cpus.c 31.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/*
 * QEMU System Emulator
 *
 * Copyright (c) 2003-2008 Fabrice Bellard
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

/* Needed early for CONFIG_BSD etc. */
#include "config-host.h"

#include "monitor.h"
#include "sysemu.h"
#include "gdbstub.h"
#include "dma.h"
#include "kvm.h"

P
Paolo Bonzini 已提交
34
#include "qemu-thread.h"
35
#include "cpus.h"
J
Jan Kiszka 已提交
36 37

#ifndef _WIN32
M
Marcelo Tosatti 已提交
38
#include "compatfd.h"
J
Jan Kiszka 已提交
39
#endif
40

41 42 43 44 45 46
#ifdef SIGRTMIN
#define SIG_IPI (SIGRTMIN+4)
#else
#define SIG_IPI SIGUSR1
#endif

47 48 49 50
#ifdef CONFIG_LINUX

#include <sys/prctl.h>

M
Marcelo Tosatti 已提交
51 52 53 54
#ifndef PR_MCE_KILL
#define PR_MCE_KILL 33
#endif

55 56 57 58 59 60 61 62 63 64
#ifndef PR_MCE_KILL_SET
#define PR_MCE_KILL_SET 1
#endif

#ifndef PR_MCE_KILL_EARLY
#define PR_MCE_KILL_EARLY 1
#endif

#endif /* CONFIG_LINUX */

65 66
static CPUState *next_cpu;

P
Paolo Bonzini 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
/***********************************************************/
/* guest cycle counter */

/* Conversion factor from emulated instructions to virtual clock ticks.  */
static int icount_time_shift;
/* Arbitrarily pick 1MIPS as the minimum allowable speed.  */
#define MAX_ICOUNT_SHIFT 10
/* Compensate for varying guest execution speed.  */
static int64_t qemu_icount_bias;
static QEMUTimer *icount_rt_timer;
static QEMUTimer *icount_vm_timer;
static QEMUTimer *icount_warp_timer;
static int64_t vm_clock_warp_start;
static int64_t qemu_icount;

typedef struct TimersState {
    int64_t cpu_ticks_prev;
    int64_t cpu_ticks_offset;
    int64_t cpu_clock_offset;
    int32_t cpu_ticks_enabled;
    int64_t dummy;
} TimersState;

TimersState timers_state;

/* Return the virtual CPU time, based on the instruction counter.  */
int64_t cpu_get_icount(void)
{
    int64_t icount;
    CPUState *env = cpu_single_env;;

    icount = qemu_icount;
    if (env) {
        if (!can_do_io(env)) {
            fprintf(stderr, "Bad clock read\n");
        }
        icount -= (env->icount_decr.u16.low + env->icount_extra);
    }
    return qemu_icount_bias + (icount << icount_time_shift);
}

/* return the host CPU cycle counter and handle stop/restart */
int64_t cpu_get_ticks(void)
{
    if (use_icount) {
        return cpu_get_icount();
    }
    if (!timers_state.cpu_ticks_enabled) {
        return timers_state.cpu_ticks_offset;
    } else {
        int64_t ticks;
        ticks = cpu_get_real_ticks();
        if (timers_state.cpu_ticks_prev > ticks) {
            /* Note: non increasing ticks may happen if the host uses
               software suspend */
            timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
        }
        timers_state.cpu_ticks_prev = ticks;
        return ticks + timers_state.cpu_ticks_offset;
    }
}

/* return the host CPU monotonic timer and handle stop/restart */
int64_t cpu_get_clock(void)
{
    int64_t ti;
    if (!timers_state.cpu_ticks_enabled) {
        return timers_state.cpu_clock_offset;
    } else {
        ti = get_clock();
        return ti + timers_state.cpu_clock_offset;
    }
}

/* enable cpu_get_ticks() */
void cpu_enable_ticks(void)
{
    if (!timers_state.cpu_ticks_enabled) {
        timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
        timers_state.cpu_clock_offset -= get_clock();
        timers_state.cpu_ticks_enabled = 1;
    }
}

/* disable cpu_get_ticks() : the clock is stopped. You must not call
   cpu_get_ticks() after that.  */
void cpu_disable_ticks(void)
{
    if (timers_state.cpu_ticks_enabled) {
        timers_state.cpu_ticks_offset = cpu_get_ticks();
        timers_state.cpu_clock_offset = cpu_get_clock();
        timers_state.cpu_ticks_enabled = 0;
    }
}

/* Correlation between real and virtual time is always going to be
   fairly approximate, so ignore small variation.
   When the guest is idle real and virtual time will be aligned in
   the IO wait loop.  */
#define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)

static void icount_adjust(void)
{
    int64_t cur_time;
    int64_t cur_icount;
    int64_t delta;
    static int64_t last_delta;
    /* If the VM is not running, then do nothing.  */
    if (!runstate_is_running()) {
        return;
    }
    cur_time = cpu_get_clock();
    cur_icount = qemu_get_clock_ns(vm_clock);
    delta = cur_icount - cur_time;
    /* FIXME: This is a very crude algorithm, somewhat prone to oscillation.  */
    if (delta > 0
        && last_delta + ICOUNT_WOBBLE < delta * 2
        && icount_time_shift > 0) {
        /* The guest is getting too far ahead.  Slow time down.  */
        icount_time_shift--;
    }
    if (delta < 0
        && last_delta - ICOUNT_WOBBLE > delta * 2
        && icount_time_shift < MAX_ICOUNT_SHIFT) {
        /* The guest is getting too far behind.  Speed time up.  */
        icount_time_shift++;
    }
    last_delta = delta;
    qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
}

static void icount_adjust_rt(void *opaque)
{
    qemu_mod_timer(icount_rt_timer,
                   qemu_get_clock_ms(rt_clock) + 1000);
    icount_adjust();
}

static void icount_adjust_vm(void *opaque)
{
    qemu_mod_timer(icount_vm_timer,
                   qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
    icount_adjust();
}

static int64_t qemu_icount_round(int64_t count)
{
    return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
}

static void icount_warp_rt(void *opaque)
{
    if (vm_clock_warp_start == -1) {
        return;
    }

    if (runstate_is_running()) {
        int64_t clock = qemu_get_clock_ns(rt_clock);
        int64_t warp_delta = clock - vm_clock_warp_start;
        if (use_icount == 1) {
            qemu_icount_bias += warp_delta;
        } else {
            /*
             * In adaptive mode, do not let the vm_clock run too
             * far ahead of real time.
             */
            int64_t cur_time = cpu_get_clock();
            int64_t cur_icount = qemu_get_clock_ns(vm_clock);
            int64_t delta = cur_time - cur_icount;
            qemu_icount_bias += MIN(warp_delta, delta);
        }
        if (qemu_clock_expired(vm_clock)) {
            qemu_notify_event();
        }
    }
    vm_clock_warp_start = -1;
}

void qemu_clock_warp(QEMUClock *clock)
{
    int64_t deadline;

    /*
     * There are too many global variables to make the "warp" behavior
     * applicable to other clocks.  But a clock argument removes the
     * need for if statements all over the place.
     */
    if (clock != vm_clock || !use_icount) {
        return;
    }

    /*
     * If the CPUs have been sleeping, advance the vm_clock timer now.  This
     * ensures that the deadline for the timer is computed correctly below.
     * This also makes sure that the insn counter is synchronized before the
     * CPU starts running, in case the CPU is woken by an event other than
     * the earliest vm_clock timer.
     */
    icount_warp_rt(NULL);
    if (!all_cpu_threads_idle() || !qemu_clock_has_timers(vm_clock)) {
        qemu_del_timer(icount_warp_timer);
        return;
    }

    vm_clock_warp_start = qemu_get_clock_ns(rt_clock);
    deadline = qemu_clock_deadline(vm_clock);
    if (deadline > 0) {
        /*
         * Ensure the vm_clock proceeds even when the virtual CPU goes to
         * sleep.  Otherwise, the CPU might be waiting for a future timer
         * interrupt to wake it up, but the interrupt never comes because
         * the vCPU isn't running any insns and thus doesn't advance the
         * vm_clock.
         *
         * An extreme solution for this problem would be to never let VCPUs
         * sleep in icount mode if there is a pending vm_clock timer; rather
         * time could just advance to the next vm_clock event.  Instead, we
         * do stop VCPUs and only advance vm_clock after some "real" time,
         * (related to the time left until the next event) has passed.  This
         * rt_clock timer will do this.  This avoids that the warps are too
         * visible externally---for example, you will not be sending network
         * packets continously instead of every 100ms.
         */
        qemu_mod_timer(icount_warp_timer, vm_clock_warp_start + deadline);
    } else {
        qemu_notify_event();
    }
}

static const VMStateDescription vmstate_timers = {
    .name = "timer",
    .version_id = 2,
    .minimum_version_id = 1,
    .minimum_version_id_old = 1,
    .fields      = (VMStateField[]) {
        VMSTATE_INT64(cpu_ticks_offset, TimersState),
        VMSTATE_INT64(dummy, TimersState),
        VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
        VMSTATE_END_OF_LIST()
    }
};

void configure_icount(const char *option)
{
    vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
    if (!option) {
        return;
    }

    icount_warp_timer = qemu_new_timer_ns(rt_clock, icount_warp_rt, NULL);
    if (strcmp(option, "auto") != 0) {
        icount_time_shift = strtol(option, NULL, 0);
        use_icount = 1;
        return;
    }

    use_icount = 2;

    /* 125MIPS seems a reasonable initial guess at the guest speed.
       It will be corrected fairly quickly anyway.  */
    icount_time_shift = 3;

    /* Have both realtime and virtual time triggers for speed adjustment.
       The realtime trigger catches emulated time passing too slowly,
       the virtual time trigger catches emulated time passing too fast.
       Realtime triggers occur even when idle, so use them less frequently
       than VM triggers.  */
    icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL);
    qemu_mod_timer(icount_rt_timer,
                   qemu_get_clock_ms(rt_clock) + 1000);
    icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL);
    qemu_mod_timer(icount_vm_timer,
                   qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
}

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
/***********************************************************/
void hw_error(const char *fmt, ...)
{
    va_list ap;
    CPUState *env;

    va_start(ap, fmt);
    fprintf(stderr, "qemu: hardware error: ");
    vfprintf(stderr, fmt, ap);
    fprintf(stderr, "\n");
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
        fprintf(stderr, "CPU #%d:\n", env->cpu_index);
#ifdef TARGET_I386
        cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
#else
        cpu_dump_state(env, stderr, fprintf, 0);
#endif
    }
    va_end(ap);
    abort();
}

void cpu_synchronize_all_states(void)
{
    CPUState *cpu;

    for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
        cpu_synchronize_state(cpu);
    }
}

void cpu_synchronize_all_post_reset(void)
{
    CPUState *cpu;

    for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
        cpu_synchronize_post_reset(cpu);
    }
}

void cpu_synchronize_all_post_init(void)
{
    CPUState *cpu;

    for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
        cpu_synchronize_post_init(cpu);
    }
}

M
Marcelo Tosatti 已提交
391 392
int cpu_is_stopped(CPUState *env)
{
393
    return !runstate_is_running() || env->stopped;
M
Marcelo Tosatti 已提交
394 395
}

396
static void do_vm_stop(RunState state)
397
{
398
    if (runstate_is_running()) {
399 400
        cpu_disable_ticks();
        pause_all_vcpus();
401
        runstate_set(state);
402
        vm_state_notify(0, state);
403 404
        qemu_aio_flush();
        bdrv_flush_all();
405 406 407 408 409 410
        monitor_protocol_event(QEVENT_STOP, NULL);
    }
}

static int cpu_can_run(CPUState *env)
{
411
    if (env->stop) {
412
        return 0;
413
    }
414
    if (env->stopped || !runstate_is_running()) {
415
        return 0;
416
    }
417 418 419
    return 1;
}

420
static bool cpu_thread_is_idle(CPUState *env)
421
{
422 423 424
    if (env->stop || env->queued_work_first) {
        return false;
    }
425
    if (env->stopped || !runstate_is_running()) {
426 427
        return true;
    }
428 429
    if (!env->halted || qemu_cpu_has_work(env) ||
        (kvm_enabled() && kvm_irqchip_in_kernel())) {
430 431 432
        return false;
    }
    return true;
433 434
}

435
bool all_cpu_threads_idle(void)
436 437 438
{
    CPUState *env;

439 440 441 442 443 444
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
        if (!cpu_thread_is_idle(env)) {
            return false;
        }
    }
    return true;
445 446
}

447
static void cpu_handle_guest_debug(CPUState *env)
448
{
449
    gdb_set_stop_cpu(env);
450
    qemu_system_debug_request();
451
    env->stopped = 1;
452 453
}

454 455 456 457 458 459 460 461
static void cpu_signal(int sig)
{
    if (cpu_single_env) {
        cpu_exit(cpu_single_env);
    }
    exit_request = 1;
}

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
#ifdef CONFIG_LINUX
static void sigbus_reraise(void)
{
    sigset_t set;
    struct sigaction action;

    memset(&action, 0, sizeof(action));
    action.sa_handler = SIG_DFL;
    if (!sigaction(SIGBUS, &action, NULL)) {
        raise(SIGBUS);
        sigemptyset(&set);
        sigaddset(&set, SIGBUS);
        sigprocmask(SIG_UNBLOCK, &set, NULL);
    }
    perror("Failed to re-raise SIGBUS!\n");
    abort();
}

static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
                           void *ctx)
{
    if (kvm_on_sigbus(siginfo->ssi_code,
                      (void *)(intptr_t)siginfo->ssi_addr)) {
        sigbus_reraise();
    }
}

static void qemu_init_sigbus(void)
{
    struct sigaction action;

    memset(&action, 0, sizeof(action));
    action.sa_flags = SA_SIGINFO;
    action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
    sigaction(SIGBUS, &action, NULL);

    prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
}

501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
static void qemu_kvm_eat_signals(CPUState *env)
{
    struct timespec ts = { 0, 0 };
    siginfo_t siginfo;
    sigset_t waitset;
    sigset_t chkset;
    int r;

    sigemptyset(&waitset);
    sigaddset(&waitset, SIG_IPI);
    sigaddset(&waitset, SIGBUS);

    do {
        r = sigtimedwait(&waitset, &siginfo, &ts);
        if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
            perror("sigtimedwait");
            exit(1);
        }

        switch (r) {
        case SIGBUS:
            if (kvm_on_sigbus_vcpu(env, siginfo.si_code, siginfo.si_addr)) {
                sigbus_reraise();
            }
            break;
        default:
            break;
        }

        r = sigpending(&chkset);
        if (r == -1) {
            perror("sigpending");
            exit(1);
        }
    } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
}

538 539 540 541 542
#else /* !CONFIG_LINUX */

static void qemu_init_sigbus(void)
{
}
543 544 545 546

static void qemu_kvm_eat_signals(CPUState *env)
{
}
547 548
#endif /* !CONFIG_LINUX */

549 550 551 552 553 554
#ifndef _WIN32
static int io_thread_fd = -1;

static void qemu_event_increment(void)
{
    /* Write 8 bytes to be compatible with eventfd.  */
B
Blue Swirl 已提交
555
    static const uint64_t val = 1;
556 557
    ssize_t ret;

558
    if (io_thread_fd == -1) {
559
        return;
560
    }
561 562 563 564 565 566
    do {
        ret = write(io_thread_fd, &val, sizeof(val));
    } while (ret < 0 && errno == EINTR);

    /* EAGAIN is fine, a read must be pending.  */
    if (ret < 0 && errno != EAGAIN) {
A
Alexandre Raymond 已提交
567
        fprintf(stderr, "qemu_event_increment: write() failed: %s\n",
568 569 570 571 572 573 574
                strerror(errno));
        exit (1);
    }
}

static void qemu_event_read(void *opaque)
{
575
    int fd = (intptr_t)opaque;
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
    ssize_t len;
    char buffer[512];

    /* Drain the notify pipe.  For eventfd, only 8 bytes will be read.  */
    do {
        len = read(fd, buffer, sizeof(buffer));
    } while ((len == -1 && errno == EINTR) || len == sizeof(buffer));
}

static int qemu_event_init(void)
{
    int err;
    int fds[2];

    err = qemu_eventfd(fds);
591
    if (err == -1) {
592
        return -errno;
593
    }
594
    err = fcntl_setfl(fds[0], O_NONBLOCK);
595
    if (err < 0) {
596
        goto fail;
597
    }
598
    err = fcntl_setfl(fds[1], O_NONBLOCK);
599
    if (err < 0) {
600
        goto fail;
601
    }
602
    qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
603
                         (void *)(intptr_t)fds[0]);
604 605 606 607 608 609 610 611 612

    io_thread_fd = fds[1];
    return 0;

fail:
    close(fds[0]);
    close(fds[1]);
    return err;
}
613 614 615 616 617

static void dummy_signal(int sig)
{
}

618 619 620 621 622 623
/* If we have signalfd, we mask out the signals we want to handle and then
 * use signalfd to listen for them.  We rely on whatever the current signal
 * handler is to dispatch the signals when we receive them.
 */
static void sigfd_handler(void *opaque)
{
624
    int fd = (intptr_t)opaque;
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
    struct qemu_signalfd_siginfo info;
    struct sigaction action;
    ssize_t len;

    while (1) {
        do {
            len = read(fd, &info, sizeof(info));
        } while (len == -1 && errno == EINTR);

        if (len == -1 && errno == EAGAIN) {
            break;
        }

        if (len != sizeof(info)) {
            printf("read from sigfd returned %zd: %m\n", len);
            return;
        }

        sigaction(info.ssi_signo, NULL, &action);
        if ((action.sa_flags & SA_SIGINFO) && action.sa_sigaction) {
            action.sa_sigaction(info.ssi_signo,
                                (siginfo_t *)&info, NULL);
        } else if (action.sa_handler) {
            action.sa_handler(info.ssi_signo);
        }
    }
}

653
static int qemu_signal_init(void)
654 655
{
    int sigfd;
656
    sigset_t set;
657

658 659 660 661 662 663 664 665 666
    /*
     * SIG_IPI must be blocked in the main thread and must not be caught
     * by sigwait() in the signal thread. Otherwise, the cpu thread will
     * not catch it reliably.
     */
    sigemptyset(&set);
    sigaddset(&set, SIG_IPI);
    pthread_sigmask(SIG_BLOCK, &set, NULL);

667 668 669 670
    sigemptyset(&set);
    sigaddset(&set, SIGIO);
    sigaddset(&set, SIGALRM);
    sigaddset(&set, SIGBUS);
671
    pthread_sigmask(SIG_BLOCK, &set, NULL);
672 673

    sigfd = qemu_signalfd(&set);
674 675 676 677 678 679 680 681
    if (sigfd == -1) {
        fprintf(stderr, "failed to create signalfd\n");
        return -errno;
    }

    fcntl_setfl(sigfd, O_NONBLOCK);

    qemu_set_fd_handler2(sigfd, NULL, sigfd_handler, NULL,
682
                         (void *)(intptr_t)sigfd);
683 684 685 686

    return 0;
}

687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
static void qemu_kvm_init_cpu_signals(CPUState *env)
{
    int r;
    sigset_t set;
    struct sigaction sigact;

    memset(&sigact, 0, sizeof(sigact));
    sigact.sa_handler = dummy_signal;
    sigaction(SIG_IPI, &sigact, NULL);

    pthread_sigmask(SIG_BLOCK, NULL, &set);
    sigdelset(&set, SIG_IPI);
    sigdelset(&set, SIGBUS);
    r = kvm_set_signal_mask(env, &set);
    if (r) {
        fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
        exit(1);
    }

    sigdelset(&set, SIG_IPI);
    sigdelset(&set, SIGBUS);
    r = kvm_set_signal_mask(env, &set);
    if (r) {
        fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
        exit(1);
    }
}

static void qemu_tcg_init_cpu_signals(void)
{
    sigset_t set;
    struct sigaction sigact;

    memset(&sigact, 0, sizeof(sigact));
    sigact.sa_handler = cpu_signal;
    sigaction(SIG_IPI, &sigact, NULL);

    sigemptyset(&set);
    sigaddset(&set, SIG_IPI);
    pthread_sigmask(SIG_UNBLOCK, &set, NULL);
}

729 730
#else /* _WIN32 */

731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
HANDLE qemu_event_handle;

static void dummy_event_handler(void *opaque)
{
}

static int qemu_event_init(void)
{
    qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
    if (!qemu_event_handle) {
        fprintf(stderr, "Failed CreateEvent: %ld\n", GetLastError());
        return -1;
    }
    qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
    return 0;
}

static void qemu_event_increment(void)
{
    if (!SetEvent(qemu_event_handle)) {
        fprintf(stderr, "qemu_event_increment: SetEvent failed: %ld\n",
                GetLastError());
        exit (1);
    }
}
756

757 758 759 760 761
static int qemu_signal_init(void)
{
    return 0;
}

762 763
static void qemu_kvm_init_cpu_signals(CPUState *env)
{
764 765
    abort();
}
766

767 768
static void qemu_tcg_init_cpu_signals(void)
{
769
}
770
#endif /* _WIN32 */
771

772
QemuMutex qemu_global_mutex;
773 774
static QemuCond qemu_io_proceeded_cond;
static bool iothread_requesting_mutex;
775 776 777 778 779 780 781 782 783 784

static QemuThread io_thread;

static QemuThread *tcg_cpu_thread;
static QemuCond *tcg_halt_cond;

/* cpu creation */
static QemuCond qemu_cpu_cond;
/* system init */
static QemuCond qemu_pause_cond;
M
Marcelo Tosatti 已提交
785
static QemuCond qemu_work_cond;
786 787 788 789 790

int qemu_init_main_loop(void)
{
    int ret;

791
    qemu_init_sigbus();
792

793
    ret = qemu_signal_init();
794
    if (ret) {
M
Marcelo Tosatti 已提交
795
        return ret;
796
    }
M
Marcelo Tosatti 已提交
797 798

    /* Note eventfd must be drained before signalfd handlers run */
799
    ret = qemu_event_init();
800
    if (ret) {
801
        return ret;
802
    }
803

804 805 806
    qemu_cond_init(&qemu_cpu_cond);
    qemu_cond_init(&qemu_pause_cond);
    qemu_cond_init(&qemu_work_cond);
807
    qemu_cond_init(&qemu_io_proceeded_cond);
808 809 810
    qemu_mutex_init(&qemu_global_mutex);
    qemu_mutex_lock(&qemu_global_mutex);

J
Jan Kiszka 已提交
811
    qemu_thread_get_self(&io_thread);
812 813 814 815

    return 0;
}

816 817
void qemu_main_loop_start(void)
{
818
    resume_all_vcpus();
819 820
}

M
Marcelo Tosatti 已提交
821 822 823 824
void run_on_cpu(CPUState *env, void (*func)(void *data), void *data)
{
    struct qemu_work_item wi;

J
Jan Kiszka 已提交
825
    if (qemu_cpu_is_self(env)) {
M
Marcelo Tosatti 已提交
826 827 828 829 830 831
        func(data);
        return;
    }

    wi.func = func;
    wi.data = data;
832
    if (!env->queued_work_first) {
M
Marcelo Tosatti 已提交
833
        env->queued_work_first = &wi;
834
    } else {
M
Marcelo Tosatti 已提交
835
        env->queued_work_last->next = &wi;
836
    }
M
Marcelo Tosatti 已提交
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
    env->queued_work_last = &wi;
    wi.next = NULL;
    wi.done = false;

    qemu_cpu_kick(env);
    while (!wi.done) {
        CPUState *self_env = cpu_single_env;

        qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
        cpu_single_env = self_env;
    }
}

static void flush_queued_work(CPUState *env)
{
    struct qemu_work_item *wi;

854
    if (!env->queued_work_first) {
M
Marcelo Tosatti 已提交
855
        return;
856
    }
M
Marcelo Tosatti 已提交
857 858 859 860 861 862 863 864 865 866

    while ((wi = env->queued_work_first)) {
        env->queued_work_first = wi->next;
        wi->func(wi->data);
        wi->done = true;
    }
    env->queued_work_last = NULL;
    qemu_cond_broadcast(&qemu_work_cond);
}

867 868 869 870 871 872 873
static void qemu_wait_io_event_common(CPUState *env)
{
    if (env->stop) {
        env->stop = 0;
        env->stopped = 1;
        qemu_cond_signal(&qemu_pause_cond);
    }
M
Marcelo Tosatti 已提交
874
    flush_queued_work(env);
875
    env->thread_kicked = false;
876 877
}

878
static void qemu_tcg_wait_io_event(void)
879
{
880 881
    CPUState *env;

882
    while (all_cpu_threads_idle()) {
883 884 885
       /* Start accounting real time to the virtual clock if the CPUs
          are idle.  */
        qemu_clock_warp(vm_clock);
886
        qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
887
    }
888

889 890 891
    while (iothread_requesting_mutex) {
        qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
    }
892 893 894 895

    for (env = first_cpu; env != NULL; env = env->next_cpu) {
        qemu_wait_io_event_common(env);
    }
896 897 898 899
}

static void qemu_kvm_wait_io_event(CPUState *env)
{
900
    while (cpu_thread_is_idle(env)) {
901
        qemu_cond_wait(env->halt_cond, &qemu_global_mutex);
902
    }
903

J
Jan Kiszka 已提交
904
    qemu_kvm_eat_signals(env);
905 906 907
    qemu_wait_io_event_common(env);
}

908
static void *qemu_kvm_cpu_thread_fn(void *arg)
909 910
{
    CPUState *env = arg;
J
Jan Kiszka 已提交
911
    int r;
912

913
    qemu_mutex_lock(&qemu_global_mutex);
J
Jan Kiszka 已提交
914
    qemu_thread_get_self(env->thread);
J
Jan Kiszka 已提交
915
    env->thread_id = qemu_get_thread_id();
916

J
Jan Kiszka 已提交
917 918 919 920 921
    r = kvm_init_vcpu(env);
    if (r < 0) {
        fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
        exit(1);
    }
922

923
    qemu_kvm_init_cpu_signals(env);
924 925 926 927 928 929

    /* signal CPU creation */
    env->created = 1;
    qemu_cond_signal(&qemu_cpu_cond);

    while (1) {
930
        if (cpu_can_run(env)) {
931
            r = kvm_cpu_exec(env);
932
            if (r == EXCP_DEBUG) {
933
                cpu_handle_guest_debug(env);
934
            }
935
        }
936 937 938 939 940 941
        qemu_kvm_wait_io_event(env);
    }

    return NULL;
}

942
static void *qemu_tcg_cpu_thread_fn(void *arg)
943 944 945
{
    CPUState *env = arg;

946
    qemu_tcg_init_cpu_signals();
J
Jan Kiszka 已提交
947
    qemu_thread_get_self(env->thread);
948 949 950

    /* signal CPU creation */
    qemu_mutex_lock(&qemu_global_mutex);
951
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
J
Jan Kiszka 已提交
952
        env->thread_id = qemu_get_thread_id();
953
        env->created = 1;
954
    }
955 956
    qemu_cond_signal(&qemu_cpu_cond);

957 958 959
    /* wait for initial kick-off after machine start */
    while (first_cpu->stopped) {
        qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
960
    }
961 962

    while (1) {
963
        cpu_exec_all();
P
Paolo Bonzini 已提交
964
        if (use_icount && qemu_clock_deadline(vm_clock) <= 0) {
965 966
            qemu_notify_event();
        }
967
        qemu_tcg_wait_io_event();
968 969 970 971 972
    }

    return NULL;
}

P
Paolo Bonzini 已提交
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
static void qemu_cpu_kick_thread(CPUState *env)
{
#ifndef _WIN32
    int err;

    err = pthread_kill(env->thread->thread, SIG_IPI);
    if (err) {
        fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
        exit(1);
    }
#else /* _WIN32 */
    if (!qemu_cpu_is_self(env)) {
        SuspendThread(env->thread->thread);
        cpu_signal(0);
        ResumeThread(env->thread->thread);
    }
#endif
}

992 993 994 995 996
void qemu_cpu_kick(void *_env)
{
    CPUState *env = _env;

    qemu_cond_broadcast(env->halt_cond);
J
Jan Kiszka 已提交
997
    if (kvm_enabled() && !env->thread_kicked) {
P
Paolo Bonzini 已提交
998
        qemu_cpu_kick_thread(env);
999 1000
        env->thread_kicked = true;
    }
1001 1002
}

1003
void qemu_cpu_kick_self(void)
1004
{
1005
#ifndef _WIN32
1006
    assert(cpu_single_env);
1007

1008
    if (!cpu_single_env->thread_kicked) {
P
Paolo Bonzini 已提交
1009
        qemu_cpu_kick_thread(cpu_single_env);
1010
        cpu_single_env->thread_kicked = true;
1011
    }
1012 1013 1014
#else
    abort();
#endif
1015 1016
}

J
Jan Kiszka 已提交
1017
int qemu_cpu_is_self(void *_env)
1018 1019
{
    CPUState *env = _env;
M
Marcelo Tosatti 已提交
1020

J
Jan Kiszka 已提交
1021
    return qemu_thread_is_self(env->thread);
1022 1023 1024 1025 1026 1027
}

void qemu_mutex_lock_iothread(void)
{
    if (kvm_enabled()) {
        qemu_mutex_lock(&qemu_global_mutex);
1028
    } else {
1029
        iothread_requesting_mutex = true;
1030
        if (qemu_mutex_trylock(&qemu_global_mutex)) {
P
Paolo Bonzini 已提交
1031
            qemu_cpu_kick_thread(first_cpu);
1032 1033
            qemu_mutex_lock(&qemu_global_mutex);
        }
1034 1035
        iothread_requesting_mutex = false;
        qemu_cond_broadcast(&qemu_io_proceeded_cond);
1036
    }
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
}

void qemu_mutex_unlock_iothread(void)
{
    qemu_mutex_unlock(&qemu_global_mutex);
}

static int all_vcpus_paused(void)
{
    CPUState *penv = first_cpu;

    while (penv) {
1049
        if (!penv->stopped) {
1050
            return 0;
1051
        }
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
        penv = (CPUState *)penv->next_cpu;
    }

    return 1;
}

void pause_all_vcpus(void)
{
    CPUState *penv = first_cpu;

1062
    qemu_clock_enable(vm_clock, false);
1063 1064 1065 1066 1067 1068 1069
    while (penv) {
        penv->stop = 1;
        qemu_cpu_kick(penv);
        penv = (CPUState *)penv->next_cpu;
    }

    while (!all_vcpus_paused()) {
1070
        qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
1071 1072
        penv = first_cpu;
        while (penv) {
1073
            qemu_cpu_kick(penv);
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
            penv = (CPUState *)penv->next_cpu;
        }
    }
}

void resume_all_vcpus(void)
{
    CPUState *penv = first_cpu;

    while (penv) {
        penv->stop = 0;
        penv->stopped = 0;
        qemu_cpu_kick(penv);
        penv = (CPUState *)penv->next_cpu;
    }
}

1091
static void qemu_tcg_init_vcpu(void *_env)
1092 1093
{
    CPUState *env = _env;
1094

1095 1096
    /* share a single thread for all cpus with TCG */
    if (!tcg_cpu_thread) {
1097 1098
        env->thread = g_malloc0(sizeof(QemuThread));
        env->halt_cond = g_malloc0(sizeof(QemuCond));
1099
        qemu_cond_init(env->halt_cond);
1100
        tcg_halt_cond = env->halt_cond;
1101
        qemu_thread_create(env->thread, qemu_tcg_cpu_thread_fn, env);
1102
        while (env->created == 0) {
1103
            qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1104
        }
1105 1106 1107 1108 1109 1110 1111
        tcg_cpu_thread = env->thread;
    } else {
        env->thread = tcg_cpu_thread;
        env->halt_cond = tcg_halt_cond;
    }
}

1112
static void qemu_kvm_start_vcpu(CPUState *env)
1113
{
1114 1115
    env->thread = g_malloc0(sizeof(QemuThread));
    env->halt_cond = g_malloc0(sizeof(QemuCond));
1116
    qemu_cond_init(env->halt_cond);
1117
    qemu_thread_create(env->thread, qemu_kvm_cpu_thread_fn, env);
1118
    while (env->created == 0) {
1119
        qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1120
    }
1121 1122 1123 1124 1125 1126 1127 1128
}

void qemu_init_vcpu(void *_env)
{
    CPUState *env = _env;

    env->nr_cores = smp_cores;
    env->nr_threads = smp_threads;
1129
    env->stopped = 1;
1130
    if (kvm_enabled()) {
1131
        qemu_kvm_start_vcpu(env);
1132
    } else {
1133
        qemu_tcg_init_vcpu(env);
1134
    }
1135 1136 1137 1138 1139 1140 1141
}

void qemu_notify_event(void)
{
    qemu_event_increment();
}

1142
void cpu_stop_current(void)
1143
{
1144
    if (cpu_single_env) {
1145
        cpu_single_env->stop = 0;
1146 1147
        cpu_single_env->stopped = 1;
        cpu_exit(cpu_single_env);
1148
        qemu_cond_signal(&qemu_pause_cond);
1149
    }
1150 1151
}

1152
void vm_stop(RunState state)
1153
{
J
Jan Kiszka 已提交
1154
    if (!qemu_thread_is_self(&io_thread)) {
1155
        qemu_system_vmstop_request(state);
1156 1157 1158 1159
        /*
         * FIXME: should not return to device code in case
         * vm_stop() has been requested.
         */
1160
        cpu_stop_current();
1161 1162
        return;
    }
1163
    do_vm_stop(state);
1164 1165
}

1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
/* does a state transition even if the VM is already stopped,
   current state is forgotten forever */
void vm_stop_force_state(RunState state)
{
    if (runstate_is_running()) {
        vm_stop(state);
    } else {
        runstate_set(state);
    }
}

1177
static int tcg_cpu_exec(CPUState *env)
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
{
    int ret;
#ifdef CONFIG_PROFILER
    int64_t ti;
#endif

#ifdef CONFIG_PROFILER
    ti = profile_getclock();
#endif
    if (use_icount) {
        int64_t count;
        int decr;
        qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
        env->icount_decr.u16.low = 0;
        env->icount_extra = 0;
P
Paolo Bonzini 已提交
1193
        count = qemu_icount_round(qemu_clock_deadline(vm_clock));
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
        qemu_icount += count;
        decr = (count > 0xffff) ? 0xffff : count;
        count -= decr;
        env->icount_decr.u16.low = decr;
        env->icount_extra = count;
    }
    ret = cpu_exec(env);
#ifdef CONFIG_PROFILER
    qemu_time += profile_getclock() - ti;
#endif
    if (use_icount) {
        /* Fold pending instructions back into the
           instruction counter, and clear the interrupt flag.  */
        qemu_icount -= (env->icount_decr.u16.low
                        + env->icount_extra);
        env->icount_decr.u32 = 0;
        env->icount_extra = 0;
    }
    return ret;
}

1215
bool cpu_exec_all(void)
1216
{
1217 1218
    int r;

1219 1220 1221
    /* Account partial waits to the vm_clock.  */
    qemu_clock_warp(vm_clock);

1222
    if (next_cpu == NULL) {
1223
        next_cpu = first_cpu;
1224
    }
J
Jan Kiszka 已提交
1225
    for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
1226
        CPUState *env = next_cpu;
1227 1228

        qemu_clock_enable(vm_clock,
1229
                          (env->singlestep_enabled & SSTEP_NOTIMER) == 0);
1230

1231
        if (cpu_can_run(env)) {
1232
            if (kvm_enabled()) {
1233
                r = kvm_cpu_exec(env);
1234
                qemu_kvm_eat_signals(env);
1235 1236
            } else {
                r = tcg_cpu_exec(env);
1237 1238
            }
            if (r == EXCP_DEBUG) {
1239
                cpu_handle_guest_debug(env);
1240 1241
                break;
            }
1242
        } else if (env->stop || env->stopped) {
1243 1244 1245
            break;
        }
    }
J
Jan Kiszka 已提交
1246
    exit_request = 0;
1247
    return !all_cpu_threads_idle();
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
}

void set_numa_modes(void)
{
    CPUState *env;
    int i;

    for (env = first_cpu; env != NULL; env = env->next_cpu) {
        for (i = 0; i < nb_numa_nodes; i++) {
            if (node_cpumask[i] & (1 << env->cpu_index)) {
                env->numa_node = i;
            }
        }
    }
}

void set_cpu_log(const char *optarg)
{
    int mask;
    const CPULogItem *item;

    mask = cpu_str_to_log_mask(optarg);
    if (!mask) {
        printf("Log items (comma separated):\n");
        for (item = cpu_log_items; item->mask != 0; item++) {
            printf("%-10s %s\n", item->name, item->help);
        }
        exit(1);
    }
    cpu_set_log(mask);
}
B
Blue Swirl 已提交
1279

1280 1281 1282 1283 1284
void set_cpu_log_filename(const char *optarg)
{
    cpu_set_log_filename(optarg);
}

1285
void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1286 1287 1288 1289 1290 1291 1292 1293
{
    /* XXX: implement xxx_cpu_list for targets that still miss it */
#if defined(cpu_list_id)
    cpu_list_id(f, cpu_fprintf, optarg);
#elif defined(cpu_list)
    cpu_list(f, cpu_fprintf); /* deprecated */
#endif
}