cpus.c 28.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/*
 * QEMU System Emulator
 *
 * Copyright (c) 2003-2008 Fabrice Bellard
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

/* Needed early for CONFIG_BSD etc. */
#include "config-host.h"

#include "monitor.h"
#include "sysemu.h"
#include "gdbstub.h"
#include "dma.h"
#include "kvm.h"
L
Luiz Capitulino 已提交
33
#include "qmp-commands.h"
34

P
Paolo Bonzini 已提交
35
#include "qemu-thread.h"
36
#include "cpus.h"
P
Paolo Bonzini 已提交
37
#include "main-loop.h"
J
Jan Kiszka 已提交
38 39

#ifndef _WIN32
M
Marcelo Tosatti 已提交
40
#include "compatfd.h"
J
Jan Kiszka 已提交
41
#endif
42

43 44 45 46
#ifdef CONFIG_LINUX

#include <sys/prctl.h>

M
Marcelo Tosatti 已提交
47 48 49 50
#ifndef PR_MCE_KILL
#define PR_MCE_KILL 33
#endif

51 52 53 54 55 56 57 58 59 60
#ifndef PR_MCE_KILL_SET
#define PR_MCE_KILL_SET 1
#endif

#ifndef PR_MCE_KILL_EARLY
#define PR_MCE_KILL_EARLY 1
#endif

#endif /* CONFIG_LINUX */

61 62
static CPUState *next_cpu;

P
Paolo Bonzini 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
/***********************************************************/
/* guest cycle counter */

/* Conversion factor from emulated instructions to virtual clock ticks.  */
static int icount_time_shift;
/* Arbitrarily pick 1MIPS as the minimum allowable speed.  */
#define MAX_ICOUNT_SHIFT 10
/* Compensate for varying guest execution speed.  */
static int64_t qemu_icount_bias;
static QEMUTimer *icount_rt_timer;
static QEMUTimer *icount_vm_timer;
static QEMUTimer *icount_warp_timer;
static int64_t vm_clock_warp_start;
static int64_t qemu_icount;

typedef struct TimersState {
    int64_t cpu_ticks_prev;
    int64_t cpu_ticks_offset;
    int64_t cpu_clock_offset;
    int32_t cpu_ticks_enabled;
    int64_t dummy;
} TimersState;

TimersState timers_state;

/* Return the virtual CPU time, based on the instruction counter.  */
int64_t cpu_get_icount(void)
{
    int64_t icount;
    CPUState *env = cpu_single_env;;

    icount = qemu_icount;
    if (env) {
        if (!can_do_io(env)) {
            fprintf(stderr, "Bad clock read\n");
        }
        icount -= (env->icount_decr.u16.low + env->icount_extra);
    }
    return qemu_icount_bias + (icount << icount_time_shift);
}

/* return the host CPU cycle counter and handle stop/restart */
int64_t cpu_get_ticks(void)
{
    if (use_icount) {
        return cpu_get_icount();
    }
    if (!timers_state.cpu_ticks_enabled) {
        return timers_state.cpu_ticks_offset;
    } else {
        int64_t ticks;
        ticks = cpu_get_real_ticks();
        if (timers_state.cpu_ticks_prev > ticks) {
            /* Note: non increasing ticks may happen if the host uses
               software suspend */
            timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
        }
        timers_state.cpu_ticks_prev = ticks;
        return ticks + timers_state.cpu_ticks_offset;
    }
}

/* return the host CPU monotonic timer and handle stop/restart */
int64_t cpu_get_clock(void)
{
    int64_t ti;
    if (!timers_state.cpu_ticks_enabled) {
        return timers_state.cpu_clock_offset;
    } else {
        ti = get_clock();
        return ti + timers_state.cpu_clock_offset;
    }
}

/* enable cpu_get_ticks() */
void cpu_enable_ticks(void)
{
    if (!timers_state.cpu_ticks_enabled) {
        timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
        timers_state.cpu_clock_offset -= get_clock();
        timers_state.cpu_ticks_enabled = 1;
    }
}

/* disable cpu_get_ticks() : the clock is stopped. You must not call
   cpu_get_ticks() after that.  */
void cpu_disable_ticks(void)
{
    if (timers_state.cpu_ticks_enabled) {
        timers_state.cpu_ticks_offset = cpu_get_ticks();
        timers_state.cpu_clock_offset = cpu_get_clock();
        timers_state.cpu_ticks_enabled = 0;
    }
}

/* Correlation between real and virtual time is always going to be
   fairly approximate, so ignore small variation.
   When the guest is idle real and virtual time will be aligned in
   the IO wait loop.  */
#define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)

static void icount_adjust(void)
{
    int64_t cur_time;
    int64_t cur_icount;
    int64_t delta;
    static int64_t last_delta;
    /* If the VM is not running, then do nothing.  */
    if (!runstate_is_running()) {
        return;
    }
    cur_time = cpu_get_clock();
    cur_icount = qemu_get_clock_ns(vm_clock);
    delta = cur_icount - cur_time;
    /* FIXME: This is a very crude algorithm, somewhat prone to oscillation.  */
    if (delta > 0
        && last_delta + ICOUNT_WOBBLE < delta * 2
        && icount_time_shift > 0) {
        /* The guest is getting too far ahead.  Slow time down.  */
        icount_time_shift--;
    }
    if (delta < 0
        && last_delta - ICOUNT_WOBBLE > delta * 2
        && icount_time_shift < MAX_ICOUNT_SHIFT) {
        /* The guest is getting too far behind.  Speed time up.  */
        icount_time_shift++;
    }
    last_delta = delta;
    qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
}

static void icount_adjust_rt(void *opaque)
{
    qemu_mod_timer(icount_rt_timer,
                   qemu_get_clock_ms(rt_clock) + 1000);
    icount_adjust();
}

static void icount_adjust_vm(void *opaque)
{
    qemu_mod_timer(icount_vm_timer,
                   qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
    icount_adjust();
}

static int64_t qemu_icount_round(int64_t count)
{
    return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
}

static void icount_warp_rt(void *opaque)
{
    if (vm_clock_warp_start == -1) {
        return;
    }

    if (runstate_is_running()) {
        int64_t clock = qemu_get_clock_ns(rt_clock);
        int64_t warp_delta = clock - vm_clock_warp_start;
        if (use_icount == 1) {
            qemu_icount_bias += warp_delta;
        } else {
            /*
             * In adaptive mode, do not let the vm_clock run too
             * far ahead of real time.
             */
            int64_t cur_time = cpu_get_clock();
            int64_t cur_icount = qemu_get_clock_ns(vm_clock);
            int64_t delta = cur_time - cur_icount;
            qemu_icount_bias += MIN(warp_delta, delta);
        }
        if (qemu_clock_expired(vm_clock)) {
            qemu_notify_event();
        }
    }
    vm_clock_warp_start = -1;
}

void qemu_clock_warp(QEMUClock *clock)
{
    int64_t deadline;

    /*
     * There are too many global variables to make the "warp" behavior
     * applicable to other clocks.  But a clock argument removes the
     * need for if statements all over the place.
     */
    if (clock != vm_clock || !use_icount) {
        return;
    }

    /*
     * If the CPUs have been sleeping, advance the vm_clock timer now.  This
     * ensures that the deadline for the timer is computed correctly below.
     * This also makes sure that the insn counter is synchronized before the
     * CPU starts running, in case the CPU is woken by an event other than
     * the earliest vm_clock timer.
     */
    icount_warp_rt(NULL);
    if (!all_cpu_threads_idle() || !qemu_clock_has_timers(vm_clock)) {
        qemu_del_timer(icount_warp_timer);
        return;
    }

    vm_clock_warp_start = qemu_get_clock_ns(rt_clock);
    deadline = qemu_clock_deadline(vm_clock);
    if (deadline > 0) {
        /*
         * Ensure the vm_clock proceeds even when the virtual CPU goes to
         * sleep.  Otherwise, the CPU might be waiting for a future timer
         * interrupt to wake it up, but the interrupt never comes because
         * the vCPU isn't running any insns and thus doesn't advance the
         * vm_clock.
         *
         * An extreme solution for this problem would be to never let VCPUs
         * sleep in icount mode if there is a pending vm_clock timer; rather
         * time could just advance to the next vm_clock event.  Instead, we
         * do stop VCPUs and only advance vm_clock after some "real" time,
         * (related to the time left until the next event) has passed.  This
         * rt_clock timer will do this.  This avoids that the warps are too
         * visible externally---for example, you will not be sending network
         * packets continously instead of every 100ms.
         */
        qemu_mod_timer(icount_warp_timer, vm_clock_warp_start + deadline);
    } else {
        qemu_notify_event();
    }
}

static const VMStateDescription vmstate_timers = {
    .name = "timer",
    .version_id = 2,
    .minimum_version_id = 1,
    .minimum_version_id_old = 1,
    .fields      = (VMStateField[]) {
        VMSTATE_INT64(cpu_ticks_offset, TimersState),
        VMSTATE_INT64(dummy, TimersState),
        VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
        VMSTATE_END_OF_LIST()
    }
};

void configure_icount(const char *option)
{
    vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
    if (!option) {
        return;
    }

    icount_warp_timer = qemu_new_timer_ns(rt_clock, icount_warp_rt, NULL);
    if (strcmp(option, "auto") != 0) {
        icount_time_shift = strtol(option, NULL, 0);
        use_icount = 1;
        return;
    }

    use_icount = 2;

    /* 125MIPS seems a reasonable initial guess at the guest speed.
       It will be corrected fairly quickly anyway.  */
    icount_time_shift = 3;

    /* Have both realtime and virtual time triggers for speed adjustment.
       The realtime trigger catches emulated time passing too slowly,
       the virtual time trigger catches emulated time passing too fast.
       Realtime triggers occur even when idle, so use them less frequently
       than VM triggers.  */
    icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL);
    qemu_mod_timer(icount_rt_timer,
                   qemu_get_clock_ms(rt_clock) + 1000);
    icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL);
    qemu_mod_timer(icount_vm_timer,
                   qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
}

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
/***********************************************************/
void hw_error(const char *fmt, ...)
{
    va_list ap;
    CPUState *env;

    va_start(ap, fmt);
    fprintf(stderr, "qemu: hardware error: ");
    vfprintf(stderr, fmt, ap);
    fprintf(stderr, "\n");
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
        fprintf(stderr, "CPU #%d:\n", env->cpu_index);
#ifdef TARGET_I386
        cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
#else
        cpu_dump_state(env, stderr, fprintf, 0);
#endif
    }
    va_end(ap);
    abort();
}

void cpu_synchronize_all_states(void)
{
    CPUState *cpu;

    for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
        cpu_synchronize_state(cpu);
    }
}

void cpu_synchronize_all_post_reset(void)
{
    CPUState *cpu;

    for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
        cpu_synchronize_post_reset(cpu);
    }
}

void cpu_synchronize_all_post_init(void)
{
    CPUState *cpu;

    for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
        cpu_synchronize_post_init(cpu);
    }
}

M
Marcelo Tosatti 已提交
387 388
int cpu_is_stopped(CPUState *env)
{
389
    return !runstate_is_running() || env->stopped;
M
Marcelo Tosatti 已提交
390 391
}

392
static void do_vm_stop(RunState state)
393
{
394
    if (runstate_is_running()) {
395 396
        cpu_disable_ticks();
        pause_all_vcpus();
397
        runstate_set(state);
398
        vm_state_notify(0, state);
399 400
        qemu_aio_flush();
        bdrv_flush_all();
401 402 403 404 405 406
        monitor_protocol_event(QEVENT_STOP, NULL);
    }
}

static int cpu_can_run(CPUState *env)
{
407
    if (env->stop) {
408
        return 0;
409
    }
410
    if (env->stopped || !runstate_is_running()) {
411
        return 0;
412
    }
413 414 415
    return 1;
}

416
static bool cpu_thread_is_idle(CPUState *env)
417
{
418 419 420
    if (env->stop || env->queued_work_first) {
        return false;
    }
421
    if (env->stopped || !runstate_is_running()) {
422 423
        return true;
    }
424 425
    if (!env->halted || qemu_cpu_has_work(env) ||
        (kvm_enabled() && kvm_irqchip_in_kernel())) {
426 427 428
        return false;
    }
    return true;
429 430
}

431
bool all_cpu_threads_idle(void)
432 433 434
{
    CPUState *env;

435 436 437 438 439 440
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
        if (!cpu_thread_is_idle(env)) {
            return false;
        }
    }
    return true;
441 442
}

443
static void cpu_handle_guest_debug(CPUState *env)
444
{
445
    gdb_set_stop_cpu(env);
446
    qemu_system_debug_request();
447
    env->stopped = 1;
448 449
}

450 451 452 453 454 455 456 457
static void cpu_signal(int sig)
{
    if (cpu_single_env) {
        cpu_exit(cpu_single_env);
    }
    exit_request = 1;
}

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
#ifdef CONFIG_LINUX
static void sigbus_reraise(void)
{
    sigset_t set;
    struct sigaction action;

    memset(&action, 0, sizeof(action));
    action.sa_handler = SIG_DFL;
    if (!sigaction(SIGBUS, &action, NULL)) {
        raise(SIGBUS);
        sigemptyset(&set);
        sigaddset(&set, SIGBUS);
        sigprocmask(SIG_UNBLOCK, &set, NULL);
    }
    perror("Failed to re-raise SIGBUS!\n");
    abort();
}

static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
                           void *ctx)
{
    if (kvm_on_sigbus(siginfo->ssi_code,
                      (void *)(intptr_t)siginfo->ssi_addr)) {
        sigbus_reraise();
    }
}

static void qemu_init_sigbus(void)
{
    struct sigaction action;

    memset(&action, 0, sizeof(action));
    action.sa_flags = SA_SIGINFO;
    action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
    sigaction(SIGBUS, &action, NULL);

    prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
}

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
static void qemu_kvm_eat_signals(CPUState *env)
{
    struct timespec ts = { 0, 0 };
    siginfo_t siginfo;
    sigset_t waitset;
    sigset_t chkset;
    int r;

    sigemptyset(&waitset);
    sigaddset(&waitset, SIG_IPI);
    sigaddset(&waitset, SIGBUS);

    do {
        r = sigtimedwait(&waitset, &siginfo, &ts);
        if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
            perror("sigtimedwait");
            exit(1);
        }

        switch (r) {
        case SIGBUS:
            if (kvm_on_sigbus_vcpu(env, siginfo.si_code, siginfo.si_addr)) {
                sigbus_reraise();
            }
            break;
        default:
            break;
        }

        r = sigpending(&chkset);
        if (r == -1) {
            perror("sigpending");
            exit(1);
        }
    } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
}

534 535 536 537 538
#else /* !CONFIG_LINUX */

static void qemu_init_sigbus(void)
{
}
539 540 541 542

static void qemu_kvm_eat_signals(CPUState *env)
{
}
543 544
#endif /* !CONFIG_LINUX */

545
#ifndef _WIN32
546 547 548 549
static void dummy_signal(int sig)
{
}

550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
static void qemu_kvm_init_cpu_signals(CPUState *env)
{
    int r;
    sigset_t set;
    struct sigaction sigact;

    memset(&sigact, 0, sizeof(sigact));
    sigact.sa_handler = dummy_signal;
    sigaction(SIG_IPI, &sigact, NULL);

    pthread_sigmask(SIG_BLOCK, NULL, &set);
    sigdelset(&set, SIG_IPI);
    sigdelset(&set, SIGBUS);
    r = kvm_set_signal_mask(env, &set);
    if (r) {
        fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
        exit(1);
    }

    sigdelset(&set, SIG_IPI);
    sigdelset(&set, SIGBUS);
    r = kvm_set_signal_mask(env, &set);
    if (r) {
        fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
        exit(1);
    }
}

static void qemu_tcg_init_cpu_signals(void)
{
    sigset_t set;
    struct sigaction sigact;

    memset(&sigact, 0, sizeof(sigact));
    sigact.sa_handler = cpu_signal;
    sigaction(SIG_IPI, &sigact, NULL);

    sigemptyset(&set);
    sigaddset(&set, SIG_IPI);
    pthread_sigmask(SIG_UNBLOCK, &set, NULL);
}

592
#else /* _WIN32 */
593 594
static void qemu_kvm_init_cpu_signals(CPUState *env)
{
595 596
    abort();
}
597

598 599
static void qemu_tcg_init_cpu_signals(void)
{
600
}
601
#endif /* _WIN32 */
602

603
QemuMutex qemu_global_mutex;
604 605
static QemuCond qemu_io_proceeded_cond;
static bool iothread_requesting_mutex;
606 607 608 609 610 611 612 613 614 615

static QemuThread io_thread;

static QemuThread *tcg_cpu_thread;
static QemuCond *tcg_halt_cond;

/* cpu creation */
static QemuCond qemu_cpu_cond;
/* system init */
static QemuCond qemu_pause_cond;
M
Marcelo Tosatti 已提交
616
static QemuCond qemu_work_cond;
617

P
Paolo Bonzini 已提交
618
void qemu_init_cpu_loop(void)
619
{
620
    qemu_init_sigbus();
621 622 623
    qemu_cond_init(&qemu_cpu_cond);
    qemu_cond_init(&qemu_pause_cond);
    qemu_cond_init(&qemu_work_cond);
624
    qemu_cond_init(&qemu_io_proceeded_cond);
625 626
    qemu_mutex_init(&qemu_global_mutex);

J
Jan Kiszka 已提交
627
    qemu_thread_get_self(&io_thread);
628 629
}

M
Marcelo Tosatti 已提交
630 631 632 633
void run_on_cpu(CPUState *env, void (*func)(void *data), void *data)
{
    struct qemu_work_item wi;

J
Jan Kiszka 已提交
634
    if (qemu_cpu_is_self(env)) {
M
Marcelo Tosatti 已提交
635 636 637 638 639 640
        func(data);
        return;
    }

    wi.func = func;
    wi.data = data;
641
    if (!env->queued_work_first) {
M
Marcelo Tosatti 已提交
642
        env->queued_work_first = &wi;
643
    } else {
M
Marcelo Tosatti 已提交
644
        env->queued_work_last->next = &wi;
645
    }
M
Marcelo Tosatti 已提交
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
    env->queued_work_last = &wi;
    wi.next = NULL;
    wi.done = false;

    qemu_cpu_kick(env);
    while (!wi.done) {
        CPUState *self_env = cpu_single_env;

        qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
        cpu_single_env = self_env;
    }
}

static void flush_queued_work(CPUState *env)
{
    struct qemu_work_item *wi;

663
    if (!env->queued_work_first) {
M
Marcelo Tosatti 已提交
664
        return;
665
    }
M
Marcelo Tosatti 已提交
666 667 668 669 670 671 672 673 674 675

    while ((wi = env->queued_work_first)) {
        env->queued_work_first = wi->next;
        wi->func(wi->data);
        wi->done = true;
    }
    env->queued_work_last = NULL;
    qemu_cond_broadcast(&qemu_work_cond);
}

676 677 678 679 680 681 682
static void qemu_wait_io_event_common(CPUState *env)
{
    if (env->stop) {
        env->stop = 0;
        env->stopped = 1;
        qemu_cond_signal(&qemu_pause_cond);
    }
M
Marcelo Tosatti 已提交
683
    flush_queued_work(env);
684
    env->thread_kicked = false;
685 686
}

687
static void qemu_tcg_wait_io_event(void)
688
{
689 690
    CPUState *env;

691
    while (all_cpu_threads_idle()) {
692 693 694
       /* Start accounting real time to the virtual clock if the CPUs
          are idle.  */
        qemu_clock_warp(vm_clock);
695
        qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
696
    }
697

698 699 700
    while (iothread_requesting_mutex) {
        qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
    }
701 702 703 704

    for (env = first_cpu; env != NULL; env = env->next_cpu) {
        qemu_wait_io_event_common(env);
    }
705 706 707 708
}

static void qemu_kvm_wait_io_event(CPUState *env)
{
709
    while (cpu_thread_is_idle(env)) {
710
        qemu_cond_wait(env->halt_cond, &qemu_global_mutex);
711
    }
712

J
Jan Kiszka 已提交
713
    qemu_kvm_eat_signals(env);
714 715 716
    qemu_wait_io_event_common(env);
}

717
static void *qemu_kvm_cpu_thread_fn(void *arg)
718 719
{
    CPUState *env = arg;
J
Jan Kiszka 已提交
720
    int r;
721

722
    qemu_mutex_lock(&qemu_global_mutex);
J
Jan Kiszka 已提交
723
    qemu_thread_get_self(env->thread);
J
Jan Kiszka 已提交
724
    env->thread_id = qemu_get_thread_id();
725

J
Jan Kiszka 已提交
726 727 728 729 730
    r = kvm_init_vcpu(env);
    if (r < 0) {
        fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
        exit(1);
    }
731

732
    qemu_kvm_init_cpu_signals(env);
733 734 735 736 737 738

    /* signal CPU creation */
    env->created = 1;
    qemu_cond_signal(&qemu_cpu_cond);

    while (1) {
739
        if (cpu_can_run(env)) {
740
            r = kvm_cpu_exec(env);
741
            if (r == EXCP_DEBUG) {
742
                cpu_handle_guest_debug(env);
743
            }
744
        }
745 746 747 748 749 750
        qemu_kvm_wait_io_event(env);
    }

    return NULL;
}

J
Jan Kiszka 已提交
751 752
static void tcg_exec_all(void);

753
static void *qemu_tcg_cpu_thread_fn(void *arg)
754 755 756
{
    CPUState *env = arg;

757
    qemu_tcg_init_cpu_signals();
J
Jan Kiszka 已提交
758
    qemu_thread_get_self(env->thread);
759 760 761

    /* signal CPU creation */
    qemu_mutex_lock(&qemu_global_mutex);
762
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
J
Jan Kiszka 已提交
763
        env->thread_id = qemu_get_thread_id();
764
        env->created = 1;
765
    }
766 767
    qemu_cond_signal(&qemu_cpu_cond);

768 769 770
    /* wait for initial kick-off after machine start */
    while (first_cpu->stopped) {
        qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
771
    }
772 773

    while (1) {
J
Jan Kiszka 已提交
774
        tcg_exec_all();
P
Paolo Bonzini 已提交
775
        if (use_icount && qemu_clock_deadline(vm_clock) <= 0) {
776 777
            qemu_notify_event();
        }
778
        qemu_tcg_wait_io_event();
779 780 781 782 783
    }

    return NULL;
}

P
Paolo Bonzini 已提交
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
static void qemu_cpu_kick_thread(CPUState *env)
{
#ifndef _WIN32
    int err;

    err = pthread_kill(env->thread->thread, SIG_IPI);
    if (err) {
        fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
        exit(1);
    }
#else /* _WIN32 */
    if (!qemu_cpu_is_self(env)) {
        SuspendThread(env->thread->thread);
        cpu_signal(0);
        ResumeThread(env->thread->thread);
    }
#endif
}

803 804 805 806 807
void qemu_cpu_kick(void *_env)
{
    CPUState *env = _env;

    qemu_cond_broadcast(env->halt_cond);
J
Jan Kiszka 已提交
808
    if (kvm_enabled() && !env->thread_kicked) {
P
Paolo Bonzini 已提交
809
        qemu_cpu_kick_thread(env);
810 811
        env->thread_kicked = true;
    }
812 813
}

814
void qemu_cpu_kick_self(void)
815
{
816
#ifndef _WIN32
817
    assert(cpu_single_env);
818

819
    if (!cpu_single_env->thread_kicked) {
P
Paolo Bonzini 已提交
820
        qemu_cpu_kick_thread(cpu_single_env);
821
        cpu_single_env->thread_kicked = true;
822
    }
823 824 825
#else
    abort();
#endif
826 827
}

J
Jan Kiszka 已提交
828
int qemu_cpu_is_self(void *_env)
829 830
{
    CPUState *env = _env;
M
Marcelo Tosatti 已提交
831

J
Jan Kiszka 已提交
832
    return qemu_thread_is_self(env->thread);
833 834 835 836 837 838
}

void qemu_mutex_lock_iothread(void)
{
    if (kvm_enabled()) {
        qemu_mutex_lock(&qemu_global_mutex);
839
    } else {
840
        iothread_requesting_mutex = true;
841
        if (qemu_mutex_trylock(&qemu_global_mutex)) {
P
Paolo Bonzini 已提交
842
            qemu_cpu_kick_thread(first_cpu);
843 844
            qemu_mutex_lock(&qemu_global_mutex);
        }
845 846
        iothread_requesting_mutex = false;
        qemu_cond_broadcast(&qemu_io_proceeded_cond);
847
    }
848 849 850 851 852 853 854 855 856 857 858 859
}

void qemu_mutex_unlock_iothread(void)
{
    qemu_mutex_unlock(&qemu_global_mutex);
}

static int all_vcpus_paused(void)
{
    CPUState *penv = first_cpu;

    while (penv) {
860
        if (!penv->stopped) {
861
            return 0;
862
        }
863 864 865 866 867 868 869 870 871 872
        penv = (CPUState *)penv->next_cpu;
    }

    return 1;
}

void pause_all_vcpus(void)
{
    CPUState *penv = first_cpu;

873
    qemu_clock_enable(vm_clock, false);
874 875 876 877 878 879 880
    while (penv) {
        penv->stop = 1;
        qemu_cpu_kick(penv);
        penv = (CPUState *)penv->next_cpu;
    }

    while (!all_vcpus_paused()) {
881
        qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
882 883
        penv = first_cpu;
        while (penv) {
884
            qemu_cpu_kick(penv);
885 886 887 888 889 890 891 892 893
            penv = (CPUState *)penv->next_cpu;
        }
    }
}

void resume_all_vcpus(void)
{
    CPUState *penv = first_cpu;

894
    qemu_clock_enable(vm_clock, true);
895 896 897 898 899 900 901 902
    while (penv) {
        penv->stop = 0;
        penv->stopped = 0;
        qemu_cpu_kick(penv);
        penv = (CPUState *)penv->next_cpu;
    }
}

903
static void qemu_tcg_init_vcpu(void *_env)
904 905
{
    CPUState *env = _env;
906

907 908
    /* share a single thread for all cpus with TCG */
    if (!tcg_cpu_thread) {
909 910
        env->thread = g_malloc0(sizeof(QemuThread));
        env->halt_cond = g_malloc0(sizeof(QemuCond));
911
        qemu_cond_init(env->halt_cond);
912
        tcg_halt_cond = env->halt_cond;
913
        qemu_thread_create(env->thread, qemu_tcg_cpu_thread_fn, env);
914
        while (env->created == 0) {
915
            qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
916
        }
917 918 919 920 921 922 923
        tcg_cpu_thread = env->thread;
    } else {
        env->thread = tcg_cpu_thread;
        env->halt_cond = tcg_halt_cond;
    }
}

924
static void qemu_kvm_start_vcpu(CPUState *env)
925
{
926 927
    env->thread = g_malloc0(sizeof(QemuThread));
    env->halt_cond = g_malloc0(sizeof(QemuCond));
928
    qemu_cond_init(env->halt_cond);
929
    qemu_thread_create(env->thread, qemu_kvm_cpu_thread_fn, env);
930
    while (env->created == 0) {
931
        qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
932
    }
933 934 935 936 937 938 939 940
}

void qemu_init_vcpu(void *_env)
{
    CPUState *env = _env;

    env->nr_cores = smp_cores;
    env->nr_threads = smp_threads;
941
    env->stopped = 1;
942
    if (kvm_enabled()) {
943
        qemu_kvm_start_vcpu(env);
944
    } else {
945
        qemu_tcg_init_vcpu(env);
946
    }
947 948
}

949
void cpu_stop_current(void)
950
{
951
    if (cpu_single_env) {
952
        cpu_single_env->stop = 0;
953 954
        cpu_single_env->stopped = 1;
        cpu_exit(cpu_single_env);
955
        qemu_cond_signal(&qemu_pause_cond);
956
    }
957 958
}

959
void vm_stop(RunState state)
960
{
J
Jan Kiszka 已提交
961
    if (!qemu_thread_is_self(&io_thread)) {
962
        qemu_system_vmstop_request(state);
963 964 965 966
        /*
         * FIXME: should not return to device code in case
         * vm_stop() has been requested.
         */
967
        cpu_stop_current();
968 969
        return;
    }
970
    do_vm_stop(state);
971 972
}

973 974 975 976 977 978 979 980 981 982 983
/* does a state transition even if the VM is already stopped,
   current state is forgotten forever */
void vm_stop_force_state(RunState state)
{
    if (runstate_is_running()) {
        vm_stop(state);
    } else {
        runstate_set(state);
    }
}

984
static int tcg_cpu_exec(CPUState *env)
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
{
    int ret;
#ifdef CONFIG_PROFILER
    int64_t ti;
#endif

#ifdef CONFIG_PROFILER
    ti = profile_getclock();
#endif
    if (use_icount) {
        int64_t count;
        int decr;
        qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
        env->icount_decr.u16.low = 0;
        env->icount_extra = 0;
P
Paolo Bonzini 已提交
1000
        count = qemu_icount_round(qemu_clock_deadline(vm_clock));
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
        qemu_icount += count;
        decr = (count > 0xffff) ? 0xffff : count;
        count -= decr;
        env->icount_decr.u16.low = decr;
        env->icount_extra = count;
    }
    ret = cpu_exec(env);
#ifdef CONFIG_PROFILER
    qemu_time += profile_getclock() - ti;
#endif
    if (use_icount) {
        /* Fold pending instructions back into the
           instruction counter, and clear the interrupt flag.  */
        qemu_icount -= (env->icount_decr.u16.low
                        + env->icount_extra);
        env->icount_decr.u32 = 0;
        env->icount_extra = 0;
    }
    return ret;
}

J
Jan Kiszka 已提交
1022
static void tcg_exec_all(void)
1023
{
1024 1025
    int r;

1026 1027 1028
    /* Account partial waits to the vm_clock.  */
    qemu_clock_warp(vm_clock);

1029
    if (next_cpu == NULL) {
1030
        next_cpu = first_cpu;
1031
    }
J
Jan Kiszka 已提交
1032
    for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
1033
        CPUState *env = next_cpu;
1034 1035

        qemu_clock_enable(vm_clock,
1036
                          (env->singlestep_enabled & SSTEP_NOTIMER) == 0);
1037

1038
        if (cpu_can_run(env)) {
J
Jan Kiszka 已提交
1039
            r = tcg_cpu_exec(env);
1040
            if (r == EXCP_DEBUG) {
1041
                cpu_handle_guest_debug(env);
1042 1043
                break;
            }
1044
        } else if (env->stop || env->stopped) {
1045 1046 1047
            break;
        }
    }
J
Jan Kiszka 已提交
1048
    exit_request = 0;
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
}

void set_numa_modes(void)
{
    CPUState *env;
    int i;

    for (env = first_cpu; env != NULL; env = env->next_cpu) {
        for (i = 0; i < nb_numa_nodes; i++) {
            if (node_cpumask[i] & (1 << env->cpu_index)) {
                env->numa_node = i;
            }
        }
    }
}

void set_cpu_log(const char *optarg)
{
    int mask;
    const CPULogItem *item;

    mask = cpu_str_to_log_mask(optarg);
    if (!mask) {
        printf("Log items (comma separated):\n");
        for (item = cpu_log_items; item->mask != 0; item++) {
            printf("%-10s %s\n", item->name, item->help);
        }
        exit(1);
    }
    cpu_set_log(mask);
}
B
Blue Swirl 已提交
1080

1081 1082 1083 1084 1085
void set_cpu_log_filename(const char *optarg)
{
    cpu_set_log_filename(optarg);
}

1086
void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1087 1088 1089 1090 1091 1092 1093 1094
{
    /* XXX: implement xxx_cpu_list for targets that still miss it */
#if defined(cpu_list_id)
    cpu_list_id(f, cpu_fprintf, optarg);
#elif defined(cpu_list)
    cpu_list(f, cpu_fprintf); /* deprecated */
#endif
}
L
Luiz Capitulino 已提交
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138

CpuInfoList *qmp_query_cpus(Error **errp)
{
    CpuInfoList *head = NULL, *cur_item = NULL;
    CPUState *env;

    for(env = first_cpu; env != NULL; env = env->next_cpu) {
        CpuInfoList *info;

        cpu_synchronize_state(env);

        info = g_malloc0(sizeof(*info));
        info->value = g_malloc0(sizeof(*info->value));
        info->value->CPU = env->cpu_index;
        info->value->current = (env == first_cpu);
        info->value->halted = env->halted;
        info->value->thread_id = env->thread_id;
#if defined(TARGET_I386)
        info->value->has_pc = true;
        info->value->pc = env->eip + env->segs[R_CS].base;
#elif defined(TARGET_PPC)
        info->value->has_nip = true;
        info->value->nip = env->nip;
#elif defined(TARGET_SPARC)
        info->value->has_pc = true;
        info->value->pc = env->pc;
        info->value->has_npc = true;
        info->value->npc = env->npc;
#elif defined(TARGET_MIPS)
        info->value->has_PC = true;
        info->value->PC = env->active_tc.PC;
#endif

        /* XXX: waiting for the qapi to support GSList */
        if (!cur_item) {
            head = cur_item = info;
        } else {
            cur_item->next = info;
            cur_item = info;
        }
    }

    return head;
}