mss-spi.c 11.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/*
 * Block model of SPI controller present in
 * Microsemi's SmartFusion2 and SmartFusion SoCs.
 *
 * Copyright (C) 2017 Subbaraya Sundeep <sundeep.lkml@gmail.com>
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include "qemu/osdep.h"
#include "hw/ssi/mss-spi.h"
#include "qemu/log.h"

#ifndef MSS_SPI_ERR_DEBUG
#define MSS_SPI_ERR_DEBUG   0
#endif

#define DB_PRINT_L(lvl, fmt, args...) do { \
    if (MSS_SPI_ERR_DEBUG >= lvl) { \
        qemu_log("%s: " fmt "\n", __func__, ## args); \
    } \
38
} while (0)
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

#define DB_PRINT(fmt, args...) DB_PRINT_L(1, fmt, ## args)

#define FIFO_CAPACITY         32

#define R_SPI_CONTROL         0
#define R_SPI_DFSIZE          1
#define R_SPI_STATUS          2
#define R_SPI_INTCLR          3
#define R_SPI_RX              4
#define R_SPI_TX              5
#define R_SPI_CLKGEN          6
#define R_SPI_SS              7
#define R_SPI_MIS             8
#define R_SPI_RIS             9

#define S_TXDONE             (1 << 0)
#define S_RXRDY              (1 << 1)
#define S_RXCHOVRF           (1 << 2)
#define S_RXFIFOFUL          (1 << 4)
#define S_RXFIFOFULNXT       (1 << 5)
#define S_RXFIFOEMP          (1 << 6)
#define S_RXFIFOEMPNXT       (1 << 7)
#define S_TXFIFOFUL          (1 << 8)
#define S_TXFIFOFULNXT       (1 << 9)
#define S_TXFIFOEMP          (1 << 10)
#define S_TXFIFOEMPNXT       (1 << 11)
#define S_FRAMESTART         (1 << 12)
#define S_SSEL               (1 << 13)
#define S_ACTIVE             (1 << 14)

#define C_ENABLE             (1 << 0)
#define C_MODE               (1 << 1)
#define C_INTRXDATA          (1 << 4)
#define C_INTTXDATA          (1 << 5)
#define C_INTRXOVRFLO        (1 << 6)
#define C_SPS                (1 << 26)
#define C_BIGFIFO            (1 << 29)
#define C_RESET              (1 << 31)

79
#define FRAMESZ_MASK         0x3F
80 81
#define FMCOUNT_MASK         0x00FFFF00
#define FMCOUNT_SHIFT        8
82
#define FRAMESZ_MAX          32
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

static void txfifo_reset(MSSSpiState *s)
{
    fifo32_reset(&s->tx_fifo);

    s->regs[R_SPI_STATUS] &= ~S_TXFIFOFUL;
    s->regs[R_SPI_STATUS] |= S_TXFIFOEMP;
}

static void rxfifo_reset(MSSSpiState *s)
{
    fifo32_reset(&s->rx_fifo);

    s->regs[R_SPI_STATUS] &= ~S_RXFIFOFUL;
    s->regs[R_SPI_STATUS] |= S_RXFIFOEMP;
}

static void set_fifodepth(MSSSpiState *s)
{
    unsigned int size = s->regs[R_SPI_DFSIZE] & FRAMESZ_MASK;

    if (size <= 8) {
        s->fifo_depth = 32;
    } else if (size <= 16) {
        s->fifo_depth = 16;
    } else {
109
        s->fifo_depth = 8;
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
    }
}

static void update_mis(MSSSpiState *s)
{
    uint32_t reg = s->regs[R_SPI_CONTROL];
    uint32_t tmp;

    /*
     * form the Control register interrupt enable bits
     * same as RIS, MIS and Interrupt clear registers for simplicity
     */
    tmp = ((reg & C_INTRXOVRFLO) >> 4) | ((reg & C_INTRXDATA) >> 3) |
           ((reg & C_INTTXDATA) >> 5);
    s->regs[R_SPI_MIS] |= tmp & s->regs[R_SPI_RIS];
}

static void spi_update_irq(MSSSpiState *s)
{
    int irq;

    update_mis(s);
    irq = !!(s->regs[R_SPI_MIS]);

    qemu_set_irq(s->irq, irq);
}

static void mss_spi_reset(DeviceState *d)
{
    MSSSpiState *s = MSS_SPI(d);

    memset(s->regs, 0, sizeof s->regs);
    s->regs[R_SPI_CONTROL] = 0x80000102;
    s->regs[R_SPI_DFSIZE] = 0x4;
    s->regs[R_SPI_STATUS] = S_SSEL | S_TXFIFOEMP | S_RXFIFOEMP;
    s->regs[R_SPI_CLKGEN] = 0x7;
    s->regs[R_SPI_RIS] = 0x0;

    s->fifo_depth = 4;
    s->frame_count = 1;
    s->enabled = false;

    rxfifo_reset(s);
    txfifo_reset(s);
}

static uint64_t
spi_read(void *opaque, hwaddr addr, unsigned int size)
{
    MSSSpiState *s = opaque;
    uint32_t ret = 0;

    addr >>= 2;
    switch (addr) {
    case R_SPI_RX:
        s->regs[R_SPI_STATUS] &= ~S_RXFIFOFUL;
        s->regs[R_SPI_STATUS] &= ~S_RXCHOVRF;
        ret = fifo32_pop(&s->rx_fifo);
        if (fifo32_is_empty(&s->rx_fifo)) {
            s->regs[R_SPI_STATUS] |= S_RXFIFOEMP;
        }
        break;

    case R_SPI_MIS:
        update_mis(s);
        ret = s->regs[R_SPI_MIS];
        break;

    default:
        if (addr < ARRAY_SIZE(s->regs)) {
            ret = s->regs[addr];
        } else {
            qemu_log_mask(LOG_GUEST_ERROR,
                         "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__,
                         addr * 4);
            return ret;
        }
        break;
    }

    DB_PRINT("addr=0x%" HWADDR_PRIx " = 0x%" PRIx32, addr * 4, ret);
    spi_update_irq(s);
    return ret;
}

static void assert_cs(MSSSpiState *s)
{
    qemu_set_irq(s->cs_line, 0);
}

static void deassert_cs(MSSSpiState *s)
{
    qemu_set_irq(s->cs_line, 1);
}

static void spi_flush_txfifo(MSSSpiState *s)
{
    uint32_t tx;
    uint32_t rx;
    bool sps = !!(s->regs[R_SPI_CONTROL] & C_SPS);

    /*
     * Chip Select(CS) is automatically controlled by this controller.
     * If SPS bit is set in Control register then CS is asserted
     * until all the frames set in frame count of Control register are
     * transferred. If SPS is not set then CS pulses between frames.
     * Note that Slave Select register specifies which of the CS line
     * has to be controlled automatically by controller. Bits SS[7:1] are for
     * masters in FPGA fabric since we model only Microcontroller subsystem
     * of Smartfusion2 we control only one CS(SS[0]) line.
     */
    while (!fifo32_is_empty(&s->tx_fifo) && s->frame_count) {
        assert_cs(s);

        s->regs[R_SPI_STATUS] &= ~(S_TXDONE | S_RXRDY);

        tx = fifo32_pop(&s->tx_fifo);
        DB_PRINT("data tx:0x%" PRIx32, tx);
        rx = ssi_transfer(s->spi, tx);
        DB_PRINT("data rx:0x%" PRIx32, rx);

        if (fifo32_num_used(&s->rx_fifo) == s->fifo_depth) {
            s->regs[R_SPI_STATUS] |= S_RXCHOVRF;
            s->regs[R_SPI_RIS] |= S_RXCHOVRF;
        } else {
            fifo32_push(&s->rx_fifo, rx);
            s->regs[R_SPI_STATUS] &= ~S_RXFIFOEMP;
            if (fifo32_num_used(&s->rx_fifo) == (s->fifo_depth - 1)) {
                s->regs[R_SPI_STATUS] |= S_RXFIFOFULNXT;
            } else if (fifo32_num_used(&s->rx_fifo) == s->fifo_depth) {
                s->regs[R_SPI_STATUS] |= S_RXFIFOFUL;
            }
        }
        s->frame_count--;
        if (!sps) {
            deassert_cs(s);
        }
    }

    if (!s->frame_count) {
        s->frame_count = (s->regs[R_SPI_CONTROL] & FMCOUNT_MASK) >>
                            FMCOUNT_SHIFT;
        deassert_cs(s);
        s->regs[R_SPI_RIS] |= S_TXDONE | S_RXRDY;
        s->regs[R_SPI_STATUS] |= S_TXDONE | S_RXRDY;
   }
}

static void spi_write(void *opaque, hwaddr addr,
            uint64_t val64, unsigned int size)
{
    MSSSpiState *s = opaque;
    uint32_t value = val64;

    DB_PRINT("addr=0x%" HWADDR_PRIx " =0x%" PRIx32, addr, value);
    addr >>= 2;

    switch (addr) {
    case R_SPI_TX:
        /* adding to already full FIFO */
        if (fifo32_num_used(&s->tx_fifo) == s->fifo_depth) {
            break;
        }
        s->regs[R_SPI_STATUS] &= ~S_TXFIFOEMP;
        fifo32_push(&s->tx_fifo, value);
        if (fifo32_num_used(&s->tx_fifo) == (s->fifo_depth - 1)) {
            s->regs[R_SPI_STATUS] |= S_TXFIFOFULNXT;
        } else if (fifo32_num_used(&s->tx_fifo) == s->fifo_depth) {
            s->regs[R_SPI_STATUS] |= S_TXFIFOFUL;
        }
        if (s->enabled) {
            spi_flush_txfifo(s);
        }
        break;

    case R_SPI_CONTROL:
        s->regs[R_SPI_CONTROL] = value;
        if (value & C_BIGFIFO) {
            set_fifodepth(s);
        } else {
            s->fifo_depth = 4;
        }
        s->enabled = value & C_ENABLE;
        s->frame_count = (value & FMCOUNT_MASK) >> FMCOUNT_SHIFT;
        if (value & C_RESET) {
            mss_spi_reset(DEVICE(s));
        }
        break;

    case R_SPI_DFSIZE:
        if (s->enabled) {
            break;
        }
303 304 305 306 307 308 309 310 311 312 313
        /*
         * [31:6] bits are reserved bits and for future use.
         * [5:0] are for frame size. Only [5:0] bits are validated
         * during write, [31:6] bits are untouched.
         */
        if ((value & FRAMESZ_MASK) > FRAMESZ_MAX) {
            qemu_log_mask(LOG_GUEST_ERROR, "%s: Incorrect size %u provided."
                         "Maximum frame size is %u\n",
                         __func__, value & FRAMESZ_MASK, FRAMESZ_MAX);
            break;
        }
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
        s->regs[R_SPI_DFSIZE] = value;
        break;

    case R_SPI_INTCLR:
        s->regs[R_SPI_INTCLR] = value;
        if (value & S_TXDONE) {
            s->regs[R_SPI_RIS] &= ~S_TXDONE;
        }
        if (value & S_RXRDY) {
            s->regs[R_SPI_RIS] &= ~S_RXRDY;
        }
        if (value & S_RXCHOVRF) {
            s->regs[R_SPI_RIS] &= ~S_RXCHOVRF;
        }
        break;

    case R_SPI_MIS:
    case R_SPI_STATUS:
    case R_SPI_RIS:
            qemu_log_mask(LOG_GUEST_ERROR,
                         "%s: Write to read only register 0x%" HWADDR_PRIx "\n",
                         __func__, addr * 4);
        break;

    default:
        if (addr < ARRAY_SIZE(s->regs)) {
            s->regs[addr] = value;
        } else {
            qemu_log_mask(LOG_GUEST_ERROR,
                         "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__,
                         addr * 4);
        }
        break;
    }

    spi_update_irq(s);
}

static const MemoryRegionOps spi_ops = {
    .read = spi_read,
    .write = spi_write,
    .endianness = DEVICE_NATIVE_ENDIAN,
    .valid = {
        .min_access_size = 1,
        .max_access_size = 4
    }
};

static void mss_spi_realize(DeviceState *dev, Error **errp)
{
    MSSSpiState *s = MSS_SPI(dev);
    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);

    s->spi = ssi_create_bus(dev, "spi");

    sysbus_init_irq(sbd, &s->irq);
    ssi_auto_connect_slaves(dev, &s->cs_line, s->spi);
    sysbus_init_irq(sbd, &s->cs_line);

    memory_region_init_io(&s->mmio, OBJECT(s), &spi_ops, s,
                          TYPE_MSS_SPI, R_SPI_MAX * 4);
    sysbus_init_mmio(sbd, &s->mmio);

    fifo32_create(&s->tx_fifo, FIFO_CAPACITY);
    fifo32_create(&s->rx_fifo, FIFO_CAPACITY);
}

static const VMStateDescription vmstate_mss_spi = {
    .name = TYPE_MSS_SPI,
    .version_id = 1,
    .minimum_version_id = 1,
    .fields = (VMStateField[]) {
        VMSTATE_FIFO32(tx_fifo, MSSSpiState),
        VMSTATE_FIFO32(rx_fifo, MSSSpiState),
        VMSTATE_UINT32_ARRAY(regs, MSSSpiState, R_SPI_MAX),
        VMSTATE_END_OF_LIST()
    }
};

static void mss_spi_class_init(ObjectClass *klass, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);

    dc->realize = mss_spi_realize;
    dc->reset = mss_spi_reset;
    dc->vmsd = &vmstate_mss_spi;
}

static const TypeInfo mss_spi_info = {
    .name           = TYPE_MSS_SPI,
    .parent         = TYPE_SYS_BUS_DEVICE,
    .instance_size  = sizeof(MSSSpiState),
    .class_init     = mss_spi_class_init,
};

static void mss_spi_register_types(void)
{
    type_register_static(&mss_spi_info);
}

type_init(mss_spi_register_types)