dump-guest-memory.py 20.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
"""
This python script adds a new gdb command, "dump-guest-memory". It
should be loaded with "source dump-guest-memory.py" at the (gdb)
prompt.

Copyright (C) 2013, Red Hat, Inc.

Authors:
   Laszlo Ersek <lersek@redhat.com>
   Janosch Frank <frankja@linux.vnet.ibm.com>

This work is licensed under the terms of the GNU GPL, version 2 or later. See
the COPYING file in the top-level directory.
"""
15

16
import ctypes
17
import struct
18

19 20 21 22 23 24
try:
    UINTPTR_T = gdb.lookup_type("uintptr_t")
except Exception as inst:
    raise gdb.GdbError("Symbols must be loaded prior to sourcing dump-guest-memory.\n"
                       "Symbols may be loaded by 'attach'ing a QEMU process id or by "
                       "'load'ing a QEMU binary.")
25

26 27 28 29 30 31 32 33
TARGET_PAGE_SIZE = 0x1000
TARGET_PAGE_MASK = 0xFFFFFFFFFFFFF000

# Special value for e_phnum. This indicates that the real number of
# program headers is too large to fit into e_phnum. Instead the real
# value is in the field sh_info of section 0.
PN_XNUM = 0xFFFF

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
EV_CURRENT = 1

ELFCLASS32 = 1
ELFCLASS64 = 2

ELFDATA2LSB = 1
ELFDATA2MSB = 2

ET_CORE = 4

PT_LOAD = 1
PT_NOTE = 4

EM_386 = 3
EM_PPC = 20
EM_PPC64 = 21
EM_S390 = 22
EM_AARCH = 183
EM_X86_64 = 62

54 55 56 57 58 59 60 61 62 63 64
VMCOREINFO_FORMAT_ELF = 1

def le16_to_cpu(val):
    return struct.unpack("<H", struct.pack("=H", val))[0]

def le32_to_cpu(val):
    return struct.unpack("<I", struct.pack("=I", val))[0]

def le64_to_cpu(val):
    return struct.unpack("<Q", struct.pack("=Q", val))[0]

65 66 67 68 69 70 71 72
class ELF(object):
    """Representation of a ELF file."""

    def __init__(self, arch):
        self.ehdr = None
        self.notes = []
        self.segments = []
        self.notes_size = 0
73
        self.endianness = None
74 75 76
        self.elfclass = ELFCLASS64

        if arch == 'aarch64-le':
77
            self.endianness = ELFDATA2LSB
78
            self.elfclass = ELFCLASS64
79
            self.ehdr = get_arch_ehdr(self.endianness, self.elfclass)
80 81 82
            self.ehdr.e_machine = EM_AARCH

        elif arch == 'aarch64-be':
83 84
            self.endianness = ELFDATA2MSB
            self.ehdr = get_arch_ehdr(self.endianness, self.elfclass)
85 86 87
            self.ehdr.e_machine = EM_AARCH

        elif arch == 'X86_64':
88 89
            self.endianness = ELFDATA2LSB
            self.ehdr = get_arch_ehdr(self.endianness, self.elfclass)
90 91 92
            self.ehdr.e_machine = EM_X86_64

        elif arch == '386':
93
            self.endianness = ELFDATA2LSB
94
            self.elfclass = ELFCLASS32
95
            self.ehdr = get_arch_ehdr(self.endianness, self.elfclass)
96 97 98
            self.ehdr.e_machine = EM_386

        elif arch == 's390':
99 100
            self.endianness = ELFDATA2MSB
            self.ehdr = get_arch_ehdr(self.endianness, self.elfclass)
101 102 103
            self.ehdr.e_machine = EM_S390

        elif arch == 'ppc64-le':
104 105
            self.endianness = ELFDATA2LSB
            self.ehdr = get_arch_ehdr(self.endianness, self.elfclass)
106 107 108
            self.ehdr.e_machine = EM_PPC64

        elif arch == 'ppc64-be':
109 110
            self.endianness = ELFDATA2MSB
            self.ehdr = get_arch_ehdr(self.endianness, self.elfclass)
111 112 113 114 115 116 117 118 119 120 121 122 123
            self.ehdr.e_machine = EM_PPC64

        else:
            raise gdb.GdbError("No valid arch type specified.\n"
                               "Currently supported types:\n"
                               "aarch64-be, aarch64-le, X86_64, 386, s390, "
                               "ppc64-be, ppc64-le")

        self.add_segment(PT_NOTE, 0, 0)

    def add_note(self, n_name, n_desc, n_type):
        """Adds a note to the ELF."""

124
        note = get_arch_note(self.endianness, len(n_name), len(n_desc))
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
        note.n_namesz = len(n_name) + 1
        note.n_descsz = len(n_desc)
        note.n_name = n_name.encode()
        note.n_type = n_type

        # Desc needs to be 4 byte aligned (although the 64bit spec
        # specifies 8 byte). When defining n_desc as uint32 it will be
        # automatically aligned but we need the memmove to copy the
        # string into it.
        ctypes.memmove(note.n_desc, n_desc.encode(), len(n_desc))

        self.notes.append(note)
        self.segments[0].p_filesz += ctypes.sizeof(note)
        self.segments[0].p_memsz += ctypes.sizeof(note)

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

    def add_vmcoreinfo_note(self, vmcoreinfo):
        """Adds a vmcoreinfo note to the ELF dump."""
        # compute the header size, and copy that many bytes from the note
        header = get_arch_note(self.endianness, 0, 0)
        ctypes.memmove(ctypes.pointer(header),
                       vmcoreinfo, ctypes.sizeof(header))
        if header.n_descsz > 1 << 20:
            print('warning: invalid vmcoreinfo size')
            return
        # now get the full note
        note = get_arch_note(self.endianness,
                             header.n_namesz - 1, header.n_descsz)
        ctypes.memmove(ctypes.pointer(note), vmcoreinfo, ctypes.sizeof(note))

        self.notes.append(note)
        self.segments[0].p_filesz += ctypes.sizeof(note)
        self.segments[0].p_memsz += ctypes.sizeof(note)

159 160 161
    def add_segment(self, p_type, p_paddr, p_size):
        """Adds a segment to the elf."""

162
        phdr = get_arch_phdr(self.endianness, self.elfclass)
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
        phdr.p_type = p_type
        phdr.p_paddr = p_paddr
        phdr.p_filesz = p_size
        phdr.p_memsz = p_size
        self.segments.append(phdr)
        self.ehdr.e_phnum += 1

    def to_file(self, elf_file):
        """Writes all ELF structures to the the passed file.

        Structure:
        Ehdr
        Segment 0:PT_NOTE
        Segment 1:PT_LOAD
        Segment N:PT_LOAD
        Note    0..N
        Dump contents
        """
        elf_file.write(self.ehdr)
        off = ctypes.sizeof(self.ehdr) + \
              len(self.segments) * ctypes.sizeof(self.segments[0])

        for phdr in self.segments:
            phdr.p_offset = off
            elf_file.write(phdr)
            off += phdr.p_filesz

        for note in self.notes:
            elf_file.write(note)


194 195
def get_arch_note(endianness, len_name, len_desc):
    """Returns a Note class with the specified endianness."""
196

197
    if endianness == ELFDATA2LSB:
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
        superclass = ctypes.LittleEndianStructure
    else:
        superclass = ctypes.BigEndianStructure

    len_name = len_name + 1

    class Note(superclass):
        """Represents an ELF note, includes the content."""

        _fields_ = [("n_namesz", ctypes.c_uint32),
                    ("n_descsz", ctypes.c_uint32),
                    ("n_type", ctypes.c_uint32),
                    ("n_name", ctypes.c_char * len_name),
                    ("n_desc", ctypes.c_uint32 * ((len_desc + 3) // 4))]
    return Note()


class Ident(ctypes.Structure):
    """Represents the ELF ident array in the ehdr structure."""

    _fields_ = [('ei_mag0', ctypes.c_ubyte),
                ('ei_mag1', ctypes.c_ubyte),
                ('ei_mag2', ctypes.c_ubyte),
                ('ei_mag3', ctypes.c_ubyte),
                ('ei_class', ctypes.c_ubyte),
                ('ei_data', ctypes.c_ubyte),
                ('ei_version', ctypes.c_ubyte),
                ('ei_osabi', ctypes.c_ubyte),
                ('ei_abiversion', ctypes.c_ubyte),
                ('ei_pad', ctypes.c_ubyte * 7)]

229
    def __init__(self, endianness, elfclass):
230 231 232 233 234
        self.ei_mag0 = 0x7F
        self.ei_mag1 = ord('E')
        self.ei_mag2 = ord('L')
        self.ei_mag3 = ord('F')
        self.ei_class = elfclass
235
        self.ei_data = endianness
236 237 238
        self.ei_version = EV_CURRENT


239 240
def get_arch_ehdr(endianness, elfclass):
    """Returns a EHDR64 class with the specified endianness."""
241

242
    if endianness == ELFDATA2LSB:
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
        superclass = ctypes.LittleEndianStructure
    else:
        superclass = ctypes.BigEndianStructure

    class EHDR64(superclass):
        """Represents the 64 bit ELF header struct."""

        _fields_ = [('e_ident', Ident),
                    ('e_type', ctypes.c_uint16),
                    ('e_machine', ctypes.c_uint16),
                    ('e_version', ctypes.c_uint32),
                    ('e_entry', ctypes.c_uint64),
                    ('e_phoff', ctypes.c_uint64),
                    ('e_shoff', ctypes.c_uint64),
                    ('e_flags', ctypes.c_uint32),
                    ('e_ehsize', ctypes.c_uint16),
                    ('e_phentsize', ctypes.c_uint16),
                    ('e_phnum', ctypes.c_uint16),
                    ('e_shentsize', ctypes.c_uint16),
                    ('e_shnum', ctypes.c_uint16),
                    ('e_shstrndx', ctypes.c_uint16)]

        def __init__(self):
            super(superclass, self).__init__()
267
            self.e_ident = Ident(endianness, elfclass)
268 269 270 271
            self.e_type = ET_CORE
            self.e_version = EV_CURRENT
            self.e_ehsize = ctypes.sizeof(self)
            self.e_phoff = ctypes.sizeof(self)
272
            self.e_phentsize = ctypes.sizeof(get_arch_phdr(endianness, elfclass))
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
            self.e_phnum = 0


    class EHDR32(superclass):
        """Represents the 32 bit ELF header struct."""

        _fields_ = [('e_ident', Ident),
                    ('e_type', ctypes.c_uint16),
                    ('e_machine', ctypes.c_uint16),
                    ('e_version', ctypes.c_uint32),
                    ('e_entry', ctypes.c_uint32),
                    ('e_phoff', ctypes.c_uint32),
                    ('e_shoff', ctypes.c_uint32),
                    ('e_flags', ctypes.c_uint32),
                    ('e_ehsize', ctypes.c_uint16),
                    ('e_phentsize', ctypes.c_uint16),
                    ('e_phnum', ctypes.c_uint16),
                    ('e_shentsize', ctypes.c_uint16),
                    ('e_shnum', ctypes.c_uint16),
                    ('e_shstrndx', ctypes.c_uint16)]

        def __init__(self):
            super(superclass, self).__init__()
296
            self.e_ident = Ident(endianness, elfclass)
297 298 299 300
            self.e_type = ET_CORE
            self.e_version = EV_CURRENT
            self.e_ehsize = ctypes.sizeof(self)
            self.e_phoff = ctypes.sizeof(self)
301
            self.e_phentsize = ctypes.sizeof(get_arch_phdr(endianness, elfclass))
302 303 304 305 306 307 308 309 310
            self.e_phnum = 0

    # End get_arch_ehdr
    if elfclass == ELFCLASS64:
        return EHDR64()
    else:
        return EHDR32()


311 312
def get_arch_phdr(endianness, elfclass):
    """Returns a 32 or 64 bit PHDR class with the specified endianness."""
313

314
    if endianness == ELFDATA2LSB:
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
        superclass = ctypes.LittleEndianStructure
    else:
        superclass = ctypes.BigEndianStructure

    class PHDR64(superclass):
        """Represents the 64 bit ELF program header struct."""

        _fields_ = [('p_type', ctypes.c_uint32),
                    ('p_flags', ctypes.c_uint32),
                    ('p_offset', ctypes.c_uint64),
                    ('p_vaddr', ctypes.c_uint64),
                    ('p_paddr', ctypes.c_uint64),
                    ('p_filesz', ctypes.c_uint64),
                    ('p_memsz', ctypes.c_uint64),
                    ('p_align', ctypes.c_uint64)]

    class PHDR32(superclass):
        """Represents the 32 bit ELF program header struct."""

        _fields_ = [('p_type', ctypes.c_uint32),
                    ('p_offset', ctypes.c_uint32),
                    ('p_vaddr', ctypes.c_uint32),
                    ('p_paddr', ctypes.c_uint32),
                    ('p_filesz', ctypes.c_uint32),
                    ('p_memsz', ctypes.c_uint32),
                    ('p_flags', ctypes.c_uint32),
                    ('p_align', ctypes.c_uint32)]

    # End get_arch_phdr
    if elfclass == ELFCLASS64:
        return PHDR64()
    else:
        return PHDR32()

349

350
def int128_get64(val):
351 352
    """Returns low 64bit part of Int128 struct."""

353 354 355 356 357 358 359 360 361 362 363 364
    try:
        assert val["hi"] == 0
        return val["lo"]
    except gdb.error:
        u64t = gdb.lookup_type('uint64_t').array(2)
        u64 = val.cast(u64t)
        if sys.byteorder == 'little':
            assert u64[1] == 0
            return u64[0]
        else:
            assert u64[0] == 0
            return u64[1]
365

366

367
def qlist_foreach(head, field_str):
368 369
    """Generator for qlists."""

370
    var_p = head["lh_first"]
371
    while var_p != 0:
372 373
        var = var_p.dereference()
        var_p = var[field_str]["le_next"]
374 375
        yield var

376

377
def qemu_map_ram_ptr(block, offset):
378 379
    """Returns qemu vaddr for given guest physical address."""

380
    return block["host"] + offset
381

382 383 384 385 386 387

def memory_region_get_ram_ptr(memory_region):
    if memory_region["alias"] != 0:
        return (memory_region_get_ram_ptr(memory_region["alias"].dereference())
                + memory_region["alias_offset"])

388
    return qemu_map_ram_ptr(memory_region["ram_block"], 0)
389

390 391

def get_guest_phys_blocks():
392 393 394 395 396 397 398 399
    """Returns a list of ram blocks.

    Each block entry contains:
    'target_start': guest block phys start address
    'target_end':   guest block phys end address
    'host_addr':    qemu vaddr of the block's start
    """

400
    guest_phys_blocks = []
401

402 403 404 405 406
    print("guest RAM blocks:")
    print("target_start     target_end       host_addr        message "
          "count")
    print("---------------- ---------------- ---------------- ------- "
          "-----")
407 408 409

    current_map_p = gdb.parse_and_eval("address_space_memory.current_map")
    current_map = current_map_p.dereference()
410 411 412 413 414

    # Conversion to int is needed for python 3
    # compatibility. Otherwise range doesn't cast the value itself and
    # breaks.
    for cur in range(int(current_map["nr"])):
415 416
        flat_range = (current_map["ranges"] + cur).dereference()
        memory_region = flat_range["mr"].dereference()
417 418

        # we only care about RAM
419
        if not memory_region["ram"]:
420 421 422 423
            continue

        section_size = int128_get64(flat_range["addr"]["size"])
        target_start = int128_get64(flat_range["addr"]["start"])
424 425 426
        target_end = target_start + section_size
        host_addr = (memory_region_get_ram_ptr(memory_region)
                     + flat_range["offset_in_region"])
427 428 429
        predecessor = None

        # find continuity in guest physical address space
430
        if len(guest_phys_blocks) > 0:
431 432 433 434 435 436
            predecessor = guest_phys_blocks[-1]
            predecessor_size = (predecessor["target_end"] -
                                predecessor["target_start"])

            # the memory API guarantees monotonically increasing
            # traversal
437
            assert predecessor["target_end"] <= target_start
438 439 440 441 442 443 444

            # we want continuity in both guest-physical and
            # host-virtual memory
            if (predecessor["target_end"] < target_start or
                predecessor["host_addr"] + predecessor_size != host_addr):
                predecessor = None

445
        if predecessor is None:
446 447
            # isolated mapping, add it to the list
            guest_phys_blocks.append({"target_start": target_start,
448 449
                                      "target_end":   target_end,
                                      "host_addr":    host_addr})
450 451 452 453 454 455 456
            message = "added"
        else:
            # expand predecessor until @target_end; predecessor's
            # start doesn't change
            predecessor["target_end"] = target_end
            message = "joined"

457 458 459
        print("%016x %016x %016x %-7s %5u" %
              (target_start, target_end, host_addr.cast(UINTPTR_T),
               message, len(guest_phys_blocks)))
460 461 462 463

    return guest_phys_blocks


464 465 466 467
# The leading docstring doesn't have idiomatic Python formatting. It is
# printed by gdb's "help" command (the first line is printed in the
# "help data" summary), and it should match how other help texts look in
# gdb.
468 469 470
class DumpGuestMemory(gdb.Command):
    """Extract guest vmcore from qemu process coredump.

471 472 473
The two required arguments are FILE and ARCH:
FILE identifies the target file to write the guest vmcore to.
ARCH specifies the architecture for which the core will be generated.
474 475 476 477

This GDB command reimplements the dump-guest-memory QMP command in
python, using the representation of guest memory as captured in the qemu
coredump. The qemu process that has been dumped must have had the
478
command line option "-machine dump-guest-core=on" which is the default.
479 480 481 482 483 484

For simplicity, the "paging", "begin" and "end" parameters of the QMP
command are not supported -- no attempt is made to get the guest's
internal paging structures (ie. paging=false is hard-wired), and guest
memory is always fully dumped.

485 486
Currently aarch64-be, aarch64-le, X86_64, 386, s390, ppc64-be,
ppc64-le guests are supported.
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503

The CORE/NT_PRSTATUS and QEMU notes (that is, the VCPUs' statuses) are
not written to the vmcore. Preparing these would require context that is
only present in the KVM host kernel module when the guest is alive. A
fake ELF note is written instead, only to keep the ELF parser of "crash"
happy.

Dependent on how busted the qemu process was at the time of the
coredump, this command might produce unpredictable results. If qemu
deliberately called abort(), or it was dumped in response to a signal at
a halfway fortunate point, then its coredump should be in reasonable
shape and this command should mostly work."""

    def __init__(self):
        super(DumpGuestMemory, self).__init__("dump-guest-memory",
                                              gdb.COMMAND_DATA,
                                              gdb.COMPLETE_FILENAME)
504
        self.elf = None
505
        self.guest_phys_blocks = None
506

507 508 509 510 511 512 513 514 515 516 517 518 519 520
    def dump_init(self, vmcore):
        """Prepares and writes ELF structures to core file."""

        # Needed to make crash happy, data for more useful notes is
        # not available in a qemu core.
        self.elf.add_note("NONE", "EMPTY", 0)

        # We should never reach PN_XNUM for paging=false dumps,
        # there's just a handful of discontiguous ranges after
        # merging.
        # The constant is needed to account for the PT_NOTE segment.
        phdr_num = len(self.guest_phys_blocks) + 1
        assert phdr_num < PN_XNUM

521
        for block in self.guest_phys_blocks:
522 523 524 525
            block_size = block["target_end"] - block["target_start"]
            self.elf.add_segment(PT_LOAD, block["target_start"], block_size)

        self.elf.to_file(vmcore)
526 527

    def dump_iterate(self, vmcore):
528 529
        """Writes guest core to file."""

530 531
        qemu_core = gdb.inferiors()[0]
        for block in self.guest_phys_blocks:
532
            cur = block["host_addr"]
533
            left = block["target_end"] - block["target_start"]
534 535
            print("dumping range at %016x for length %016x" %
                  (cur.cast(UINTPTR_T), left))
536

537
            while left > 0:
538
                chunk_size = min(TARGET_PAGE_SIZE, left)
539 540
                chunk = qemu_core.read_memory(cur, chunk_size)
                vmcore.write(chunk)
541
                cur += chunk_size
542 543
                left -= chunk_size

544 545 546 547 548 549 550 551 552 553
    def phys_memory_read(self, addr, size):
        qemu_core = gdb.inferiors()[0]
        for block in self.guest_phys_blocks:
            if block["target_start"] <= addr \
               and addr + size <= block["target_end"]:
                haddr = block["host_addr"] + (addr - block["target_start"])
                return qemu_core.read_memory(haddr, size)
        return None

    def add_vmcoreinfo(self):
554 555
        if gdb.lookup_symbol("vmcoreinfo_realize")[0] is None:
            return
556
        vmci = 'vmcoreinfo_realize::vmcoreinfo_state'
557 558
        if not gdb.parse_and_eval("%s" % vmci) \
           or not gdb.parse_and_eval("(%s)->has_vmcoreinfo" % vmci):
559 560
            return

561 562 563
        fmt = gdb.parse_and_eval("(%s)->vmcoreinfo.guest_format" % vmci)
        addr = gdb.parse_and_eval("(%s)->vmcoreinfo.paddr" % vmci)
        size = gdb.parse_and_eval("(%s)->vmcoreinfo.size" % vmci)
564 565 566 567 568 569 570 571 572 573

        fmt = le16_to_cpu(fmt)
        addr = le64_to_cpu(addr)
        size = le32_to_cpu(size)

        if fmt != VMCOREINFO_FORMAT_ELF:
            return

        vmcoreinfo = self.phys_memory_read(addr, size)
        if vmcoreinfo:
574
            self.elf.add_vmcoreinfo_note(bytes(vmcoreinfo))
575

576
    def invoke(self, args, from_tty):
577 578
        """Handles command invocation from gdb."""

579 580 581 582 583
        # Unwittingly pressing the Enter key after the command should
        # not dump the same multi-gig coredump to the same file.
        self.dont_repeat()

        argv = gdb.string_to_argv(args)
584 585 586 587 588
        if len(argv) != 2:
            raise gdb.GdbError("usage: dump-guest-memory FILE ARCH")

        self.elf = ELF(argv[1])
        self.guest_phys_blocks = get_guest_phys_blocks()
589
        self.add_vmcoreinfo()
590

591 592 593
        with open(argv[0], "wb") as vmcore:
            self.dump_init(vmcore)
            self.dump_iterate(vmcore)
594 595

DumpGuestMemory()