}
/* needed for generic scsi interface */
int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
{
BlockDriver *drv = bs->drv;
if (drv && drv->bdrv_ioctl)
return drv->bdrv_ioctl(bs, req, buf);
return -ENOTSUP;
}
BlockAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
unsigned long int req, void *buf,
BlockCompletionFunc *cb, void *opaque)
{
BlockDriver *drv = bs->drv;
if (drv && drv->bdrv_aio_ioctl)
return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
return NULL;
}
void bdrv_set_guest_block_size(BlockDriverState *bs, int align)
{
bs->guest_block_size = align;
}
void *qemu_blockalign(BlockDriverState *bs, size_t size)
{
return qemu_memalign(bdrv_opt_mem_align(bs), size);
}
void *qemu_blockalign0(BlockDriverState *bs, size_t size)
{
return memset(qemu_blockalign(bs, size), 0, size);
}
void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
{
size_t align = bdrv_opt_mem_align(bs);
/* Ensure that NULL is never returned on success */
assert(align > 0);
if (size == 0) {
size = align;
}
return qemu_try_memalign(align, size);
}
void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
{
void *mem = qemu_try_blockalign(bs, size);
if (mem) {
memset(mem, 0, size);
}
return mem;
}
/*
* Check if all memory in this vector is sector aligned.
*/
bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
{
int i;
size_t alignment = bdrv_opt_mem_align(bs);
for (i = 0; i < qiov->niov; i++) {
if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
return false;
}
if (qiov->iov[i].iov_len % alignment) {
return false;
}
}
return true;
}
BdrvDirtyBitmap *bdrv_find_dirty_bitmap(BlockDriverState *bs, const char *name)
{
BdrvDirtyBitmap *bm;
......@@ -6239,12 +3763,6 @@ void bdrv_remove_aio_context_notifier(BlockDriverState *bs,
abort();
}
void bdrv_add_before_write_notifier(BlockDriverState *bs,
NotifierWithReturn *notifier)
{
notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
}
int bdrv_amend_options(BlockDriverState *bs, QemuOpts *opts,
BlockDriverAmendStatusCB *status_cb)
{
......@@ -6345,36 +3863,6 @@ out:
return to_replace_bs;
}
void bdrv_io_plug(BlockDriverState *bs)
{
BlockDriver *drv = bs->drv;
if (drv && drv->bdrv_io_plug) {
drv->bdrv_io_plug(bs);
} else if (bs->file) {
bdrv_io_plug(bs->file);
}
}
void bdrv_io_unplug(BlockDriverState *bs)
{
BlockDriver *drv = bs->drv;
if (drv && drv->bdrv_io_unplug) {
drv->bdrv_io_unplug(bs);
} else if (bs->file) {
bdrv_io_unplug(bs->file);
}
}
void bdrv_flush_io_queue(BlockDriverState *bs)
{
BlockDriver *drv = bs->drv;
if (drv && drv->bdrv_flush_io_queue) {
drv->bdrv_flush_io_queue(bs);
} else if (bs->file) {
bdrv_flush_io_queue(bs->file);
}
}
static bool append_open_options(QDict *d, BlockDriverState *bs)
{
const QDictEntry *entry;
......
......@@ -9,7 +9,7 @@ block-obj-y += block-backend.o snapshot.o qapi.o
block-obj-$(CONFIG_WIN32) += raw-win32.o win32-aio.o
block-obj-$(CONFIG_POSIX) += raw-posix.o
block-obj-$(CONFIG_LINUX_AIO) += linux-aio.o
block-obj-y += null.o mirror.o
block-obj-y += null.o mirror.o io.o
block-obj-y += nbd.o nbd-client.o sheepdog.o
block-obj-$(CONFIG_LIBISCSI) += iscsi.o
......
/*
* Block layer I/O functions
*
* Copyright (c) 2003 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "trace.h"
#include "sysemu/qtest.h"
#include "block/blockjob.h"
#include "block/block_int.h"
#define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
BlockCompletionFunc *cb, void *opaque);
static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
BlockCompletionFunc *cb, void *opaque);
static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
int64_t sector_num, int nb_sectors,
QEMUIOVector *iov);
static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
int64_t sector_num, int nb_sectors,
QEMUIOVector *iov);
static int coroutine_fn bdrv_co_do_preadv(BlockDriverState *bs,
int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
BdrvRequestFlags flags);
static int coroutine_fn bdrv_co_do_pwritev(BlockDriverState *bs,
int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
BdrvRequestFlags flags);
static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
int64_t sector_num,
QEMUIOVector *qiov,
int nb_sectors,
BdrvRequestFlags flags,
BlockCompletionFunc *cb,
void *opaque,
bool is_write);
static void coroutine_fn bdrv_co_do_rw(void *opaque);
static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
int64_t sector_num, int nb_sectors, BdrvRequestFlags flags);
/* throttling disk I/O limits */
void bdrv_set_io_limits(BlockDriverState *bs,
ThrottleConfig *cfg)
{
int i;
throttle_config(&bs->throttle_state, cfg);
for (i = 0; i < 2; i++) {
qemu_co_enter_next(&bs->throttled_reqs[i]);
}
}
/* this function drain all the throttled IOs */
static bool bdrv_start_throttled_reqs(BlockDriverState *bs)
{
bool drained = false;
bool enabled = bs->io_limits_enabled;
int i;
bs->io_limits_enabled = false;
for (i = 0; i < 2; i++) {
while (qemu_co_enter_next(&bs->throttled_reqs[i])) {
drained = true;
}
}
bs->io_limits_enabled = enabled;
return drained;
}
void bdrv_io_limits_disable(BlockDriverState *bs)
{
bs->io_limits_enabled = false;
bdrv_start_throttled_reqs(bs);
throttle_destroy(&bs->throttle_state);
}
static void bdrv_throttle_read_timer_cb(void *opaque)
{
BlockDriverState *bs = opaque;
qemu_co_enter_next(&bs->throttled_reqs[0]);
}
static void bdrv_throttle_write_timer_cb(void *opaque)
{
BlockDriverState *bs = opaque;
qemu_co_enter_next(&bs->throttled_reqs[1]);
}
/* should be called before bdrv_set_io_limits if a limit is set */
void bdrv_io_limits_enable(BlockDriverState *bs)
{
int clock_type = QEMU_CLOCK_REALTIME;
if (qtest_enabled()) {
/* For testing block IO throttling only */
clock_type = QEMU_CLOCK_VIRTUAL;
}
assert(!bs->io_limits_enabled);
throttle_init(&bs->throttle_state,
bdrv_get_aio_context(bs),
clock_type,
bdrv_throttle_read_timer_cb,
bdrv_throttle_write_timer_cb,
bs);
bs->io_limits_enabled = true;
}
/* This function makes an IO wait if needed
*
* @nb_sectors: the number of sectors of the IO
* @is_write: is the IO a write
*/
static void bdrv_io_limits_intercept(BlockDriverState *bs,
unsigned int bytes,
bool is_write)
{
/* does this io must wait */
bool must_wait = throttle_schedule_timer(&bs->throttle_state, is_write);
/* if must wait or any request of this type throttled queue the IO */
if (must_wait ||
!qemu_co_queue_empty(&bs->throttled_reqs[is_write])) {
qemu_co_queue_wait(&bs->throttled_reqs[is_write]);
}
/* the IO will be executed, do the accounting */
throttle_account(&bs->throttle_state, is_write, bytes);
/* if the next request must wait -> do nothing */
if (throttle_schedule_timer(&bs->throttle_state, is_write)) {
return;
}
/* else queue next request for execution */
qemu_co_queue_next(&bs->throttled_reqs[is_write]);
}
void bdrv_setup_io_funcs(BlockDriver *bdrv)
{
/* Block drivers without coroutine functions need emulation */
if (!bdrv->bdrv_co_readv) {
bdrv->bdrv_co_readv = bdrv_co_readv_em;
bdrv->bdrv_co_writev = bdrv_co_writev_em;
/* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
* the block driver lacks aio we need to emulate that too.
*/
if (!bdrv->bdrv_aio_readv) {
/* add AIO emulation layer */
bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
}
}
}
void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
{
BlockDriver *drv = bs->drv;
Error *local_err = NULL;
memset(&bs->bl, 0, sizeof(bs->bl));
if (!drv) {
return;
}
/* Take some limits from the children as a default */
if (bs->file) {
bdrv_refresh_limits(bs->file, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
bs->bl.opt_transfer_length = bs->file->bl.opt_transfer_length;
bs->bl.max_transfer_length = bs->file->bl.max_transfer_length;
bs->bl.opt_mem_alignment = bs->file->bl.opt_mem_alignment;
} else {
bs->bl.opt_mem_alignment = 512;
}
if (bs->backing_hd) {
bdrv_refresh_limits(bs->backing_hd, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
bs->bl.opt_transfer_length =
MAX(bs->bl.opt_transfer_length,
bs->backing_hd->bl.opt_transfer_length);
bs->bl.max_transfer_length =
MIN_NON_ZERO(bs->bl.max_transfer_length,
bs->backing_hd->bl.max_transfer_length);
bs->bl.opt_mem_alignment =
MAX(bs->bl.opt_mem_alignment,
bs->backing_hd->bl.opt_mem_alignment);
}
/* Then let the driver override it */
if (drv->bdrv_refresh_limits) {
drv->bdrv_refresh_limits(bs, errp);
}
}
/**
* The copy-on-read flag is actually a reference count so multiple users may
* use the feature without worrying about clobbering its previous state.
* Copy-on-read stays enabled until all users have called to disable it.
*/
void bdrv_enable_copy_on_read(BlockDriverState *bs)
{
bs->copy_on_read++;
}
void bdrv_disable_copy_on_read(BlockDriverState *bs)
{
assert(bs->copy_on_read > 0);
bs->copy_on_read--;
}
/* Check if any requests are in-flight (including throttled requests) */
static bool bdrv_requests_pending(BlockDriverState *bs)
{
if (!QLIST_EMPTY(&bs->tracked_requests)) {
return true;
}
if (!qemu_co_queue_empty(&bs->throttled_reqs[0])) {
return true;
}
if (!qemu_co_queue_empty(&bs->throttled_reqs[1])) {
return true;
}
if (bs->file && bdrv_requests_pending(bs->file)) {
return true;
}
if (bs->backing_hd && bdrv_requests_pending(bs->backing_hd)) {
return true;
}
return false;
}
static bool bdrv_drain_one(BlockDriverState *bs)
{
bool bs_busy;
bdrv_flush_io_queue(bs);
bdrv_start_throttled_reqs(bs);
bs_busy = bdrv_requests_pending(bs);
bs_busy |= aio_poll(bdrv_get_aio_context(bs), bs_busy);
return bs_busy;
}
/*
* Wait for pending requests to complete on a single BlockDriverState subtree
*
* See the warning in bdrv_drain_all(). This function can only be called if
* you are sure nothing can generate I/O because you have op blockers
* installed.
*
* Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
* AioContext.
*/
void bdrv_drain(BlockDriverState *bs)
{
while (bdrv_drain_one(bs)) {
/* Keep iterating */
}
}
/*
* Wait for pending requests to complete across all BlockDriverStates
*
* This function does not flush data to disk, use bdrv_flush_all() for that
* after calling this function.
*
* Note that completion of an asynchronous I/O operation can trigger any
* number of other I/O operations on other devices---for example a coroutine
* can be arbitrarily complex and a constant flow of I/O can come until the
* coroutine is complete. Because of this, it is not possible to have a
* function to drain a single device's I/O queue.
*/
void bdrv_drain_all(void)
{
/* Always run first iteration so any pending completion BHs run */
bool busy = true;
BlockDriverState *bs = NULL;
while ((bs = bdrv_next(bs))) {
AioContext *aio_context = bdrv_get_aio_context(bs);
aio_context_acquire(aio_context);
if (bs->job) {
block_job_pause(bs->job);
}
aio_context_release(aio_context);
}
while (busy) {
busy = false;
bs = NULL;
while ((bs = bdrv_next(bs))) {
AioContext *aio_context = bdrv_get_aio_context(bs);
aio_context_acquire(aio_context);
busy |= bdrv_drain_one(bs);
aio_context_release(aio_context);
}
}
bs = NULL;
while ((bs = bdrv_next(bs))) {
AioContext *aio_context = bdrv_get_aio_context(bs);
aio_context_acquire(aio_context);
if (bs->job) {
block_job_resume(bs->job);
}
aio_context_release(aio_context);
}
}
/**
* Remove an active request from the tracked requests list
*
* This function should be called when a tracked request is completing.
*/
static void tracked_request_end(BdrvTrackedRequest *req)
{
if (req->serialising) {
req->bs->serialising_in_flight--;
}
QLIST_REMOVE(req, list);
qemu_co_queue_restart_all(&req->wait_queue);
}
/**
* Add an active request to the tracked requests list
*/
static void tracked_request_begin(BdrvTrackedRequest *req,
BlockDriverState *bs,
int64_t offset,
unsigned int bytes, bool is_write)
{
*req = (BdrvTrackedRequest){
.bs = bs,
.offset = offset,
.bytes = bytes,
.is_write = is_write,
.co = qemu_coroutine_self(),
.serialising = false,
.overlap_offset = offset,
.overlap_bytes = bytes,
};
qemu_co_queue_init(&req->wait_queue);
QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
}
static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
{
int64_t overlap_offset = req->offset & ~(align - 1);
unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
- overlap_offset;
if (!req->serialising) {
req->bs->serialising_in_flight++;
req->serialising = true;
}
req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
}
/**
* Round a region to cluster boundaries
*/
void bdrv_round_to_clusters(BlockDriverState *bs,
int64_t sector_num, int nb_sectors,
int64_t *cluster_sector_num,
int *cluster_nb_sectors)
{
BlockDriverInfo bdi;
if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
*cluster_sector_num = sector_num;
*cluster_nb_sectors = nb_sectors;
} else {
int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
*cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
*cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
nb_sectors, c);
}
}
static int bdrv_get_cluster_size(BlockDriverState *bs)
{
BlockDriverInfo bdi;
int ret;
ret = bdrv_get_info(bs, &bdi);
if (ret < 0 || bdi.cluster_size == 0) {
return bs->request_alignment;
} else {
return bdi.cluster_size;
}
}
static bool tracked_request_overlaps(BdrvTrackedRequest *req,
int64_t offset, unsigned int bytes)
{
/* aaaa bbbb */
if (offset >= req->overlap_offset + req->overlap_bytes) {
return false;
}
/* bbbb aaaa */
if (req->overlap_offset >= offset + bytes) {
return false;
}
return true;
}
static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
{
BlockDriverState *bs = self->bs;
BdrvTrackedRequest *req;
bool retry;
bool waited = false;
if (!bs->serialising_in_flight) {
return false;
}
do {
retry = false;
QLIST_FOREACH(req, &bs->tracked_requests, list) {
if (req == self || (!req->serialising && !self->serialising)) {
continue;
}
if (tracked_request_overlaps(req, self->overlap_offset,
self->overlap_bytes))
{
/* Hitting this means there was a reentrant request, for
* example, a block driver issuing nested requests. This must
* never happen since it means deadlock.
*/
assert(qemu_coroutine_self() != req->co);
/* If the request is already (indirectly) waiting for us, or
* will wait for us as soon as it wakes up, then just go on
* (instead of producing a deadlock in the former case). */
if (!req->waiting_for) {
self->waiting_for = req;
qemu_co_queue_wait(&req->wait_queue);
self->waiting_for = NULL;
retry = true;
waited = true;
break;
}
}
}
} while (retry);
return waited;
}
static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
size_t size)
{
if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
return -EIO;
}
if (!bdrv_is_inserted(bs)) {
return -ENOMEDIUM;
}
if (offset < 0) {
return -EIO;
}
return 0;
}
static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
int nb_sectors)
{
if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
return -EIO;
}
return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
nb_sectors * BDRV_SECTOR_SIZE);
}
typedef struct RwCo {
BlockDriverState *bs;
int64_t offset;
QEMUIOVector *qiov;
bool is_write;
int ret;
BdrvRequestFlags flags;
} RwCo;
static void coroutine_fn bdrv_rw_co_entry(void *opaque)
{
RwCo *rwco = opaque;
if (!rwco->is_write) {
rwco->ret = bdrv_co_do_preadv(rwco->bs, rwco->offset,
rwco->qiov->size, rwco->qiov,
rwco->flags);
} else {
rwco->ret = bdrv_co_do_pwritev(rwco->bs, rwco->offset,
rwco->qiov->size, rwco->qiov,
rwco->flags);
}
}
/*
* Process a vectored synchronous request using coroutines
*/
static int bdrv_prwv_co(BlockDriverState *bs, int64_t offset,
QEMUIOVector *qiov, bool is_write,
BdrvRequestFlags flags)
{
Coroutine *co;
RwCo rwco = {
.bs = bs,
.offset = offset,
.qiov = qiov,
.is_write = is_write,
.ret = NOT_DONE,
.flags = flags,
};
/**
* In sync call context, when the vcpu is blocked, this throttling timer
* will not fire; so the I/O throttling function has to be disabled here
* if it has been enabled.
*/
if (bs->io_limits_enabled) {
fprintf(stderr, "Disabling I/O throttling on '%s' due "
"to synchronous I/O.\n", bdrv_get_device_name(bs));
bdrv_io_limits_disable(bs);
}
if (qemu_in_coroutine()) {
/* Fast-path if already in coroutine context */
bdrv_rw_co_entry(&rwco);
} else {
AioContext *aio_context = bdrv_get_aio_context(bs);
co = qemu_coroutine_create(bdrv_rw_co_entry);
qemu_coroutine_enter(co, &rwco);
while (rwco.ret == NOT_DONE) {
aio_poll(aio_context, true);
}
}
return rwco.ret;
}
/*
* Process a synchronous request using coroutines
*/
static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
int nb_sectors, bool is_write, BdrvRequestFlags flags)
{
QEMUIOVector qiov;
struct iovec iov = {
.iov_base = (void *)buf,
.iov_len = nb_sectors * BDRV_SECTOR_SIZE,
};
if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
return -EINVAL;
}
qemu_iovec_init_external(&qiov, &iov, 1);
return bdrv_prwv_co(bs, sector_num << BDRV_SECTOR_BITS,
&qiov, is_write, flags);
}
/* return < 0 if error. See bdrv_write() for the return codes */
int bdrv_read(BlockDriverState *bs, int64_t sector_num,
uint8_t *buf, int nb_sectors)
{
return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false, 0);
}
/* Just like bdrv_read(), but with I/O throttling temporarily disabled */
int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num,
uint8_t *buf, int nb_sectors)
{
bool enabled;
int ret;
enabled = bs->io_limits_enabled;
bs->io_limits_enabled = false;
ret = bdrv_read(bs, sector_num, buf, nb_sectors);
bs->io_limits_enabled = enabled;
return ret;
}
/* Return < 0 if error. Important errors are:
-EIO generic I/O error (may happen for all errors)
-ENOMEDIUM No media inserted.
-EINVAL Invalid sector number or nb_sectors
-EACCES Trying to write a read-only device
*/
int bdrv_write(BlockDriverState *bs, int64_t sector_num,
const uint8_t *buf, int nb_sectors)
{
return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
}
int bdrv_write_zeroes(BlockDriverState *bs, int64_t sector_num,
int nb_sectors, BdrvRequestFlags flags)
{
return bdrv_rw_co(bs, sector_num, NULL, nb_sectors, true,
BDRV_REQ_ZERO_WRITE | flags);
}
/*
* Completely zero out a block device with the help of bdrv_write_zeroes.
* The operation is sped up by checking the block status and only writing
* zeroes to the device if they currently do not return zeroes. Optional
* flags are passed through to bdrv_write_zeroes (e.g. BDRV_REQ_MAY_UNMAP).
*
* Returns < 0 on error, 0 on success. For error codes see bdrv_write().
*/
int bdrv_make_zero(BlockDriverState *bs, BdrvRequestFlags flags)
{
int64_t target_sectors, ret, nb_sectors, sector_num = 0;
int n;
target_sectors = bdrv_nb_sectors(bs);
if (target_sectors < 0) {
return target_sectors;
}
for (;;) {
nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS);
if (nb_sectors <= 0) {
return 0;
}
ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n);
if (ret < 0) {
error_report("error getting block status at sector %" PRId64 ": %s",
sector_num, strerror(-ret));
return ret;
}
if (ret & BDRV_BLOCK_ZERO) {
sector_num += n;
continue;
}
ret = bdrv_write_zeroes(bs, sector_num, n, flags);
if (ret < 0) {
error_report("error writing zeroes at sector %" PRId64 ": %s",
sector_num, strerror(-ret));
return ret;
}
sector_num += n;
}
}
int bdrv_pread(BlockDriverState *bs, int64_t offset, void *buf, int bytes)
{
QEMUIOVector qiov;
struct iovec iov = {
.iov_base = (void *)buf,
.iov_len = bytes,
};
int ret;
if (bytes < 0) {
return -EINVAL;
}
qemu_iovec_init_external(&qiov, &iov, 1);
ret = bdrv_prwv_co(bs, offset, &qiov, false, 0);
if (ret < 0) {
return ret;
}
return bytes;
}
int bdrv_pwritev(BlockDriverState *bs, int64_t offset, QEMUIOVector *qiov)
{
int ret;
ret = bdrv_prwv_co(bs, offset, qiov, true, 0);
if (ret < 0) {
return ret;
}
return qiov->size;
}
int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
const void *buf, int bytes)
{
QEMUIOVector qiov;
struct iovec iov = {
.iov_base = (void *) buf,
.iov_len = bytes,
};
if (bytes < 0) {
return -EINVAL;
}
qemu_iovec_init_external(&qiov, &iov, 1);
return bdrv_pwritev(bs, offset, &qiov);
}
/*
* Writes to the file and ensures that no writes are reordered across this
* request (acts as a barrier)
*
* Returns 0 on success, -errno in error cases.
*/
int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
const void *buf, int count)
{
int ret;
ret = bdrv_pwrite(bs, offset, buf, count);
if (ret < 0) {
return ret;
}
/* No flush needed for cache modes that already do it */
if (bs->enable_write_cache) {
bdrv_flush(bs);
}
return 0;
}
static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
{
/* Perform I/O through a temporary buffer so that users who scribble over
* their read buffer while the operation is in progress do not end up
* modifying the image file. This is critical for zero-copy guest I/O
* where anything might happen inside guest memory.
*/
void *bounce_buffer;
BlockDriver *drv = bs->drv;
struct iovec iov;
QEMUIOVector bounce_qiov;
int64_t cluster_sector_num;
int cluster_nb_sectors;
size_t skip_bytes;
int ret;
/* Cover entire cluster so no additional backing file I/O is required when
* allocating cluster in the image file.
*/
bdrv_round_to_clusters(bs, sector_num, nb_sectors,
&cluster_sector_num, &cluster_nb_sectors);
trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
cluster_sector_num, cluster_nb_sectors);
iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len);
if (bounce_buffer == NULL) {
ret = -ENOMEM;
goto err;
}
qemu_iovec_init_external(&bounce_qiov, &iov, 1);
ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
&bounce_qiov);
if (ret < 0) {
goto err;
}
if (drv->bdrv_co_write_zeroes &&
buffer_is_zero(bounce_buffer, iov.iov_len)) {
ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
cluster_nb_sectors, 0);
} else {
/* This does not change the data on the disk, it is not necessary
* to flush even in cache=writethrough mode.
*/
ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
&bounce_qiov);
}
if (ret < 0) {
/* It might be okay to ignore write errors for guest requests. If this
* is a deliberate copy-on-read then we don't want to ignore the error.
* Simply report it in all cases.
*/
goto err;
}
skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
nb_sectors * BDRV_SECTOR_SIZE);
err:
qemu_vfree(bounce_buffer);
return ret;
}
/*
* Forwards an already correctly aligned request to the BlockDriver. This
* handles copy on read and zeroing after EOF; any other features must be
* implemented by the caller.
*/
static int coroutine_fn bdrv_aligned_preadv(BlockDriverState *bs,
BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
int64_t align, QEMUIOVector *qiov, int flags)
{
BlockDriver *drv = bs->drv;
int ret;
int64_t sector_num = offset >> BDRV_SECTOR_BITS;
unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS;
assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
assert(!qiov || bytes == qiov->size);
/* Handle Copy on Read and associated serialisation */
if (flags & BDRV_REQ_COPY_ON_READ) {
/* If we touch the same cluster it counts as an overlap. This
* guarantees that allocating writes will be serialized and not race
* with each other for the same cluster. For example, in copy-on-read
* it ensures that the CoR read and write operations are atomic and
* guest writes cannot interleave between them. */
mark_request_serialising(req, bdrv_get_cluster_size(bs));
}
wait_serialising_requests(req);
if (flags & BDRV_REQ_COPY_ON_READ) {
int pnum;
ret = bdrv_is_allocated(bs, sector_num, nb_sectors, &pnum);
if (ret < 0) {
goto out;
}
if (!ret || pnum != nb_sectors) {
ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
goto out;
}
}
/* Forward the request to the BlockDriver */
if (!bs->zero_beyond_eof) {
ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
} else {
/* Read zeros after EOF */
int64_t total_sectors, max_nb_sectors;
total_sectors = bdrv_nb_sectors(bs);
if (total_sectors < 0) {
ret = total_sectors;
goto out;
}
max_nb_sectors = ROUND_UP(MAX(0, total_sectors - sector_num),
align >> BDRV_SECTOR_BITS);
if (nb_sectors < max_nb_sectors) {
ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
} else if (max_nb_sectors > 0) {
QEMUIOVector local_qiov;
qemu_iovec_init(&local_qiov, qiov->niov);
qemu_iovec_concat(&local_qiov, qiov, 0,
max_nb_sectors * BDRV_SECTOR_SIZE);
ret = drv->bdrv_co_readv(bs, sector_num, max_nb_sectors,
&local_qiov);
qemu_iovec_destroy(&local_qiov);
} else {
ret = 0;
}
/* Reading beyond end of file is supposed to produce zeroes */
if (ret == 0 && total_sectors < sector_num + nb_sectors) {
uint64_t offset = MAX(0, total_sectors - sector_num);
uint64_t bytes = (sector_num + nb_sectors - offset) *
BDRV_SECTOR_SIZE;
qemu_iovec_memset(qiov, offset * BDRV_SECTOR_SIZE, 0, bytes);
}
}
out:
return ret;
}
static inline uint64_t bdrv_get_align(BlockDriverState *bs)
{
/* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */
return MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
}
static inline bool bdrv_req_is_aligned(BlockDriverState *bs,
int64_t offset, size_t bytes)
{
int64_t align = bdrv_get_align(bs);
return !(offset & (align - 1) || (bytes & (align - 1)));
}
/*
* Handle a read request in coroutine context
*/
static int coroutine_fn bdrv_co_do_preadv(BlockDriverState *bs,
int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
BdrvRequestFlags flags)
{
BlockDriver *drv = bs->drv;
BdrvTrackedRequest req;
uint64_t align = bdrv_get_align(bs);
uint8_t *head_buf = NULL;
uint8_t *tail_buf = NULL;
QEMUIOVector local_qiov;
bool use_local_qiov = false;
int ret;
if (!drv) {
return -ENOMEDIUM;
}
ret = bdrv_check_byte_request(bs, offset, bytes);
if (ret < 0) {
return ret;
}
if (bs->copy_on_read) {
flags |= BDRV_REQ_COPY_ON_READ;
}
/* throttling disk I/O */
if (bs->io_limits_enabled) {
bdrv_io_limits_intercept(bs, bytes, false);
}
/* Align read if necessary by padding qiov */
if (offset & (align - 1)) {
head_buf = qemu_blockalign(bs, align);
qemu_iovec_init(&local_qiov, qiov->niov + 2);
qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
use_local_qiov = true;
bytes += offset & (align - 1);
offset = offset & ~(align - 1);
}
if ((offset + bytes) & (align - 1)) {
if (!use_local_qiov) {
qemu_iovec_init(&local_qiov, qiov->niov + 1);
qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
use_local_qiov = true;
}
tail_buf = qemu_blockalign(bs, align);
qemu_iovec_add(&local_qiov, tail_buf,
align - ((offset + bytes) & (align - 1)));
bytes = ROUND_UP(bytes, align);
}
tracked_request_begin(&req, bs, offset, bytes, false);
ret = bdrv_aligned_preadv(bs, &req, offset, bytes, align,
use_local_qiov ? &local_qiov : qiov,
flags);
tracked_request_end(&req);
if (use_local_qiov) {
qemu_iovec_destroy(&local_qiov);
qemu_vfree(head_buf);
qemu_vfree(tail_buf);
}
return ret;
}
static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
BdrvRequestFlags flags)
{
if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
return -EINVAL;
}
return bdrv_co_do_preadv(bs, sector_num << BDRV_SECTOR_BITS,
nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
}
int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
int nb_sectors, QEMUIOVector *qiov)
{
trace_bdrv_co_readv(bs, sector_num, nb_sectors);
return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
}
int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
{
trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
BDRV_REQ_COPY_ON_READ);
}
#define MAX_WRITE_ZEROES_BOUNCE_BUFFER 32768
static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
int64_t sector_num, int nb_sectors, BdrvRequestFlags flags)
{
BlockDriver *drv = bs->drv;
QEMUIOVector qiov;
struct iovec iov = {0};
int ret = 0;
int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_write_zeroes,
BDRV_REQUEST_MAX_SECTORS);
while (nb_sectors > 0 && !ret) {
int num = nb_sectors;
/* Align request. Block drivers can expect the "bulk" of the request
* to be aligned.
*/
if (bs->bl.write_zeroes_alignment
&& num > bs->bl.write_zeroes_alignment) {
if (sector_num % bs->bl.write_zeroes_alignment != 0) {
/* Make a small request up to the first aligned sector. */
num = bs->bl.write_zeroes_alignment;
num -= sector_num % bs->bl.write_zeroes_alignment;
} else if ((sector_num + num) % bs->bl.write_zeroes_alignment != 0) {
/* Shorten the request to the last aligned sector. num cannot
* underflow because num > bs->bl.write_zeroes_alignment.
*/
num -= (sector_num + num) % bs->bl.write_zeroes_alignment;
}
}
/* limit request size */
if (num > max_write_zeroes) {
num = max_write_zeroes;
}
ret = -ENOTSUP;
/* First try the efficient write zeroes operation */
if (drv->bdrv_co_write_zeroes) {
ret = drv->bdrv_co_write_zeroes(bs, sector_num, num, flags);
}
if (ret == -ENOTSUP) {
/* Fall back to bounce buffer if write zeroes is unsupported */
int max_xfer_len = MIN_NON_ZERO(bs->bl.max_transfer_length,
MAX_WRITE_ZEROES_BOUNCE_BUFFER);
num = MIN(num, max_xfer_len);
iov.iov_len = num * BDRV_SECTOR_SIZE;
if (iov.iov_base == NULL) {
iov.iov_base = qemu_try_blockalign(bs, num * BDRV_SECTOR_SIZE);
if (iov.iov_base == NULL) {
ret = -ENOMEM;
goto fail;
}
memset(iov.iov_base, 0, num * BDRV_SECTOR_SIZE);
}
qemu_iovec_init_external(&qiov, &iov, 1);
ret = drv->bdrv_co_writev(bs, sector_num, num, &qiov);
/* Keep bounce buffer around if it is big enough for all
* all future requests.
*/
if (num < max_xfer_len) {
qemu_vfree(iov.iov_base);
iov.iov_base = NULL;
}
}
sector_num += num;
nb_sectors -= num;
}
fail:
qemu_vfree(iov.iov_base);
return ret;
}
/*
* Forwards an already correctly aligned write request to the BlockDriver.
*/
static int coroutine_fn bdrv_aligned_pwritev(BlockDriverState *bs,
BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
QEMUIOVector *qiov, int flags)
{
BlockDriver *drv = bs->drv;
bool waited;
int ret;
int64_t sector_num = offset >> BDRV_SECTOR_BITS;
unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS;
assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
assert(!qiov || bytes == qiov->size);
waited = wait_serialising_requests(req);
assert(!waited || !req->serialising);
assert(req->overlap_offset <= offset);
assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
!(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_write_zeroes &&
qemu_iovec_is_zero(qiov)) {
flags |= BDRV_REQ_ZERO_WRITE;
if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
flags |= BDRV_REQ_MAY_UNMAP;
}
}
if (ret < 0) {
/* Do nothing, write notifier decided to fail this request */
} else if (flags & BDRV_REQ_ZERO_WRITE) {
BLKDBG_EVENT(bs, BLKDBG_PWRITEV_ZERO);
ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors, flags);
} else {
BLKDBG_EVENT(bs, BLKDBG_PWRITEV);
ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
}
BLKDBG_EVENT(bs, BLKDBG_PWRITEV_DONE);
if (ret == 0 && !bs->enable_write_cache) {
ret = bdrv_co_flush(bs);
}
bdrv_set_dirty(bs, sector_num, nb_sectors);
block_acct_highest_sector(&bs->stats, sector_num, nb_sectors);
if (ret >= 0) {
bs->total_sectors = MAX(bs->total_sectors, sector_num + nb_sectors);
}
return ret;
}
/*
* Handle a write request in coroutine context
*/
static int coroutine_fn bdrv_co_do_pwritev(BlockDriverState *bs,
int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
BdrvRequestFlags flags)
{
BdrvTrackedRequest req;
uint64_t align = bdrv_get_align(bs);
uint8_t *head_buf = NULL;
uint8_t *tail_buf = NULL;
QEMUIOVector local_qiov;
bool use_local_qiov = false;
int ret;
if (!bs->drv) {
return -ENOMEDIUM;
}
if (bs->read_only) {
return -EACCES;
}
ret = bdrv_check_byte_request(bs, offset, bytes);
if (ret < 0) {
return ret;
}
/* throttling disk I/O */
if (bs->io_limits_enabled) {
bdrv_io_limits_intercept(bs, bytes, true);
}
/*
* Align write if necessary by performing a read-modify-write cycle.
* Pad qiov with the read parts and be sure to have a tracked request not
* only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
*/
tracked_request_begin(&req, bs, offset, bytes, true);
if (offset & (align - 1)) {
QEMUIOVector head_qiov;
struct iovec head_iov;
mark_request_serialising(&req, align);
wait_serialising_requests(&req);
head_buf = qemu_blockalign(bs, align);
head_iov = (struct iovec) {
.iov_base = head_buf,
.iov_len = align,
};
qemu_iovec_init_external(&head_qiov, &head_iov, 1);
BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_HEAD);
ret = bdrv_aligned_preadv(bs, &req, offset & ~(align - 1), align,
align, &head_qiov, 0);
if (ret < 0) {
goto fail;
}
BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
qemu_iovec_init(&local_qiov, qiov->niov + 2);
qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
use_local_qiov = true;
bytes += offset & (align - 1);
offset = offset & ~(align - 1);
}
if ((offset + bytes) & (align - 1)) {
QEMUIOVector tail_qiov;
struct iovec tail_iov;
size_t tail_bytes;
bool waited;
mark_request_serialising(&req, align);
waited = wait_serialising_requests(&req);
assert(!waited || !use_local_qiov);
tail_buf = qemu_blockalign(bs, align);
tail_iov = (struct iovec) {
.iov_base = tail_buf,
.iov_len = align,
};
qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_TAIL);
ret = bdrv_aligned_preadv(bs, &req, (offset + bytes) & ~(align - 1), align,
align, &tail_qiov, 0);
if (ret < 0) {
goto fail;
}
BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
if (!use_local_qiov) {
qemu_iovec_init(&local_qiov, qiov->niov + 1);
qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
use_local_qiov = true;
}
tail_bytes = (offset + bytes) & (align - 1);
qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
bytes = ROUND_UP(bytes, align);
}
if (use_local_qiov) {
/* Local buffer may have non-zero data. */
flags &= ~BDRV_REQ_ZERO_WRITE;
}
ret = bdrv_aligned_pwritev(bs, &req, offset, bytes,
use_local_qiov ? &local_qiov : qiov,
flags);
fail:
tracked_request_end(&req);
if (use_local_qiov) {
qemu_iovec_destroy(&local_qiov);
}
qemu_vfree(head_buf);
qemu_vfree(tail_buf);
return ret;
}
static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
BdrvRequestFlags flags)
{
if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
return -EINVAL;
}
return bdrv_co_do_pwritev(bs, sector_num << BDRV_SECTOR_BITS,
nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
}
int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
int nb_sectors, QEMUIOVector *qiov)
{
trace_bdrv_co_writev(bs, sector_num, nb_sectors);
return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
}
int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
int64_t sector_num, int nb_sectors,
BdrvRequestFlags flags)
{
int ret;
trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors, flags);
if (!(bs->open_flags & BDRV_O_UNMAP)) {
flags &= ~BDRV_REQ_MAY_UNMAP;
}
if (bdrv_req_is_aligned(bs, sector_num << BDRV_SECTOR_BITS,
nb_sectors << BDRV_SECTOR_BITS)) {
ret = bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
BDRV_REQ_ZERO_WRITE | flags);
} else {
uint8_t *buf;
QEMUIOVector local_qiov;
size_t bytes = nb_sectors << BDRV_SECTOR_BITS;
buf = qemu_memalign(bdrv_opt_mem_align(bs), bytes);
memset(buf, 0, bytes);
qemu_iovec_init(&local_qiov, 1);
qemu_iovec_add(&local_qiov, buf, bytes);
ret = bdrv_co_do_writev(bs, sector_num, nb_sectors, &local_qiov,
BDRV_REQ_ZERO_WRITE | flags);
qemu_vfree(buf);
}
return ret;
}
int bdrv_flush_all(void)
{
BlockDriverState *bs = NULL;
int result = 0;
while ((bs = bdrv_next(bs))) {
AioContext *aio_context = bdrv_get_aio_context(bs);
int ret;
aio_context_acquire(aio_context);
ret = bdrv_flush(bs);
if (ret < 0 && !result) {
result = ret;
}
aio_context_release(aio_context);
}
return result;
}
typedef struct BdrvCoGetBlockStatusData {
BlockDriverState *bs;
BlockDriverState *base;
int64_t sector_num;
int nb_sectors;
int *pnum;
int64_t ret;
bool done;
} BdrvCoGetBlockStatusData;
/*
* Returns the allocation status of the specified sectors.
* Drivers not implementing the functionality are assumed to not support
* backing files, hence all their sectors are reported as allocated.
*
* If 'sector_num' is beyond the end of the disk image the return value is 0
* and 'pnum' is set to 0.
*
* 'pnum' is set to the number of sectors (including and immediately following
* the specified sector) that are known to be in the same
* allocated/unallocated state.
*
* 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
* beyond the end of the disk image it will be clamped.
*/
static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs,
int64_t sector_num,
int nb_sectors, int *pnum)
{
int64_t total_sectors;
int64_t n;
int64_t ret, ret2;
total_sectors = bdrv_nb_sectors(bs);
if (total_sectors < 0) {
return total_sectors;
}
if (sector_num >= total_sectors) {
*pnum = 0;
return 0;
}
n = total_sectors - sector_num;
if (n < nb_sectors) {
nb_sectors = n;
}
if (!bs->drv->bdrv_co_get_block_status) {
*pnum = nb_sectors;
ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
if (bs->drv->protocol_name) {
ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE);
}
return ret;
}
ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum);
if (ret < 0) {
*pnum = 0;
return ret;
}
if (ret & BDRV_BLOCK_RAW) {
assert(ret & BDRV_BLOCK_OFFSET_VALID);
return bdrv_get_block_status(bs->file, ret >> BDRV_SECTOR_BITS,
*pnum, pnum);
}
if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
ret |= BDRV_BLOCK_ALLOCATED;
}
if (!(ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO)) {
if (bdrv_unallocated_blocks_are_zero(bs)) {
ret |= BDRV_BLOCK_ZERO;
} else if (bs->backing_hd) {
BlockDriverState *bs2 = bs->backing_hd;
int64_t nb_sectors2 = bdrv_nb_sectors(bs2);
if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) {
ret |= BDRV_BLOCK_ZERO;
}
}
}
if (bs->file &&
(ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
(ret & BDRV_BLOCK_OFFSET_VALID)) {
int file_pnum;
ret2 = bdrv_co_get_block_status(bs->file, ret >> BDRV_SECTOR_BITS,
*pnum, &file_pnum);
if (ret2 >= 0) {
/* Ignore errors. This is just providing extra information, it
* is useful but not necessary.
*/
if (!file_pnum) {
/* !file_pnum indicates an offset at or beyond the EOF; it is
* perfectly valid for the format block driver to point to such
* offsets, so catch it and mark everything as zero */
ret |= BDRV_BLOCK_ZERO;
} else {
/* Limit request to the range reported by the protocol driver */
*pnum = file_pnum;
ret |= (ret2 & BDRV_BLOCK_ZERO);
}
}
}
return ret;
}
/* Coroutine wrapper for bdrv_get_block_status() */
static void coroutine_fn bdrv_get_block_status_co_entry(void *opaque)
{
BdrvCoGetBlockStatusData *data = opaque;
BlockDriverState *bs = data->bs;
data->ret = bdrv_co_get_block_status(bs, data->sector_num, data->nb_sectors,
data->pnum);
data->done = true;
}
/*
* Synchronous wrapper around bdrv_co_get_block_status().
*
* See bdrv_co_get_block_status() for details.
*/
int64_t bdrv_get_block_status(BlockDriverState *bs, int64_t sector_num,
int nb_sectors, int *pnum)
{
Coroutine *co;
BdrvCoGetBlockStatusData data = {
.bs = bs,
.sector_num = sector_num,
.nb_sectors = nb_sectors,
.pnum = pnum,
.done = false,
};
if (qemu_in_coroutine()) {
/* Fast-path if already in coroutine context */
bdrv_get_block_status_co_entry(&data);
} else {
AioContext *aio_context = bdrv_get_aio_context(bs);
co = qemu_coroutine_create(bdrv_get_block_status_co_entry);
qemu_coroutine_enter(co, &data);
while (!data.done) {
aio_poll(aio_context, true);
}
}
return data.ret;
}
int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num,
int nb_sectors, int *pnum)
{
int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum);
if (ret < 0) {
return ret;
}
return !!(ret & BDRV_BLOCK_ALLOCATED);
}
/*
* Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
*
* Return true if the given sector is allocated in any image between
* BASE and TOP (inclusive). BASE can be NULL to check if the given
* sector is allocated in any image of the chain. Return false otherwise.
*
* 'pnum' is set to the number of sectors (including and immediately following
* the specified sector) that are known to be in the same
* allocated/unallocated state.
*
*/
int bdrv_is_allocated_above(BlockDriverState *top,
BlockDriverState *base,
int64_t sector_num,
int nb_sectors, int *pnum)
{
BlockDriverState *intermediate;
int ret, n = nb_sectors;
intermediate = top;
while (intermediate && intermediate != base) {
int pnum_inter;
ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors,
&pnum_inter);
if (ret < 0) {
return ret;
} else if (ret) {
*pnum = pnum_inter;
return 1;
}
/*
* [sector_num, nb_sectors] is unallocated on top but intermediate
* might have
*
* [sector_num+x, nr_sectors] allocated.
*/
if (n > pnum_inter &&
(intermediate == top ||
sector_num + pnum_inter < intermediate->total_sectors)) {
n = pnum_inter;
}
intermediate = intermediate->backing_hd;
}
*pnum = n;
return 0;
}
int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
const uint8_t *buf, int nb_sectors)
{
BlockDriver *drv = bs->drv;
int ret;
if (!drv) {
return -ENOMEDIUM;
}
if (!drv->bdrv_write_compressed) {
return -ENOTSUP;
}
ret = bdrv_check_request(bs, sector_num, nb_sectors);
if (ret < 0) {
return ret;
}
assert(QLIST_EMPTY(&bs->dirty_bitmaps));
return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
}
int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
int64_t pos, int size)
{
QEMUIOVector qiov;
struct iovec iov = {
.iov_base = (void *) buf,
.iov_len = size,
};
qemu_iovec_init_external(&qiov, &iov, 1);
return bdrv_writev_vmstate(bs, &qiov, pos);
}
int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
{
BlockDriver *drv = bs->drv;
if (!drv) {
return -ENOMEDIUM;
} else if (drv->bdrv_save_vmstate) {
return drv->bdrv_save_vmstate(bs, qiov, pos);
} else if (bs->file) {
return bdrv_writev_vmstate(bs->file, qiov, pos);
}
return -ENOTSUP;
}
int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
int64_t pos, int size)
{
BlockDriver *drv = bs->drv;
if (!drv)
return -ENOMEDIUM;
if (drv->bdrv_load_vmstate)
return drv->bdrv_load_vmstate(bs, buf, pos, size);
if (bs->file)
return bdrv_load_vmstate(bs->file, buf, pos, size);
return -ENOTSUP;
}
/**************************************************************/
/* async I/Os */
BlockAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
QEMUIOVector *qiov, int nb_sectors,
BlockCompletionFunc *cb, void *opaque)
{
trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0,
cb, opaque, false);
}
BlockAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
QEMUIOVector *qiov, int nb_sectors,
BlockCompletionFunc *cb, void *opaque)
{
trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0,
cb, opaque, true);
}
BlockAIOCB *bdrv_aio_write_zeroes(BlockDriverState *bs,
int64_t sector_num, int nb_sectors, BdrvRequestFlags flags,
BlockCompletionFunc *cb, void *opaque)
{
trace_bdrv_aio_write_zeroes(bs, sector_num, nb_sectors, flags, opaque);
return bdrv_co_aio_rw_vector(bs, sector_num, NULL, nb_sectors,
BDRV_REQ_ZERO_WRITE | flags,
cb, opaque, true);
}
typedef struct MultiwriteCB {
int error;
int num_requests;
int num_callbacks;
struct {
BlockCompletionFunc *cb;
void *opaque;
QEMUIOVector *free_qiov;
} callbacks[];
} MultiwriteCB;
static void multiwrite_user_cb(MultiwriteCB *mcb)
{
int i;
for (i = 0; i < mcb->num_callbacks; i++) {
mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
if (mcb->callbacks[i].free_qiov) {
qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
}
g_free(mcb->callbacks[i].free_qiov);
}
}
static void multiwrite_cb(void *opaque, int ret)
{
MultiwriteCB *mcb = opaque;
trace_multiwrite_cb(mcb, ret);
if (ret < 0 && !mcb->error) {
mcb->error = ret;
}
mcb->num_requests--;
if (mcb->num_requests == 0) {
multiwrite_user_cb(mcb);
g_free(mcb);
}
}
static int multiwrite_req_compare(const void *a, const void *b)
{
const BlockRequest *req1 = a, *req2 = b;
/*
* Note that we can't simply subtract req2->sector from req1->sector
* here as that could overflow the return value.
*/
if (req1->sector > req2->sector) {
return 1;
} else if (req1->sector < req2->sector) {
return -1;
} else {
return 0;
}
}
/*
* Takes a bunch of requests and tries to merge them. Returns the number of
* requests that remain after merging.
*/
static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
int num_reqs, MultiwriteCB *mcb)
{
int i, outidx;
// Sort requests by start sector
qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
// Check if adjacent requests touch the same clusters. If so, combine them,
// filling up gaps with zero sectors.
outidx = 0;
for (i = 1; i < num_reqs; i++) {
int merge = 0;
int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
// Handle exactly sequential writes and overlapping writes.
if (reqs[i].sector <= oldreq_last) {
merge = 1;
}
if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
merge = 0;
}
if (bs->bl.max_transfer_length && reqs[outidx].nb_sectors +
reqs[i].nb_sectors > bs->bl.max_transfer_length) {
merge = 0;
}
if (merge) {
size_t size;
QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
qemu_iovec_init(qiov,
reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
// Add the first request to the merged one. If the requests are
// overlapping, drop the last sectors of the first request.
size = (reqs[i].sector - reqs[outidx].sector) << 9;
qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size);
// We should need to add any zeros between the two requests
assert (reqs[i].sector <= oldreq_last);
// Add the second request
qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size);
// Add tail of first request, if necessary
if (qiov->size < reqs[outidx].qiov->size) {
qemu_iovec_concat(qiov, reqs[outidx].qiov, qiov->size,
reqs[outidx].qiov->size - qiov->size);
}
reqs[outidx].nb_sectors = qiov->size >> 9;
reqs[outidx].qiov = qiov;
mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
} else {
outidx++;
reqs[outidx].sector = reqs[i].sector;
reqs[outidx].nb_sectors = reqs[i].nb_sectors;
reqs[outidx].qiov = reqs[i].qiov;
}
}
block_acct_merge_done(&bs->stats, BLOCK_ACCT_WRITE, num_reqs - outidx - 1);
return outidx + 1;
}
/*
* Submit multiple AIO write requests at once.
*
* On success, the function returns 0 and all requests in the reqs array have
* been submitted. In error case this function returns -1, and any of the
* requests may or may not be submitted yet. In particular, this means that the
* callback will be called for some of the requests, for others it won't. The
* caller must check the error field of the BlockRequest to wait for the right
* callbacks (if error != 0, no callback will be called).
*
* The implementation may modify the contents of the reqs array, e.g. to merge
* requests. However, the fields opaque and error are left unmodified as they
* are used to signal failure for a single request to the caller.
*/
int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
{
MultiwriteCB *mcb;
int i;
/* don't submit writes if we don't have a medium */
if (bs->drv == NULL) {
for (i = 0; i < num_reqs; i++) {
reqs[i].error = -ENOMEDIUM;
}
return -1;
}
if (num_reqs == 0) {
return 0;
}
// Create MultiwriteCB structure
mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
mcb->num_requests = 0;
mcb->num_callbacks = num_reqs;
for (i = 0; i < num_reqs; i++) {
mcb->callbacks[i].cb = reqs[i].cb;
mcb->callbacks[i].opaque = reqs[i].opaque;
}
// Check for mergable requests
num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
/* Run the aio requests. */
mcb->num_requests = num_reqs;
for (i = 0; i < num_reqs; i++) {
bdrv_co_aio_rw_vector(bs, reqs[i].sector, reqs[i].qiov,
reqs[i].nb_sectors, reqs[i].flags,
multiwrite_cb, mcb,
true);
}
return 0;
}
void bdrv_aio_cancel(BlockAIOCB *acb)
{
qemu_aio_ref(acb);
bdrv_aio_cancel_async(acb);
while (acb->refcnt > 1) {
if (acb->aiocb_info->get_aio_context) {
aio_poll(acb->aiocb_info->get_aio_context(acb), true);
} else if (acb->bs) {
aio_poll(bdrv_get_aio_context(acb->bs), true);
} else {
abort();
}
}
qemu_aio_unref(acb);
}
/* Async version of aio cancel. The caller is not blocked if the acb implements
* cancel_async, otherwise we do nothing and let the request normally complete.
* In either case the completion callback must be called. */
void bdrv_aio_cancel_async(BlockAIOCB *acb)
{
if (acb->aiocb_info->cancel_async) {
acb->aiocb_info->cancel_async(acb);
}
}
/**************************************************************/
/* async block device emulation */
typedef struct BlockAIOCBSync {
BlockAIOCB common;
QEMUBH *bh;
int ret;
/* vector translation state */
QEMUIOVector *qiov;
uint8_t *bounce;
int is_write;
} BlockAIOCBSync;
static const AIOCBInfo bdrv_em_aiocb_info = {
.aiocb_size = sizeof(BlockAIOCBSync),
};
static void bdrv_aio_bh_cb(void *opaque)
{
BlockAIOCBSync *acb = opaque;
if (!acb->is_write && acb->ret >= 0) {
qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size);
}
qemu_vfree(acb->bounce);
acb->common.cb(acb->common.opaque, acb->ret);
qemu_bh_delete(acb->bh);
acb->bh = NULL;
qemu_aio_unref(acb);
}
static BlockAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
int64_t sector_num,
QEMUIOVector *qiov,
int nb_sectors,
BlockCompletionFunc *cb,
void *opaque,
int is_write)
{
BlockAIOCBSync *acb;
acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque);
acb->is_write = is_write;
acb->qiov = qiov;
acb->bounce = qemu_try_blockalign(bs, qiov->size);
acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_aio_bh_cb, acb);
if (acb->bounce == NULL) {
acb->ret = -ENOMEM;
} else if (is_write) {
qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
} else {
acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
}
qemu_bh_schedule(acb->bh);
return &acb->common;
}
static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
BlockCompletionFunc *cb, void *opaque)
{
return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
}
static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
BlockCompletionFunc *cb, void *opaque)
{
return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
}
typedef struct BlockAIOCBCoroutine {
BlockAIOCB common;
BlockRequest req;
bool is_write;
bool need_bh;
bool *done;
QEMUBH* bh;
} BlockAIOCBCoroutine;
static const AIOCBInfo bdrv_em_co_aiocb_info = {
.aiocb_size = sizeof(BlockAIOCBCoroutine),
};
static void bdrv_co_complete(BlockAIOCBCoroutine *acb)
{
if (!acb->need_bh) {
acb->common.cb(acb->common.opaque, acb->req.error);
qemu_aio_unref(acb);
}
}
static void bdrv_co_em_bh(void *opaque)
{
BlockAIOCBCoroutine *acb = opaque;
assert(!acb->need_bh);
qemu_bh_delete(acb->bh);
bdrv_co_complete(acb);
}
static void bdrv_co_maybe_schedule_bh(BlockAIOCBCoroutine *acb)
{
acb->need_bh = false;
if (acb->req.error != -EINPROGRESS) {
BlockDriverState *bs = acb->common.bs;
acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_co_em_bh, acb);
qemu_bh_schedule(acb->bh);
}
}
/* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
static void coroutine_fn bdrv_co_do_rw(void *opaque)
{
BlockAIOCBCoroutine *acb = opaque;
BlockDriverState *bs = acb->common.bs;
if (!acb->is_write) {
acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
} else {
acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
}
bdrv_co_complete(acb);
}
static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
int64_t sector_num,
QEMUIOVector *qiov,
int nb_sectors,
BdrvRequestFlags flags,
BlockCompletionFunc *cb,
void *opaque,
bool is_write)
{
Coroutine *co;
BlockAIOCBCoroutine *acb;
acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
acb->need_bh = true;
acb->req.error = -EINPROGRESS;
acb->req.sector = sector_num;
acb->req.nb_sectors = nb_sectors;
acb->req.qiov = qiov;
acb->req.flags = flags;
acb->is_write = is_write;
co = qemu_coroutine_create(bdrv_co_do_rw);
qemu_coroutine_enter(co, acb);
bdrv_co_maybe_schedule_bh(acb);
return &acb->common;
}
static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
{
BlockAIOCBCoroutine *acb = opaque;
BlockDriverState *bs = acb->common.bs;
acb->req.error = bdrv_co_flush(bs);
bdrv_co_complete(acb);
}
BlockAIOCB *bdrv_aio_flush(BlockDriverState *bs,
BlockCompletionFunc *cb, void *opaque)
{
trace_bdrv_aio_flush(bs, opaque);
Coroutine *co;
BlockAIOCBCoroutine *acb;
acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
acb->need_bh = true;
acb->req.error = -EINPROGRESS;
co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
qemu_coroutine_enter(co, acb);
bdrv_co_maybe_schedule_bh(acb);
return &acb->common;
}
static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
{
BlockAIOCBCoroutine *acb = opaque;
BlockDriverState *bs = acb->common.bs;
acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
bdrv_co_complete(acb);
}
BlockAIOCB *bdrv_aio_discard(BlockDriverState *bs,
int64_t sector_num, int nb_sectors,
BlockCompletionFunc *cb, void *opaque)
{
Coroutine *co;
BlockAIOCBCoroutine *acb;
trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
acb->need_bh = true;
acb->req.error = -EINPROGRESS;
acb->req.sector = sector_num;
acb->req.nb_sectors = nb_sectors;
co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
qemu_coroutine_enter(co, acb);
bdrv_co_maybe_schedule_bh(acb);
return &acb->common;
}
void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
BlockCompletionFunc *cb, void *opaque)
{
BlockAIOCB *acb;
acb = g_slice_alloc(aiocb_info->aiocb_size);
acb->aiocb_info = aiocb_info;
acb->bs = bs;
acb->cb = cb;
acb->opaque = opaque;
acb->refcnt = 1;
return acb;
}
void qemu_aio_ref(void *p)
{
BlockAIOCB *acb = p;
acb->refcnt++;
}
void qemu_aio_unref(void *p)
{
BlockAIOCB *acb = p;
assert(acb->refcnt > 0);
if (--acb->refcnt == 0) {
g_slice_free1(acb->aiocb_info->aiocb_size, acb);
}
}
/**************************************************************/
/* Coroutine block device emulation */
typedef struct CoroutineIOCompletion {
Coroutine *coroutine;
int ret;
} CoroutineIOCompletion;
static void bdrv_co_io_em_complete(void *opaque, int ret)
{
CoroutineIOCompletion *co = opaque;
co->ret = ret;
qemu_coroutine_enter(co->coroutine, NULL);
}
static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
int nb_sectors, QEMUIOVector *iov,
bool is_write)
{
CoroutineIOCompletion co = {
.coroutine = qemu_coroutine_self(),
};
BlockAIOCB *acb;
if (is_write) {
acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
bdrv_co_io_em_complete, &co);
} else {
acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
bdrv_co_io_em_complete, &co);
}
trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
if (!acb) {
return -EIO;
}
qemu_coroutine_yield();
return co.ret;
}
static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
int64_t sector_num, int nb_sectors,
QEMUIOVector *iov)
{
return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
}
static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
int64_t sector_num, int nb_sectors,
QEMUIOVector *iov)
{
return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
}
static void coroutine_fn bdrv_flush_co_entry(void *opaque)
{
RwCo *rwco = opaque;
rwco->ret = bdrv_co_flush(rwco->bs);
}
int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
{
int ret;
if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
return 0;
}
/* Write back cached data to the OS even with cache=unsafe */
BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
if (bs->drv->bdrv_co_flush_to_os) {
ret = bs->drv->bdrv_co_flush_to_os(bs);
if (ret < 0) {
return ret;
}
}
/* But don't actually force it to the disk with cache=unsafe */
if (bs->open_flags & BDRV_O_NO_FLUSH) {
goto flush_parent;
}
BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
if (bs->drv->bdrv_co_flush_to_disk) {
ret = bs->drv->bdrv_co_flush_to_disk(bs);
} else if (bs->drv->bdrv_aio_flush) {
BlockAIOCB *acb;
CoroutineIOCompletion co = {
.coroutine = qemu_coroutine_self(),
};
acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
if (acb == NULL) {
ret = -EIO;
} else {
qemu_coroutine_yield();
ret = co.ret;
}
} else {
/*
* Some block drivers always operate in either writethrough or unsafe
* mode and don't support bdrv_flush therefore. Usually qemu doesn't
* know how the server works (because the behaviour is hardcoded or
* depends on server-side configuration), so we can't ensure that
* everything is safe on disk. Returning an error doesn't work because
* that would break guests even if the server operates in writethrough
* mode.
*
* Let's hope the user knows what he's doing.
*/
ret = 0;
}
if (ret < 0) {
return ret;
}
/* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
* in the case of cache=unsafe, so there are no useless flushes.
*/
flush_parent:
return bdrv_co_flush(bs->file);
}
int bdrv_flush(BlockDriverState *bs)
{
Coroutine *co;
RwCo rwco = {
.bs = bs,
.ret = NOT_DONE,
};
if (qemu_in_coroutine()) {
/* Fast-path if already in coroutine context */
bdrv_flush_co_entry(&rwco);
} else {
AioContext *aio_context = bdrv_get_aio_context(bs);
co = qemu_coroutine_create(bdrv_flush_co_entry);
qemu_coroutine_enter(co, &rwco);
while (rwco.ret == NOT_DONE) {
aio_poll(aio_context, true);
}
}
return rwco.ret;
}
typedef struct DiscardCo {
BlockDriverState *bs;
int64_t sector_num;
int nb_sectors;
int ret;
} DiscardCo;
static void coroutine_fn bdrv_discard_co_entry(void *opaque)
{
DiscardCo *rwco = opaque;
rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
}
int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
int nb_sectors)
{
int max_discard, ret;
if (!bs->drv) {
return -ENOMEDIUM;
}
ret = bdrv_check_request(bs, sector_num, nb_sectors);
if (ret < 0) {
return ret;
} else if (bs->read_only) {
return -EROFS;
}
bdrv_reset_dirty(bs, sector_num, nb_sectors);
/* Do nothing if disabled. */
if (!(bs->open_flags & BDRV_O_UNMAP)) {
return 0;
}
if (!bs->drv->bdrv_co_discard && !bs->drv->bdrv_aio_discard) {
return 0;
}
max_discard = MIN_NON_ZERO(bs->bl.max_discard, BDRV_REQUEST_MAX_SECTORS);
while (nb_sectors > 0) {
int ret;
int num = nb_sectors;
/* align request */
if (bs->bl.discard_alignment &&
num >= bs->bl.discard_alignment &&
sector_num % bs->bl.discard_alignment) {
if (num > bs->bl.discard_alignment) {
num = bs->bl.discard_alignment;
}
num -= sector_num % bs->bl.discard_alignment;
}
/* limit request size */
if (num > max_discard) {
num = max_discard;
}
if (bs->drv->bdrv_co_discard) {
ret = bs->drv->bdrv_co_discard(bs, sector_num, num);
} else {
BlockAIOCB *acb;
CoroutineIOCompletion co = {
.coroutine = qemu_coroutine_self(),
};
acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
bdrv_co_io_em_complete, &co);
if (acb == NULL) {
return -EIO;
} else {
qemu_coroutine_yield();
ret = co.ret;
}
}
if (ret && ret != -ENOTSUP) {
return ret;
}
sector_num += num;
nb_sectors -= num;
}
return 0;
}
int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
{
Coroutine *co;
DiscardCo rwco = {
.bs = bs,
.sector_num = sector_num,
.nb_sectors = nb_sectors,
.ret = NOT_DONE,
};
if (qemu_in_coroutine()) {
/* Fast-path if already in coroutine context */
bdrv_discard_co_entry(&rwco);
} else {
AioContext *aio_context = bdrv_get_aio_context(bs);
co = qemu_coroutine_create(bdrv_discard_co_entry);
qemu_coroutine_enter(co, &rwco);
while (rwco.ret == NOT_DONE) {
aio_poll(aio_context, true);
}
}
return rwco.ret;
}
/* needed for generic scsi interface */
int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
{
BlockDriver *drv = bs->drv;
if (drv && drv->bdrv_ioctl)
return drv->bdrv_ioctl(bs, req, buf);
return -ENOTSUP;
}
BlockAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
unsigned long int req, void *buf,
BlockCompletionFunc *cb, void *opaque)
{
BlockDriver *drv = bs->drv;
if (drv && drv->bdrv_aio_ioctl)
return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
return NULL;
}
void *qemu_blockalign(BlockDriverState *bs, size_t size)
{
return qemu_memalign(bdrv_opt_mem_align(bs), size);
}
void *qemu_blockalign0(BlockDriverState *bs, size_t size)
{
return memset(qemu_blockalign(bs, size), 0, size);
}
void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
{
size_t align = bdrv_opt_mem_align(bs);
/* Ensure that NULL is never returned on success */
assert(align > 0);
if (size == 0) {
size = align;
}
return qemu_try_memalign(align, size);
}
void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
{
void *mem = qemu_try_blockalign(bs, size);
if (mem) {
memset(mem, 0, size);
}
return mem;
}
/*
* Check if all memory in this vector is sector aligned.
*/
bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
{
int i;
size_t alignment = bdrv_opt_mem_align(bs);
for (i = 0; i < qiov->niov; i++) {
if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
return false;
}
if (qiov->iov[i].iov_len % alignment) {
return false;
}
}
return true;
}
void bdrv_add_before_write_notifier(BlockDriverState *bs,
NotifierWithReturn *notifier)
{
notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
}
void bdrv_io_plug(BlockDriverState *bs)
{
BlockDriver *drv = bs->drv;
if (drv && drv->bdrv_io_plug) {
drv->bdrv_io_plug(bs);
} else if (bs->file) {
bdrv_io_plug(bs->file);
}
}
void bdrv_io_unplug(BlockDriverState *bs)
{
BlockDriver *drv = bs->drv;
if (drv && drv->bdrv_io_unplug) {
drv->bdrv_io_unplug(bs);
} else if (bs->file) {
bdrv_io_unplug(bs->file);
}
}
void bdrv_flush_io_queue(BlockDriverState *bs)
{
BlockDriver *drv = bs->drv;
if (drv && drv->bdrv_flush_io_queue) {
drv->bdrv_flush_io_queue(bs);
} else if (bs->file) {
bdrv_flush_io_queue(bs->file);
}
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册