spapr.c 114.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
 *
 * Copyright (c) 2004-2007 Fabrice Bellard
 * Copyright (c) 2007 Jocelyn Mayer
 * Copyright (c) 2010 David Gibson, IBM Corporation.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *
 */
P
Peter Maydell 已提交
27
#include "qemu/osdep.h"
28
#include "qapi/error.h"
29
#include "sysemu/sysemu.h"
30
#include "sysemu/numa.h"
31
#include "hw/hw.h"
32
#include "qemu/log.h"
33
#include "hw/fw-path-provider.h"
34
#include "elf.h"
P
Paolo Bonzini 已提交
35
#include "net/net.h"
A
Andrew Jones 已提交
36
#include "sysemu/device_tree.h"
37
#include "sysemu/block-backend.h"
38
#include "sysemu/cpus.h"
39
#include "sysemu/hw_accel.h"
40
#include "kvm_ppc.h"
41
#include "migration/migration.h"
42
#include "mmu-hash64.h"
43
#include "mmu-book3s-v3.h"
44
#include "qom/cpu.h"
45 46

#include "hw/boards.h"
P
Paolo Bonzini 已提交
47
#include "hw/ppc/ppc.h"
48 49
#include "hw/loader.h"

50
#include "hw/ppc/fdt.h"
P
Paolo Bonzini 已提交
51 52 53 54
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_vio.h"
#include "hw/pci-host/spapr.h"
#include "hw/ppc/xics.h"
55
#include "hw/pci/msi.h"
56

57
#include "hw/pci/pci.h"
58 59
#include "hw/scsi/scsi.h"
#include "hw/virtio/virtio-scsi.h"
60

61
#include "exec/address-spaces.h"
62
#include "hw/usb.h"
63
#include "qemu/config-file.h"
64
#include "qemu/error-report.h"
65
#include "trace.h"
66
#include "hw/nmi.h"
67
#include "hw/intc/intc.h"
A
Avi Kivity 已提交
68

69
#include "hw/compat.h"
70
#include "qemu/cutils.h"
71
#include "hw/ppc/spapr_cpu_core.h"
72
#include "qmp-commands.h"
73

74 75
#include <libfdt.h>

76 77 78 79 80 81 82 83 84 85
/* SLOF memory layout:
 *
 * SLOF raw image loaded at 0, copies its romfs right below the flat
 * device-tree, then position SLOF itself 31M below that
 *
 * So we set FW_OVERHEAD to 40MB which should account for all of that
 * and more
 *
 * We load our kernel at 4M, leaving space for SLOF initial image
 */
86
#define FDT_MAX_SIZE            0x100000
87
#define RTAS_MAX_SIZE           0x10000
88
#define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
89 90
#define FW_MAX_SIZE             0x400000
#define FW_FILE_NAME            "slof.bin"
91 92
#define FW_OVERHEAD             0x2800000
#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
93

94
#define MIN_RMA_SLOF            128UL
95

96 97
#define PHANDLE_XICP            0x00001111

98 99
#define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))

100 101 102
static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
                                  const char *type_ics,
                                  int nr_irqs, Error **errp)
103
{
104
    Error *local_err = NULL;
105
    Object *obj;
106

107
    obj = object_new(type_ics);
108
    object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
109
    object_property_add_const_link(obj, "xics", OBJECT(spapr), &error_abort);
110 111 112 113
    object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
    if (local_err) {
        goto error;
    }
114
    object_property_set_bool(obj, true, "realized", &local_err);
115 116
    if (local_err) {
        goto error;
117 118
    }

119
    return ICS_SIMPLE(obj);
120 121 122 123

error:
    error_propagate(errp, local_err);
    return NULL;
124 125
}

126
static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
127
{
128
    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
129

130
    if (kvm_enabled()) {
131 132
        Error *err = NULL;

133
        if (machine_kernel_irqchip_allowed(machine) &&
134 135 136
            !xics_kvm_init(spapr, errp)) {
            spapr->icp_type = TYPE_KVM_ICP;
            spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, &err);
137
        }
138
        if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
139 140 141 142
            error_reportf_err(err,
                              "kernel_irqchip requested but unavailable: ");
        } else {
            error_free(err);
143 144 145
        }
    }

146
    if (!spapr->ics) {
147
        xics_spapr_init(spapr);
148 149
        spapr->icp_type = TYPE_ICP;
        spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
150 151 152
    }
}

153 154 155 156 157 158 159 160
static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
                                  int smt_threads)
{
    int i, ret = 0;
    uint32_t servers_prop[smt_threads];
    uint32_t gservers_prop[smt_threads * 2];
    int index = ppc_get_vcpu_dt_id(cpu);

161 162
    if (cpu->compat_pvr) {
        ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
163 164 165 166 167
        if (ret < 0) {
            return ret;
        }
    }

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
    /* Build interrupt servers and gservers properties */
    for (i = 0; i < smt_threads; i++) {
        servers_prop[i] = cpu_to_be32(index + i);
        /* Hack, direct the group queues back to cpu 0 */
        gservers_prop[i*2] = cpu_to_be32(index + i);
        gservers_prop[i*2 + 1] = 0;
    }
    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
                      servers_prop, sizeof(servers_prop));
    if (ret < 0) {
        return ret;
    }
    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
                      gservers_prop, sizeof(gservers_prop));

    return ret;
}

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
{
    int ret = 0;
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    int index = ppc_get_vcpu_dt_id(cpu);
    uint32_t associativity[] = {cpu_to_be32(0x5),
                                cpu_to_be32(0x0),
                                cpu_to_be32(0x0),
                                cpu_to_be32(0x0),
                                cpu_to_be32(cs->numa_node),
                                cpu_to_be32(index)};

    /* Advertise NUMA via ibm,associativity */
    if (nb_numa_nodes > 1) {
        ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
                          sizeof(associativity));
    }

    return ret;
}

207
/* Populate the "ibm,pa-features" property */
208 209
static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset,
                                      bool legacy_guest)
210 211 212 213 214 215 216 217
{
    uint8_t pa_features_206[] = { 6, 0,
        0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
    uint8_t pa_features_207[] = { 24, 0,
        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
        0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
        0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
218 219 220 221 222 223 224
    uint8_t pa_features_300[] = { 66, 0,
        /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
        /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
        /* 6: DS207 */
        0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
        /* 16: Vector */
225
        0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
226
        /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
227
        0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
        /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
        /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
        0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
        /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
        /* 42: PM, 44: PC RA, 46: SC vec'd */
        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
        /* 48: SIMD, 50: QP BFP, 52: String */
        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
        /* 54: DecFP, 56: DecI, 58: SHA */
        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
        /* 60: NM atomic, 62: RNG */
        0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
    };
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
    uint8_t *pa_features;
    size_t pa_size;

    switch (POWERPC_MMU_VER(env->mmu_model)) {
    case POWERPC_MMU_VER_2_06:
        pa_features = pa_features_206;
        pa_size = sizeof(pa_features_206);
        break;
    case POWERPC_MMU_VER_2_07:
        pa_features = pa_features_207;
        pa_size = sizeof(pa_features_207);
        break;
    case POWERPC_MMU_VER_3_00:
        pa_features = pa_features_300;
        pa_size = sizeof(pa_features_300);
        break;
    default:
        return;
    }

    if (env->ci_large_pages) {
        /*
         * Note: we keep CI large pages off by default because a 64K capable
         * guest provisioned with large pages might otherwise try to map a qemu
         * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
         * even if that qemu runs on a 4k host.
         * We dd this bit back here if we are confident this is not an issue
         */
        pa_features[3] |= 0x20;
    }
    if (kvmppc_has_cap_htm() && pa_size > 24) {
        pa_features[24] |= 0x80;    /* Transactional memory support */
    }
276 277 278 279 280 281
    if (legacy_guest && pa_size > 40) {
        /* Workaround for broken kernels that attempt (guest) radix
         * mode when they can't handle it, if they see the radix bit set
         * in pa-features. So hide it from them. */
        pa_features[40 + 2] &= ~0x80; /* Radix MMU */
    }
282 283 284 285

    _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
}

286
static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
287
{
288 289
    int ret = 0, offset, cpus_offset;
    CPUState *cs;
290 291
    char cpu_model[32];
    int smt = kvmppc_smt_threads();
292
    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
293

294 295
    CPU_FOREACH(cs) {
        PowerPCCPU *cpu = POWERPC_CPU(cs);
296
        CPUPPCState *env = &cpu->env;
297 298
        DeviceClass *dc = DEVICE_GET_CLASS(cs);
        int index = ppc_get_vcpu_dt_id(cpu);
299
        int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
300

301
        if ((index % smt) != 0) {
302 303 304
            continue;
        }

305
        snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
306

307 308 309 310 311 312 313 314 315
        cpus_offset = fdt_path_offset(fdt, "/cpus");
        if (cpus_offset < 0) {
            cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
                                          "cpus");
            if (cpus_offset < 0) {
                return cpus_offset;
            }
        }
        offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
316
        if (offset < 0) {
317 318 319 320
            offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
            if (offset < 0) {
                return offset;
            }
321 322
        }

323 324
        ret = fdt_setprop(fdt, offset, "ibm,pft-size",
                          pft_size_prop, sizeof(pft_size_prop));
325 326 327
        if (ret < 0) {
            return ret;
        }
328

329 330 331 332 333
        ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
        if (ret < 0) {
            return ret;
        }

334
        ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
335 336 337
        if (ret < 0) {
            return ret;
        }
338 339 340

        spapr_populate_pa_features(env, fdt, offset,
                                         spapr->cas_legacy_guest_workaround);
341 342 343 344
    }
    return ret;
}

345 346
static hwaddr spapr_node0_size(void)
{
347 348
    MachineState *machine = MACHINE(qdev_get_machine());

349 350 351 352
    if (nb_numa_nodes) {
        int i;
        for (i = 0; i < nb_numa_nodes; ++i) {
            if (numa_info[i].node_mem) {
353 354
                return MIN(pow2floor(numa_info[i].node_mem),
                           machine->ram_size);
355 356 357
            }
        }
    }
358
    return machine->ram_size;
359 360
}

361 362 363 364
static void add_str(GString *s, const gchar *s1)
{
    g_string_append_len(s, s1, strlen(s1) + 1);
}
365

366
static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
367 368 369 370 371
                                       hwaddr size)
{
    uint32_t associativity[] = {
        cpu_to_be32(0x4), /* length */
        cpu_to_be32(0x0), cpu_to_be32(0x0),
372
        cpu_to_be32(0x0), cpu_to_be32(nodeid)
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
    };
    char mem_name[32];
    uint64_t mem_reg_property[2];
    int off;

    mem_reg_property[0] = cpu_to_be64(start);
    mem_reg_property[1] = cpu_to_be64(size);

    sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
    off = fdt_add_subnode(fdt, 0, mem_name);
    _FDT(off);
    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
                      sizeof(mem_reg_property))));
    _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
                      sizeof(associativity))));
389
    return off;
390 391
}

392
static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
393
{
394
    MachineState *machine = MACHINE(spapr);
395 396 397 398 399 400 401 402
    hwaddr mem_start, node_size;
    int i, nb_nodes = nb_numa_nodes;
    NodeInfo *nodes = numa_info;
    NodeInfo ramnode;

    /* No NUMA nodes, assume there is just one node with whole RAM */
    if (!nb_numa_nodes) {
        nb_nodes = 1;
403
        ramnode.node_mem = machine->ram_size;
404
        nodes = &ramnode;
405
    }
406

407 408 409 410
    for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
        if (!nodes[i].node_mem) {
            continue;
        }
411
        if (mem_start >= machine->ram_size) {
412 413
            node_size = 0;
        } else {
414
            node_size = nodes[i].node_mem;
415 416
            if (node_size > machine->ram_size - mem_start) {
                node_size = machine->ram_size - mem_start;
417 418
            }
        }
419 420
        if (!mem_start) {
            /* ppc_spapr_init() checks for rma_size <= node0_size already */
421
            spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
422 423 424
            mem_start += spapr->rma_size;
            node_size -= spapr->rma_size;
        }
425 426 427 428 429 430 431 432 433 434 435 436
        for ( ; node_size; ) {
            hwaddr sizetmp = pow2floor(node_size);

            /* mem_start != 0 here */
            if (ctzl(mem_start) < ctzl(sizetmp)) {
                sizetmp = 1ULL << ctzl(mem_start);
            }

            spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
            node_size -= sizetmp;
            mem_start += sizetmp;
        }
437 438 439 440 441
    }

    return 0;
}

442 443 444 445 446 447 448 449 450
static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
                                  sPAPRMachineState *spapr)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
    int index = ppc_get_vcpu_dt_id(cpu);
    uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
                       0xffffffff, 0xffffffff};
451 452
    uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
        : SPAPR_TIMEBASE_FREQ;
453 454 455
    uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
    uint32_t page_sizes_prop[64];
    size_t page_sizes_prop_size;
456
    uint32_t vcpus_per_socket = smp_threads * smp_cores;
457
    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
458
    int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
B
Bharata B Rao 已提交
459 460 461
    sPAPRDRConnector *drc;
    sPAPRDRConnectorClass *drck;
    int drc_index;
462 463
    uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
    int i;
B
Bharata B Rao 已提交
464 465 466 467 468 469 470

    drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index);
    if (drc) {
        drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
        drc_index = drck->get_index(drc);
        _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
    }
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488

    _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
    _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));

    _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
                           env->dcache_line_size)));
    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
                           env->dcache_line_size)));
    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
                           env->icache_line_size)));
    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
                           env->icache_line_size)));

    if (pcc->l1_dcache_size) {
        _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
                               pcc->l1_dcache_size)));
    } else {
489
        error_report("Warning: Unknown L1 dcache size for cpu");
490 491 492 493 494
    }
    if (pcc->l1_icache_size) {
        _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
                               pcc->l1_icache_size)));
    } else {
495
        error_report("Warning: Unknown L1 icache size for cpu");
496 497 498 499
    }

    _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
    _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
500
    _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
    _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
    _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
    _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));

    if (env->spr_cb[SPR_PURR].oea_read) {
        _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
    }

    if (env->mmu_model & POWERPC_MMU_1TSEG) {
        _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
                          segs, sizeof(segs))));
    }

    /* Advertise VMX/VSX (vector extensions) if available
     *   0 / no property == no vector extensions
     *   1               == VMX / Altivec available
     *   2               == VSX available */
    if (env->insns_flags & PPC_ALTIVEC) {
        uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;

        _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
    }

    /* Advertise DFP (Decimal Floating Point) if available
     *   0 / no property == no DFP
     *   1               == DFP available */
    if (env->insns_flags2 & PPC2_DFP) {
        _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
    }

531
    page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
532 533 534 535 536 537
                                                  sizeof(page_sizes_prop));
    if (page_sizes_prop_size) {
        _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
                          page_sizes_prop, page_sizes_prop_size)));
    }

538
    spapr_populate_pa_features(env, fdt, offset, false);
539

540
    _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
541
                           cs->cpu_index / vcpus_per_socket)));
542 543 544 545 546 547

    _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
                      pft_size_prop, sizeof(pft_size_prop))));

    _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));

548
    _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
549 550 551 552 553 554 555 556 557 558 559

    if (pcc->radix_page_info) {
        for (i = 0; i < pcc->radix_page_info->count; i++) {
            radix_AP_encodings[i] =
                cpu_to_be32(pcc->radix_page_info->entries[i]);
        }
        _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
                          radix_AP_encodings,
                          pcc->radix_page_info->count *
                          sizeof(radix_AP_encodings[0]))));
    }
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
}

static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
{
    CPUState *cs;
    int cpus_offset;
    char *nodename;
    int smt = kvmppc_smt_threads();

    cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
    _FDT(cpus_offset);
    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));

    /*
     * We walk the CPUs in reverse order to ensure that CPU DT nodes
     * created by fdt_add_subnode() end up in the right order in FDT
     * for the guest kernel the enumerate the CPUs correctly.
     */
    CPU_FOREACH_REVERSE(cs) {
        PowerPCCPU *cpu = POWERPC_CPU(cs);
        int index = ppc_get_vcpu_dt_id(cpu);
        DeviceClass *dc = DEVICE_GET_CLASS(cs);
        int offset;

        if ((index % smt) != 0) {
            continue;
        }

        nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
        offset = fdt_add_subnode(fdt, cpus_offset, nodename);
        g_free(nodename);
        _FDT(offset);
        spapr_populate_cpu_dt(cs, fdt, offset, spapr);
    }

}

598 599 600 601 602 603 604 605 606 607 608
/*
 * Adds ibm,dynamic-reconfiguration-memory node.
 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
 * of this device tree node.
 */
static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
{
    MachineState *machine = MACHINE(spapr);
    int ret, i, offset;
    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
    uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
609 610 611 612
    uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
    uint32_t nr_lmbs = (spapr->hotplug_memory.base +
                       memory_region_size(&spapr->hotplug_memory.mr)) /
                       lmb_size;
613
    uint32_t *int_buf, *cur_index, buf_len;
614
    int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
615

616
    /*
617
     * Don't create the node if there is no hotpluggable memory
618
     */
619
    if (machine->ram_size == machine->maxram_size) {
620 621 622
        return 0;
    }

623 624 625 626 627 628
    /*
     * Allocate enough buffer size to fit in ibm,dynamic-memory
     * or ibm,associativity-lookup-arrays
     */
    buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
              * sizeof(uint32_t);
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
    cur_index = int_buf = g_malloc0(buf_len);

    offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");

    ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
                    sizeof(prop_lmb_size));
    if (ret < 0) {
        goto out;
    }

    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
    if (ret < 0) {
        goto out;
    }

    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
    if (ret < 0) {
        goto out;
    }

    /* ibm,dynamic-memory */
    int_buf[0] = cpu_to_be32(nr_lmbs);
    cur_index++;
    for (i = 0; i < nr_lmbs; i++) {
653
        uint64_t addr = i * lmb_size;
654 655
        uint32_t *dynamic_memory = cur_index;

656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
        if (i >= hotplug_lmb_start) {
            sPAPRDRConnector *drc;
            sPAPRDRConnectorClass *drck;

            drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, i);
            g_assert(drc);
            drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);

            dynamic_memory[0] = cpu_to_be32(addr >> 32);
            dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
            dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
            dynamic_memory[3] = cpu_to_be32(0); /* reserved */
            dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
            if (memory_region_present(get_system_memory(), addr)) {
                dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
            } else {
                dynamic_memory[5] = cpu_to_be32(0);
            }
674
        } else {
675 676 677 678 679 680 681 682 683 684 685 686
            /*
             * LMB information for RMA, boot time RAM and gap b/n RAM and
             * hotplug memory region -- all these are marked as reserved
             * and as having no valid DRC.
             */
            dynamic_memory[0] = cpu_to_be32(addr >> 32);
            dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
            dynamic_memory[2] = cpu_to_be32(0);
            dynamic_memory[3] = cpu_to_be32(0); /* reserved */
            dynamic_memory[4] = cpu_to_be32(-1);
            dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
                                            SPAPR_LMB_FLAGS_DRC_INVALID);
687 688 689 690 691 692 693 694 695 696 697
        }

        cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
    }
    ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
    if (ret < 0) {
        goto out;
    }

    /* ibm,associativity-lookup-arrays */
    cur_index = int_buf;
698
    int_buf[0] = cpu_to_be32(nr_nodes);
699 700
    int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
    cur_index += 2;
701
    for (i = 0; i < nr_nodes; i++) {
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
        uint32_t associativity[] = {
            cpu_to_be32(0x0),
            cpu_to_be32(0x0),
            cpu_to_be32(0x0),
            cpu_to_be32(i)
        };
        memcpy(cur_index, associativity, sizeof(associativity));
        cur_index += 4;
    }
    ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
            (cur_index - int_buf) * sizeof(uint32_t));
out:
    g_free(int_buf);
    return ret;
}

718 719 720 721
static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
                                sPAPROptionVector *ov5_updates)
{
    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
722
    int ret = 0, offset;
723 724 725 726 727

    /* Generate ibm,dynamic-reconfiguration-memory node if required */
    if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
        g_assert(smc->dr_lmb_enabled);
        ret = spapr_populate_drconf_memory(spapr, fdt);
728 729 730
        if (ret) {
            goto out;
        }
731 732
    }

733 734 735 736 737 738 739 740 741 742 743
    offset = fdt_path_offset(fdt, "/chosen");
    if (offset < 0) {
        offset = fdt_add_subnode(fdt, 0, "chosen");
        if (offset < 0) {
            return offset;
        }
    }
    ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
                                 "ibm,architecture-vec-5");

out:
744 745 746
    return ret;
}

747 748
int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
                                 target_ulong addr, target_ulong size,
749
                                 sPAPROptionVector *ov5_updates)
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
{
    void *fdt, *fdt_skel;
    sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };

    size -= sizeof(hdr);

    /* Create sceleton */
    fdt_skel = g_malloc0(size);
    _FDT((fdt_create(fdt_skel, size)));
    _FDT((fdt_begin_node(fdt_skel, "")));
    _FDT((fdt_end_node(fdt_skel)));
    _FDT((fdt_finish(fdt_skel)));
    fdt = g_malloc0(size);
    _FDT((fdt_open_into(fdt_skel, fdt, size)));
    g_free(fdt_skel);

    /* Fixup cpu nodes */
767
    _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
768

769 770
    if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
        return -1;
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
    }

    /* Pack resulting tree */
    _FDT((fdt_pack(fdt)));

    if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
        trace_spapr_cas_failed(size);
        return -1;
    }

    cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
    cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
    trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
    g_free(fdt);

    return 0;
}

789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
{
    int rtas;
    GString *hypertas = g_string_sized_new(256);
    GString *qemu_hypertas = g_string_sized_new(256);
    uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
    uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
        memory_region_size(&spapr->hotplug_memory.mr);
    uint32_t lrdr_capacity[] = {
        cpu_to_be32(max_hotplug_addr >> 32),
        cpu_to_be32(max_hotplug_addr & 0xffffffff),
        0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
        cpu_to_be32(max_cpus / smp_threads),
    };

    _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));

    /* hypertas */
    add_str(hypertas, "hcall-pft");
    add_str(hypertas, "hcall-term");
    add_str(hypertas, "hcall-dabr");
    add_str(hypertas, "hcall-interrupt");
    add_str(hypertas, "hcall-tce");
    add_str(hypertas, "hcall-vio");
    add_str(hypertas, "hcall-splpar");
    add_str(hypertas, "hcall-bulk");
    add_str(hypertas, "hcall-set-mode");
    add_str(hypertas, "hcall-sprg0");
    add_str(hypertas, "hcall-copy");
    add_str(hypertas, "hcall-debug");
    add_str(qemu_hypertas, "hcall-memop1");

    if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
        add_str(hypertas, "hcall-multi-tce");
    }
    _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
                     hypertas->str, hypertas->len));
    g_string_free(hypertas, TRUE);
    _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
                     qemu_hypertas->str, qemu_hypertas->len));
    g_string_free(qemu_hypertas, TRUE);

    _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
                     refpoints, sizeof(refpoints)));

    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
                          RTAS_ERROR_LOG_MAX));
    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
                          RTAS_EVENT_SCAN_RATE));

    if (msi_nonbroken) {
        _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
    }

    /*
     * According to PAPR, rtas ibm,os-term does not guarantee a return
     * back to the guest cpu.
     *
     * While an additional ibm,extended-os-term property indicates
     * that rtas call return will always occur. Set this property.
     */
    _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));

    _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
                     lrdr_capacity, sizeof(lrdr_capacity)));

    spapr_dt_rtas_tokens(fdt, rtas);
}

858 859 860 861 862
/* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
 * that the guest may request and thus the valid values for bytes 24..26 of
 * option vector 5: */
static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
{
863 864
    PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);

865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
    char val[2 * 3] = {
        24, 0x00, /* Hash/Radix, filled in below. */
        25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
        26, 0x40, /* Radix options: GTSE == yes. */
    };

    if (kvm_enabled()) {
        if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
            val[1] = 0x80; /* OV5_MMU_BOTH */
        } else if (kvmppc_has_cap_mmu_radix()) {
            val[1] = 0x40; /* OV5_MMU_RADIX_300 */
        } else {
            val[1] = 0x00; /* Hash */
        }
    } else {
880 881 882 883 884 885 886
        if (first_ppc_cpu->env.mmu_model & POWERPC_MMU_V3) {
            /* V3 MMU supports both hash and radix (with dynamic switching) */
            val[1] = 0xC0;
        } else {
            /* Otherwise we can only do hash */
            val[1] = 0x00;
        }
887 888 889 890 891
    }
    _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
                     val, sizeof(val)));
}

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
{
    MachineState *machine = MACHINE(spapr);
    int chosen;
    const char *boot_device = machine->boot_order;
    char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
    size_t cb = 0;
    char *bootlist = get_boot_devices_list(&cb, true);

    _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));

    _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
    _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
                          spapr->initrd_base));
    _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
                          spapr->initrd_base + spapr->initrd_size));

    if (spapr->kernel_size) {
        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
                              cpu_to_be64(spapr->kernel_size) };

        _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
                         &kprop, sizeof(kprop)));
        if (spapr->kernel_le) {
            _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
        }
    }
    if (boot_menu) {
        _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
    }
    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));

    if (cb && bootlist) {
        int i;

        for (i = 0; i < cb; i++) {
            if (bootlist[i] == '\n') {
                bootlist[i] = ' ';
            }
        }
        _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
    }

    if (boot_device && strlen(boot_device)) {
        _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
    }

    if (!spapr->has_graphics && stdout_path) {
        _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
    }

945 946
    spapr_dt_ov5_platform_support(fdt, chosen);

947 948 949 950
    g_free(stdout_path);
    g_free(bootlist);
}

951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
{
    /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
     * KVM to work under pHyp with some guest co-operation */
    int hypervisor;
    uint8_t hypercall[16];

    _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
    /* indicate KVM hypercall interface */
    _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
    if (kvmppc_has_cap_fixup_hcalls()) {
        /*
         * Older KVM versions with older guest kernels were broken
         * with the magic page, don't allow the guest to map it.
         */
        if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
                                  sizeof(hypercall))) {
            _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
                             hypercall, sizeof(hypercall)));
        }
    }
}

974 975 976
static void *spapr_build_fdt(sPAPRMachineState *spapr,
                             hwaddr rtas_addr,
                             hwaddr rtas_size)
977
{
978
    MachineState *machine = MACHINE(qdev_get_machine());
979
    MachineClass *mc = MACHINE_GET_CLASS(machine);
B
Bharata B Rao 已提交
980
    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
981
    int ret;
982
    void *fdt;
983
    sPAPRPHBState *phb;
984
    char *buf;
985
    int smt = kvmppc_smt_threads();
986

987 988
    fdt = g_malloc0(FDT_MAX_SIZE);
    _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
989

990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
    /* Root node */
    _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
    _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
    _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));

    /*
     * Add info to guest to indentify which host is it being run on
     * and what is the uuid of the guest
     */
    if (kvmppc_get_host_model(&buf)) {
        _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
        g_free(buf);
    }
    if (kvmppc_get_host_serial(&buf)) {
        _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
        g_free(buf);
    }

    buf = qemu_uuid_unparse_strdup(&qemu_uuid);

    _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
    if (qemu_uuid_set) {
        _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
    }
    g_free(buf);

    if (qemu_get_vm_name()) {
        _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
                                qemu_get_vm_name()));
    }

    _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
    _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1023

1024
    /* /interrupt controller */
1025
    spapr_dt_xics(DIV_ROUND_UP(max_cpus * smt, smp_threads), fdt, PHANDLE_XICP);
1026

1027 1028
    ret = spapr_populate_memory(spapr, fdt);
    if (ret < 0) {
1029
        error_report("couldn't setup memory nodes in fdt");
1030
        exit(1);
1031 1032
    }

1033 1034
    /* /vdevice */
    spapr_dt_vdevice(spapr->vio_bus, fdt);
1035

1036 1037 1038
    if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
        ret = spapr_rng_populate_dt(fdt);
        if (ret < 0) {
1039
            error_report("could not set up rng device in the fdt");
1040 1041 1042 1043
            exit(1);
        }
    }

1044
    QLIST_FOREACH(phb, &spapr->phbs, list) {
1045
        ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1046 1047 1048 1049
        if (ret < 0) {
            error_report("couldn't setup PCI devices in fdt");
            exit(1);
        }
1050 1051
    }

1052 1053
    /* cpus */
    spapr_populate_cpus_dt_node(fdt, spapr);
1054

B
Bharata B Rao 已提交
1055 1056 1057 1058
    if (smc->dr_lmb_enabled) {
        _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
    }

1059
    if (mc->has_hotpluggable_cpus) {
B
Bharata B Rao 已提交
1060 1061 1062 1063 1064 1065 1066 1067 1068
        int offset = fdt_path_offset(fdt, "/cpus");
        ret = spapr_drc_populate_dt(fdt, offset, NULL,
                                    SPAPR_DR_CONNECTOR_TYPE_CPU);
        if (ret < 0) {
            error_report("Couldn't set up CPU DR device tree properties");
            exit(1);
        }
    }

1069
    /* /event-sources */
1070
    spapr_dt_events(spapr, fdt);
1071

1072 1073 1074
    /* /rtas */
    spapr_dt_rtas(spapr, fdt);

1075 1076
    /* /chosen */
    spapr_dt_chosen(spapr, fdt);
1077

1078 1079 1080 1081 1082
    /* /hypervisor */
    if (kvm_enabled()) {
        spapr_dt_hypervisor(spapr, fdt);
    }

1083 1084 1085 1086 1087 1088 1089 1090
    /* Build memory reserve map */
    if (spapr->kernel_size) {
        _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
    }
    if (spapr->initrd_size) {
        _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
    }

1091 1092 1093 1094 1095 1096 1097
    /* ibm,client-architecture-support updates */
    ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
    if (ret < 0) {
        error_report("couldn't setup CAS properties fdt");
        exit(1);
    }

1098
    return fdt;
1099 1100 1101 1102 1103 1104 1105
}

static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
{
    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
}

1106 1107
static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
                                    PowerPCCPU *cpu)
1108
{
1109 1110
    CPUPPCState *env = &cpu->env;

1111 1112 1113
    /* The TCG path should also be holding the BQL at this point */
    g_assert(qemu_mutex_iothread_locked());

1114 1115 1116 1117
    if (msr_pr) {
        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
        env->gpr[3] = H_PRIVILEGE;
    } else {
1118
        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1119
    }
1120 1121
}

1122 1123 1124 1125 1126 1127 1128
static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);

    return spapr->patb_entry;
}

1129 1130 1131 1132 1133 1134
#define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
#define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
#define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
#define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
#define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
/*
 * Get the fd to access the kernel htab, re-opening it if necessary
 */
static int get_htab_fd(sPAPRMachineState *spapr)
{
    if (spapr->htab_fd >= 0) {
        return spapr->htab_fd;
    }

    spapr->htab_fd = kvmppc_get_htab_fd(false);
    if (spapr->htab_fd < 0) {
        error_report("Unable to open fd for reading hash table from KVM: %s",
                     strerror(errno));
    }

    return spapr->htab_fd;
}

1153
void close_htab_fd(sPAPRMachineState *spapr)
1154 1155 1156 1157 1158 1159 1160
{
    if (spapr->htab_fd >= 0) {
        close(spapr->htab_fd);
    }
    spapr->htab_fd = -1;
}

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);

    return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
}

static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
                                                hwaddr ptex, int n)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
    hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;

    if (!spapr->htab) {
        /*
         * HTAB is controlled by KVM. Fetch into temporary buffer
         */
        ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
        kvmppc_read_hptes(hptes, ptex, n);
        return hptes;
    }

    /*
     * HTAB is controlled by QEMU. Just point to the internally
     * accessible PTEG.
     */
    return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
}

static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
                              const ppc_hash_pte64_t *hptes,
                              hwaddr ptex, int n)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);

    if (!spapr->htab) {
        g_free((void *)hptes);
    }

    /* Nothing to do for qemu managed HPT */
}

static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
                             uint64_t pte0, uint64_t pte1)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
    hwaddr offset = ptex * HASH_PTE_SIZE_64;

    if (!spapr->htab) {
        kvmppc_write_hpte(ptex, pte0, pte1);
    } else {
        stq_p(spapr->htab + offset, pte0);
        stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
    }
}

1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
{
    int shift;

    /* We aim for a hash table of size 1/128 the size of RAM (rounded
     * up).  The PAPR recommendation is actually 1/64 of RAM size, but
     * that's much more than is needed for Linux guests */
    shift = ctz64(pow2ceil(ramsize)) - 7;
    shift = MAX(shift, 18); /* Minimum architected size */
    shift = MIN(shift, 46); /* Maximum architected size */
    return shift;
}

1230 1231 1232 1233 1234 1235 1236 1237
void spapr_free_hpt(sPAPRMachineState *spapr)
{
    g_free(spapr->htab);
    spapr->htab = NULL;
    spapr->htab_shift = 0;
    close_htab_fd(spapr);
}

1238 1239
static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
                                 Error **errp)
1240
{
1241 1242 1243
    long rc;

    /* Clean up any HPT info from a previous boot */
1244
    spapr_free_hpt(spapr);
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259

    rc = kvmppc_reset_htab(shift);
    if (rc < 0) {
        /* kernel-side HPT needed, but couldn't allocate one */
        error_setg_errno(errp, errno,
                         "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
                         shift);
        /* This is almost certainly fatal, but if the caller really
         * wants to carry on with shift == 0, it's welcome to try */
    } else if (rc > 0) {
        /* kernel-side HPT allocated */
        if (rc != shift) {
            error_setg(errp,
                       "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
                       shift, rc);
1260 1261
        }

1262
        spapr->htab_shift = shift;
1263
        spapr->htab = NULL;
1264
    } else {
1265 1266 1267
        /* kernel-side HPT not needed, allocate in userspace instead */
        size_t size = 1ULL << shift;
        int i;
1268

1269 1270 1271 1272 1273
        spapr->htab = qemu_memalign(size, size);
        if (!spapr->htab) {
            error_setg_errno(errp, errno,
                             "Could not allocate HPT of order %d", shift);
            return;
1274 1275
        }

1276 1277
        memset(spapr->htab, 0, size);
        spapr->htab_shift = shift;
1278

1279 1280
        for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
            DIRTY_HPTE(HPTE(spapr->htab, i));
1281
        }
1282
    }
1283 1284
}

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
{
    spapr_reallocate_hpt(spapr,
                     spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size),
                     &error_fatal);
    if (spapr->vrma_adjust) {
        spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
                                          spapr->htab_shift);
    }
    /* We're setting up a hash table, so that means we're not radix */
    spapr->patb_entry = 0;
}

1298
static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
{
    bool matched = false;

    if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
        matched = true;
    }

    if (!matched) {
        error_report("Device %s is not supported by this machine yet.",
                     qdev_fw_name(DEVICE(sbdev)));
        exit(1);
    }
}

1313
static void ppc_spapr_reset(void)
1314
{
1315 1316
    MachineState *machine = MACHINE(qdev_get_machine());
    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1317
    PowerPCCPU *first_ppc_cpu;
1318
    uint32_t rtas_limit;
1319
    hwaddr rtas_addr, fdt_addr;
1320 1321
    void *fdt;
    int rc;
1322

1323 1324 1325
    /* Check for unknown sysbus devices */
    foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);

1326 1327 1328 1329 1330 1331 1332 1333
    if (kvm_enabled() && kvmppc_has_cap_mmu_radix()) {
        /* If using KVM with radix mode available, VCPUs can be started
         * without a HPT because KVM will start them in radix mode.
         * Set the GR bit in PATB so that we know there is no HPT. */
        spapr->patb_entry = PATBE1_GR;
    } else {
        spapr->patb_entry = 0;
        spapr_setup_hpt_and_vrma(spapr);
1334
    }
1335

1336
    qemu_devices_reset();
1337

1338 1339 1340 1341 1342 1343
    /*
     * We place the device tree and RTAS just below either the top of the RMA,
     * or just below 2GB, whichever is lowere, so that it can be
     * processed with 32-bit real mode code if necessary
     */
    rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1344 1345
    rtas_addr = rtas_limit - RTAS_MAX_SIZE;
    fdt_addr = rtas_addr - FDT_MAX_SIZE;
1346

1347 1348 1349 1350 1351 1352 1353
    /* if this reset wasn't generated by CAS, we should reset our
     * negotiated options and start from scratch */
    if (!spapr->cas_reboot) {
        spapr_ovec_cleanup(spapr->ov5_cas);
        spapr->ov5_cas = spapr_ovec_new();
    }

1354
    fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1355

D
David Gibson 已提交
1356
    spapr_load_rtas(spapr, fdt, rtas_addr);
1357

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
    rc = fdt_pack(fdt);

    /* Should only fail if we've built a corrupted tree */
    assert(rc == 0);

    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
        error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
                     fdt_totalsize(fdt), FDT_MAX_SIZE);
        exit(1);
    }

    /* Load the fdt */
    qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1371
    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1372 1373
    g_free(fdt);

1374
    /* Set up the entry state */
1375
    first_ppc_cpu = POWERPC_CPU(first_cpu);
1376
    first_ppc_cpu->env.gpr[3] = fdt_addr;
1377 1378
    first_ppc_cpu->env.gpr[5] = 0;
    first_cpu->halted = 0;
1379
    first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1380

1381
    spapr->cas_reboot = false;
1382 1383
}

1384
static void spapr_create_nvram(sPAPRMachineState *spapr)
D
David Gibson 已提交
1385
{
1386
    DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
P
Paolo Bonzini 已提交
1387
    DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
D
David Gibson 已提交
1388

P
Paolo Bonzini 已提交
1389
    if (dinfo) {
1390 1391
        qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
                            &error_fatal);
D
David Gibson 已提交
1392 1393 1394 1395 1396 1397 1398
    }

    qdev_init_nofail(dev);

    spapr->nvram = (struct sPAPRNVRAM *)dev;
}

1399
static void spapr_rtc_create(sPAPRMachineState *spapr)
1400
{
1401 1402 1403 1404 1405 1406 1407
    object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
    object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
                              &error_fatal);
    object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
                              &error_fatal);
    object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
                              "date", &error_fatal);
1408 1409
}

1410
/* Returns whether we want to use VGA or not */
1411
static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1412
{
1413 1414
    switch (vga_interface_type) {
    case VGA_NONE:
1415 1416 1417
        return false;
    case VGA_DEVICE:
        return true;
1418
    case VGA_STD:
1419
    case VGA_VIRTIO:
1420
        return pci_vga_init(pci_bus) != NULL;
1421
    default:
1422 1423 1424
        error_setg(errp,
                   "Unsupported VGA mode, only -vga std or -vga virtio is supported");
        return false;
1425 1426 1427
    }
}

1428 1429
static int spapr_post_load(void *opaque, int version_id)
{
1430
    sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1431 1432
    int err = 0;

1433
    if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1434 1435 1436 1437
        CPUState *cs;
        CPU_FOREACH(cs) {
            PowerPCCPU *cpu = POWERPC_CPU(cs);
            icp_resend(ICP(cpu->intc));
1438 1439 1440
        }
    }

S
Stefan Weil 已提交
1441
    /* In earlier versions, there was no separate qdev for the PAPR
1442 1443 1444 1445
     * RTC, so the RTC offset was stored directly in sPAPREnvironment.
     * So when migrating from those versions, poke the incoming offset
     * value into the RTC device */
    if (version_id < 3) {
1446
        err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
    }

    return err;
}

static bool version_before_3(void *opaque, int version_id)
{
    return version_id < 3;
}

1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
static bool spapr_ov5_cas_needed(void *opaque)
{
    sPAPRMachineState *spapr = opaque;
    sPAPROptionVector *ov5_mask = spapr_ovec_new();
    sPAPROptionVector *ov5_legacy = spapr_ovec_new();
    sPAPROptionVector *ov5_removed = spapr_ovec_new();
    bool cas_needed;

    /* Prior to the introduction of sPAPROptionVector, we had two option
     * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
     * Both of these options encode machine topology into the device-tree
     * in such a way that the now-booted OS should still be able to interact
     * appropriately with QEMU regardless of what options were actually
     * negotiatied on the source side.
     *
     * As such, we can avoid migrating the CAS-negotiated options if these
     * are the only options available on the current machine/platform.
     * Since these are the only options available for pseries-2.7 and
     * earlier, this allows us to maintain old->new/new->old migration
     * compatibility.
     *
     * For QEMU 2.8+, there are additional CAS-negotiatable options available
     * via default pseries-2.8 machines and explicit command-line parameters.
     * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
     * of the actual CAS-negotiated values to continue working properly. For
     * example, availability of memory unplug depends on knowing whether
     * OV5_HP_EVT was negotiated via CAS.
     *
     * Thus, for any cases where the set of available CAS-negotiatable
     * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
     * include the CAS-negotiated options in the migration stream.
     */
    spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
    spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);

    /* spapr_ovec_diff returns true if bits were removed. we avoid using
     * the mask itself since in the future it's possible "legacy" bits may be
     * removed via machine options, which could generate a false positive
     * that breaks migration.
     */
    spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
    cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);

    spapr_ovec_cleanup(ov5_mask);
    spapr_ovec_cleanup(ov5_legacy);
    spapr_ovec_cleanup(ov5_removed);

    return cas_needed;
}

static const VMStateDescription vmstate_spapr_ov5_cas = {
    .name = "spapr_option_vector_ov5_cas",
    .version_id = 1,
    .minimum_version_id = 1,
    .needed = spapr_ov5_cas_needed,
    .fields = (VMStateField[]) {
        VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
                                 vmstate_spapr_ovec, sPAPROptionVector),
        VMSTATE_END_OF_LIST()
    },
};

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
static bool spapr_patb_entry_needed(void *opaque)
{
    sPAPRMachineState *spapr = opaque;

    return !!spapr->patb_entry;
}

static const VMStateDescription vmstate_spapr_patb_entry = {
    .name = "spapr_patb_entry",
    .version_id = 1,
    .minimum_version_id = 1,
    .needed = spapr_patb_entry_needed,
    .fields = (VMStateField[]) {
        VMSTATE_UINT64(patb_entry, sPAPRMachineState),
        VMSTATE_END_OF_LIST()
    },
};

1537 1538
static const VMStateDescription vmstate_spapr = {
    .name = "spapr",
1539
    .version_id = 3,
1540
    .minimum_version_id = 1,
1541
    .post_load = spapr_post_load,
1542
    .fields = (VMStateField[]) {
1543 1544
        /* used to be @next_irq */
        VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1545 1546

        /* RTC offset */
1547
        VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1548

1549
        VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1550 1551
        VMSTATE_END_OF_LIST()
    },
1552 1553
    .subsections = (const VMStateDescription*[]) {
        &vmstate_spapr_ov5_cas,
1554
        &vmstate_spapr_patb_entry,
1555 1556
        NULL
    }
1557 1558 1559 1560
};

static int htab_save_setup(QEMUFile *f, void *opaque)
{
1561
    sPAPRMachineState *spapr = opaque;
1562 1563 1564 1565

    /* "Iteration" header */
    qemu_put_be32(f, spapr->htab_shift);

1566 1567 1568 1569 1570 1571 1572 1573
    if (spapr->htab) {
        spapr->htab_save_index = 0;
        spapr->htab_first_pass = true;
    } else {
        assert(kvm_enabled());
    }


1574 1575 1576
    return 0;
}

1577
static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1578 1579
                                 int64_t max_ns)
{
1580
    bool has_timeout = max_ns != -1;
1581 1582
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
    int index = spapr->htab_save_index;
1583
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593

    assert(spapr->htab_first_pass);

    do {
        int chunkstart;

        /* Consume invalid HPTEs */
        while ((index < htabslots)
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
M
Marc-André Lureau 已提交
1594
            index++;
1595 1596 1597 1598
        }

        /* Consume valid HPTEs */
        chunkstart = index;
1599
        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1600 1601
               && HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
M
Marc-André Lureau 已提交
1602
            index++;
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
        }

        if (index > chunkstart) {
            int n_valid = index - chunkstart;

            qemu_put_be32(f, chunkstart);
            qemu_put_be16(f, n_valid);
            qemu_put_be16(f, 0);
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
                            HASH_PTE_SIZE_64 * n_valid);

1614 1615
            if (has_timeout &&
                (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
                break;
            }
        }
    } while ((index < htabslots) && !qemu_file_rate_limit(f));

    if (index >= htabslots) {
        assert(index == htabslots);
        index = 0;
        spapr->htab_first_pass = false;
    }
    spapr->htab_save_index = index;
}

1629
static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1630
                                int64_t max_ns)
1631 1632 1633 1634 1635
{
    bool final = max_ns < 0;
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
    int examined = 0, sent = 0;
    int index = spapr->htab_save_index;
1636
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651

    assert(!spapr->htab_first_pass);

    do {
        int chunkstart, invalidstart;

        /* Consume non-dirty HPTEs */
        while ((index < htabslots)
               && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
            index++;
            examined++;
        }

        chunkstart = index;
        /* Consume valid dirty HPTEs */
1652
        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1653 1654 1655 1656 1657 1658 1659 1660 1661
               && HPTE_DIRTY(HPTE(spapr->htab, index))
               && HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
            index++;
            examined++;
        }

        invalidstart = index;
        /* Consume invalid dirty HPTEs */
1662
        while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
               && HPTE_DIRTY(HPTE(spapr->htab, index))
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
            index++;
            examined++;
        }

        if (index > chunkstart) {
            int n_valid = invalidstart - chunkstart;
            int n_invalid = index - invalidstart;

            qemu_put_be32(f, chunkstart);
            qemu_put_be16(f, n_valid);
            qemu_put_be16(f, n_invalid);
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
                            HASH_PTE_SIZE_64 * n_valid);
            sent += index - chunkstart;

1681
            if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
                break;
            }
        }

        if (examined >= htabslots) {
            break;
        }

        if (index >= htabslots) {
            assert(index == htabslots);
            index = 0;
        }
    } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));

    if (index >= htabslots) {
        assert(index == htabslots);
        index = 0;
    }

    spapr->htab_save_index = index;

1703
    return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1704 1705
}

1706 1707 1708
#define MAX_ITERATION_NS    5000000 /* 5 ms */
#define MAX_KVM_BUF_SIZE    2048

1709 1710
static int htab_save_iterate(QEMUFile *f, void *opaque)
{
1711
    sPAPRMachineState *spapr = opaque;
1712
    int fd;
1713
    int rc = 0;
1714 1715 1716 1717

    /* Iteration header */
    qemu_put_be32(f, 0);

1718 1719 1720
    if (!spapr->htab) {
        assert(kvm_enabled());

1721 1722 1723
        fd = get_htab_fd(spapr);
        if (fd < 0) {
            return fd;
1724 1725
        }

1726
        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1727 1728 1729 1730
        if (rc < 0) {
            return rc;
        }
    } else  if (spapr->htab_first_pass) {
1731 1732
        htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
    } else {
1733
        rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1734 1735 1736 1737 1738 1739 1740
    }

    /* End marker */
    qemu_put_be32(f, 0);
    qemu_put_be16(f, 0);
    qemu_put_be16(f, 0);

1741
    return rc;
1742 1743 1744 1745
}

static int htab_save_complete(QEMUFile *f, void *opaque)
{
1746
    sPAPRMachineState *spapr = opaque;
1747
    int fd;
1748 1749 1750 1751

    /* Iteration header */
    qemu_put_be32(f, 0);

1752 1753 1754 1755 1756
    if (!spapr->htab) {
        int rc;

        assert(kvm_enabled());

1757 1758 1759
        fd = get_htab_fd(spapr);
        if (fd < 0) {
            return fd;
1760 1761
        }

1762
        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1763 1764 1765 1766
        if (rc < 0) {
            return rc;
        }
    } else {
1767 1768 1769
        if (spapr->htab_first_pass) {
            htab_save_first_pass(f, spapr, -1);
        }
1770 1771
        htab_save_later_pass(f, spapr, -1);
    }
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782

    /* End marker */
    qemu_put_be32(f, 0);
    qemu_put_be16(f, 0);
    qemu_put_be16(f, 0);

    return 0;
}

static int htab_load(QEMUFile *f, void *opaque, int version_id)
{
1783
    sPAPRMachineState *spapr = opaque;
1784
    uint32_t section_hdr;
1785
    int fd = -1;
1786 1787

    if (version_id < 1 || version_id > 1) {
1788
        error_report("htab_load() bad version");
1789 1790 1791 1792 1793 1794
        return -EINVAL;
    }

    section_hdr = qemu_get_be32(f);

    if (section_hdr) {
1795
        Error *local_err = NULL;
1796 1797 1798 1799 1800

        /* First section gives the htab size */
        spapr_reallocate_hpt(spapr, section_hdr, &local_err);
        if (local_err) {
            error_report_err(local_err);
1801 1802 1803 1804 1805
            return -EINVAL;
        }
        return 0;
    }

1806 1807 1808 1809 1810
    if (!spapr->htab) {
        assert(kvm_enabled());

        fd = kvmppc_get_htab_fd(true);
        if (fd < 0) {
1811 1812
            error_report("Unable to open fd to restore KVM hash table: %s",
                         strerror(errno));
1813 1814 1815
        }
    }

1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
    while (true) {
        uint32_t index;
        uint16_t n_valid, n_invalid;

        index = qemu_get_be32(f);
        n_valid = qemu_get_be16(f);
        n_invalid = qemu_get_be16(f);

        if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
            /* End of Stream */
            break;
        }

1829
        if ((index + n_valid + n_invalid) >
1830 1831
            (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
            /* Bad index in stream */
1832 1833 1834
            error_report(
                "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
                index, n_valid, n_invalid, spapr->htab_shift);
1835 1836 1837
            return -EINVAL;
        }

1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
        if (spapr->htab) {
            if (n_valid) {
                qemu_get_buffer(f, HPTE(spapr->htab, index),
                                HASH_PTE_SIZE_64 * n_valid);
            }
            if (n_invalid) {
                memset(HPTE(spapr->htab, index + n_valid), 0,
                       HASH_PTE_SIZE_64 * n_invalid);
            }
        } else {
            int rc;

            assert(fd >= 0);

            rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
            if (rc < 0) {
                return rc;
            }
1856 1857 1858
        }
    }

1859 1860 1861 1862 1863
    if (!spapr->htab) {
        assert(fd >= 0);
        close(fd);
    }

1864 1865 1866
    return 0;
}

1867 1868 1869 1870 1871 1872 1873
static void htab_cleanup(void *opaque)
{
    sPAPRMachineState *spapr = opaque;

    close_htab_fd(spapr);
}

1874 1875 1876
static SaveVMHandlers savevm_htab_handlers = {
    .save_live_setup = htab_save_setup,
    .save_live_iterate = htab_save_iterate,
1877
    .save_live_complete_precopy = htab_save_complete,
1878
    .cleanup = htab_cleanup,
1879 1880 1881
    .load_state = htab_load,
};

1882 1883 1884 1885 1886 1887 1888
static void spapr_boot_set(void *opaque, const char *boot_device,
                           Error **errp)
{
    MachineState *machine = MACHINE(qdev_get_machine());
    machine->boot_order = g_strdup(boot_device);
}

D
David Gibson 已提交
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
/*
 * Reset routine for LMB DR devices.
 *
 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
 * routine. Reset for PCI DR devices will be handled by PHB reset routine
 * when it walks all its children devices. LMB devices reset occurs
 * as part of spapr_ppc_reset().
 */
static void spapr_drc_reset(void *opaque)
{
    sPAPRDRConnector *drc = opaque;
    DeviceState *d = DEVICE(drc);

    if (d) {
        device_reset(d);
    }
}

static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
{
    MachineState *machine = MACHINE(spapr);
    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1911
    uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
D
David Gibson 已提交
1912 1913 1914 1915 1916 1917
    int i;

    for (i = 0; i < nr_lmbs; i++) {
        sPAPRDRConnector *drc;
        uint64_t addr;

1918
        addr = i * lmb_size + spapr->hotplug_memory.base;
D
David Gibson 已提交
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
        drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
                                     addr/lmb_size);
        qemu_register_reset(spapr_drc_reset, drc);
    }
}

/*
 * If RAM size, maxmem size and individual node mem sizes aren't aligned
 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
 * since we can't support such unaligned sizes with DRCONF_MEMORY.
 */
1930
static void spapr_validate_node_memory(MachineState *machine, Error **errp)
D
David Gibson 已提交
1931 1932 1933
{
    int i;

1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
    if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
        error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
                   " is not aligned to %llu MiB",
                   machine->ram_size,
                   SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
        return;
    }

    if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
        error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
                   " is not aligned to %llu MiB",
                   machine->ram_size,
                   SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
        return;
D
David Gibson 已提交
1948 1949 1950 1951
    }

    for (i = 0; i < nb_numa_nodes; i++) {
        if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1952 1953 1954 1955 1956 1957
            error_setg(errp,
                       "Node %d memory size 0x%" PRIx64
                       " is not aligned to %llu MiB",
                       i, numa_info[i].node_mem,
                       SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
            return;
D
David Gibson 已提交
1958 1959 1960 1961
        }
    }
}

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
/* find cpu slot in machine->possible_cpus by core_id */
static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
{
    int index = id / smp_threads;

    if (index >= ms->possible_cpus->len) {
        return NULL;
    }
    if (idx) {
        *idx = index;
    }
    return &ms->possible_cpus->cpus[index];
}

1976 1977 1978 1979 1980 1981
static void spapr_init_cpus(sPAPRMachineState *spapr)
{
    MachineState *machine = MACHINE(spapr);
    MachineClass *mc = MACHINE_GET_CLASS(machine);
    char *type = spapr_get_cpu_core_type(machine->cpu_model);
    int smt = kvmppc_smt_threads();
1982 1983
    const CPUArchIdList *possible_cpus;
    int boot_cores_nr = smp_cpus / smp_threads;
1984 1985 1986 1987 1988 1989 1990
    int i;

    if (!type) {
        error_report("Unable to find sPAPR CPU Core definition");
        exit(1);
    }

1991
    possible_cpus = mc->possible_cpu_arch_ids(machine);
1992
    if (mc->has_hotpluggable_cpus) {
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
        if (smp_cpus % smp_threads) {
            error_report("smp_cpus (%u) must be multiple of threads (%u)",
                         smp_cpus, smp_threads);
            exit(1);
        }
        if (max_cpus % smp_threads) {
            error_report("max_cpus (%u) must be multiple of threads (%u)",
                         max_cpus, smp_threads);
            exit(1);
        }
    } else {
        if (max_cpus != smp_cpus) {
            error_report("This machine version does not support CPU hotplug");
            exit(1);
        }
2008
        boot_cores_nr = possible_cpus->len;
2009 2010
    }

2011
    for (i = 0; i < possible_cpus->len; i++) {
2012 2013
        int core_id = i * smp_threads;

2014
        if (mc->has_hotpluggable_cpus) {
2015 2016 2017 2018 2019 2020 2021 2022
            sPAPRDRConnector *drc =
                spapr_dr_connector_new(OBJECT(spapr),
                                       SPAPR_DR_CONNECTOR_TYPE_CPU,
                                       (core_id / smp_threads) * smt);

            qemu_register_reset(spapr_drc_reset, drc);
        }

2023
        if (i < boot_cores_nr) {
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
            Object *core  = object_new(type);
            int nr_threads = smp_threads;

            /* Handle the partially filled core for older machine types */
            if ((i + 1) * smp_threads >= smp_cpus) {
                nr_threads = smp_cpus - i * smp_threads;
            }

            object_property_set_int(core, nr_threads, "nr-threads",
                                    &error_fatal);
            object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
                                    &error_fatal);
            object_property_set_bool(core, true, "realized", &error_fatal);
        }
    }
    g_free(type);
}

2042
/* pSeries LPAR / sPAPR hardware init */
2043
static void ppc_spapr_init(MachineState *machine)
2044
{
2045
    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
D
David Gibson 已提交
2046
    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2047 2048
    const char *kernel_filename = machine->kernel_filename;
    const char *initrd_filename = machine->initrd_filename;
2049
    PCIHostState *phb;
2050
    int i;
A
Avi Kivity 已提交
2051 2052
    MemoryRegion *sysmem = get_system_memory();
    MemoryRegion *ram = g_new(MemoryRegion, 1);
2053 2054
    MemoryRegion *rma_region;
    void *rma = NULL;
A
Avi Kivity 已提交
2055
    hwaddr rma_alloc_size;
2056
    hwaddr node0_size = spapr_node0_size();
2057
    long load_limit, fw_size;
2058
    char *filename;
2059

2060
    msi_nonbroken = true;
2061

2062 2063
    QLIST_INIT(&spapr->phbs);

2064
    /* Allocate RMA if necessary */
2065
    rma_alloc_size = kvmppc_alloc_rma(&rma);
2066 2067

    if (rma_alloc_size == -1) {
2068
        error_report("Unable to create RMA");
2069 2070
        exit(1);
    }
2071

2072
    if (rma_alloc_size && (rma_alloc_size < node0_size)) {
2073
        spapr->rma_size = rma_alloc_size;
2074
    } else {
2075
        spapr->rma_size = node0_size;
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089

        /* With KVM, we don't actually know whether KVM supports an
         * unbounded RMA (PR KVM) or is limited by the hash table size
         * (HV KVM using VRMA), so we always assume the latter
         *
         * In that case, we also limit the initial allocations for RTAS
         * etc... to 256M since we have no way to know what the VRMA size
         * is going to be as it depends on the size of the hash table
         * isn't determined yet.
         */
        if (kvm_enabled()) {
            spapr->vrma_adjust = 1;
            spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
        }
2090 2091 2092 2093 2094 2095 2096

        /* Actually we don't support unbounded RMA anymore since we
         * added proper emulation of HV mode. The max we can get is
         * 16G which also happens to be what we configure for PAPR
         * mode so make sure we don't do anything bigger than that
         */
        spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2097 2098
    }

2099
    if (spapr->rma_size > node0_size) {
2100 2101
        error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
                     spapr->rma_size);
2102 2103 2104
        exit(1);
    }

2105 2106
    /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
    load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2107

2108
    /* Set up Interrupt Controller before we create the VCPUs */
2109
    xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
2110

2111 2112 2113 2114
    /* Set up containers for ibm,client-set-architecture negotiated options */
    spapr->ov5 = spapr_ovec_new();
    spapr->ov5_cas = spapr_ovec_new();

D
David Gibson 已提交
2115
    if (smc->dr_lmb_enabled) {
2116
        spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2117
        spapr_validate_node_memory(machine, &error_fatal);
D
David Gibson 已提交
2118 2119
    }

2120
    spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2121 2122
    if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) {
        /* KVM and TCG always allow GTSE with radix... */
2123 2124 2125
        spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
    }
    /* ... but not with hash (currently). */
2126

2127 2128 2129 2130 2131
    /* advertise support for dedicated HP event source to guests */
    if (spapr->use_hotplug_event_source) {
        spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
    }

2132
    /* init CPUs */
2133
    if (machine->cpu_model == NULL) {
2134
        machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
2135
    }
2136

G
Greg Kurz 已提交
2137 2138
    ppc_cpu_parse_features(machine->cpu_model);

2139
    spapr_init_cpus(spapr);
2140

2141 2142 2143
    if (kvm_enabled()) {
        /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
        kvmppc_enable_logical_ci_hcalls();
2144
        kvmppc_enable_set_mode_hcall();
2145 2146 2147

        /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
        kvmppc_enable_clear_ref_mod_hcalls();
2148 2149
    }

2150
    /* allocate RAM */
2151
    memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2152
                                         machine->ram_size);
2153
    memory_region_add_subregion(sysmem, 0, ram);
2154

2155 2156 2157 2158 2159 2160 2161 2162
    if (rma_alloc_size && rma) {
        rma_region = g_new(MemoryRegion, 1);
        memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
                                   rma_alloc_size, rma);
        vmstate_register_ram_global(rma_region);
        memory_region_add_subregion(sysmem, 0, rma_region);
    }

2163 2164 2165
    /* initialize hotplug memory address space */
    if (machine->ram_size < machine->maxram_size) {
        ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
2166 2167 2168 2169 2170 2171 2172
        /*
         * Limit the number of hotpluggable memory slots to half the number
         * slots that KVM supports, leaving the other half for PCI and other
         * devices. However ensure that number of slots doesn't drop below 32.
         */
        int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
                           SPAPR_MAX_RAM_SLOTS;
2173

2174 2175 2176 2177
        if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
            max_memslots = SPAPR_MAX_RAM_SLOTS;
        }
        if (machine->ram_slots > max_memslots) {
2178 2179
            error_report("Specified number of memory slots %"
                         PRIu64" exceeds max supported %d",
2180
                         machine->ram_slots, max_memslots);
2181
            exit(1);
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
        }

        spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
                                              SPAPR_HOTPLUG_MEM_ALIGN);
        memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
                           "hotplug-memory", hotplug_mem_size);
        memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
                                    &spapr->hotplug_memory.mr);
    }

D
David Gibson 已提交
2192 2193 2194 2195
    if (smc->dr_lmb_enabled) {
        spapr_create_lmb_dr_connectors(spapr);
    }

2196
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2197
    if (!filename) {
2198
        error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2199 2200
        exit(1);
    }
2201
    spapr->rtas_size = get_image_size(filename);
2202 2203 2204 2205
    if (spapr->rtas_size < 0) {
        error_report("Could not get size of LPAR rtas '%s'", filename);
        exit(1);
    }
2206 2207
    spapr->rtas_blob = g_malloc(spapr->rtas_size);
    if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2208
        error_report("Could not load LPAR rtas '%s'", filename);
2209 2210
        exit(1);
    }
2211
    if (spapr->rtas_size > RTAS_MAX_SIZE) {
2212 2213
        error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
                     (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2214 2215
        exit(1);
    }
2216
    g_free(filename);
2217

2218
    /* Set up RTAS event infrastructure */
2219 2220
    spapr_events_init(spapr);

2221
    /* Set up the RTC RTAS interfaces */
2222
    spapr_rtc_create(spapr);
2223

2224
    /* Set up VIO bus */
2225 2226
    spapr->vio_bus = spapr_vio_bus_init();

P
Paolo Bonzini 已提交
2227
    for (i = 0; i < MAX_SERIAL_PORTS; i++) {
2228
        if (serial_hds[i]) {
2229
            spapr_vty_create(spapr->vio_bus, serial_hds[i]);
2230 2231
        }
    }
2232

D
David Gibson 已提交
2233 2234 2235
    /* We always have at least the nvram device on VIO */
    spapr_create_nvram(spapr);

2236
    /* Set up PCI */
2237 2238
    spapr_pci_rtas_init();

2239
    phb = spapr_create_phb(spapr, 0);
2240

P
Paolo Bonzini 已提交
2241
    for (i = 0; i < nb_nics; i++) {
2242 2243 2244
        NICInfo *nd = &nd_table[i];

        if (!nd->model) {
2245
            nd->model = g_strdup("ibmveth");
2246 2247 2248
        }

        if (strcmp(nd->model, "ibmveth") == 0) {
2249
            spapr_vlan_create(spapr->vio_bus, nd);
2250
        } else {
2251
            pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2252 2253 2254
        }
    }

2255
    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2256
        spapr_vscsi_create(spapr->vio_bus);
2257 2258
    }

2259
    /* Graphics */
2260
    if (spapr_vga_init(phb->bus, &error_fatal)) {
2261
        spapr->has_graphics = true;
2262
        machine->usb |= defaults_enabled() && !machine->usb_disabled;
2263 2264
    }

2265
    if (machine->usb) {
2266 2267 2268 2269 2270
        if (smc->use_ohci_by_default) {
            pci_create_simple(phb->bus, -1, "pci-ohci");
        } else {
            pci_create_simple(phb->bus, -1, "nec-usb-xhci");
        }
2271

2272
        if (spapr->has_graphics) {
2273 2274 2275 2276
            USBBus *usb_bus = usb_bus_find(-1);

            usb_create_simple(usb_bus, "usb-kbd");
            usb_create_simple(usb_bus, "usb-mouse");
2277 2278 2279
        }
    }

2280
    if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2281 2282 2283
        error_report(
            "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
            MIN_RMA_SLOF);
2284 2285 2286
        exit(1);
    }

2287 2288 2289
    if (kernel_filename) {
        uint64_t lowaddr = 0;

2290 2291 2292 2293 2294 2295 2296 2297 2298
        spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
                                      NULL, NULL, &lowaddr, NULL, 1,
                                      PPC_ELF_MACHINE, 0, 0);
        if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
            spapr->kernel_size = load_elf(kernel_filename,
                                          translate_kernel_address, NULL, NULL,
                                          &lowaddr, NULL, 0, PPC_ELF_MACHINE,
                                          0, 0);
            spapr->kernel_le = spapr->kernel_size > 0;
2299
        }
2300 2301 2302
        if (spapr->kernel_size < 0) {
            error_report("error loading %s: %s", kernel_filename,
                         load_elf_strerror(spapr->kernel_size));
2303 2304 2305 2306 2307
            exit(1);
        }

        /* load initrd */
        if (initrd_filename) {
2308 2309 2310
            /* Try to locate the initrd in the gap between the kernel
             * and the firmware. Add a bit of space just in case
             */
2311 2312 2313 2314 2315 2316 2317
            spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
                                  + 0x1ffff) & ~0xffff;
            spapr->initrd_size = load_image_targphys(initrd_filename,
                                                     spapr->initrd_base,
                                                     load_limit
                                                     - spapr->initrd_base);
            if (spapr->initrd_size < 0) {
2318 2319
                error_report("could not load initial ram disk '%s'",
                             initrd_filename);
2320 2321 2322
                exit(1);
            }
        }
2323
    }
2324

2325 2326 2327 2328
    if (bios_name == NULL) {
        bios_name = FW_FILE_NAME;
    }
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2329
    if (!filename) {
2330
        error_report("Could not find LPAR firmware '%s'", bios_name);
2331 2332
        exit(1);
    }
2333
    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2334 2335
    if (fw_size <= 0) {
        error_report("Could not load LPAR firmware '%s'", filename);
2336 2337 2338 2339
        exit(1);
    }
    g_free(filename);

2340 2341 2342
    /* FIXME: Should register things through the MachineState's qdev
     * interface, this is a legacy from the sPAPREnvironment structure
     * which predated MachineState but had a similar function */
2343 2344 2345 2346
    vmstate_register(NULL, 0, &vmstate_spapr, spapr);
    register_savevm_live(NULL, "spapr/htab", -1, 1,
                         &savevm_htab_handlers, spapr);

2347 2348 2349 2350
    /* used by RTAS */
    QTAILQ_INIT(&spapr->ccs_list);
    qemu_register_reset(spapr_ccs_reset_hook, spapr);

2351
    qemu_register_boot_set(spapr_boot_set, spapr);
2352 2353

    if (kvm_enabled()) {
2354
        /* to stop and start vmclock */
2355 2356
        qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
                                         &spapr->tb);
2357 2358

        kvmppc_spapr_enable_inkernel_multitce();
2359
    }
2360 2361
}

2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
static int spapr_kvm_type(const char *vm_type)
{
    if (!vm_type) {
        return 0;
    }

    if (!strcmp(vm_type, "HV")) {
        return 1;
    }

    if (!strcmp(vm_type, "PR")) {
        return 2;
    }

    error_report("Unknown kvm-type specified '%s'", vm_type);
    exit(1);
}

2380
/*
2381
 * Implementation of an interface to adjust firmware path
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
 * for the bootindex property handling.
 */
static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
                                   DeviceState *dev)
{
#define CAST(type, obj, name) \
    ((type *)object_dynamic_cast(OBJECT(obj), (name)))
    SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
    sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);

    if (d) {
        void *spapr = CAST(void, bus->parent, "spapr-vscsi");
        VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
        USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);

        if (spapr) {
            /*
             * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
             * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
             * in the top 16 bits of the 64-bit LUN
             */
            unsigned id = 0x8000 | (d->id << 8) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 48);
        } else if (virtio) {
            /*
             * We use SRP luns of the form 01000000 | (target << 8) | lun
             * in the top 32 bits of the 64-bit LUN
             * Note: the quote above is from SLOF and it is wrong,
             * the actual binding is:
             * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
             */
            unsigned id = 0x1000000 | (d->id << 16) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 32);
        } else if (usb) {
            /*
             * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
             * in the top 32 bits of the 64-bit LUN
             */
            unsigned usb_port = atoi(usb->port->path);
            unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 32);
        }
    }

2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
    /*
     * SLOF probes the USB devices, and if it recognizes that the device is a
     * storage device, it changes its name to "storage" instead of "usb-host",
     * and additionally adds a child node for the SCSI LUN, so the correct
     * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
     */
    if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
        USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
        if (usb_host_dev_is_scsi_storage(usbdev)) {
            return g_strdup_printf("storage@%s/disk", usbdev->port->path);
        }
    }

2442 2443 2444 2445 2446 2447 2448 2449
    if (phb) {
        /* Replace "pci" with "pci@800000020000000" */
        return g_strdup_printf("pci@%"PRIX64, phb->buid);
    }

    return NULL;
}

E
Eduardo Habkost 已提交
2450 2451
static char *spapr_get_kvm_type(Object *obj, Error **errp)
{
2452
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
E
Eduardo Habkost 已提交
2453

2454
    return g_strdup(spapr->kvm_type);
E
Eduardo Habkost 已提交
2455 2456 2457 2458
}

static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
{
2459
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
E
Eduardo Habkost 已提交
2460

2461 2462
    g_free(spapr->kvm_type);
    spapr->kvm_type = g_strdup(value);
E
Eduardo Habkost 已提交
2463 2464
}

2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);

    return spapr->use_hotplug_event_source;
}

static void spapr_set_modern_hotplug_events(Object *obj, bool value,
                                            Error **errp)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);

    spapr->use_hotplug_event_source = value;
}

E
Eduardo Habkost 已提交
2480 2481
static void spapr_machine_initfn(Object *obj)
{
2482 2483 2484
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);

    spapr->htab_fd = -1;
2485
    spapr->use_hotplug_event_source = true;
E
Eduardo Habkost 已提交
2486 2487
    object_property_add_str(obj, "kvm-type",
                            spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2488 2489 2490
    object_property_set_description(obj, "kvm-type",
                                    "Specifies the KVM virtualization mode (HV, PR)",
                                    NULL);
2491 2492 2493 2494 2495 2496 2497 2498 2499
    object_property_add_bool(obj, "modern-hotplug-events",
                            spapr_get_modern_hotplug_events,
                            spapr_set_modern_hotplug_events,
                            NULL);
    object_property_set_description(obj, "modern-hotplug-events",
                                    "Use dedicated hotplug event mechanism in"
                                    " place of standard EPOW events when possible"
                                    " (required for memory hot-unplug support)",
                                    NULL);
E
Eduardo Habkost 已提交
2500 2501
}

2502 2503 2504 2505 2506 2507 2508
static void spapr_machine_finalizefn(Object *obj)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);

    g_free(spapr->kvm_type);
}

2509
void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
{
    cpu_synchronize_state(cs);
    ppc_cpu_do_system_reset(cs);
}

static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
{
    CPUState *cs;

    CPU_FOREACH(cs) {
2520
        async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
2521 2522 2523
    }
}

2524 2525 2526
static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
                           uint32_t node, bool dedicated_hp_event_source,
                           Error **errp)
B
Bharata B Rao 已提交
2527 2528 2529 2530 2531 2532
{
    sPAPRDRConnector *drc;
    sPAPRDRConnectorClass *drck;
    uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
    int i, fdt_offset, fdt_size;
    void *fdt;
2533
    uint64_t addr = addr_start;
B
Bharata B Rao 已提交
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546

    for (i = 0; i < nr_lmbs; i++) {
        drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
                addr/SPAPR_MEMORY_BLOCK_SIZE);
        g_assert(drc);

        fdt = create_device_tree(&fdt_size);
        fdt_offset = spapr_populate_memory_node(fdt, node, addr,
                                                SPAPR_MEMORY_BLOCK_SIZE);

        drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
        drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
        addr += SPAPR_MEMORY_BLOCK_SIZE;
2547 2548 2549 2550 2551
        if (!dev->hotplugged) {
            /* guests expect coldplugged LMBs to be pre-allocated */
            drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
            drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
        }
B
Bharata B Rao 已提交
2552
    }
2553 2554 2555 2556
    /* send hotplug notification to the
     * guest only in case of hotplugged memory
     */
    if (dev->hotplugged) {
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
        if (dedicated_hp_event_source) {
            drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
                    addr_start / SPAPR_MEMORY_BLOCK_SIZE);
            drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
            spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
                                                   nr_lmbs,
                                                   drck->get_index(drc));
        } else {
            spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
                                           nr_lmbs);
        }
2568
    }
B
Bharata B Rao 已提交
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
}

static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
                              uint32_t node, Error **errp)
{
    Error *local_err = NULL;
    sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
    PCDIMMDevice *dimm = PC_DIMM(dev);
    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
    MemoryRegion *mr = ddc->get_memory_region(dimm);
    uint64_t align = memory_region_get_alignment(mr);
    uint64_t size = memory_region_size(mr);
    uint64_t addr;
2582
    char *mem_dev;
B
Bharata B Rao 已提交
2583 2584 2585 2586 2587 2588 2589

    if (size % SPAPR_MEMORY_BLOCK_SIZE) {
        error_setg(&local_err, "Hotplugged memory size must be a multiple of "
                      "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
        goto out;
    }

2590 2591 2592 2593 2594 2595 2596
    mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
    if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
        error_setg(&local_err, "Memory backend has bad page size. "
                   "Use 'memory-backend-file' with correct mem-path.");
        goto out;
    }

2597
    pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
B
Bharata B Rao 已提交
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
    if (local_err) {
        goto out;
    }

    addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
    if (local_err) {
        pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
        goto out;
    }

2608 2609 2610
    spapr_add_lmbs(dev, addr, size, node,
                   spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
                   &error_abort);
B
Bharata B Rao 已提交
2611 2612 2613 2614 2615

out:
    error_propagate(errp, local_err);
}

B
Bharata B Rao 已提交
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
typedef struct sPAPRDIMMState {
    uint32_t nr_lmbs;
} sPAPRDIMMState;

static void spapr_lmb_release(DeviceState *dev, void *opaque)
{
    sPAPRDIMMState *ds = (sPAPRDIMMState *)opaque;
    HotplugHandler *hotplug_ctrl;

    if (--ds->nr_lmbs) {
        return;
    }

    g_free(ds);

    /*
     * Now that all the LMBs have been removed by the guest, call the
     * pc-dimm unplug handler to cleanup up the pc-dimm device.
     */
    hotplug_ctrl = qdev_get_hotplug_handler(dev);
    hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
}

static void spapr_del_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
                           Error **errp)
{
    sPAPRDRConnector *drc;
    sPAPRDRConnectorClass *drck;
    uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
    int i;
    sPAPRDIMMState *ds = g_malloc0(sizeof(sPAPRDIMMState));
    uint64_t addr = addr_start;

    ds->nr_lmbs = nr_lmbs;
    for (i = 0; i < nr_lmbs; i++) {
        drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
                addr / SPAPR_MEMORY_BLOCK_SIZE);
        g_assert(drc);

        drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
        drck->detach(drc, dev, spapr_lmb_release, ds, errp);
        addr += SPAPR_MEMORY_BLOCK_SIZE;
    }

    drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
    drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
    spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
                                              nr_lmbs,
                                              drck->get_index(drc));
}

static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
                                Error **errp)
{
    sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
    PCDIMMDevice *dimm = PC_DIMM(dev);
    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
    MemoryRegion *mr = ddc->get_memory_region(dimm);

    pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
    object_unparent(OBJECT(dev));
}

static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
                                        DeviceState *dev, Error **errp)
{
    Error *local_err = NULL;
    PCDIMMDevice *dimm = PC_DIMM(dev);
    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
    MemoryRegion *mr = ddc->get_memory_region(dimm);
    uint64_t size = memory_region_size(mr);
    uint64_t addr;

    addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
    if (local_err) {
        goto out;
    }

    spapr_del_lmbs(dev, addr, size, &error_abort);
out:
    error_propagate(errp, local_err);
}

B
Bharata B Rao 已提交
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
                                    sPAPRMachineState *spapr)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    DeviceClass *dc = DEVICE_GET_CLASS(cs);
    int id = ppc_get_vcpu_dt_id(cpu);
    void *fdt;
    int offset, fdt_size;
    char *nodename;

    fdt = create_device_tree(&fdt_size);
    nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
    offset = fdt_add_subnode(fdt, 0, nodename);

    spapr_populate_cpu_dt(cs, fdt, offset, spapr);
    g_free(nodename);

    *fdt_offset = offset;
    return fdt;
}

2721 2722
static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
                              Error **errp)
2723
{
2724
    MachineState *ms = MACHINE(qdev_get_machine());
2725
    CPUCore *cc = CPU_CORE(dev);
2726
    CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
2727

2728
    assert(core_slot);
2729
    core_slot->cpu = NULL;
2730 2731 2732
    object_unparent(OBJECT(dev));
}

2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
static void spapr_core_release(DeviceState *dev, void *opaque)
{
    HotplugHandler *hotplug_ctrl;

    hotplug_ctrl = qdev_get_hotplug_handler(dev);
    hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
}

static
void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
                               Error **errp)
2744
{
2745 2746
    int index;
    sPAPRDRConnector *drc;
2747 2748
    sPAPRDRConnectorClass *drck;
    Error *local_err = NULL;
2749 2750
    CPUCore *cc = CPU_CORE(dev);
    int smt = kvmppc_smt_threads();
2751

2752 2753 2754 2755 2756
    if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
        error_setg(errp, "Unable to find CPU core with core-id: %d",
                   cc->core_id);
        return;
    }
2757 2758 2759 2760 2761
    if (index == 0) {
        error_setg(errp, "Boot CPU core may not be unplugged");
        return;
    }

2762
    drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt);
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
    g_assert(drc);

    drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
    drck->detach(drc, dev, spapr_core_release, NULL, &local_err);
    if (local_err) {
        error_propagate(errp, local_err);
        return;
    }

    spapr_hotplug_req_remove_by_index(drc);
}

static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
                            Error **errp)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
    MachineClass *mc = MACHINE_GET_CLASS(spapr);
    sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
    CPUCore *cc = CPU_CORE(dev);
    CPUState *cs = CPU(core->threads);
    sPAPRDRConnector *drc;
    Error *local_err = NULL;
    void *fdt = NULL;
    int fdt_offset = 0;
    int smt = kvmppc_smt_threads();
2788 2789
    CPUArchId *core_slot;
    int index;
2790

2791 2792 2793 2794 2795 2796
    core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
    if (!core_slot) {
        error_setg(errp, "Unable to find CPU core with core-id: %d",
                   cc->core_id);
        return;
    }
2797 2798
    drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt);

2799
    g_assert(drc || !mc->has_hotpluggable_cpus);
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834

    /*
     * Setup CPU DT entries only for hotplugged CPUs. For boot time or
     * coldplugged CPUs DT entries are setup in spapr_build_fdt().
     */
    if (dev->hotplugged) {
        fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
    }

    if (drc) {
        sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
        drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, &local_err);
        if (local_err) {
            g_free(fdt);
            error_propagate(errp, local_err);
            return;
        }
    }

    if (dev->hotplugged) {
        /*
         * Send hotplug notification interrupt to the guest only in case
         * of hotplugged CPUs.
         */
        spapr_hotplug_req_add_by_index(drc);
    } else {
        /*
         * Set the right DRC states for cold plugged CPU.
         */
        if (drc) {
            sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
            drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
            drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
        }
    }
2835
    core_slot->cpu = OBJECT(dev);
2836 2837 2838 2839 2840 2841 2842 2843 2844
}

static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
                                Error **errp)
{
    MachineState *machine = MACHINE(OBJECT(hotplug_dev));
    MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
    Error *local_err = NULL;
    CPUCore *cc = CPU_CORE(dev);
2845
    sPAPRCPUCore *sc = SPAPR_CPU_CORE(dev);
2846 2847
    char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model);
    const char *type = object_get_typename(OBJECT(dev));
2848
    CPUArchId *core_slot;
2849
    int node_id;
2850
    int index;
2851

2852
    if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
        error_setg(&local_err, "CPU hotplug not supported for this machine");
        goto out;
    }

    if (strcmp(base_core_type, type)) {
        error_setg(&local_err, "CPU core type should be %s", base_core_type);
        goto out;
    }

    if (cc->core_id % smp_threads) {
        error_setg(&local_err, "invalid core id %d", cc->core_id);
        goto out;
    }

2867 2868 2869 2870 2871 2872
    if (cc->nr_threads != smp_threads) {
        error_setg(errp, "invalid nr-threads %d, must be %d",
                   cc->nr_threads, smp_threads);
        return;
    }

2873 2874
    core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
    if (!core_slot) {
2875 2876 2877 2878
        error_setg(&local_err, "core id %d out of range", cc->core_id);
        goto out;
    }

2879
    if (core_slot->cpu) {
2880 2881 2882 2883
        error_setg(&local_err, "core %d already populated", cc->core_id);
        goto out;
    }

2884 2885
    node_id = core_slot->props.node_id;
    if (!core_slot->props.has_node_id) {
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
        /* by default CPUState::numa_node was 0 if it's not set via CLI
         * keep it this way for now but in future we probably should
         * refuse to start up with incomplete numa mapping */
        node_id = 0;
    }
    if (sc->node_id == CPU_UNSET_NUMA_NODE_ID) {
        sc->node_id = node_id;
    } else if (sc->node_id != node_id) {
        error_setg(&local_err, "node-id %d must match numa node specified"
            "with -numa option for cpu-index %d", sc->node_id, cc->core_id);
        goto out;
    }

2899 2900 2901 2902 2903
out:
    g_free(base_core_type);
    error_propagate(errp, local_err);
}

B
Bharata B Rao 已提交
2904 2905 2906 2907 2908 2909
static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
                                      DeviceState *dev, Error **errp)
{
    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());

    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2910
        int node;
B
Bharata B Rao 已提交
2911 2912 2913 2914 2915 2916 2917 2918 2919

        if (!smc->dr_lmb_enabled) {
            error_setg(errp, "Memory hotplug not supported for this machine");
            return;
        }
        node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
        if (*errp) {
            return;
        }
2920 2921 2922 2923
        if (node < 0 || node >= MAX_NODES) {
            error_setg(errp, "Invaild node %d", node);
            return;
        }
B
Bharata B Rao 已提交
2924

2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
        /*
         * Currently PowerPC kernel doesn't allow hot-adding memory to
         * memory-less node, but instead will silently add the memory
         * to the first node that has some memory. This causes two
         * unexpected behaviours for the user.
         *
         * - Memory gets hotplugged to a different node than what the user
         *   specified.
         * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
         *   to memory-less node, a reboot will set things accordingly
         *   and the previously hotplugged memory now ends in the right node.
         *   This appears as if some memory moved from one node to another.
         *
         * So until kernel starts supporting memory hotplug to memory-less
         * nodes, just prevent such attempts upfront in QEMU.
         */
        if (nb_numa_nodes && !numa_info[node].node_mem) {
            error_setg(errp, "Can't hotplug memory to memory-less node %d",
                       node);
            return;
        }

B
Bharata B Rao 已提交
2947
        spapr_memory_plug(hotplug_dev, dev, node, errp);
B
Bharata B Rao 已提交
2948 2949
    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
        spapr_core_plug(hotplug_dev, dev, errp);
B
Bharata B Rao 已提交
2950 2951 2952 2953 2954 2955
    }
}

static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
                                      DeviceState *dev, Error **errp)
{
B
Bharata B Rao 已提交
2956
    sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
2957
    MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
B
Bharata B Rao 已提交
2958

B
Bharata B Rao 已提交
2959
    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
B
Bharata B Rao 已提交
2960 2961 2962 2963 2964 2965
        if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
            spapr_memory_unplug(hotplug_dev, dev, errp);
        } else {
            error_setg(errp, "Memory hot unplug not supported for this guest");
        }
    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2966
        if (!mc->has_hotpluggable_cpus) {
B
Bharata B Rao 已提交
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
            error_setg(errp, "CPU hot unplug not supported on this machine");
            return;
        }
        spapr_core_unplug(hotplug_dev, dev, errp);
    }
}

static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
                                                DeviceState *dev, Error **errp)
{
    sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
    MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());

    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
        if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
            spapr_memory_unplug_request(hotplug_dev, dev, errp);
        } else {
            /* NOTE: this means there is a window after guest reset, prior to
             * CAS negotiation, where unplug requests will fail due to the
             * capability not being detected yet. This is a bit different than
             * the case with PCI unplug, where the events will be queued and
             * eventually handled by the guest after boot
             */
            error_setg(errp, "Memory hot unplug not supported for this guest");
        }
B
Bharata B Rao 已提交
2992
    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2993
        if (!mc->has_hotpluggable_cpus) {
B
Bharata B Rao 已提交
2994 2995 2996
            error_setg(errp, "CPU hot unplug not supported on this machine");
            return;
        }
2997
        spapr_core_unplug_request(hotplug_dev, dev, errp);
B
Bharata B Rao 已提交
2998 2999 3000
    }
}

3001 3002 3003 3004 3005 3006 3007 3008
static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
                                          DeviceState *dev, Error **errp)
{
    if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
        spapr_core_pre_plug(hotplug_dev, dev, errp);
    }
}

3009 3010
static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
                                                 DeviceState *dev)
B
Bharata B Rao 已提交
3011
{
3012 3013
    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
        object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
B
Bharata B Rao 已提交
3014 3015 3016 3017 3018
        return HOTPLUG_HANDLER(machine);
    }
    return NULL;
}

3019 3020
static CpuInstanceProperties
spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3021
{
3022 3023 3024 3025 3026 3027 3028 3029 3030
    CPUArchId *core_slot;
    MachineClass *mc = MACHINE_GET_CLASS(machine);

    /* make sure possible_cpu are intialized */
    mc->possible_cpu_arch_ids(machine);
    /* get CPU core slot containing thread that matches cpu_index */
    core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
    assert(core_slot);
    return core_slot->props;
3031 3032
}

3033 3034 3035 3036 3037 3038
static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
{
    int i;
    int spapr_max_cores = max_cpus / smp_threads;
    MachineClass *mc = MACHINE_GET_CLASS(machine);

3039
    if (!mc->has_hotpluggable_cpus) {
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
        spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
    }
    if (machine->possible_cpus) {
        assert(machine->possible_cpus->len == spapr_max_cores);
        return machine->possible_cpus;
    }

    machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
                             sizeof(CPUArchId) * spapr_max_cores);
    machine->possible_cpus->len = spapr_max_cores;
    for (i = 0; i < machine->possible_cpus->len; i++) {
        int core_id = i * smp_threads;

3053
        machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3054 3055 3056
        machine->possible_cpus->cpus[i].arch_id = core_id;
        machine->possible_cpus->cpus[i].props.has_core_id = true;
        machine->possible_cpus->cpus[i].props.core_id = core_id;
3057 3058 3059 3060 3061 3062 3063 3064 3065

        /* default distribution of CPUs over NUMA nodes */
        if (nb_numa_nodes) {
            /* preset values but do not enable them i.e. 'has_node_id = false',
             * numa init code will enable them later if manual mapping wasn't
             * present on CLI */
            machine->possible_cpus->cpus[i].props.node_id =
                core_id / smp_threads / smp_cores % nb_numa_nodes;
        }
3066 3067 3068 3069
    }
    return machine->possible_cpus;
}

3070
static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
D
David Gibson 已提交
3071 3072
                                uint64_t *buid, hwaddr *pio,
                                hwaddr *mmio32, hwaddr *mmio64,
3073 3074
                                unsigned n_dma, uint32_t *liobns, Error **errp)
{
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
    /*
     * New-style PHB window placement.
     *
     * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
     * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
     * windows.
     *
     * Some guest kernels can't work with MMIO windows above 1<<46
     * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
     *
     * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
     * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
     * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
     * 1TiB 64-bit MMIO windows for each PHB.
     */
3090
    const uint64_t base_buid = 0x800000020000000ULL;
3091 3092
#define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
                        SPAPR_PCI_MEM64_WIN_SIZE - 1)
3093 3094
    int i;

3095 3096 3097 3098 3099 3100
    /* Sanity check natural alignments */
    QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
    QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
    QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
    QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
    /* Sanity check bounds */
3101 3102 3103 3104 3105 3106 3107 3108
    QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
                      SPAPR_PCI_MEM32_WIN_SIZE);
    QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
                      SPAPR_PCI_MEM64_WIN_SIZE);

    if (index >= SPAPR_MAX_PHBS) {
        error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
                   SPAPR_MAX_PHBS - 1);
3109 3110 3111 3112 3113 3114 3115 3116
        return;
    }

    *buid = base_buid + index;
    for (i = 0; i < n_dma; ++i) {
        liobns[i] = SPAPR_PCI_LIOBN(index, i);
    }

3117 3118 3119
    *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
    *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
    *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3120 3121
}

3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(dev);

    return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
}

static void spapr_ics_resend(XICSFabric *dev)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(dev);

    ics_resend(spapr->ics);
}

3136
static ICPState *spapr_icp_get(XICSFabric *xi, int cpu_dt_id)
3137
{
3138
    PowerPCCPU *cpu = ppc_get_vcpu_by_dt_id(cpu_dt_id);
3139

3140
    return cpu ? ICP(cpu->intc) : NULL;
3141 3142
}

3143 3144 3145 3146
static void spapr_pic_print_info(InterruptStatsProvider *obj,
                                 Monitor *mon)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3147 3148 3149 3150
    CPUState *cs;

    CPU_FOREACH(cs) {
        PowerPCCPU *cpu = POWERPC_CPU(cs);
3151

3152
        icp_pic_print_info(ICP(cpu->intc), mon);
3153 3154 3155 3156 3157
    }

    ics_pic_print_info(spapr->ics, mon);
}

3158 3159 3160
static void spapr_machine_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);
D
David Gibson 已提交
3161
    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3162
    FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3163
    NMIClass *nc = NMI_CLASS(oc);
B
Bharata B Rao 已提交
3164
    HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3165
    PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3166
    XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3167
    InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3168

3169
    mc->desc = "pSeries Logical Partition (PAPR compliant)";
3170 3171 3172 3173 3174 3175

    /*
     * We set up the default / latest behaviour here.  The class_init
     * functions for the specific versioned machine types can override
     * these details for backwards compatibility
     */
3176 3177 3178
    mc->init = ppc_spapr_init;
    mc->reset = ppc_spapr_reset;
    mc->block_default_type = IF_SCSI;
G
Greg Kurz 已提交
3179
    mc->max_cpus = 1024;
3180
    mc->no_parallel = 1;
3181
    mc->default_boot_order = "";
3182
    mc->default_ram_size = 512 * M_BYTE;
3183
    mc->kvm_type = spapr_kvm_type;
3184
    mc->has_dynamic_sysbus = true;
3185
    mc->pci_allow_0_address = true;
3186
    mc->get_hotplug_handler = spapr_get_hotplug_handler;
3187
    hc->pre_plug = spapr_machine_device_pre_plug;
B
Bharata B Rao 已提交
3188 3189
    hc->plug = spapr_machine_device_plug;
    hc->unplug = spapr_machine_device_unplug;
3190
    mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3191
    mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
B
Bharata B Rao 已提交
3192
    hc->unplug_request = spapr_machine_device_unplug_request;
3193

3194
    smc->dr_lmb_enabled = true;
3195
    smc->tcg_default_cpu = "POWER8";
3196
    mc->has_hotpluggable_cpus = true;
3197
    fwc->get_dev_path = spapr_get_fw_dev_path;
3198
    nc->nmi_monitor_handler = spapr_nmi;
3199
    smc->phb_placement = spapr_phb_placement;
3200
    vhc->hypercall = emulate_spapr_hypercall;
3201 3202 3203 3204
    vhc->hpt_mask = spapr_hpt_mask;
    vhc->map_hptes = spapr_map_hptes;
    vhc->unmap_hptes = spapr_unmap_hptes;
    vhc->store_hpte = spapr_store_hpte;
3205
    vhc->get_patbe = spapr_get_patbe;
3206 3207
    xic->ics_get = spapr_ics_get;
    xic->ics_resend = spapr_ics_resend;
3208
    xic->icp_get = spapr_icp_get;
3209
    ispc->print_info = spapr_pic_print_info;
3210 3211 3212 3213 3214
    /* Force NUMA node memory size to be a multiple of
     * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
     * in which LMBs are represented and hot-added
     */
    mc->numa_mem_align_shift = 28;
3215 3216 3217 3218 3219
}

static const TypeInfo spapr_machine_info = {
    .name          = TYPE_SPAPR_MACHINE,
    .parent        = TYPE_MACHINE,
3220
    .abstract      = true,
3221
    .instance_size = sizeof(sPAPRMachineState),
E
Eduardo Habkost 已提交
3222
    .instance_init = spapr_machine_initfn,
3223
    .instance_finalize = spapr_machine_finalizefn,
D
David Gibson 已提交
3224
    .class_size    = sizeof(sPAPRMachineClass),
3225
    .class_init    = spapr_machine_class_init,
3226 3227
    .interfaces = (InterfaceInfo[]) {
        { TYPE_FW_PATH_PROVIDER },
3228
        { TYPE_NMI },
B
Bharata B Rao 已提交
3229
        { TYPE_HOTPLUG_HANDLER },
3230
        { TYPE_PPC_VIRTUAL_HYPERVISOR },
3231
        { TYPE_XICS_FABRIC },
3232
        { TYPE_INTERRUPT_STATS_PROVIDER },
3233 3234
        { }
    },
3235 3236
};

3237
#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
D
David Gibson 已提交
3238 3239 3240 3241 3242
    static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
                                                    void *data)      \
    {                                                                \
        MachineClass *mc = MACHINE_CLASS(oc);                        \
        spapr_machine_##suffix##_class_options(mc);                  \
3243 3244 3245 3246
        if (latest) {                                                \
            mc->alias = "pseries";                                   \
            mc->is_default = 1;                                      \
        }                                                            \
D
David Gibson 已提交
3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
    }                                                                \
    static void spapr_machine_##suffix##_instance_init(Object *obj)  \
    {                                                                \
        MachineState *machine = MACHINE(obj);                        \
        spapr_machine_##suffix##_instance_options(machine);          \
    }                                                                \
    static const TypeInfo spapr_machine_##suffix##_info = {          \
        .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
        .parent = TYPE_SPAPR_MACHINE,                                \
        .class_init = spapr_machine_##suffix##_class_init,           \
        .instance_init = spapr_machine_##suffix##_instance_init,     \
    };                                                               \
    static void spapr_machine_register_##suffix(void)                \
    {                                                                \
        type_register(&spapr_machine_##suffix##_info);               \
    }                                                                \
3263
    type_init(spapr_machine_register_##suffix)
D
David Gibson 已提交
3264

3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
/*
 * pseries-2.10
 */
static void spapr_machine_2_10_instance_options(MachineState *machine)
{
}

static void spapr_machine_2_10_class_options(MachineClass *mc)
{
    /* Defaults for the latest behaviour inherited from the base class */
}

DEFINE_SPAPR_MACHINE(2_10, "2.10", true);

3279 3280 3281
/*
 * pseries-2.9
 */
3282 3283 3284
#define SPAPR_COMPAT_2_9                                               \
    HW_COMPAT_2_9

3285 3286
static void spapr_machine_2_9_instance_options(MachineState *machine)
{
3287
    spapr_machine_2_10_instance_options(machine);
3288 3289 3290 3291
}

static void spapr_machine_2_9_class_options(MachineClass *mc)
{
3292 3293
    spapr_machine_2_10_class_options(mc);
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
3294
    mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
3295 3296
}

3297
DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
3298

3299 3300 3301
/*
 * pseries-2.8
 */
3302 3303 3304 3305 3306 3307 3308
#define SPAPR_COMPAT_2_8                                        \
    HW_COMPAT_2_8                                               \
    {                                                           \
        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,                 \
        .property = "pcie-extended-configuration-space",        \
        .value    = "off",                                      \
    },
3309

3310 3311
static void spapr_machine_2_8_instance_options(MachineState *machine)
{
3312
    spapr_machine_2_9_instance_options(machine);
3313 3314 3315 3316
}

static void spapr_machine_2_8_class_options(MachineClass *mc)
{
3317 3318
    spapr_machine_2_9_class_options(mc);
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
3319
    mc->numa_mem_align_shift = 23;
3320 3321
}

3322
DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
3323

3324 3325 3326
/*
 * pseries-2.7
 */
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
#define SPAPR_COMPAT_2_7                            \
    HW_COMPAT_2_7                                   \
    {                                               \
        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
        .property = "mem_win_size",                 \
        .value    = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
    },                                              \
    {                                               \
        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
        .property = "mem64_win_size",               \
        .value    = "0",                            \
3338 3339 3340 3341 3342
    },                                              \
    {                                               \
        .driver = TYPE_POWERPC_CPU,                 \
        .property = "pre-2.8-migration",            \
        .value    = "on",                           \
3343 3344 3345 3346 3347
    },                                              \
    {                                               \
        .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,       \
        .property = "pre-2.8-migration",            \
        .value    = "on",                           \
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
    },

static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
                              uint64_t *buid, hwaddr *pio,
                              hwaddr *mmio32, hwaddr *mmio64,
                              unsigned n_dma, uint32_t *liobns, Error **errp)
{
    /* Legacy PHB placement for pseries-2.7 and earlier machine types */
    const uint64_t base_buid = 0x800000020000000ULL;
    const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
    const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
    const hwaddr pio_offset = 0x80000000; /* 2 GiB */
    const uint32_t max_index = 255;
    const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */

    uint64_t ram_top = MACHINE(spapr)->ram_size;
    hwaddr phb0_base, phb_base;
    int i;

    /* Do we have hotpluggable memory? */
    if (MACHINE(spapr)->maxram_size > ram_top) {
        /* Can't just use maxram_size, because there may be an
         * alignment gap between normal and hotpluggable memory
         * regions */
        ram_top = spapr->hotplug_memory.base +
            memory_region_size(&spapr->hotplug_memory.mr);
    }

    phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);

    if (index > max_index) {
        error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
                   max_index);
        return;
    }

    *buid = base_buid + index;
    for (i = 0; i < n_dma; ++i) {
        liobns[i] = SPAPR_PCI_LIOBN(index, i);
    }

    phb_base = phb0_base + index * phb_spacing;
    *pio = phb_base + pio_offset;
    *mmio32 = phb_base + mmio_offset;
    /*
     * We don't set the 64-bit MMIO window, relying on the PHB's
     * fallback behaviour of automatically splitting a large "32-bit"
     * window into contiguous 32-bit and 64-bit windows
     */
}
3398

3399 3400
static void spapr_machine_2_7_instance_options(MachineState *machine)
{
3401 3402
    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);

3403
    spapr_machine_2_8_instance_options(machine);
3404
    spapr->use_hotplug_event_source = false;
3405 3406 3407 3408
}

static void spapr_machine_2_7_class_options(MachineClass *mc)
{
3409 3410
    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);

3411
    spapr_machine_2_8_class_options(mc);
3412
    smc->tcg_default_cpu = "POWER7";
3413
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
3414
    smc->phb_placement = phb_placement_2_7;
3415 3416
}

3417
DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
3418

3419 3420 3421
/*
 * pseries-2.6
 */
3422
#define SPAPR_COMPAT_2_6 \
3423 3424 3425 3426 3427 3428
    HW_COMPAT_2_6 \
    { \
        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
        .property = "ddw",\
        .value    = stringify(off),\
    },
3429

3430 3431
static void spapr_machine_2_6_instance_options(MachineState *machine)
{
3432
    spapr_machine_2_7_instance_options(machine);
3433 3434 3435 3436
}

static void spapr_machine_2_6_class_options(MachineClass *mc)
{
3437
    spapr_machine_2_7_class_options(mc);
3438
    mc->has_hotpluggable_cpus = false;
3439
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
3440 3441
}

3442
DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
3443

3444 3445 3446
/*
 * pseries-2.5
 */
3447
#define SPAPR_COMPAT_2_5 \
3448 3449 3450 3451 3452 3453
    HW_COMPAT_2_5 \
    { \
        .driver   = "spapr-vlan", \
        .property = "use-rx-buffer-pools", \
        .value    = "off", \
    },
3454

D
David Gibson 已提交
3455
static void spapr_machine_2_5_instance_options(MachineState *machine)
3456
{
3457
    spapr_machine_2_6_instance_options(machine);
D
David Gibson 已提交
3458 3459 3460 3461
}

static void spapr_machine_2_5_class_options(MachineClass *mc)
{
3462 3463
    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);

3464
    spapr_machine_2_6_class_options(mc);
3465
    smc->use_ohci_by_default = true;
3466
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
3467 3468
}

3469
DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
3470 3471 3472 3473

/*
 * pseries-2.4
 */
C
Cornelia Huck 已提交
3474 3475 3476
#define SPAPR_COMPAT_2_4 \
        HW_COMPAT_2_4

D
David Gibson 已提交
3477
static void spapr_machine_2_4_instance_options(MachineState *machine)
3478
{
D
David Gibson 已提交
3479 3480
    spapr_machine_2_5_instance_options(machine);
}
3481

D
David Gibson 已提交
3482 3483
static void spapr_machine_2_4_class_options(MachineClass *mc)
{
3484 3485 3486 3487
    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);

    spapr_machine_2_5_class_options(mc);
    smc->dr_lmb_enabled = false;
D
David Gibson 已提交
3488
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
3489 3490
}

3491
DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
3492 3493 3494 3495

/*
 * pseries-2.3
 */
E
Eduardo Habkost 已提交
3496
#define SPAPR_COMPAT_2_3 \
3497 3498 3499 3500 3501 3502
        HW_COMPAT_2_3 \
        {\
            .driver   = "spapr-pci-host-bridge",\
            .property = "dynamic-reconfiguration",\
            .value    = "off",\
        },
E
Eduardo Habkost 已提交
3503

D
David Gibson 已提交
3504
static void spapr_machine_2_3_instance_options(MachineState *machine)
J
Jason Wang 已提交
3505
{
D
David Gibson 已提交
3506
    spapr_machine_2_4_instance_options(machine);
3507
    savevm_skip_section_footers();
3508
    global_state_set_optional();
3509
    savevm_skip_configuration();
J
Jason Wang 已提交
3510 3511
}

D
David Gibson 已提交
3512
static void spapr_machine_2_3_class_options(MachineClass *mc)
3513
{
3514
    spapr_machine_2_4_class_options(mc);
D
David Gibson 已提交
3515
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
3516
}
3517
DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
3518

3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
/*
 * pseries-2.2
 */

#define SPAPR_COMPAT_2_2 \
        HW_COMPAT_2_2 \
        {\
            .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
            .property = "mem_win_size",\
            .value    = "0x20000000",\
        },

D
David Gibson 已提交
3531
static void spapr_machine_2_2_instance_options(MachineState *machine)
3532
{
D
David Gibson 已提交
3533
    spapr_machine_2_3_instance_options(machine);
3534
    machine->suppress_vmdesc = true;
3535 3536
}

D
David Gibson 已提交
3537
static void spapr_machine_2_2_class_options(MachineClass *mc)
3538
{
3539
    spapr_machine_2_3_class_options(mc);
D
David Gibson 已提交
3540
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
3541
}
3542
DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
3543

3544 3545 3546 3547 3548
/*
 * pseries-2.1
 */
#define SPAPR_COMPAT_2_1 \
        HW_COMPAT_2_1
3549

D
David Gibson 已提交
3550
static void spapr_machine_2_1_instance_options(MachineState *machine)
3551
{
D
David Gibson 已提交
3552
    spapr_machine_2_2_instance_options(machine);
3553
}
J
Jason Wang 已提交
3554

D
David Gibson 已提交
3555
static void spapr_machine_2_1_class_options(MachineClass *mc)
J
Jason Wang 已提交
3556
{
3557
    spapr_machine_2_2_class_options(mc);
D
David Gibson 已提交
3558
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
J
Jason Wang 已提交
3559
}
3560
DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
D
David Gibson 已提交
3561

3562
static void spapr_machine_register_types(void)
3563
{
3564
    type_register_static(&spapr_machine_info);
3565 3566
}

3567
type_init(spapr_machine_register_types)