diff --git a/hw/arm/aspeed.c b/hw/arm/aspeed.c index 40c13838fb2d843428eb240843e22a4257a4851f..a92c2f1c362b0b061f37049398da1a4968466cf0 100644 --- a/hw/arm/aspeed.c +++ b/hw/arm/aspeed.c @@ -20,6 +20,8 @@ #include "qemu/log.h" #include "sysemu/block-backend.h" #include "sysemu/blockdev.h" +#include "hw/loader.h" +#include "qemu/error-report.h" static struct arm_boot_info aspeed_board_binfo = { .board_id = -1, /* device-tree-only board */ @@ -104,6 +106,28 @@ static const AspeedBoardConfig aspeed_boards[] = { }, }; +#define FIRMWARE_ADDR 0x0 + +static void write_boot_rom(DriveInfo *dinfo, hwaddr addr, size_t rom_size, + Error **errp) +{ + BlockBackend *blk = blk_by_legacy_dinfo(dinfo); + uint8_t *storage; + + if (rom_size > blk_getlength(blk)) { + rom_size = blk_getlength(blk); + } + + storage = g_new0(uint8_t, rom_size); + if (blk_pread(blk, 0, storage, rom_size) < 0) { + error_setg(errp, "failed to read the initial flash content"); + return; + } + + rom_add_blob_fixed("aspeed.boot_rom", storage, rom_size, addr); + g_free(storage); +} + static void aspeed_board_init_flashes(AspeedSMCState *s, const char *flashtype, Error **errp) { @@ -135,6 +159,7 @@ static void aspeed_board_init(MachineState *machine, { AspeedBoardState *bmc; AspeedSoCClass *sc; + DriveInfo *drive0 = drive_get(IF_MTD, 0, 0); bmc = g_new0(AspeedBoardState, 1); object_initialize(&bmc->soc, (sizeof(bmc->soc)), cfg->soc_name); @@ -168,6 +193,22 @@ static void aspeed_board_init(MachineState *machine, aspeed_board_init_flashes(&bmc->soc.fmc, cfg->fmc_model, &error_abort); aspeed_board_init_flashes(&bmc->soc.spi[0], cfg->spi_model, &error_abort); + /* Install first FMC flash content as a boot rom. */ + if (drive0) { + AspeedSMCFlash *fl = &bmc->soc.fmc.flashes[0]; + MemoryRegion *boot_rom = g_new(MemoryRegion, 1); + + /* + * create a ROM region using the default mapping window size of + * the flash module. + */ + memory_region_init_rom(boot_rom, OBJECT(bmc), "aspeed.boot_rom", + fl->size, &error_abort); + memory_region_add_subregion(get_system_memory(), FIRMWARE_ADDR, + boot_rom); + write_boot_rom(drive0, FIRMWARE_ADDR, fl->size, &error_abort); + } + aspeed_board_binfo.kernel_filename = machine->kernel_filename; aspeed_board_binfo.initrd_filename = machine->initrd_filename; aspeed_board_binfo.kernel_cmdline = machine->kernel_cmdline; diff --git a/hw/arm/imx25_pdk.c b/hw/arm/imx25_pdk.c index 025b60843e6c59e80484997785297708d1056d8e..44e741fde3e84300d1140953535c3fbbb33f51dc 100644 --- a/hw/arm/imx25_pdk.c +++ b/hw/arm/imx25_pdk.c @@ -139,7 +139,7 @@ static void imx25_pdk_init(MachineState *machine) * of simple qtest. See "make check" for details. */ i2c_create_slave((I2CBus *)qdev_get_child_bus(DEVICE(&s->soc.i2c[0]), - "i2c"), + "i2c-bus.0"), "ds1338", 0x68); } } diff --git a/hw/arm/virt-acpi-build.c b/hw/arm/virt-acpi-build.c index 085a611173781e0bd15b10c7cc7abdcd32539c09..d0a8a0ff1ef08120589136191554534befe7a7e1 100644 --- a/hw/arm/virt-acpi-build.c +++ b/hw/arm/virt-acpi-build.c @@ -310,6 +310,13 @@ static void acpi_dsdt_add_pci(Aml *scope, const MemMapEntry *memmap, Aml *dev_rp0 = aml_device("%s", "RP0"); aml_append(dev_rp0, aml_name_decl("_ADR", aml_int(0))); aml_append(dev, dev_rp0); + + Aml *dev_res0 = aml_device("%s", "RES0"); + aml_append(dev_res0, aml_name_decl("_HID", aml_string("PNP0C02"))); + crs = aml_resource_template(); + aml_append(crs, aml_memory32_fixed(base_ecam, size_ecam, AML_READ_WRITE)); + aml_append(dev_res0, aml_name_decl("_CRS", crs)); + aml_append(dev, dev_res0); aml_append(scope, dev); } @@ -607,6 +614,9 @@ build_madt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms) if (arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { gicc->performance_interrupt = cpu_to_le32(PPI(VIRTUAL_PMU_IRQ)); } + if (vms->virt && vms->gic_version == 3) { + gicc->vgic_interrupt = cpu_to_le32(PPI(ARCH_GICV3_MAINT_IRQ)); + } } if (vms->gic_version == 3) { @@ -643,16 +653,30 @@ build_madt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms) } /* FADT */ -static void -build_fadt(GArray *table_data, BIOSLinker *linker, unsigned dsdt_tbl_offset) +static void build_fadt(GArray *table_data, BIOSLinker *linker, + VirtMachineState *vms, unsigned dsdt_tbl_offset) { AcpiFadtDescriptorRev5_1 *fadt = acpi_data_push(table_data, sizeof(*fadt)); unsigned dsdt_entry_offset = (char *)&fadt->dsdt - table_data->data; + uint16_t bootflags; + + switch (vms->psci_conduit) { + case QEMU_PSCI_CONDUIT_DISABLED: + bootflags = 0; + break; + case QEMU_PSCI_CONDUIT_HVC: + bootflags = ACPI_FADT_ARM_PSCI_COMPLIANT | ACPI_FADT_ARM_PSCI_USE_HVC; + break; + case QEMU_PSCI_CONDUIT_SMC: + bootflags = ACPI_FADT_ARM_PSCI_COMPLIANT; + break; + default: + g_assert_not_reached(); + } - /* Hardware Reduced = 1 and use PSCI 0.2+ and with HVC */ + /* Hardware Reduced = 1 and use PSCI 0.2+ */ fadt->flags = cpu_to_le32(1 << ACPI_FADT_F_HW_REDUCED_ACPI); - fadt->arm_boot_flags = cpu_to_le16(ACPI_FADT_ARM_PSCI_COMPLIANT | - ACPI_FADT_ARM_PSCI_USE_HVC); + fadt->arm_boot_flags = cpu_to_le16(bootflags); /* ACPI v5.1 (fadt->revision.fadt->minor_revision) */ fadt->minor_revision = 0x1; @@ -738,7 +762,7 @@ void virt_acpi_build(VirtMachineState *vms, AcpiBuildTables *tables) /* FADT MADT GTDT MCFG SPCR pointed to by RSDT */ acpi_add_table(table_offsets, tables_blob); - build_fadt(tables_blob, tables->linker, dsdt); + build_fadt(tables_blob, tables->linker, vms, dsdt); acpi_add_table(table_offsets, tables_blob); build_madt(tables_blob, tables->linker, vms); diff --git a/hw/arm/virt.c b/hw/arm/virt.c index 7a03f840513989eed6a86ff2d0e40ecfa2e12a8a..6c9e8985bf02c99a6aaf90ae29744f3d92e8f2db 100644 --- a/hw/arm/virt.c +++ b/hw/arm/virt.c @@ -167,7 +167,6 @@ static const char *valid_cpus[] = { "cortex-a53", "cortex-a57", "host", - NULL }; static bool cpuname_valid(const char *cpu) @@ -230,9 +229,19 @@ static void fdt_add_psci_node(const VirtMachineState *vms) uint32_t migrate_fn; void *fdt = vms->fdt; ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0)); + const char *psci_method; - if (!vms->using_psci) { + switch (vms->psci_conduit) { + case QEMU_PSCI_CONDUIT_DISABLED: return; + case QEMU_PSCI_CONDUIT_HVC: + psci_method = "hvc"; + break; + case QEMU_PSCI_CONDUIT_SMC: + psci_method = "smc"; + break; + default: + g_assert_not_reached(); } qemu_fdt_add_subnode(fdt, "/psci"); @@ -264,7 +273,7 @@ static void fdt_add_psci_node(const VirtMachineState *vms) * However, the device tree binding uses 'method' instead, so that is * what we should use here. */ - qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc"); + qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method); qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn); qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn); @@ -366,7 +375,8 @@ static void fdt_add_cpu_nodes(const VirtMachineState *vms) qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", armcpu->dtb_compatible); - if (vms->using_psci && vms->smp_cpus > 1) { + if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED + && vms->smp_cpus > 1) { qemu_fdt_setprop_string(vms->fdt, nodename, "enable-method", "psci"); } @@ -433,6 +443,11 @@ static void fdt_add_gic_node(VirtMachineState *vms) 2, vms->memmap[VIRT_GIC_DIST].size, 2, vms->memmap[VIRT_GIC_REDIST].base, 2, vms->memmap[VIRT_GIC_REDIST].size); + if (vms->virt) { + qemu_fdt_setprop_cells(vms->fdt, "/intc", "interrupts", + GIC_FDT_IRQ_TYPE_PPI, ARCH_GICV3_MAINT_IRQ, + GIC_FDT_IRQ_FLAGS_LEVEL_HI); + } } else { /* 'cortex-a15-gic' means 'GIC v2' */ qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible", @@ -547,9 +562,9 @@ static void create_gic(VirtMachineState *vms, qemu_irq *pic) sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base); } - /* Wire the outputs from each CPU's generic timer to the - * appropriate GIC PPI inputs, and the GIC's IRQ output to - * the CPU's IRQ input. + /* Wire the outputs from each CPU's generic timer and the GICv3 + * maintenance interrupt signal to the appropriate GIC PPI inputs, + * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs. */ for (i = 0; i < smp_cpus; i++) { DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); @@ -571,9 +586,17 @@ static void create_gic(VirtMachineState *vms, qemu_irq *pic) ppibase + timer_irq[irq])); } + qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0, + qdev_get_gpio_in(gicdev, ppibase + + ARCH_GICV3_MAINT_IRQ)); + sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); sysbus_connect_irq(gicbusdev, i + smp_cpus, qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); + sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, + qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); + sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, + qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); } for (i = 0; i < NUM_IRQS; i++) { @@ -1221,9 +1244,18 @@ static void machvirt_init(MachineState *machine) * so it doesn't get in the way. Instead of starting secondary * CPUs in PSCI powerdown state we will start them all running and * let the boot ROM sort them out. - * The usual case is that we do use QEMU's PSCI implementation. + * The usual case is that we do use QEMU's PSCI implementation; + * if the guest has EL2 then we will use SMC as the conduit, + * and otherwise we will use HVC (for backwards compatibility and + * because if we're using KVM then we must use HVC). */ - vms->using_psci = !(vms->secure && firmware_loaded); + if (vms->secure && firmware_loaded) { + vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; + } else if (vms->virt) { + vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC; + } else { + vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC; + } /* The maximum number of CPUs depends on the GIC version, or on how * many redistributors we can fit into the memory map. @@ -1250,6 +1282,12 @@ static void machvirt_init(MachineState *machine) exit(1); } + if (vms->virt && kvm_enabled()) { + error_report("mach-virt: KVM does not support providing " + "Virtualization extensions to the guest CPU"); + exit(1); + } + if (vms->secure) { if (kvm_enabled()) { error_report("mach-virt: KVM does not support Security extensions"); @@ -1306,8 +1344,12 @@ static void machvirt_init(MachineState *machine) object_property_set_bool(cpuobj, false, "has_el3", NULL); } - if (vms->using_psci) { - object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, + if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) { + object_property_set_bool(cpuobj, false, "has_el2", NULL); + } + + if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) { + object_property_set_int(cpuobj, vms->psci_conduit, "psci-conduit", NULL); /* Secondary CPUs start in PSCI powered-down state */ @@ -1408,6 +1450,20 @@ static void virt_set_secure(Object *obj, bool value, Error **errp) vms->secure = value; } +static bool virt_get_virt(Object *obj, Error **errp) +{ + VirtMachineState *vms = VIRT_MACHINE(obj); + + return vms->virt; +} + +static void virt_set_virt(Object *obj, bool value, Error **errp) +{ + VirtMachineState *vms = VIRT_MACHINE(obj); + + vms->virt = value; +} + static bool virt_get_highmem(Object *obj, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); @@ -1495,6 +1551,16 @@ static void virt_2_9_instance_init(Object *obj) "Security Extensions (TrustZone)", NULL); + /* EL2 is also disabled by default, for similar reasons */ + vms->virt = false; + object_property_add_bool(obj, "virtualization", virt_get_virt, + virt_set_virt, NULL); + object_property_set_description(obj, "virtualization", + "Set on/off to enable/disable emulating a " + "guest CPU which implements the ARM " + "Virtualization Extensions", + NULL); + /* High memory is enabled by default */ vms->highmem = true; object_property_add_bool(obj, "highmem", virt_get_highmem, diff --git a/hw/arm/xlnx-zynqmp.c b/hw/arm/xlnx-zynqmp.c index 0d86ba35aec4de7f58e801e225f07a8aeadd3a1c..bc4e66b862cef0f73ca9e86bd1f6d1a3c2189d82 100644 --- a/hw/arm/xlnx-zynqmp.c +++ b/hw/arm/xlnx-zynqmp.c @@ -258,6 +258,8 @@ static void xlnx_zynqmp_realize(DeviceState *dev, Error **errp) object_property_set_bool(OBJECT(&s->apu_cpu[i]), s->secure, "has_el3", NULL); + object_property_set_bool(OBJECT(&s->apu_cpu[i]), + false, "has_el2", NULL); object_property_set_int(OBJECT(&s->apu_cpu[i]), GIC_BASE_ADDR, "reset-cbar", &error_abort); object_property_set_bool(OBJECT(&s->apu_cpu[i]), true, "realized", diff --git a/hw/block/m25p80.c b/hw/block/m25p80.c index 4c5f8c3590aaad8bdc2854e5935ea47115b09bb5..e90451496e2ecadfe80a62420b99f73784e16830 100644 --- a/hw/block/m25p80.c +++ b/hw/block/m25p80.c @@ -74,6 +74,12 @@ typedef struct FlashPartInfo { uint32_t n_sectors; uint32_t page_size; uint16_t flags; + /* + * Big sized spi nor are often stacked devices, thus sometime + * replace chip erase with die erase. + * This field inform how many die is in the chip. + */ + uint8_t die_cnt; } FlashPartInfo; /* adapted from linux */ @@ -91,7 +97,8 @@ typedef struct FlashPartInfo { .sector_size = (_sector_size),\ .n_sectors = (_n_sectors),\ .page_size = 256,\ - .flags = (_flags), + .flags = (_flags),\ + .die_cnt = 0 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\ .part_name = _part_name,\ @@ -108,6 +115,24 @@ typedef struct FlashPartInfo { .n_sectors = (_n_sectors),\ .page_size = 256,\ .flags = (_flags),\ + .die_cnt = 0 + +#define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\ + _flags, _die_cnt)\ + .part_name = _part_name,\ + .id = {\ + ((_jedec_id) >> 16) & 0xff,\ + ((_jedec_id) >> 8) & 0xff,\ + (_jedec_id) & 0xff,\ + ((_ext_id) >> 8) & 0xff,\ + (_ext_id) & 0xff,\ + },\ + .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\ + .sector_size = (_sector_size),\ + .n_sectors = (_n_sectors),\ + .page_size = 256,\ + .flags = (_flags),\ + .die_cnt = _die_cnt #define JEDEC_NUMONYX 0x20 #define JEDEC_WINBOND 0xEF @@ -218,8 +243,10 @@ static const FlashPartInfo known_devices[] = { { INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) }, { INFO("n25q256a", 0x20ba19, 0, 64 << 10, 512, ER_4K) }, { INFO("n25q512a", 0x20ba20, 0, 64 << 10, 1024, ER_4K) }, - { INFO("mt25ql01g", 0x20ba21, 0, 64 << 10, 2048, ER_4K) }, - { INFO("mt25qu01g", 0x20bb21, 0, 64 << 10, 2048, ER_4K) }, + { INFO_STACKED("n25q00", 0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) }, + { INFO_STACKED("n25q00a", 0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) }, + { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) }, + { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) }, /* Spansion -- single (large) sector size only, at least * for the chips listed here (without boot sectors). @@ -327,6 +354,7 @@ typedef enum { PP4_4 = 0x3e, DPP = 0xa2, QPP = 0x32, + QPP_4 = 0x34, ERASE_4K = 0x20, ERASE4_4K = 0x21, @@ -359,6 +387,8 @@ typedef enum { REVCR = 0x65, WEVCR = 0x61, + + DIE_ERASE = 0xC4, } FlashCMD; typedef enum { @@ -516,6 +546,16 @@ static void flash_erase(Flash *s, int offset, FlashCMD cmd) case BULK_ERASE: len = s->size; break; + case DIE_ERASE: + if (s->pi->die_cnt) { + len = s->size / s->pi->die_cnt; + offset = offset & (~(len - 1)); + } else { + qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported" + " by device\n"); + return; + } + break; default: abort(); } @@ -577,6 +617,7 @@ static inline int get_addr_length(Flash *s) switch (s->cmd_in_progress) { case PP4: case PP4_4: + case QPP_4: case READ4: case QIOR4: case ERASE4_4K: @@ -610,6 +651,7 @@ static void complete_collecting_data(Flash *s) switch (s->cmd_in_progress) { case DPP: case QPP: + case QPP_4: case PP: case PP4: case PP4_4: @@ -635,6 +677,7 @@ static void complete_collecting_data(Flash *s) case ERASE4_32K: case ERASE_SECTOR: case ERASE4_SECTOR: + case DIE_ERASE: flash_erase(s, s->cur_addr, s->cmd_in_progress); break; case WRSR: @@ -877,9 +920,11 @@ static void decode_new_cmd(Flash *s, uint32_t value) case READ4: case DPP: case QPP: + case QPP_4: case PP: case PP4: case PP4_4: + case DIE_ERASE: s->needed_bytes = get_addr_length(s); s->pos = 0; s->len = 0; diff --git a/hw/i2c/imx_i2c.c b/hw/i2c/imx_i2c.c index 37e5a62ce759c99de1689f83615be58a2e543dbd..6c81b98ebd88460a34cbd39d3d61faa7602725b2 100644 --- a/hw/i2c/imx_i2c.c +++ b/hw/i2c/imx_i2c.c @@ -310,7 +310,7 @@ static void imx_i2c_realize(DeviceState *dev, Error **errp) IMX_I2C_MEM_SIZE); sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem); sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq); - s->bus = i2c_init_bus(DEVICE(dev), "i2c"); + s->bus = i2c_init_bus(DEVICE(dev), NULL); } static void imx_i2c_class_init(ObjectClass *klass, void *data) diff --git a/hw/intc/arm_gic_common.c b/hw/intc/arm_gic_common.c index 0a1f56af191d3287c999bdfeb08154aa14acec79..4a8df44fb1d1b278eb14a1de3d7be84445d801ef 100644 --- a/hw/intc/arm_gic_common.c +++ b/hw/intc/arm_gic_common.c @@ -110,6 +110,12 @@ void gic_init_irqs_and_mmio(GICState *s, qemu_irq_handler handler, for (i = 0; i < s->num_cpu; i++) { sysbus_init_irq(sbd, &s->parent_fiq[i]); } + for (i = 0; i < s->num_cpu; i++) { + sysbus_init_irq(sbd, &s->parent_virq[i]); + } + for (i = 0; i < s->num_cpu; i++) { + sysbus_init_irq(sbd, &s->parent_vfiq[i]); + } /* Distributor */ memory_region_init_io(&s->iomem, OBJECT(s), ops, s, "gic_dist", 0x1000); diff --git a/hw/intc/arm_gicv3_common.c b/hw/intc/arm_gicv3_common.c index 0aa9b9ca6655a4555f0211e01a725eb04e8bddc7..16b9b0f7eb8bedd31ad6b32e3051d870c8ec210f 100644 --- a/hw/intc/arm_gicv3_common.c +++ b/hw/intc/arm_gicv3_common.c @@ -49,6 +49,27 @@ static int gicv3_post_load(void *opaque, int version_id) return 0; } +static bool virt_state_needed(void *opaque) +{ + GICv3CPUState *cs = opaque; + + return cs->num_list_regs != 0; +} + +static const VMStateDescription vmstate_gicv3_cpu_virt = { + .name = "arm_gicv3_cpu/virt", + .version_id = 1, + .minimum_version_id = 1, + .needed = virt_state_needed, + .fields = (VMStateField[]) { + VMSTATE_UINT64_2DARRAY(ich_apr, GICv3CPUState, 3, 4), + VMSTATE_UINT64(ich_hcr_el2, GICv3CPUState), + VMSTATE_UINT64_ARRAY(ich_lr_el2, GICv3CPUState, GICV3_LR_MAX), + VMSTATE_UINT64(ich_vmcr_el2, GICv3CPUState), + VMSTATE_END_OF_LIST() + } +}; + static const VMStateDescription vmstate_gicv3_cpu = { .name = "arm_gicv3_cpu", .version_id = 1, @@ -75,6 +96,10 @@ static const VMStateDescription vmstate_gicv3_cpu = { VMSTATE_UINT64_ARRAY(icc_igrpen, GICv3CPUState, 3), VMSTATE_UINT64(icc_ctlr_el3, GICv3CPUState), VMSTATE_END_OF_LIST() + }, + .subsections = (const VMStateDescription * []) { + &vmstate_gicv3_cpu_virt, + NULL } }; @@ -126,6 +151,12 @@ void gicv3_init_irqs_and_mmio(GICv3State *s, qemu_irq_handler handler, for (i = 0; i < s->num_cpu; i++) { sysbus_init_irq(sbd, &s->cpu[i].parent_fiq); } + for (i = 0; i < s->num_cpu; i++) { + sysbus_init_irq(sbd, &s->cpu[i].parent_virq); + } + for (i = 0; i < s->num_cpu; i++) { + sysbus_init_irq(sbd, &s->cpu[i].parent_vfiq); + } memory_region_init_io(&s->iomem_dist, OBJECT(s), ops, s, "gicv3_dist", 0x10000); diff --git a/hw/intc/arm_gicv3_cpuif.c b/hw/intc/arm_gicv3_cpuif.c index 35e8eb30fc1edfa0faf23bbe39abcaff151d6412..a9ee7fddf9e65de370d030c6676dbbfda28b9bc9 100644 --- a/hw/intc/arm_gicv3_cpuif.c +++ b/hw/intc/arm_gicv3_cpuif.c @@ -13,6 +13,7 @@ */ #include "qemu/osdep.h" +#include "qemu/bitops.h" #include "trace.h" #include "gicv3_internal.h" #include "cpu.h" @@ -36,6 +37,610 @@ static bool gicv3_use_ns_bank(CPUARMState *env) return !arm_is_secure_below_el3(env); } +/* The minimum BPR for the virtual interface is a configurable property */ +static inline int icv_min_vbpr(GICv3CPUState *cs) +{ + return 7 - cs->vprebits; +} + +/* Simple accessor functions for LR fields */ +static uint32_t ich_lr_vintid(uint64_t lr) +{ + return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH); +} + +static uint32_t ich_lr_pintid(uint64_t lr) +{ + return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH); +} + +static uint32_t ich_lr_prio(uint64_t lr) +{ + return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH); +} + +static int ich_lr_state(uint64_t lr) +{ + return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH); +} + +static bool icv_access(CPUARMState *env, int hcr_flags) +{ + /* Return true if this ICC_ register access should really be + * directed to an ICV_ access. hcr_flags is a mask of + * HCR_EL2 bits to check: we treat this as an ICV_ access + * if we are in NS EL1 and at least one of the specified + * HCR_EL2 bits is set. + * + * ICV registers fall into four categories: + * * access if NS EL1 and HCR_EL2.FMO == 1: + * all ICV regs with '0' in their name + * * access if NS EL1 and HCR_EL2.IMO == 1: + * all ICV regs with '1' in their name + * * access if NS EL1 and either IMO or FMO == 1: + * CTLR, DIR, PMR, RPR + */ + return (env->cp15.hcr_el2 & hcr_flags) && arm_current_el(env) == 1 + && !arm_is_secure_below_el3(env); +} + +static int read_vbpr(GICv3CPUState *cs, int grp) +{ + /* Read VBPR value out of the VMCR field (caller must handle + * VCBPR effects if required) + */ + if (grp == GICV3_G0) { + return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, + ICH_VMCR_EL2_VBPR0_LENGTH); + } else { + return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, + ICH_VMCR_EL2_VBPR1_LENGTH); + } +} + +static void write_vbpr(GICv3CPUState *cs, int grp, int value) +{ + /* Write new VBPR1 value, handling the "writing a value less than + * the minimum sets it to the minimum" semantics. + */ + int min = icv_min_vbpr(cs); + + if (grp != GICV3_G0) { + min++; + } + + value = MAX(value, min); + + if (grp == GICV3_G0) { + cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, + ICH_VMCR_EL2_VBPR0_LENGTH, value); + } else { + cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, + ICH_VMCR_EL2_VBPR1_LENGTH, value); + } +} + +static uint32_t icv_fullprio_mask(GICv3CPUState *cs) +{ + /* Return a mask word which clears the unimplemented priority bits + * from a priority value for a virtual interrupt. (Not to be confused + * with the group priority, whose mask depends on the value of VBPR + * for the interrupt group.) + */ + return ~0U << (8 - cs->vpribits); +} + +static int ich_highest_active_virt_prio(GICv3CPUState *cs) +{ + /* Calculate the current running priority based on the set bits + * in the ICH Active Priority Registers. + */ + int i; + int aprmax = 1 << (cs->vprebits - 5); + + assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0])); + + for (i = 0; i < aprmax; i++) { + uint32_t apr = cs->ich_apr[GICV3_G0][i] | + cs->ich_apr[GICV3_G1NS][i]; + + if (!apr) { + continue; + } + return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1); + } + /* No current active interrupts: return idle priority */ + return 0xff; +} + +static int hppvi_index(GICv3CPUState *cs) +{ + /* Return the list register index of the highest priority pending + * virtual interrupt, as per the HighestPriorityVirtualInterrupt + * pseudocode. If no pending virtual interrupts, return -1. + */ + int idx = -1; + int i; + /* Note that a list register entry with a priority of 0xff will + * never be reported by this function; this is the architecturally + * correct behaviour. + */ + int prio = 0xff; + + if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) { + /* Both groups disabled, definitely nothing to do */ + return idx; + } + + for (i = 0; i < cs->num_list_regs; i++) { + uint64_t lr = cs->ich_lr_el2[i]; + int thisprio; + + if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) { + /* Not Pending */ + continue; + } + + /* Ignore interrupts if relevant group enable not set */ + if (lr & ICH_LR_EL2_GROUP) { + if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { + continue; + } + } else { + if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { + continue; + } + } + + thisprio = ich_lr_prio(lr); + + if (thisprio < prio) { + prio = thisprio; + idx = i; + } + } + + return idx; +} + +static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group) +{ + /* Return a mask word which clears the subpriority bits from + * a priority value for a virtual interrupt in the specified group. + * This depends on the VBPR value: + * a BPR of 0 means the group priority bits are [7:1]; + * a BPR of 1 means they are [7:2], and so on down to + * a BPR of 7 meaning no group priority bits at all. + * Which BPR to use depends on the group of the interrupt and + * the current ICH_VMCR_EL2.VCBPR settings. + */ + if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { + group = GICV3_G0; + } + + return ~0U << (read_vbpr(cs, group) + 1); +} + +static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr) +{ + /* Return true if we can signal this virtual interrupt defined by + * the given list register value; see the pseudocode functions + * CanSignalVirtualInterrupt and CanSignalVirtualInt. + * Compare also icc_hppi_can_preempt() which is the non-virtual + * equivalent of these checks. + */ + int grp; + uint32_t mask, prio, rprio, vpmr; + + if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) { + /* Virtual interface disabled */ + return false; + } + + /* We don't need to check that this LR is in Pending state because + * that has already been done in hppvi_index(). + */ + + prio = ich_lr_prio(lr); + vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, + ICH_VMCR_EL2_VPMR_LENGTH); + + if (prio >= vpmr) { + /* Priority mask masks this interrupt */ + return false; + } + + rprio = ich_highest_active_virt_prio(cs); + if (rprio == 0xff) { + /* No running interrupt so we can preempt */ + return true; + } + + grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; + + mask = icv_gprio_mask(cs, grp); + + /* We only preempt a running interrupt if the pending interrupt's + * group priority is sufficient (the subpriorities are not considered). + */ + if ((prio & mask) < (rprio & mask)) { + return true; + } + + return false; +} + +static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs, + uint32_t *misr) +{ + /* Return a set of bits indicating the EOI maintenance interrupt status + * for each list register. The EOI maintenance interrupt status is + * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1 + * (see the GICv3 spec for the ICH_EISR_EL2 register). + * If misr is not NULL then we should also collect the information + * about the MISR.EOI, MISR.NP and MISR.U bits. + */ + uint32_t value = 0; + int validcount = 0; + bool seenpending = false; + int i; + + for (i = 0; i < cs->num_list_regs; i++) { + uint64_t lr = cs->ich_lr_el2[i]; + + if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI)) + == ICH_LR_EL2_EOI) { + value |= (1 << i); + } + if ((lr & ICH_LR_EL2_STATE_MASK)) { + validcount++; + } + if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) { + seenpending = true; + } + } + + if (misr) { + if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) { + *misr |= ICH_MISR_EL2_U; + } + if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) { + *misr |= ICH_MISR_EL2_NP; + } + if (value) { + *misr |= ICH_MISR_EL2_EOI; + } + } + return value; +} + +static uint32_t maintenance_interrupt_state(GICv3CPUState *cs) +{ + /* Return a set of bits indicating the maintenance interrupt status + * (as seen in the ICH_MISR_EL2 register). + */ + uint32_t value = 0; + + /* Scan list registers and fill in the U, NP and EOI bits */ + eoi_maintenance_interrupt_state(cs, &value); + + if (cs->ich_hcr_el2 & (ICH_HCR_EL2_LRENPIE | ICH_HCR_EL2_EOICOUNT_MASK)) { + value |= ICH_MISR_EL2_LRENP; + } + + if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) && + (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { + value |= ICH_MISR_EL2_VGRP0E; + } + + if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) && + !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { + value |= ICH_MISR_EL2_VGRP0D; + } + if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) && + (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { + value |= ICH_MISR_EL2_VGRP1E; + } + + if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) && + !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { + value |= ICH_MISR_EL2_VGRP1D; + } + + return value; +} + +static void gicv3_cpuif_virt_update(GICv3CPUState *cs) +{ + /* Tell the CPU about any pending virtual interrupts or + * maintenance interrupts, following a change to the state + * of the CPU interface relevant to virtual interrupts. + * + * CAUTION: this function will call qemu_set_irq() on the + * CPU maintenance IRQ line, which is typically wired up + * to the GIC as a per-CPU interrupt. This means that it + * will recursively call back into the GIC code via + * gicv3_redist_set_irq() and thus into the CPU interface code's + * gicv3_cpuif_update(). It is therefore important that this + * function is only called as the final action of a CPU interface + * register write implementation, after all the GIC state + * fields have been updated. gicv3_cpuif_update() also must + * not cause this function to be called, but that happens + * naturally as a result of there being no architectural + * linkage between the physical and virtual GIC logic. + */ + int idx; + int irqlevel = 0; + int fiqlevel = 0; + int maintlevel = 0; + + idx = hppvi_index(cs); + trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx); + if (idx >= 0) { + uint64_t lr = cs->ich_lr_el2[idx]; + + if (icv_hppi_can_preempt(cs, lr)) { + /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */ + if (lr & ICH_LR_EL2_GROUP) { + irqlevel = 1; + } else { + fiqlevel = 1; + } + } + } + + if (cs->ich_hcr_el2 & ICH_HCR_EL2_EN) { + maintlevel = maintenance_interrupt_state(cs); + } + + trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel, + irqlevel, maintlevel); + + qemu_set_irq(cs->parent_vfiq, fiqlevel); + qemu_set_irq(cs->parent_virq, irqlevel); + qemu_set_irq(cs->maintenance_irq, maintlevel); +} + +static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + GICv3CPUState *cs = icc_cs_from_env(env); + int regno = ri->opc2 & 3; + int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS; + uint64_t value = cs->ich_apr[grp][regno]; + + trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); + return value; +} + +static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + GICv3CPUState *cs = icc_cs_from_env(env); + int regno = ri->opc2 & 3; + int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS; + + trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); + + cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; + + gicv3_cpuif_virt_update(cs); + return; +} + +static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + GICv3CPUState *cs = icc_cs_from_env(env); + int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; + uint64_t bpr; + bool satinc = false; + + if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { + /* reads return bpr0 + 1 saturated to 7, writes ignored */ + grp = GICV3_G0; + satinc = true; + } + + bpr = read_vbpr(cs, grp); + + if (satinc) { + bpr++; + bpr = MIN(bpr, 7); + } + + trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); + + return bpr; +} + +static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + GICv3CPUState *cs = icc_cs_from_env(env); + int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; + + trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1, + gicv3_redist_affid(cs), value); + + if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { + /* reads return bpr0 + 1 saturated to 7, writes ignored */ + return; + } + + write_vbpr(cs, grp, value); + + gicv3_cpuif_virt_update(cs); +} + +static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + GICv3CPUState *cs = icc_cs_from_env(env); + uint64_t value; + + value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, + ICH_VMCR_EL2_VPMR_LENGTH); + + trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value); + return value; +} + +static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + GICv3CPUState *cs = icc_cs_from_env(env); + + trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value); + + value &= icv_fullprio_mask(cs); + + cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, + ICH_VMCR_EL2_VPMR_LENGTH, value); + + gicv3_cpuif_virt_update(cs); +} + +static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + GICv3CPUState *cs = icc_cs_from_env(env); + int enbit; + uint64_t value; + + enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; + value = extract64(cs->ich_vmcr_el2, enbit, 1); + + trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0, + gicv3_redist_affid(cs), value); + return value; +} + +static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + GICv3CPUState *cs = icc_cs_from_env(env); + int enbit; + + trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0, + gicv3_redist_affid(cs), value); + + enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; + + cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value); + gicv3_cpuif_virt_update(cs); +} + +static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + GICv3CPUState *cs = icc_cs_from_env(env); + uint64_t value; + + /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits) + * should match the ones reported in ich_vtr_read(). + */ + value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | + (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); + + if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) { + value |= ICC_CTLR_EL1_EOIMODE; + } + + if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { + value |= ICC_CTLR_EL1_CBPR; + } + + trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value); + return value; +} + +static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + GICv3CPUState *cs = icc_cs_from_env(env); + + trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value); + + cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT, + 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0); + cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT, + 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0); + + gicv3_cpuif_virt_update(cs); +} + +static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + GICv3CPUState *cs = icc_cs_from_env(env); + int prio = ich_highest_active_virt_prio(cs); + + trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio); + return prio; +} + +static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + GICv3CPUState *cs = icc_cs_from_env(env); + int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; + int idx = hppvi_index(cs); + uint64_t value = INTID_SPURIOUS; + + if (idx >= 0) { + uint64_t lr = cs->ich_lr_el2[idx]; + int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; + + if (grp == thisgrp) { + value = ich_lr_vintid(lr); + } + } + + trace_gicv3_icv_hppir_read(grp, gicv3_redist_affid(cs), value); + return value; +} + +static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp) +{ + /* Activate the interrupt in the specified list register + * by moving it from Pending to Active state, and update the + * Active Priority Registers. + */ + uint32_t mask = icv_gprio_mask(cs, grp); + int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask; + int aprbit = prio >> (8 - cs->vprebits); + int regno = aprbit / 32; + int regbit = aprbit % 32; + + cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; + cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT; + cs->ich_apr[grp][regno] |= (1 << regbit); +} + +static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + GICv3CPUState *cs = icc_cs_from_env(env); + int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; + int idx = hppvi_index(cs); + uint64_t intid = INTID_SPURIOUS; + + if (idx >= 0) { + uint64_t lr = cs->ich_lr_el2[idx]; + int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; + + if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) { + intid = ich_lr_vintid(lr); + if (intid < INTID_SECURE) { + icv_activate_irq(cs, idx, grp); + } else { + /* Interrupt goes from Pending to Invalid */ + cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; + /* We will now return the (bogus) ID from the list register, + * as per the pseudocode. + */ + } + } + } + + trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1, + gicv3_redist_affid(cs), intid); + return intid; +} + static int icc_highest_active_prio(GICv3CPUState *cs) { /* Calculate the current running priority based on the set bits @@ -177,6 +782,10 @@ static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) GICv3CPUState *cs = icc_cs_from_env(env); uint32_t value = cs->icc_pmr_el1; + if (icv_access(env, HCR_FMO | HCR_IMO)) { + return icv_pmr_read(env, ri); + } + if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) { /* NS access and Group 0 is inaccessible to NS: return the @@ -200,6 +809,10 @@ static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, { GICv3CPUState *cs = icc_cs_from_env(env); + if (icv_access(env, HCR_FMO | HCR_IMO)) { + return icv_pmr_write(env, ri, value); + } + trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value); value &= 0xff; @@ -321,6 +934,10 @@ static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri) GICv3CPUState *cs = icc_cs_from_env(env); uint64_t intid; + if (icv_access(env, HCR_FMO)) { + return icv_iar_read(env, ri); + } + if (!icc_hppi_can_preempt(cs)) { intid = INTID_SPURIOUS; } else { @@ -340,6 +957,10 @@ static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri) GICv3CPUState *cs = icc_cs_from_env(env); uint64_t intid; + if (icv_access(env, HCR_IMO)) { + return icv_iar_read(env, ri); + } + if (!icc_hppi_can_preempt(cs)) { intid = INTID_SPURIOUS; } else { @@ -414,36 +1035,220 @@ static int icc_highest_active_group(GICv3CPUState *cs) */ int i; - for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { - int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]); - int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]); - int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]); + for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { + int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]); + int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]); + int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]); + + if (g1nsctz < g0ctz && g1nsctz < g1ctz) { + return GICV3_G1NS; + } + if (g1ctz < g0ctz) { + return GICV3_G1; + } + if (g0ctz < 32) { + return GICV3_G0; + } + } + /* No set active bits? UNPREDICTABLE; return -1 so the caller + * ignores the spurious EOI attempt. + */ + return -1; +} + +static void icc_deactivate_irq(GICv3CPUState *cs, int irq) +{ + if (irq < GIC_INTERNAL) { + cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0); + gicv3_redist_update(cs); + } else { + gicv3_gicd_active_clear(cs->gic, irq); + gicv3_update(cs->gic, irq, 1); + } +} + +static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs) +{ + /* Return true if we should split priority drop and interrupt + * deactivation, ie whether the virtual EOIMode bit is set. + */ + return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM; +} + +static int icv_find_active(GICv3CPUState *cs, int irq) +{ + /* Given an interrupt number for an active interrupt, return the index + * of the corresponding list register, or -1 if there is no match. + * Corresponds to FindActiveVirtualInterrupt pseudocode. + */ + int i; + + for (i = 0; i < cs->num_list_regs; i++) { + uint64_t lr = cs->ich_lr_el2[i]; + + if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) { + return i; + } + } + + return -1; +} + +static void icv_deactivate_irq(GICv3CPUState *cs, int idx) +{ + /* Deactivate the interrupt in the specified list register index */ + uint64_t lr = cs->ich_lr_el2[idx]; + + if (lr & ICH_LR_EL2_HW) { + /* Deactivate the associated physical interrupt */ + int pirq = ich_lr_pintid(lr); + + if (pirq < INTID_SECURE) { + icc_deactivate_irq(cs, pirq); + } + } + + /* Clear the 'active' part of the state, so ActivePending->Pending + * and Active->Invalid. + */ + lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT; + cs->ich_lr_el2[idx] = lr; +} + +static void icv_increment_eoicount(GICv3CPUState *cs) +{ + /* Increment the EOICOUNT field in ICH_HCR_EL2 */ + int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, + ICH_HCR_EL2_EOICOUNT_LENGTH); + + cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, + ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1); +} + +static int icv_drop_prio(GICv3CPUState *cs) +{ + /* Drop the priority of the currently active virtual interrupt + * (favouring group 0 if there is a set active bit at + * the same priority for both group 0 and group 1). + * Return the priority value for the bit we just cleared, + * or 0xff if no bits were set in the AP registers at all. + * Note that though the ich_apr[] are uint64_t only the low + * 32 bits are actually relevant. + */ + int i; + int aprmax = 1 << (cs->vprebits - 5); + + assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0])); + + for (i = 0; i < aprmax; i++) { + uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i]; + uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i]; + int apr0count, apr1count; + + if (!*papr0 && !*papr1) { + continue; + } + + /* We can't just use the bit-twiddling hack icc_drop_prio() does + * because we need to return the bit number we cleared so + * it can be compared against the list register's priority field. + */ + apr0count = ctz32(*papr0); + apr1count = ctz32(*papr1); + + if (apr0count <= apr1count) { + *papr0 &= *papr0 - 1; + return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1); + } else { + *papr1 &= *papr1 - 1; + return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1); + } + } + return 0xff; +} + +static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* Deactivate interrupt */ + GICv3CPUState *cs = icc_cs_from_env(env); + int idx; + int irq = value & 0xffffff; + + trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value); + + if (irq >= cs->gic->num_irq) { + /* Also catches special interrupt numbers and LPIs */ + return; + } + + if (!icv_eoi_split(env, cs)) { + return; + } + + idx = icv_find_active(cs, irq); + + if (idx < 0) { + /* No list register matching this, so increment the EOI count + * (might trigger a maintenance interrupt) + */ + icv_increment_eoicount(cs); + } else { + icv_deactivate_irq(cs, idx); + } + + gicv3_cpuif_virt_update(cs); +} + +static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + /* End of Interrupt */ + GICv3CPUState *cs = icc_cs_from_env(env); + int irq = value & 0xffffff; + int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; + int idx, dropprio; + + trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1, + gicv3_redist_affid(cs), value); - if (g1nsctz < g0ctz && g1nsctz < g1ctz) { - return GICV3_G1NS; - } - if (g1ctz < g0ctz) { - return GICV3_G1; - } - if (g0ctz < 32) { - return GICV3_G0; - } + if (irq >= cs->gic->num_irq) { + /* Also catches special interrupt numbers and LPIs */ + return; } - /* No set active bits? UNPREDICTABLE; return -1 so the caller - * ignores the spurious EOI attempt. + + /* We implement the IMPDEF choice of "drop priority before doing + * error checks" (because that lets us avoid scanning the AP + * registers twice). */ - return -1; -} + dropprio = icv_drop_prio(cs); + if (dropprio == 0xff) { + /* No active interrupt. It is CONSTRAINED UNPREDICTABLE + * whether the list registers are checked in this + * situation; we choose not to. + */ + return; + } -static void icc_deactivate_irq(GICv3CPUState *cs, int irq) -{ - if (irq < GIC_INTERNAL) { - cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0); - gicv3_redist_update(cs); + idx = icv_find_active(cs, irq); + + if (idx < 0) { + /* No valid list register corresponding to EOI ID */ + icv_increment_eoicount(cs); } else { - gicv3_gicd_active_clear(cs->gic, irq); - gicv3_update(cs->gic, irq, 1); + uint64_t lr = cs->ich_lr_el2[idx]; + int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; + int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp); + + if (thisgrp == grp && lr_gprio == dropprio) { + if (!icv_eoi_split(env, cs)) { + /* Priority drop and deactivate not split: deactivate irq now */ + icv_deactivate_irq(cs, idx); + } + } } + + gicv3_cpuif_virt_update(cs); } static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, @@ -454,6 +1259,11 @@ static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, int irq = value & 0xffffff; int grp; + if (icv_access(env, ri->crm == 8 ? HCR_FMO : HCR_IMO)) { + icv_eoir_write(env, ri, value); + return; + } + trace_gicv3_icc_eoir_write(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), value); @@ -496,8 +1306,13 @@ static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri) { GICv3CPUState *cs = icc_cs_from_env(env); - uint64_t value = icc_hppir0_value(cs, env); + uint64_t value; + + if (icv_access(env, HCR_FMO)) { + return icv_hppir_read(env, ri); + } + value = icc_hppir0_value(cs, env); trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value); return value; } @@ -505,8 +1320,13 @@ static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri) static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri) { GICv3CPUState *cs = icc_cs_from_env(env); - uint64_t value = icc_hppir1_value(cs, env); + uint64_t value; + + if (icv_access(env, HCR_IMO)) { + return icv_hppir_read(env, ri); + } + value = icc_hppir1_value(cs, env); trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value); return value; } @@ -518,6 +1338,10 @@ static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) bool satinc = false; uint64_t bpr; + if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { + return icv_bpr_read(env, ri); + } + if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { grp = GICV3_G1NS; } @@ -554,6 +1378,11 @@ static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, GICv3CPUState *cs = icc_cs_from_env(env); int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; + if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { + icv_bpr_write(env, ri, value); + return; + } + trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), value); @@ -587,6 +1416,10 @@ static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) int regno = ri->opc2 & 3; int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1; + if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { + return icv_ap_read(env, ri); + } + if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { grp = GICV3_G1NS; } @@ -605,6 +1438,11 @@ static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, int regno = ri->opc2 & 3; int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1; + if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { + icv_ap_write(env, ri, value); + return; + } + trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { @@ -633,6 +1471,11 @@ static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, bool irq_is_secure, single_sec_state, irq_is_grp0; bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2; + if (icv_access(env, HCR_FMO | HCR_IMO)) { + icv_dir_write(env, ri, value); + return; + } + trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value); if (irq >= cs->gic->num_irq) { @@ -704,7 +1547,13 @@ static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) { GICv3CPUState *cs = icc_cs_from_env(env); - int prio = icc_highest_active_prio(cs); + int prio; + + if (icv_access(env, HCR_FMO | HCR_IMO)) { + return icv_rpr_read(env, ri); + } + + prio = icc_highest_active_prio(cs); if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) { @@ -817,6 +1666,10 @@ static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; uint64_t value; + if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { + return icv_igrpen_read(env, ri); + } + if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { grp = GICV3_G1NS; } @@ -833,6 +1686,11 @@ static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, GICv3CPUState *cs = icc_cs_from_env(env); int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; + if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { + icv_igrpen_write(env, ri, value); + return; + } + trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0, gicv3_redist_affid(cs), value); @@ -874,6 +1732,10 @@ static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri) int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; uint64_t value; + if (icv_access(env, HCR_FMO | HCR_IMO)) { + return icv_ctlr_read(env, ri); + } + value = cs->icc_ctlr_el1[bank]; trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value); return value; @@ -886,6 +1748,11 @@ static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; uint64_t mask; + if (icv_access(env, HCR_FMO | HCR_IMO)) { + icv_ctlr_write(env, ri, value); + return; + } + trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value); /* Only CBPR and EOIMODE can be RW; @@ -966,9 +1833,17 @@ static CPAccessResult gicv3_irqfiq_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { CPAccessResult r = CP_ACCESS_OK; + GICv3CPUState *cs = icc_cs_from_env(env); + int el = arm_current_el(env); + + if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) && + el == 1 && !arm_is_secure_below_el3(env)) { + /* Takes priority over a possible EL3 trap */ + return CP_ACCESS_TRAP_EL2; + } if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) { - switch (arm_current_el(env)) { + switch (el) { case 1: if (arm_is_secure_below_el3(env) || ((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) == 0)) { @@ -994,13 +1869,47 @@ static CPAccessResult gicv3_irqfiq_access(CPUARMState *env, return r; } +static CPAccessResult gicv3_dir_access(CPUARMState *env, + const ARMCPRegInfo *ri, bool isread) +{ + GICv3CPUState *cs = icc_cs_from_env(env); + + if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) && + arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) { + /* Takes priority over a possible EL3 trap */ + return CP_ACCESS_TRAP_EL2; + } + + return gicv3_irqfiq_access(env, ri, isread); +} + +static CPAccessResult gicv3_sgi_access(CPUARMState *env, + const ARMCPRegInfo *ri, bool isread) +{ + if ((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) && + arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) { + /* Takes priority over a possible EL3 trap */ + return CP_ACCESS_TRAP_EL2; + } + + return gicv3_irqfiq_access(env, ri, isread); +} + static CPAccessResult gicv3_fiq_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { CPAccessResult r = CP_ACCESS_OK; + GICv3CPUState *cs = icc_cs_from_env(env); + int el = arm_current_el(env); + + if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) && + el == 1 && !arm_is_secure_below_el3(env)) { + /* Takes priority over a possible EL3 trap */ + return CP_ACCESS_TRAP_EL2; + } if (env->cp15.scr_el3 & SCR_FIQ) { - switch (arm_current_el(env)) { + switch (el) { case 1: if (arm_is_secure_below_el3(env) || ((env->cp15.hcr_el2 & HCR_FMO) == 0)) { @@ -1030,9 +1939,17 @@ static CPAccessResult gicv3_irq_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { CPAccessResult r = CP_ACCESS_OK; + GICv3CPUState *cs = icc_cs_from_env(env); + int el = arm_current_el(env); + + if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) && + el == 1 && !arm_is_secure_below_el3(env)) { + /* Takes priority over a possible EL3 trap */ + return CP_ACCESS_TRAP_EL2; + } if (env->cp15.scr_el3 & SCR_IRQ) { - switch (arm_current_el(env)) { + switch (el) { case 1: if (arm_is_secure_below_el3(env) || ((env->cp15.hcr_el2 & HCR_IMO) == 0)) { @@ -1081,6 +1998,13 @@ static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri) cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V | (1 << ICC_CTLR_EL3_IDBITS_SHIFT) | (7 << ICC_CTLR_EL3_PRIBITS_SHIFT); + + memset(cs->ich_apr, 0, sizeof(cs->ich_apr)); + cs->ich_hcr_el2 = 0; + memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2)); + cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN | + (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR1_SHIFT) | + (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT); } static const ARMCPRegInfo gicv3_cpuif_reginfo[] = { @@ -1181,7 +2105,7 @@ static const ARMCPRegInfo gicv3_cpuif_reginfo[] = { { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1, .type = ARM_CP_IO | ARM_CP_NO_RAW, - .access = PL1_W, .accessfn = gicv3_irqfiq_access, + .access = PL1_W, .accessfn = gicv3_dir_access, .writefn = icc_dir_write, }, { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH, @@ -1193,37 +2117,37 @@ static const ARMCPRegInfo gicv3_cpuif_reginfo[] = { { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5, .type = ARM_CP_IO | ARM_CP_NO_RAW, - .access = PL1_W, .accessfn = gicv3_irqfiq_access, + .access = PL1_W, .accessfn = gicv3_sgi_access, .writefn = icc_sgi1r_write, }, { .name = "ICC_SGI1R", .cp = 15, .opc1 = 0, .crm = 12, .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, - .access = PL1_W, .accessfn = gicv3_irqfiq_access, + .access = PL1_W, .accessfn = gicv3_sgi_access, .writefn = icc_sgi1r_write, }, { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6, .type = ARM_CP_IO | ARM_CP_NO_RAW, - .access = PL1_W, .accessfn = gicv3_irqfiq_access, + .access = PL1_W, .accessfn = gicv3_sgi_access, .writefn = icc_asgi1r_write, }, { .name = "ICC_ASGI1R", .cp = 15, .opc1 = 1, .crm = 12, .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, - .access = PL1_W, .accessfn = gicv3_irqfiq_access, + .access = PL1_W, .accessfn = gicv3_sgi_access, .writefn = icc_asgi1r_write, }, { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7, .type = ARM_CP_IO | ARM_CP_NO_RAW, - .access = PL1_W, .accessfn = gicv3_irqfiq_access, + .access = PL1_W, .accessfn = gicv3_sgi_access, .writefn = icc_sgi0r_write, }, { .name = "ICC_SGI0R", .cp = 15, .opc1 = 2, .crm = 12, .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, - .access = PL1_W, .accessfn = gicv3_irqfiq_access, + .access = PL1_W, .accessfn = gicv3_sgi_access, .writefn = icc_sgi0r_write, }, { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH, @@ -1321,6 +2245,306 @@ static const ARMCPRegInfo gicv3_cpuif_reginfo[] = { REGINFO_SENTINEL }; +static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + GICv3CPUState *cs = icc_cs_from_env(env); + int regno = ri->opc2 & 3; + int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS; + uint64_t value; + + value = cs->ich_apr[grp][regno]; + trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); + return value; +} + +static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + GICv3CPUState *cs = icc_cs_from_env(env); + int regno = ri->opc2 & 3; + int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS; + + trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); + + cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; + gicv3_cpuif_virt_update(cs); +} + +static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + GICv3CPUState *cs = icc_cs_from_env(env); + uint64_t value = cs->ich_hcr_el2; + + trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value); + return value; +} + +static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + GICv3CPUState *cs = icc_cs_from_env(env); + + trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value); + + value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE | + ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE | + ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC | + ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI | + ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK; + + cs->ich_hcr_el2 = value; + gicv3_cpuif_virt_update(cs); +} + +static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + GICv3CPUState *cs = icc_cs_from_env(env); + uint64_t value = cs->ich_vmcr_el2; + + trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value); + return value; +} + +static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + GICv3CPUState *cs = icc_cs_from_env(env); + + trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value); + + value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR | + ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK | + ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK; + value |= ICH_VMCR_EL2_VFIQEN; + + cs->ich_vmcr_el2 = value; + /* Enforce "writing BPRs to less than minimum sets them to the minimum" + * by reading and writing back the fields. + */ + write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G0)); + write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1)); + + gicv3_cpuif_virt_update(cs); +} + +static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + GICv3CPUState *cs = icc_cs_from_env(env); + int regno = ri->opc2 | ((ri->crm & 1) << 3); + uint64_t value; + + /* This read function handles all of: + * 64-bit reads of the whole LR + * 32-bit reads of the low half of the LR + * 32-bit reads of the high half of the LR + */ + if (ri->state == ARM_CP_STATE_AA32) { + if (ri->crm >= 14) { + value = extract64(cs->ich_lr_el2[regno], 32, 32); + trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value); + } else { + value = extract64(cs->ich_lr_el2[regno], 0, 32); + trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value); + } + } else { + value = cs->ich_lr_el2[regno]; + trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value); + } + + return value; +} + +static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + GICv3CPUState *cs = icc_cs_from_env(env); + int regno = ri->opc2 | ((ri->crm & 1) << 3); + + /* This write function handles all of: + * 64-bit writes to the whole LR + * 32-bit writes to the low half of the LR + * 32-bit writes to the high half of the LR + */ + if (ri->state == ARM_CP_STATE_AA32) { + if (ri->crm >= 14) { + trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value); + value = deposit64(cs->ich_lr_el2[regno], 32, 32, value); + } else { + trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value); + value = deposit64(cs->ich_lr_el2[regno], 0, 32, value); + } + } else { + trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value); + } + + /* Enforce RES0 bits in priority field */ + if (cs->vpribits < 8) { + value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT, + 8 - cs->vpribits, 0); + } + + cs->ich_lr_el2[regno] = value; + gicv3_cpuif_virt_update(cs); +} + +static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + GICv3CPUState *cs = icc_cs_from_env(env); + uint64_t value; + + value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT) + | ICH_VTR_EL2_TDS | ICH_VTR_EL2_NV4 | ICH_VTR_EL2_A3V + | (1 << ICH_VTR_EL2_IDBITS_SHIFT) + | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT) + | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT); + + trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value); + return value; +} + +static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + GICv3CPUState *cs = icc_cs_from_env(env); + uint64_t value = maintenance_interrupt_state(cs); + + trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value); + return value; +} + +static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + GICv3CPUState *cs = icc_cs_from_env(env); + uint64_t value = eoi_maintenance_interrupt_state(cs, NULL); + + trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value); + return value; +} + +static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri) +{ + GICv3CPUState *cs = icc_cs_from_env(env); + uint64_t value = 0; + int i; + + for (i = 0; i < cs->num_list_regs; i++) { + uint64_t lr = cs->ich_lr_el2[i]; + + if ((lr & ICH_LR_EL2_STATE_MASK) == 0 && + ((lr & ICH_LR_EL2_HW) == 1 || (lr & ICH_LR_EL2_EOI) == 0)) { + value |= (1 << i); + } + } + + trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value); + return value; +} + +static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = { + { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0, + .type = ARM_CP_IO | ARM_CP_NO_RAW, + .access = PL2_RW, + .readfn = ich_ap_read, + .writefn = ich_ap_write, + }, + { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0, + .type = ARM_CP_IO | ARM_CP_NO_RAW, + .access = PL2_RW, + .readfn = ich_ap_read, + .writefn = ich_ap_write, + }, + { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0, + .type = ARM_CP_IO | ARM_CP_NO_RAW, + .access = PL2_RW, + .readfn = ich_hcr_read, + .writefn = ich_hcr_write, + }, + { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1, + .type = ARM_CP_IO | ARM_CP_NO_RAW, + .access = PL2_R, + .readfn = ich_vtr_read, + }, + { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2, + .type = ARM_CP_IO | ARM_CP_NO_RAW, + .access = PL2_R, + .readfn = ich_misr_read, + }, + { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3, + .type = ARM_CP_IO | ARM_CP_NO_RAW, + .access = PL2_R, + .readfn = ich_eisr_read, + }, + { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5, + .type = ARM_CP_IO | ARM_CP_NO_RAW, + .access = PL2_R, + .readfn = ich_elrsr_read, + }, + { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7, + .type = ARM_CP_IO | ARM_CP_NO_RAW, + .access = PL2_RW, + .readfn = ich_vmcr_read, + .writefn = ich_vmcr_write, + }, + REGINFO_SENTINEL +}; + +static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = { + { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1, + .type = ARM_CP_IO | ARM_CP_NO_RAW, + .access = PL2_RW, + .readfn = ich_ap_read, + .writefn = ich_ap_write, + }, + { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1, + .type = ARM_CP_IO | ARM_CP_NO_RAW, + .access = PL2_RW, + .readfn = ich_ap_read, + .writefn = ich_ap_write, + }, + REGINFO_SENTINEL +}; + +static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = { + { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2, + .type = ARM_CP_IO | ARM_CP_NO_RAW, + .access = PL2_RW, + .readfn = ich_ap_read, + .writefn = ich_ap_write, + }, + { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3, + .type = ARM_CP_IO | ARM_CP_NO_RAW, + .access = PL2_RW, + .readfn = ich_ap_read, + .writefn = ich_ap_write, + }, + { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2, + .type = ARM_CP_IO | ARM_CP_NO_RAW, + .access = PL2_RW, + .readfn = ich_ap_read, + .writefn = ich_ap_write, + }, + { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3, + .type = ARM_CP_IO | ARM_CP_NO_RAW, + .access = PL2_RW, + .readfn = ich_ap_read, + .writefn = ich_ap_write, + }, + REGINFO_SENTINEL +}; + static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque) { GICv3CPUState *cs = opaque; @@ -1349,6 +2573,59 @@ void gicv3_init_cpuif(GICv3State *s) * to need to register anyway. */ define_arm_cp_regs(cpu, gicv3_cpuif_reginfo); + if (arm_feature(&cpu->env, ARM_FEATURE_EL2) + && cpu->gic_num_lrs) { + int j; + + cs->maintenance_irq = cpu->gicv3_maintenance_interrupt; + + cs->num_list_regs = cpu->gic_num_lrs; + cs->vpribits = cpu->gic_vpribits; + cs->vprebits = cpu->gic_vprebits; + + /* Check against architectural constraints: getting these + * wrong would be a bug in the CPU code defining these, + * and the implementation relies on them holding. + */ + g_assert(cs->vprebits <= cs->vpribits); + g_assert(cs->vprebits >= 5 && cs->vprebits <= 7); + g_assert(cs->vpribits >= 5 && cs->vpribits <= 8); + + define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo); + + for (j = 0; j < cs->num_list_regs; j++) { + /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs + * are split into two cp15 regs, LR (the low part, with the + * same encoding as the AArch64 LR) and LRC (the high part). + */ + ARMCPRegInfo lr_regset[] = { + { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH, + .opc0 = 3, .opc1 = 4, .crn = 12, + .crm = 12 + (j >> 3), .opc2 = j & 7, + .type = ARM_CP_IO | ARM_CP_NO_RAW, + .access = PL2_RW, + .readfn = ich_lr_read, + .writefn = ich_lr_write, + }, + { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 4, .crn = 12, + .crm = 14 + (j >> 3), .opc2 = j & 7, + .type = ARM_CP_IO | ARM_CP_NO_RAW, + .access = PL2_RW, + .readfn = ich_lr_read, + .writefn = ich_lr_write, + }, + REGINFO_SENTINEL + }; + define_arm_cp_regs(cpu, lr_regset); + } + if (cs->vprebits >= 6) { + define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo); + } + if (cs->vprebits == 7) { + define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo); + } + } arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs); } } diff --git a/hw/intc/gicv3_internal.h b/hw/intc/gicv3_internal.h index 8f3567edaa8fa3d79a009b24da162ef02aa99864..aeb801d133f948aea7b2c1007d50527184d26164 100644 --- a/hw/intc/gicv3_internal.h +++ b/hw/intc/gicv3_internal.h @@ -159,6 +159,85 @@ #define ICC_CTLR_EL3_A3V (1U << 15) #define ICC_CTLR_EL3_NDS (1U << 17) +#define ICH_VMCR_EL2_VENG0_SHIFT 0 +#define ICH_VMCR_EL2_VENG0 (1U << ICH_VMCR_EL2_VENG0_SHIFT) +#define ICH_VMCR_EL2_VENG1_SHIFT 1 +#define ICH_VMCR_EL2_VENG1 (1U << ICH_VMCR_EL2_VENG1_SHIFT) +#define ICH_VMCR_EL2_VACKCTL (1U << 2) +#define ICH_VMCR_EL2_VFIQEN (1U << 3) +#define ICH_VMCR_EL2_VCBPR_SHIFT 4 +#define ICH_VMCR_EL2_VCBPR (1U << ICH_VMCR_EL2_VCBPR_SHIFT) +#define ICH_VMCR_EL2_VEOIM_SHIFT 9 +#define ICH_VMCR_EL2_VEOIM (1U << ICH_VMCR_EL2_VEOIM_SHIFT) +#define ICH_VMCR_EL2_VBPR1_SHIFT 18 +#define ICH_VMCR_EL2_VBPR1_LENGTH 3 +#define ICH_VMCR_EL2_VBPR1_MASK (0x7U << ICH_VMCR_EL2_VBPR1_SHIFT) +#define ICH_VMCR_EL2_VBPR0_SHIFT 21 +#define ICH_VMCR_EL2_VBPR0_LENGTH 3 +#define ICH_VMCR_EL2_VBPR0_MASK (0x7U << ICH_VMCR_EL2_VBPR0_SHIFT) +#define ICH_VMCR_EL2_VPMR_SHIFT 24 +#define ICH_VMCR_EL2_VPMR_LENGTH 8 +#define ICH_VMCR_EL2_VPMR_MASK (0xffU << ICH_VMCR_EL2_VPMR_SHIFT) + +#define ICH_HCR_EL2_EN (1U << 0) +#define ICH_HCR_EL2_UIE (1U << 1) +#define ICH_HCR_EL2_LRENPIE (1U << 2) +#define ICH_HCR_EL2_NPIE (1U << 3) +#define ICH_HCR_EL2_VGRP0EIE (1U << 4) +#define ICH_HCR_EL2_VGRP0DIE (1U << 5) +#define ICH_HCR_EL2_VGRP1EIE (1U << 6) +#define ICH_HCR_EL2_VGRP1DIE (1U << 7) +#define ICH_HCR_EL2_TC (1U << 10) +#define ICH_HCR_EL2_TALL0 (1U << 11) +#define ICH_HCR_EL2_TALL1 (1U << 12) +#define ICH_HCR_EL2_TSEI (1U << 13) +#define ICH_HCR_EL2_TDIR (1U << 14) +#define ICH_HCR_EL2_EOICOUNT_SHIFT 27 +#define ICH_HCR_EL2_EOICOUNT_LENGTH 5 +#define ICH_HCR_EL2_EOICOUNT_MASK (0x1fU << ICH_HCR_EL2_EOICOUNT_SHIFT) + +#define ICH_LR_EL2_VINTID_SHIFT 0 +#define ICH_LR_EL2_VINTID_LENGTH 32 +#define ICH_LR_EL2_VINTID_MASK (0xffffffffULL << ICH_LR_EL2_VINTID_SHIFT) +#define ICH_LR_EL2_PINTID_SHIFT 32 +#define ICH_LR_EL2_PINTID_LENGTH 10 +#define ICH_LR_EL2_PINTID_MASK (0x3ffULL << ICH_LR_EL2_PINTID_SHIFT) +/* Note that EOI shares with the top bit of the pINTID field */ +#define ICH_LR_EL2_EOI (1ULL << 41) +#define ICH_LR_EL2_PRIORITY_SHIFT 48 +#define ICH_LR_EL2_PRIORITY_LENGTH 8 +#define ICH_LR_EL2_PRIORITY_MASK (0xffULL << ICH_LR_EL2_PRIORITY_SHIFT) +#define ICH_LR_EL2_GROUP (1ULL << 60) +#define ICH_LR_EL2_HW (1ULL << 61) +#define ICH_LR_EL2_STATE_SHIFT 62 +#define ICH_LR_EL2_STATE_LENGTH 2 +#define ICH_LR_EL2_STATE_MASK (3ULL << ICH_LR_EL2_STATE_SHIFT) +/* values for the state field: */ +#define ICH_LR_EL2_STATE_INVALID 0 +#define ICH_LR_EL2_STATE_PENDING 1 +#define ICH_LR_EL2_STATE_ACTIVE 2 +#define ICH_LR_EL2_STATE_ACTIVE_PENDING 3 +#define ICH_LR_EL2_STATE_PENDING_BIT (1ULL << ICH_LR_EL2_STATE_SHIFT) +#define ICH_LR_EL2_STATE_ACTIVE_BIT (2ULL << ICH_LR_EL2_STATE_SHIFT) + +#define ICH_MISR_EL2_EOI (1U << 0) +#define ICH_MISR_EL2_U (1U << 1) +#define ICH_MISR_EL2_LRENP (1U << 2) +#define ICH_MISR_EL2_NP (1U << 3) +#define ICH_MISR_EL2_VGRP0E (1U << 4) +#define ICH_MISR_EL2_VGRP0D (1U << 5) +#define ICH_MISR_EL2_VGRP1E (1U << 6) +#define ICH_MISR_EL2_VGRP1D (1U << 7) + +#define ICH_VTR_EL2_LISTREGS_SHIFT 0 +#define ICH_VTR_EL2_TDS (1U << 19) +#define ICH_VTR_EL2_NV4 (1U << 20) +#define ICH_VTR_EL2_A3V (1U << 21) +#define ICH_VTR_EL2_SEIS (1U << 22) +#define ICH_VTR_EL2_IDBITS_SHIFT 23 +#define ICH_VTR_EL2_PREBITS_SHIFT 26 +#define ICH_VTR_EL2_PRIBITS_SHIFT 29 + /* Special interrupt IDs */ #define INTID_SECURE 1020 #define INTID_NONSECURE 1021 diff --git a/hw/intc/trace-events b/hw/intc/trace-events index 340f61776104d31be5e0ddf826d191b86f4b6b95..6116df5436856e39f7a8ee738a3a88231828b168 100644 --- a/hw/intc/trace-events +++ b/hw/intc/trace-events @@ -107,6 +107,39 @@ gicv3_icc_hppir0_read(uint32_t cpu, uint64_t val) "GICv3 ICC_HPPIR0 read cpu %x gicv3_icc_hppir1_read(uint32_t cpu, uint64_t val) "GICv3 ICC_HPPIR1 read cpu %x value 0x%" PRIx64 gicv3_icc_dir_write(uint32_t cpu, uint64_t val) "GICv3 ICC_DIR write cpu %x value 0x%" PRIx64 gicv3_icc_rpr_read(uint32_t cpu, uint64_t val) "GICv3 ICC_RPR read cpu %x value 0x%" PRIx64 +gicv3_ich_ap_read(int grp, int regno, uint32_t cpu, uint64_t val) "GICv3 ICH_AP%dR%d read cpu %x value 0x%" PRIx64 +gicv3_ich_ap_write(int grp, int regno, uint32_t cpu, uint64_t val) "GICv3 ICH_AP%dR%d write cpu %x value 0x%" PRIx64 +gicv3_ich_hcr_read(uint32_t cpu, uint64_t val) "GICv3 ICH_HCR_EL2 read cpu %x value 0x%" PRIx64 +gicv3_ich_hcr_write(uint32_t cpu, uint64_t val) "GICv3 ICH_HCR_EL2 write cpu %x value 0x%" PRIx64 +gicv3_ich_vmcr_read(uint32_t cpu, uint64_t val) "GICv3 ICH_VMCR_EL2 read cpu %x value 0x%" PRIx64 +gicv3_ich_vmcr_write(uint32_t cpu, uint64_t val) "GICv3 ICH_VMCR_EL2 write cpu %x value 0x%" PRIx64 +gicv3_ich_lr_read(int regno, uint32_t cpu, uint64_t val) "GICv3 ICH_LR%d_EL2 read cpu %x value 0x%" PRIx64 +gicv3_ich_lr32_read(int regno, uint32_t cpu, uint32_t val) "GICv3 ICH_LR%d read cpu %x value 0x%" PRIx32 +gicv3_ich_lrc_read(int regno, uint32_t cpu, uint32_t val) "GICv3 ICH_LRC%d read cpu %x value 0x%" PRIx32 +gicv3_ich_lr_write(int regno, uint32_t cpu, uint64_t val) "GICv3 ICH_LR%d_EL2 write cpu %x value 0x%" PRIx64 +gicv3_ich_lr32_write(int regno, uint32_t cpu, uint32_t val) "GICv3 ICH_LR%d write cpu %x value 0x%" PRIx32 +gicv3_ich_lrc_write(int regno, uint32_t cpu, uint32_t val) "GICv3 ICH_LRC%d write cpu %x value 0x%" PRIx32 +gicv3_ich_vtr_read(uint32_t cpu, uint64_t val) "GICv3 ICH_VTR read cpu %x value 0x%" PRIx64 +gicv3_ich_misr_read(uint32_t cpu, uint64_t val) "GICv3 ICH_MISR read cpu %x value 0x%" PRIx64 +gicv3_ich_eisr_read(uint32_t cpu, uint64_t val) "GICv3 ICH_EISR read cpu %x value 0x%" PRIx64 +gicv3_ich_elrsr_read(uint32_t cpu, uint64_t val) "GICv3 ICH_ELRSR read cpu %x value 0x%" PRIx64 +gicv3_icv_ap_read(int grp, int regno, uint32_t cpu, uint64_t val) "GICv3 ICV_AP%dR%d read cpu %x value 0x%" PRIx64 +gicv3_icv_ap_write(int grp, int regno, uint32_t cpu, uint64_t val) "GICv3 ICV_AP%dR%d write cpu %x value 0x%" PRIx64 +gicv3_icv_bpr_read(int grp, uint32_t cpu, uint64_t val) "GICv3 ICV_BPR%d read cpu %x value 0x%" PRIx64 +gicv3_icv_bpr_write(int grp, uint32_t cpu, uint64_t val) "GICv3 ICV_BPR%d write cpu %x value 0x%" PRIx64 +gicv3_icv_pmr_read(uint32_t cpu, uint64_t val) "GICv3 ICV_PMR read cpu %x value 0x%" PRIx64 +gicv3_icv_pmr_write(uint32_t cpu, uint64_t val) "GICv3 ICV_PMR write cpu %x value 0x%" PRIx64 +gicv3_icv_igrpen_read(int grp, uint32_t cpu, uint64_t val) "GICv3 ICV_IGRPEN%d read cpu %x value 0x%" PRIx64 +gicv3_icv_igrpen_write(int grp, uint32_t cpu, uint64_t val) "GICv3 ICV_IGRPEN%d write cpu %x value 0x%" PRIx64 +gicv3_icv_ctlr_read(uint32_t cpu, uint64_t val) "GICv3 ICV_CTLR read cpu %x value 0x%" PRIx64 +gicv3_icv_ctlr_write(uint32_t cpu, uint64_t val) "GICv3 ICV_CTLR write cpu %x value 0x%" PRIx64 +gicv3_icv_rpr_read(uint32_t cpu, uint64_t val) "GICv3 ICV_RPR read cpu %x value 0x%" PRIx64 +gicv3_icv_hppir_read(int grp, uint32_t cpu, uint64_t val) "GICv3 ICV_HPPIR%d read cpu %x value 0x%" PRIx64 +gicv3_icv_dir_write(uint32_t cpu, uint64_t val) "GICv3 ICV_DIR write cpu %x value 0x%" PRIx64 +gicv3_icv_iar_read(int grp, uint32_t cpu, uint64_t val) "GICv3 ICV_IAR%d read cpu %x value 0x%" PRIx64 +gicv3_icv_eoir_write(int grp, uint32_t cpu, uint64_t val) "GICv3 ICV_EOIR%d write cpu %x value 0x%" PRIx64 +gicv3_cpuif_virt_update(uint32_t cpuid, int idx) "GICv3 CPU i/f %x virt HPPI update LR index %d" +gicv3_cpuif_virt_set_irqs(uint32_t cpuid, int fiqlevel, int irqlevel, int maintlevel) "GICv3 CPU i/f %x virt HPPI update: setting FIQ %d IRQ %d maintenance-irq %d" # hw/intc/arm_gicv3_dist.c gicv3_dist_read(uint64_t offset, uint64_t data, unsigned size, bool secure) "GICv3 distributor read: offset 0x%" PRIx64 " data 0x%" PRIx64 " size %u secure %d" diff --git a/hw/ssi/aspeed_smc.c b/hw/ssi/aspeed_smc.c index 78f5aed532475db9391c4286d2573d4e132b6915..ae1ad2dba6ffff93d663f07f29656d8213a826a8 100644 --- a/hw/ssi/aspeed_smc.c +++ b/hw/ssi/aspeed_smc.c @@ -39,11 +39,14 @@ #define CONF_ENABLE_W2 18 #define CONF_ENABLE_W1 17 #define CONF_ENABLE_W0 16 -#define CONF_FLASH_TYPE4 9 -#define CONF_FLASH_TYPE3 7 -#define CONF_FLASH_TYPE2 5 -#define CONF_FLASH_TYPE1 3 -#define CONF_FLASH_TYPE0 1 +#define CONF_FLASH_TYPE4 8 +#define CONF_FLASH_TYPE3 6 +#define CONF_FLASH_TYPE2 4 +#define CONF_FLASH_TYPE1 2 +#define CONF_FLASH_TYPE0 0 +#define CONF_FLASH_TYPE_NOR 0x0 +#define CONF_FLASH_TYPE_NAND 0x1 +#define CONF_FLASH_TYPE_SPI 0x2 /* CE Control Register */ #define R_CE_CTRL (0x04 / 4) @@ -66,6 +69,7 @@ #define R_CTRL0 (0x10 / 4) #define CTRL_CMD_SHIFT 16 #define CTRL_CMD_MASK 0xff +#define CTRL_AST2400_SPI_4BYTE (1 << 13) #define CTRL_CE_STOP_ACTIVE (1 << 2) #define CTRL_CMD_MODE_MASK 0x3 #define CTRL_READMODE 0x0 @@ -127,11 +131,17 @@ #define R_SPI_MISC_CTRL (0x10 / 4) #define R_SPI_TIMINGS (0x14 / 4) +#define ASPEED_SMC_R_SPI_MAX (0x20 / 4) +#define ASPEED_SMC_R_SMC_MAX (0x20 / 4) + #define ASPEED_SOC_SMC_FLASH_BASE 0x10000000 #define ASPEED_SOC_FMC_FLASH_BASE 0x20000000 #define ASPEED_SOC_SPI_FLASH_BASE 0x30000000 #define ASPEED_SOC_SPI2_FLASH_BASE 0x38000000 +/* Flash opcodes. */ +#define SPI_OP_READ 0x03 /* Read data bytes (low frequency) */ + /* * Default segments mapping addresses and size for each slave per * controller. These can be changed when board is initialized with the @@ -170,24 +180,85 @@ static const AspeedSegments aspeed_segments_ast2500_spi2[] = { }; static const AspeedSMCController controllers[] = { - { "aspeed.smc.smc", R_CONF, R_CE_CTRL, R_CTRL0, R_TIMINGS, - CONF_ENABLE_W0, 5, aspeed_segments_legacy, - ASPEED_SOC_SMC_FLASH_BASE, 0x6000000 }, - { "aspeed.smc.fmc", R_CONF, R_CE_CTRL, R_CTRL0, R_TIMINGS, - CONF_ENABLE_W0, 5, aspeed_segments_fmc, - ASPEED_SOC_FMC_FLASH_BASE, 0x10000000 }, - { "aspeed.smc.spi", R_SPI_CONF, 0xff, R_SPI_CTRL0, R_SPI_TIMINGS, - SPI_CONF_ENABLE_W0, 1, aspeed_segments_spi, - ASPEED_SOC_SPI_FLASH_BASE, 0x10000000 }, - { "aspeed.smc.ast2500-fmc", R_CONF, R_CE_CTRL, R_CTRL0, R_TIMINGS, - CONF_ENABLE_W0, 3, aspeed_segments_ast2500_fmc, - ASPEED_SOC_FMC_FLASH_BASE, 0x10000000 }, - { "aspeed.smc.ast2500-spi1", R_CONF, R_CE_CTRL, R_CTRL0, R_TIMINGS, - CONF_ENABLE_W0, 2, aspeed_segments_ast2500_spi1, - ASPEED_SOC_SPI_FLASH_BASE, 0x8000000 }, - { "aspeed.smc.ast2500-spi2", R_CONF, R_CE_CTRL, R_CTRL0, R_TIMINGS, - CONF_ENABLE_W0, 2, aspeed_segments_ast2500_spi2, - ASPEED_SOC_SPI2_FLASH_BASE, 0x8000000 }, + { + .name = "aspeed.smc.smc", + .r_conf = R_CONF, + .r_ce_ctrl = R_CE_CTRL, + .r_ctrl0 = R_CTRL0, + .r_timings = R_TIMINGS, + .conf_enable_w0 = CONF_ENABLE_W0, + .max_slaves = 5, + .segments = aspeed_segments_legacy, + .flash_window_base = ASPEED_SOC_SMC_FLASH_BASE, + .flash_window_size = 0x6000000, + .has_dma = false, + .nregs = ASPEED_SMC_R_SMC_MAX, + }, { + .name = "aspeed.smc.fmc", + .r_conf = R_CONF, + .r_ce_ctrl = R_CE_CTRL, + .r_ctrl0 = R_CTRL0, + .r_timings = R_TIMINGS, + .conf_enable_w0 = CONF_ENABLE_W0, + .max_slaves = 5, + .segments = aspeed_segments_fmc, + .flash_window_base = ASPEED_SOC_FMC_FLASH_BASE, + .flash_window_size = 0x10000000, + .has_dma = true, + .nregs = ASPEED_SMC_R_MAX, + }, { + .name = "aspeed.smc.spi", + .r_conf = R_SPI_CONF, + .r_ce_ctrl = 0xff, + .r_ctrl0 = R_SPI_CTRL0, + .r_timings = R_SPI_TIMINGS, + .conf_enable_w0 = SPI_CONF_ENABLE_W0, + .max_slaves = 1, + .segments = aspeed_segments_spi, + .flash_window_base = ASPEED_SOC_SPI_FLASH_BASE, + .flash_window_size = 0x10000000, + .has_dma = false, + .nregs = ASPEED_SMC_R_SPI_MAX, + }, { + .name = "aspeed.smc.ast2500-fmc", + .r_conf = R_CONF, + .r_ce_ctrl = R_CE_CTRL, + .r_ctrl0 = R_CTRL0, + .r_timings = R_TIMINGS, + .conf_enable_w0 = CONF_ENABLE_W0, + .max_slaves = 3, + .segments = aspeed_segments_ast2500_fmc, + .flash_window_base = ASPEED_SOC_FMC_FLASH_BASE, + .flash_window_size = 0x10000000, + .has_dma = true, + .nregs = ASPEED_SMC_R_MAX, + }, { + .name = "aspeed.smc.ast2500-spi1", + .r_conf = R_CONF, + .r_ce_ctrl = R_CE_CTRL, + .r_ctrl0 = R_CTRL0, + .r_timings = R_TIMINGS, + .conf_enable_w0 = CONF_ENABLE_W0, + .max_slaves = 2, + .segments = aspeed_segments_ast2500_spi1, + .flash_window_base = ASPEED_SOC_SPI_FLASH_BASE, + .flash_window_size = 0x8000000, + .has_dma = false, + .nregs = ASPEED_SMC_R_MAX, + }, { + .name = "aspeed.smc.ast2500-spi2", + .r_conf = R_CONF, + .r_ce_ctrl = R_CE_CTRL, + .r_ctrl0 = R_CTRL0, + .r_timings = R_TIMINGS, + .conf_enable_w0 = CONF_ENABLE_W0, + .max_slaves = 2, + .segments = aspeed_segments_ast2500_spi2, + .flash_window_base = ASPEED_SOC_SPI2_FLASH_BASE, + .flash_window_size = 0x8000000, + .has_dma = false, + .nregs = ASPEED_SMC_R_MAX, + }, }; /* @@ -328,36 +399,137 @@ static const MemoryRegionOps aspeed_smc_flash_default_ops = { }, }; -static inline int aspeed_smc_flash_mode(const AspeedSMCState *s, int cs) +static inline int aspeed_smc_flash_mode(const AspeedSMCFlash *fl) { - return s->regs[s->r_ctrl0 + cs] & CTRL_CMD_MODE_MASK; + const AspeedSMCState *s = fl->controller; + + return s->regs[s->r_ctrl0 + fl->id] & CTRL_CMD_MODE_MASK; } -static inline bool aspeed_smc_is_usermode(const AspeedSMCState *s, int cs) +static inline bool aspeed_smc_is_writable(const AspeedSMCFlash *fl) { - return aspeed_smc_flash_mode(s, cs) == CTRL_USERMODE; + const AspeedSMCState *s = fl->controller; + + return s->regs[s->r_conf] & (1 << (s->conf_enable_w0 + fl->id)); } -static inline bool aspeed_smc_is_writable(const AspeedSMCState *s, int cs) +static inline int aspeed_smc_flash_cmd(const AspeedSMCFlash *fl) { - return s->regs[s->r_conf] & (1 << (s->conf_enable_w0 + cs)); + const AspeedSMCState *s = fl->controller; + int cmd = (s->regs[s->r_ctrl0 + fl->id] >> CTRL_CMD_SHIFT) & CTRL_CMD_MASK; + + /* In read mode, the default SPI command is READ (0x3). In other + * modes, the command should necessarily be defined */ + if (aspeed_smc_flash_mode(fl) == CTRL_READMODE) { + cmd = SPI_OP_READ; + } + + if (!cmd) { + qemu_log_mask(LOG_GUEST_ERROR, "%s: no command defined for mode %d\n", + __func__, aspeed_smc_flash_mode(fl)); + } + + return cmd; +} + +static inline int aspeed_smc_flash_is_4byte(const AspeedSMCFlash *fl) +{ + const AspeedSMCState *s = fl->controller; + + if (s->ctrl->segments == aspeed_segments_spi) { + return s->regs[s->r_ctrl0] & CTRL_AST2400_SPI_4BYTE; + } else { + return s->regs[s->r_ce_ctrl] & (1 << (CTRL_EXTENDED0 + fl->id)); + } +} + +static inline bool aspeed_smc_is_ce_stop_active(const AspeedSMCFlash *fl) +{ + const AspeedSMCState *s = fl->controller; + + return s->regs[s->r_ctrl0 + fl->id] & CTRL_CE_STOP_ACTIVE; +} + +static void aspeed_smc_flash_select(AspeedSMCFlash *fl) +{ + AspeedSMCState *s = fl->controller; + + s->regs[s->r_ctrl0 + fl->id] &= ~CTRL_CE_STOP_ACTIVE; + qemu_set_irq(s->cs_lines[fl->id], aspeed_smc_is_ce_stop_active(fl)); +} + +static void aspeed_smc_flash_unselect(AspeedSMCFlash *fl) +{ + AspeedSMCState *s = fl->controller; + + s->regs[s->r_ctrl0 + fl->id] |= CTRL_CE_STOP_ACTIVE; + qemu_set_irq(s->cs_lines[fl->id], aspeed_smc_is_ce_stop_active(fl)); +} + +static uint32_t aspeed_smc_check_segment_addr(const AspeedSMCFlash *fl, + uint32_t addr) +{ + const AspeedSMCState *s = fl->controller; + AspeedSegments seg; + + aspeed_smc_reg_to_segment(s->regs[R_SEG_ADDR0 + fl->id], &seg); + if ((addr & (seg.size - 1)) != addr) { + qemu_log_mask(LOG_GUEST_ERROR, + "%s: invalid address 0x%08x for CS%d segment : " + "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n", + s->ctrl->name, addr, fl->id, seg.addr, + seg.addr + seg.size); + } + + addr &= seg.size - 1; + return addr; +} + +static void aspeed_smc_flash_send_addr(AspeedSMCFlash *fl, uint32_t addr) +{ + const AspeedSMCState *s = fl->controller; + uint8_t cmd = aspeed_smc_flash_cmd(fl); + + /* Flash access can not exceed CS segment */ + addr = aspeed_smc_check_segment_addr(fl, addr); + + ssi_transfer(s->spi, cmd); + + if (aspeed_smc_flash_is_4byte(fl)) { + ssi_transfer(s->spi, (addr >> 24) & 0xff); + } + ssi_transfer(s->spi, (addr >> 16) & 0xff); + ssi_transfer(s->spi, (addr >> 8) & 0xff); + ssi_transfer(s->spi, (addr & 0xff)); } static uint64_t aspeed_smc_flash_read(void *opaque, hwaddr addr, unsigned size) { AspeedSMCFlash *fl = opaque; - const AspeedSMCState *s = fl->controller; + AspeedSMCState *s = fl->controller; uint64_t ret = 0; int i; - if (aspeed_smc_is_usermode(s, fl->id)) { + switch (aspeed_smc_flash_mode(fl)) { + case CTRL_USERMODE: for (i = 0; i < size; i++) { ret |= ssi_transfer(s->spi, 0x0) << (8 * i); } - } else { - qemu_log_mask(LOG_UNIMP, "%s: usermode not implemented\n", - __func__); - ret = -1; + break; + case CTRL_READMODE: + case CTRL_FREADMODE: + aspeed_smc_flash_select(fl); + aspeed_smc_flash_send_addr(fl, addr); + + for (i = 0; i < size; i++) { + ret |= ssi_transfer(s->spi, 0x0) << (8 * i); + } + + aspeed_smc_flash_unselect(fl); + break; + default: + qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid flash mode %d\n", + __func__, aspeed_smc_flash_mode(fl)); } return ret; @@ -367,23 +539,34 @@ static void aspeed_smc_flash_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { AspeedSMCFlash *fl = opaque; - const AspeedSMCState *s = fl->controller; + AspeedSMCState *s = fl->controller; int i; - if (!aspeed_smc_is_writable(s, fl->id)) { + if (!aspeed_smc_is_writable(fl)) { qemu_log_mask(LOG_GUEST_ERROR, "%s: flash is not writable at 0x%" HWADDR_PRIx "\n", __func__, addr); return; } - if (!aspeed_smc_is_usermode(s, fl->id)) { - qemu_log_mask(LOG_UNIMP, "%s: usermode not implemented\n", - __func__); - return; - } + switch (aspeed_smc_flash_mode(fl)) { + case CTRL_USERMODE: + for (i = 0; i < size; i++) { + ssi_transfer(s->spi, (data >> (8 * i)) & 0xff); + } + break; + case CTRL_WRITEMODE: + aspeed_smc_flash_select(fl); + aspeed_smc_flash_send_addr(fl, addr); - for (i = 0; i < size; i++) { - ssi_transfer(s->spi, (data >> (8 * i)) & 0xff); + for (i = 0; i < size; i++) { + ssi_transfer(s->spi, (data >> (8 * i)) & 0xff); + } + + aspeed_smc_flash_unselect(fl); + break; + default: + qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid flash mode %d\n", + __func__, aspeed_smc_flash_mode(fl)); } } @@ -397,18 +580,11 @@ static const MemoryRegionOps aspeed_smc_flash_ops = { }, }; -static bool aspeed_smc_is_ce_stop_active(const AspeedSMCState *s, int cs) -{ - return s->regs[s->r_ctrl0 + cs] & CTRL_CE_STOP_ACTIVE; -} - -static void aspeed_smc_update_cs(const AspeedSMCState *s) +static void aspeed_smc_flash_update_cs(AspeedSMCFlash *fl) { - int i; + const AspeedSMCState *s = fl->controller; - for (i = 0; i < s->num_cs; ++i) { - qemu_set_irq(s->cs_lines[i], aspeed_smc_is_ce_stop_active(s, i)); - } + qemu_set_irq(s->cs_lines[fl->id], aspeed_smc_is_ce_stop_active(fl)); } static void aspeed_smc_reset(DeviceState *d) @@ -424,6 +600,7 @@ static void aspeed_smc_reset(DeviceState *d) /* Unselect all slaves */ for (i = 0; i < s->num_cs; ++i) { s->regs[s->r_ctrl0 + i] |= CTRL_CE_STOP_ACTIVE; + qemu_set_irq(s->cs_lines[i], true); } /* setup default segment register values for all */ @@ -432,7 +609,24 @@ static void aspeed_smc_reset(DeviceState *d) aspeed_smc_segment_to_reg(&s->ctrl->segments[i]); } - aspeed_smc_update_cs(s); + /* HW strapping for AST2500 FMC controllers */ + if (s->ctrl->segments == aspeed_segments_ast2500_fmc) { + /* flash type is fixed to SPI for CE0 and CE1 */ + s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0); + s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1); + + /* 4BYTE mode is autodetected for CE0. Let's force it to 1 for + * now */ + s->regs[s->r_ce_ctrl] |= (1 << (CTRL_EXTENDED0)); + } + + /* HW strapping for AST2400 FMC controllers (SCU70). Let's use the + * configuration of the palmetto-bmc machine */ + if (s->ctrl->segments == aspeed_segments_fmc) { + s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0); + + s->regs[s->r_ce_ctrl] |= (1 << (CTRL_EXTENDED0)); + } } static uint64_t aspeed_smc_read(void *opaque, hwaddr addr, unsigned int size) @@ -441,13 +635,6 @@ static uint64_t aspeed_smc_read(void *opaque, hwaddr addr, unsigned int size) addr >>= 2; - if (addr >= ARRAY_SIZE(s->regs)) { - qemu_log_mask(LOG_GUEST_ERROR, - "%s: Out-of-bounds read at 0x%" HWADDR_PRIx "\n", - __func__, addr); - return 0; - } - if (addr == s->r_conf || addr == s->r_timings || addr == s->r_ce_ctrl || @@ -470,20 +657,14 @@ static void aspeed_smc_write(void *opaque, hwaddr addr, uint64_t data, addr >>= 2; - if (addr >= ARRAY_SIZE(s->regs)) { - qemu_log_mask(LOG_GUEST_ERROR, - "%s: Out-of-bounds write at 0x%" HWADDR_PRIx "\n", - __func__, addr); - return; - } - if (addr == s->r_conf || addr == s->r_timings || addr == s->r_ce_ctrl) { s->regs[addr] = value; } else if (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + s->num_cs) { + int cs = addr - s->r_ctrl0; s->regs[addr] = value; - aspeed_smc_update_cs(s); + aspeed_smc_flash_update_cs(&s->flashes[cs]); } else if (addr >= R_SEG_ADDR0 && addr < R_SEG_ADDR0 + s->ctrl->max_slaves) { int cs = addr - R_SEG_ADDR0; @@ -541,11 +722,9 @@ static void aspeed_smc_realize(DeviceState *dev, Error **errp) sysbus_init_irq(sbd, &s->cs_lines[i]); } - aspeed_smc_reset(dev); - /* The memory region for the controller registers */ memory_region_init_io(&s->mmio, OBJECT(s), &aspeed_smc_ops, s, - s->ctrl->name, ASPEED_SMC_R_MAX * 4); + s->ctrl->name, s->ctrl->nregs * 4); sysbus_init_mmio(sbd, &s->mmio); /* diff --git a/include/hw/arm/virt.h b/include/hw/arm/virt.h index eb1c63d688e4e1f214ddae95c90787685007a395..58ce74e0e5836e6df09c24d9ad4d40a887352fdd 100644 --- a/include/hw/arm/virt.h +++ b/include/hw/arm/virt.h @@ -39,6 +39,8 @@ #define NUM_GICV2M_SPIS 64 #define NUM_VIRTIO_TRANSPORTS 32 +#define ARCH_GICV3_MAINT_IRQ 9 + #define ARCH_TIMER_VIRT_IRQ 11 #define ARCH_TIMER_S_EL1_IRQ 13 #define ARCH_TIMER_NS_EL1_IRQ 14 @@ -91,6 +93,7 @@ typedef struct { FWCfgState *fw_cfg; bool secure; bool highmem; + bool virt; int32_t gic_version; struct arm_boot_info bootinfo; const MemMapEntry *memmap; @@ -101,7 +104,7 @@ typedef struct { uint32_t clock_phandle; uint32_t gic_phandle; uint32_t msi_phandle; - bool using_psci; + int psci_conduit; } VirtMachineState; #define TYPE_VIRT_MACHINE MACHINE_TYPE_NAME("virt") diff --git a/include/hw/intc/arm_gic_common.h b/include/hw/intc/arm_gic_common.h index f4c349a2efb1289da7612097b664adf441ca197a..af3ca18e2f068dbc7516fbe299457c5e5b37b3c7 100644 --- a/include/hw/intc/arm_gic_common.h +++ b/include/hw/intc/arm_gic_common.h @@ -55,6 +55,8 @@ typedef struct GICState { qemu_irq parent_irq[GIC_NCPU]; qemu_irq parent_fiq[GIC_NCPU]; + qemu_irq parent_virq[GIC_NCPU]; + qemu_irq parent_vfiq[GIC_NCPU]; /* GICD_CTLR; for a GIC with the security extensions the NS banked version * of this register is just an alias of bit 1 of the S banked version. */ diff --git a/include/hw/intc/arm_gicv3_common.h b/include/hw/intc/arm_gicv3_common.h index 341a3118f0f442c8493ee2aa83cebb1e12ca2446..4156051d984adaa44c93ec72e95f80b83998141b 100644 --- a/include/hw/intc/arm_gicv3_common.h +++ b/include/hw/intc/arm_gicv3_common.h @@ -38,6 +38,9 @@ /* Number of SGI target-list bits */ #define GICV3_TARGETLIST_BITS 16 +/* Maximum number of list registers (architectural limit) */ +#define GICV3_LR_MAX 16 + /* Minimum BPR for Secure, or when security not enabled */ #define GIC_MIN_BPR 0 /* Minimum BPR for Nonsecure when security is enabled */ @@ -145,6 +148,9 @@ struct GICv3CPUState { CPUState *cpu; qemu_irq parent_irq; qemu_irq parent_fiq; + qemu_irq parent_virq; + qemu_irq parent_vfiq; + qemu_irq maintenance_irq; /* Redistributor */ uint32_t level; /* Current IRQ level */ @@ -173,6 +179,21 @@ struct GICv3CPUState { uint64_t icc_igrpen[3]; uint64_t icc_ctlr_el3; + /* Virtualization control interface */ + uint64_t ich_apr[3][4]; /* ich_apr[GICV3_G1][x] never used */ + uint64_t ich_hcr_el2; + uint64_t ich_lr_el2[GICV3_LR_MAX]; + uint64_t ich_vmcr_el2; + + /* Properties of the CPU interface. These are initialized from + * the settings in the CPU proper. + * If the number of implemented list registers is 0 then the + * virtualization support is not implemented. + */ + int num_list_regs; + int vpribits; /* number of virtual priority bits */ + int vprebits; /* number of virtual preemption bits */ + /* Current highest priority pending interrupt for this CPU. * This is cached information that can be recalculated from the * real state above; it doesn't need to be migrated. diff --git a/include/hw/ssi/aspeed_smc.h b/include/hw/ssi/aspeed_smc.h index bdfbcc0ffa7de1f4b16dd365c3e2bb4ccac14bca..1f557313fa93ec631b30269742452437722853f9 100644 --- a/include/hw/ssi/aspeed_smc.h +++ b/include/hw/ssi/aspeed_smc.h @@ -44,10 +44,12 @@ typedef struct AspeedSMCController { const AspeedSegments *segments; hwaddr flash_window_base; uint32_t flash_window_size; + bool has_dma; + uint32_t nregs; } AspeedSMCController; typedef struct AspeedSMCFlash { - const struct AspeedSMCState *controller; + struct AspeedSMCState *controller; uint8_t id; uint32_t size; diff --git a/target/arm/cpu.c b/target/arm/cpu.c index 91046111d9e6094b2ad9c9db91329d272114b7cc..3f2cdb65bf1ec7410dd9f603e9b8a73f15235070 100644 --- a/target/arm/cpu.c +++ b/target/arm/cpu.c @@ -465,6 +465,9 @@ static void arm_cpu_initfn(Object *obj) arm_gt_stimer_cb, cpu); qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs, ARRAY_SIZE(cpu->gt_timer_outputs)); + + qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt, + "gicv3-maintenance-interrupt", 1); #endif /* DTB consumers generally don't in fact care what the 'compatible' @@ -493,6 +496,9 @@ static Property arm_cpu_reset_hivecs_property = static Property arm_cpu_rvbar_property = DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0); +static Property arm_cpu_has_el2_property = + DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true); + static Property arm_cpu_has_el3_property = DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true); @@ -543,6 +549,11 @@ static void arm_cpu_post_init(Object *obj) #endif } + if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) { + qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property, + &error_abort); + } + if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) { qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property, &error_abort); @@ -691,6 +702,10 @@ static void arm_cpu_realizefn(DeviceState *dev, Error **errp) cpu->id_aa64pfr0 &= ~0xf000; } + if (!cpu->has_el2) { + unset_feature(env, ARM_FEATURE_EL2); + } + if (!cpu->has_pmu || !kvm_enabled()) { cpu->has_pmu = false; unset_feature(env, ARM_FEATURE_PMU); diff --git a/target/arm/cpu.h b/target/arm/cpu.h index 7bd16eec18d86d2c976aa35f853bf751e33035aa..151a5d754e26c777173b7b51911e71c889caa298 100644 --- a/target/arm/cpu.h +++ b/target/arm/cpu.h @@ -558,6 +558,8 @@ struct ARMCPU { QEMUTimer *gt_timer[NUM_GTIMERS]; /* GPIO outputs for generic timer */ qemu_irq gt_timer_outputs[NUM_GTIMERS]; + /* GPIO output for GICv3 maintenance interrupt signal */ + qemu_irq gicv3_maintenance_interrupt; /* MemoryRegion to use for secure physical accesses */ MemoryRegion *secure_memory; @@ -575,6 +577,8 @@ struct ARMCPU { bool start_powered_off; /* CPU currently in PSCI powered-off state */ bool powered_off; + /* CPU has virtualization extension */ + bool has_el2; /* CPU has security extension */ bool has_el3; /* CPU has PMU (Performance Monitor Unit) */ @@ -660,6 +664,11 @@ struct ARMCPU { uint32_t dcz_blocksize; uint64_t rvbar; + /* Configurable aspects of GIC cpu interface (which is part of the CPU) */ + int gic_num_lrs; /* number of list registers */ + int gic_vpribits; /* number of virtual priority bits */ + int gic_vprebits; /* number of virtual preemption bits */ + ARMELChangeHook *el_change_hook; void *el_change_hook_opaque; }; diff --git a/target/arm/cpu64.c b/target/arm/cpu64.c index 549cb1ee93cc8ed9ce3e19baaa07cd13b022d4cb..670c07ab6ed45ff94b784d6c19dc892adae09368 100644 --- a/target/arm/cpu64.c +++ b/target/arm/cpu64.c @@ -110,6 +110,7 @@ static void aarch64_a57_initfn(Object *obj) set_feature(&cpu->env, ARM_FEATURE_V8_SHA256); set_feature(&cpu->env, ARM_FEATURE_V8_PMULL); set_feature(&cpu->env, ARM_FEATURE_CRC); + set_feature(&cpu->env, ARM_FEATURE_EL2); set_feature(&cpu->env, ARM_FEATURE_EL3); set_feature(&cpu->env, ARM_FEATURE_PMU); cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57; @@ -147,6 +148,9 @@ static void aarch64_a57_initfn(Object *obj) cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */ cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */ cpu->dcz_blocksize = 4; /* 64 bytes */ + cpu->gic_num_lrs = 4; + cpu->gic_vpribits = 5; + cpu->gic_vprebits = 5; define_arm_cp_regs(cpu, cortex_a57_a53_cp_reginfo); } @@ -166,6 +170,7 @@ static void aarch64_a53_initfn(Object *obj) set_feature(&cpu->env, ARM_FEATURE_V8_SHA256); set_feature(&cpu->env, ARM_FEATURE_V8_PMULL); set_feature(&cpu->env, ARM_FEATURE_CRC); + set_feature(&cpu->env, ARM_FEATURE_EL2); set_feature(&cpu->env, ARM_FEATURE_EL3); set_feature(&cpu->env, ARM_FEATURE_PMU); cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53; @@ -201,6 +206,9 @@ static void aarch64_a53_initfn(Object *obj) cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */ cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */ cpu->dcz_blocksize = 4; /* 64 bytes */ + cpu->gic_num_lrs = 4; + cpu->gic_vpribits = 5; + cpu->gic_vprebits = 5; define_arm_cp_regs(cpu, cortex_a57_a53_cp_reginfo); } diff --git a/target/arm/helper.c b/target/arm/helper.c index b3875c7c6eeee842716cb599683a0b0367a63087..7111c8cf18eb3c4b2c23aedcb4cf69ac051c1ec6 100644 --- a/target/arm/helper.c +++ b/target/arm/helper.c @@ -4066,6 +4066,13 @@ static const ARMCPRegInfo debug_cp_reginfo[] = { .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, .access = PL1_RW, .accessfn = access_tda, .type = ARM_CP_NOP }, + /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor + * to save and restore a 32-bit guest's DBGVCR) + */ + { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, + .access = PL2_RW, .accessfn = access_tda, + .type = ARM_CP_NOP }, /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications * Channel but Linux may try to access this register. The 32-bit * alias is DBGDCCINT. @@ -6399,6 +6406,20 @@ static void arm_cpu_do_interrupt_aarch32(CPUState *cs) } offset = 4; break; + case EXCP_VIRQ: + new_mode = ARM_CPU_MODE_IRQ; + addr = 0x18; + /* Disable IRQ and imprecise data aborts. */ + mask = CPSR_A | CPSR_I; + offset = 4; + break; + case EXCP_VFIQ: + new_mode = ARM_CPU_MODE_FIQ; + addr = 0x1c; + /* Disable FIQ, IRQ and imprecise data aborts. */ + mask = CPSR_A | CPSR_I | CPSR_F; + offset = 4; + break; case EXCP_SMC: new_mode = ARM_CPU_MODE_MON; addr = 0x08; diff --git a/target/arm/psci.c b/target/arm/psci.c index 14316eb0ae642d3a0da235e456b4c45254fc8107..64bf82eea1ea328585999778b1c9ff92f50f8dd2 100644 --- a/target/arm/psci.c +++ b/target/arm/psci.c @@ -148,17 +148,28 @@ void arm_handle_psci_call(ARMCPU *cpu) case QEMU_PSCI_0_1_FN_CPU_ON: case QEMU_PSCI_0_2_FN_CPU_ON: case QEMU_PSCI_0_2_FN64_CPU_ON: + { + /* The PSCI spec mandates that newly brought up CPUs start + * in the highest exception level which exists and is enabled + * on the calling CPU. Since the QEMU PSCI implementation is + * acting as a "fake EL3" or "fake EL2" firmware, this for us + * means that we want to start at the highest NS exception level + * that we are providing to the guest. + * The execution mode should be that which is currently in use + * by the same exception level on the calling CPU. + * The CPU should be started with the context_id value + * in x0 (if AArch64) or r0 (if AArch32). + */ + int target_el = arm_feature(env, ARM_FEATURE_EL2) ? 2 : 1; + bool target_aarch64 = arm_el_is_aa64(env, target_el); + mpidr = param[1]; entry = param[2]; context_id = param[3]; - /* - * The PSCI spec mandates that newly brought up CPUs enter the - * exception level of the caller in the same execution mode as - * the caller, with context_id in x0/r0, respectively. - */ - ret = arm_set_cpu_on(mpidr, entry, context_id, arm_current_el(env), - is_a64(env)); + ret = arm_set_cpu_on(mpidr, entry, context_id, + target_el, target_aarch64); break; + } case QEMU_PSCI_0_1_FN_CPU_OFF: case QEMU_PSCI_0_2_FN_CPU_OFF: goto cpu_off; diff --git a/tests/m25p80-test.c b/tests/m25p80-test.c index cb7ec81f1a6d2050b5bb3e4d8cca8cae3ec79a8f..244aa33dd941dd48a2ef6a67ddbecc1cac99f4c0 100644 --- a/tests/m25p80-test.c +++ b/tests/m25p80-test.c @@ -36,6 +36,9 @@ #define CRTL_EXTENDED0 0 /* 32 bit addressing for SPI */ #define R_CTRL0 0x10 #define CTRL_CE_STOP_ACTIVE (1 << 2) +#define CTRL_READMODE 0x0 +#define CTRL_FREADMODE 0x1 +#define CTRL_WRITEMODE 0x2 #define CTRL_USERMODE 0x3 #define ASPEED_FMC_BASE 0x1E620000 @@ -50,6 +53,8 @@ enum { READ = 0x03, PP = 0x02, WREN = 0x6, + RESET_ENABLE = 0x66, + RESET_MEMORY = 0x99, EN_4BYTE_ADDR = 0xB7, ERASE_SECTOR = 0xd8, }; @@ -76,6 +81,30 @@ static void spi_conf(uint32_t value) writel(ASPEED_FMC_BASE + R_CONF, conf); } +static void spi_conf_remove(uint32_t value) +{ + uint32_t conf = readl(ASPEED_FMC_BASE + R_CONF); + + conf &= ~value; + writel(ASPEED_FMC_BASE + R_CONF, conf); +} + +static void spi_ce_ctrl(uint32_t value) +{ + uint32_t conf = readl(ASPEED_FMC_BASE + R_CE_CTRL); + + conf |= value; + writel(ASPEED_FMC_BASE + R_CE_CTRL, conf); +} + +static void spi_ctrl_setmode(uint8_t mode, uint8_t cmd) +{ + uint32_t ctrl = readl(ASPEED_FMC_BASE + R_CTRL0); + ctrl &= ~(CTRL_USERMODE | 0xff << 16); + ctrl |= mode | (cmd << 16); + writel(ASPEED_FMC_BASE + R_CTRL0, ctrl); +} + static void spi_ctrl_start_user(void) { uint32_t ctrl = readl(ASPEED_FMC_BASE + R_CTRL0); @@ -95,6 +124,18 @@ static void spi_ctrl_stop_user(void) writel(ASPEED_FMC_BASE + R_CTRL0, ctrl); } +static void flash_reset(void) +{ + spi_conf(CONF_ENABLE_W0); + + spi_ctrl_start_user(); + writeb(ASPEED_FLASH_BASE, RESET_ENABLE); + writeb(ASPEED_FLASH_BASE, RESET_MEMORY); + spi_ctrl_stop_user(); + + spi_conf_remove(CONF_ENABLE_W0); +} + static void test_read_jedec(void) { uint32_t jedec = 0x0; @@ -108,6 +149,8 @@ static void test_read_jedec(void) jedec |= readb(ASPEED_FLASH_BASE); spi_ctrl_stop_user(); + flash_reset(); + g_assert_cmphex(jedec, ==, FLASH_JEDEC); } @@ -128,6 +171,18 @@ static void read_page(uint32_t addr, uint32_t *page) spi_ctrl_stop_user(); } +static void read_page_mem(uint32_t addr, uint32_t *page) +{ + int i; + + /* move out USER mode to use direct reads from the AHB bus */ + spi_ctrl_setmode(CTRL_READMODE, READ); + + for (i = 0; i < PAGE_SIZE / 4; i++) { + page[i] = make_be32(readl(ASPEED_FLASH_BASE + addr + i * 4)); + } +} + static void test_erase_sector(void) { uint32_t some_page_addr = 0x600 * PAGE_SIZE; @@ -155,6 +210,8 @@ static void test_erase_sector(void) for (i = 0; i < PAGE_SIZE / 4; i++) { g_assert_cmphex(page[i], ==, 0xffffffff); } + + flash_reset(); } static void test_erase_all(void) @@ -182,6 +239,8 @@ static void test_erase_all(void) for (i = 0; i < PAGE_SIZE / 4; i++) { g_assert_cmphex(page[i], ==, 0xffffffff); } + + flash_reset(); } static void test_write_page(void) @@ -195,6 +254,7 @@ static void test_write_page(void) spi_ctrl_start_user(); writeb(ASPEED_FLASH_BASE, EN_4BYTE_ADDR); + writeb(ASPEED_FLASH_BASE, WREN); writeb(ASPEED_FLASH_BASE, PP); writel(ASPEED_FLASH_BASE, make_be32(my_page_addr)); @@ -215,6 +275,77 @@ static void test_write_page(void) for (i = 0; i < PAGE_SIZE / 4; i++) { g_assert_cmphex(page[i], ==, 0xffffffff); } + + flash_reset(); +} + +static void test_read_page_mem(void) +{ + uint32_t my_page_addr = 0x14000 * PAGE_SIZE; /* beyond 16MB */ + uint32_t some_page_addr = 0x15000 * PAGE_SIZE; + uint32_t page[PAGE_SIZE / 4]; + int i; + + /* Enable 4BYTE mode for controller. This is should be strapped by + * HW for CE0 anyhow. + */ + spi_ce_ctrl(1 << CRTL_EXTENDED0); + + /* Enable 4BYTE mode for flash. */ + spi_conf(CONF_ENABLE_W0); + spi_ctrl_start_user(); + writeb(ASPEED_FLASH_BASE, EN_4BYTE_ADDR); + spi_ctrl_stop_user(); + spi_conf_remove(CONF_ENABLE_W0); + + /* Check what was written */ + read_page_mem(my_page_addr, page); + for (i = 0; i < PAGE_SIZE / 4; i++) { + g_assert_cmphex(page[i], ==, my_page_addr + i * 4); + } + + /* Check some other page. It should be full of 0xff */ + read_page_mem(some_page_addr, page); + for (i = 0; i < PAGE_SIZE / 4; i++) { + g_assert_cmphex(page[i], ==, 0xffffffff); + } + + flash_reset(); +} + +static void test_write_page_mem(void) +{ + uint32_t my_page_addr = 0x15000 * PAGE_SIZE; + uint32_t page[PAGE_SIZE / 4]; + int i; + + /* Enable 4BYTE mode for controller. This is should be strapped by + * HW for CE0 anyhow. + */ + spi_ce_ctrl(1 << CRTL_EXTENDED0); + + /* Enable 4BYTE mode for flash. */ + spi_conf(CONF_ENABLE_W0); + spi_ctrl_start_user(); + writeb(ASPEED_FLASH_BASE, EN_4BYTE_ADDR); + writeb(ASPEED_FLASH_BASE, WREN); + spi_ctrl_stop_user(); + + /* move out USER mode to use direct writes to the AHB bus */ + spi_ctrl_setmode(CTRL_WRITEMODE, PP); + + for (i = 0; i < PAGE_SIZE / 4; i++) { + writel(ASPEED_FLASH_BASE + my_page_addr + i * 4, + make_be32(my_page_addr + i * 4)); + } + + /* Check what was written */ + read_page_mem(my_page_addr, page); + for (i = 0; i < PAGE_SIZE / 4; i++) { + g_assert_cmphex(page[i], ==, my_page_addr + i * 4); + } + + flash_reset(); } static char tmp_path[] = "/tmp/qtest.m25p80.XXXXXX"; @@ -242,6 +373,8 @@ int main(int argc, char **argv) qtest_add_func("/m25p80/erase_sector", test_erase_sector); qtest_add_func("/m25p80/erase_all", test_erase_all); qtest_add_func("/m25p80/write_page", test_write_page); + qtest_add_func("/m25p80/read_page_mem", test_read_page_mem); + qtest_add_func("/m25p80/write_page_mem", test_write_page_mem); ret = g_test_run();