/*
* cpu_x86.c: CPU driver for CPUs with x86 compatible CPUID instruction
*
* Copyright (C) 2009-2014 Red Hat, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see
* .
*
* Authors:
* Jiri Denemark
*/
#include
#include
#include "virlog.h"
#include "viralloc.h"
#include "cpu.h"
#include "cpu_map.h"
#include "cpu_x86.h"
#include "virbuffer.h"
#include "virendian.h"
#include "virstring.h"
#define VIR_FROM_THIS VIR_FROM_CPU
VIR_LOG_INIT("cpu.cpu_x86");
#define VENDOR_STRING_LENGTH 12
static const virCPUx86CPUID cpuidNull = { 0, 0, 0, 0, 0 };
static const virArch archs[] = { VIR_ARCH_I686, VIR_ARCH_X86_64 };
struct x86_vendor {
char *name;
virCPUx86CPUID cpuid;
struct x86_vendor *next;
};
struct x86_feature {
char *name;
virCPUx86Data *data;
struct x86_feature *next;
};
struct x86_kvm_feature {
const char *name;
const virCPUx86CPUID cpuid;
};
static const struct x86_kvm_feature x86_kvm_features[] =
{
{VIR_CPU_x86_KVM_CLOCKSOURCE, { .function = 0x40000001, .eax = 0x00000001 }},
{VIR_CPU_x86_KVM_NOP_IO_DELAY, { .function = 0x40000001, .eax = 0x00000002 }},
{VIR_CPU_x86_KVM_MMU_OP, { .function = 0x40000001, .eax = 0x00000004 }},
{VIR_CPU_x86_KVM_CLOCKSOURCE2, { .function = 0x40000001, .eax = 0x00000008 }},
{VIR_CPU_x86_KVM_ASYNC_PF, { .function = 0x40000001, .eax = 0x00000010 }},
{VIR_CPU_x86_KVM_STEAL_TIME, { .function = 0x40000001, .eax = 0x00000020 }},
{VIR_CPU_x86_KVM_PV_EOI, { .function = 0x40000001, .eax = 0x00000040 }},
{VIR_CPU_x86_KVM_PV_UNHALT, { .function = 0x40000001, .eax = 0x00000080 }},
{VIR_CPU_x86_KVM_CLOCKSOURCE_STABLE_BIT,
{ .function = 0x40000001, .eax = 0x01000000 }},
};
struct x86_model {
char *name;
const struct x86_vendor *vendor;
virCPUx86Data *data;
struct x86_model *next;
};
struct x86_map {
struct x86_vendor *vendors;
struct x86_feature *features;
struct x86_model *models;
struct x86_feature *migrate_blockers;
};
static struct x86_map* virCPUx86Map = NULL;
int virCPUx86MapOnceInit(void);
VIR_ONCE_GLOBAL_INIT(virCPUx86Map);
enum compare_result {
SUBSET,
EQUAL,
SUPERSET,
UNRELATED
};
struct virCPUx86DataIterator {
const virCPUx86Data *data;
int pos;
};
#define virCPUx86DataIteratorInit(data) \
{ data, -1 }
static bool
x86cpuidMatch(const virCPUx86CPUID *cpuid1,
const virCPUx86CPUID *cpuid2)
{
return (cpuid1->eax == cpuid2->eax &&
cpuid1->ebx == cpuid2->ebx &&
cpuid1->ecx == cpuid2->ecx &&
cpuid1->edx == cpuid2->edx);
}
static bool
x86cpuidMatchMasked(const virCPUx86CPUID *cpuid,
const virCPUx86CPUID *mask)
{
return ((cpuid->eax & mask->eax) == mask->eax &&
(cpuid->ebx & mask->ebx) == mask->ebx &&
(cpuid->ecx & mask->ecx) == mask->ecx &&
(cpuid->edx & mask->edx) == mask->edx);
}
static void
x86cpuidSetBits(virCPUx86CPUID *cpuid,
const virCPUx86CPUID *mask)
{
if (!mask)
return;
cpuid->eax |= mask->eax;
cpuid->ebx |= mask->ebx;
cpuid->ecx |= mask->ecx;
cpuid->edx |= mask->edx;
}
static void
x86cpuidClearBits(virCPUx86CPUID *cpuid,
const virCPUx86CPUID *mask)
{
if (!mask)
return;
cpuid->eax &= ~mask->eax;
cpuid->ebx &= ~mask->ebx;
cpuid->ecx &= ~mask->ecx;
cpuid->edx &= ~mask->edx;
}
static void
x86cpuidAndBits(virCPUx86CPUID *cpuid,
const virCPUx86CPUID *mask)
{
if (!mask)
return;
cpuid->eax &= mask->eax;
cpuid->ebx &= mask->ebx;
cpuid->ecx &= mask->ecx;
cpuid->edx &= mask->edx;
}
static int
virCPUx86CPUIDSorter(const void *a, const void *b)
{
virCPUx86CPUID *da = (virCPUx86CPUID *) a;
virCPUx86CPUID *db = (virCPUx86CPUID *) b;
if (da->function > db->function)
return 1;
else if (da->function < db->function)
return -1;
return 0;
}
/* skips all zero CPUID leafs */
static virCPUx86CPUID *
x86DataCpuidNext(struct virCPUx86DataIterator *iterator)
{
const virCPUx86Data *data = iterator->data;
if (!data)
return NULL;
while (++iterator->pos < data->len) {
if (!x86cpuidMatch(data->data + iterator->pos, &cpuidNull))
return data->data + iterator->pos;
}
return NULL;
}
static virCPUx86CPUID *
x86DataCpuid(const virCPUx86Data *data,
uint32_t function)
{
size_t i;
for (i = 0; i < data->len; i++) {
if (data->data[i].function == function)
return data->data + i;
}
return NULL;
}
void
virCPUx86DataFree(virCPUx86Data *data)
{
if (data == NULL)
return;
VIR_FREE(data->data);
VIR_FREE(data);
}
virCPUDataPtr
virCPUx86MakeData(virArch arch, virCPUx86Data **data)
{
virCPUDataPtr cpuData;
if (VIR_ALLOC(cpuData) < 0)
return NULL;
cpuData->arch = arch;
cpuData->data.x86 = *data;
*data = NULL;
return cpuData;
}
static void
x86FreeCPUData(virCPUDataPtr data)
{
if (!data)
return;
virCPUx86DataFree(data->data.x86);
VIR_FREE(data);
}
static virCPUx86Data *
x86DataCopy(const virCPUx86Data *data)
{
virCPUx86Data *copy = NULL;
size_t i;
if (VIR_ALLOC(copy) < 0 ||
VIR_ALLOC_N(copy->data, data->len) < 0) {
virCPUx86DataFree(copy);
return NULL;
}
copy->len = data->len;
for (i = 0; i < data->len; i++)
copy->data[i] = data->data[i];
return copy;
}
int
virCPUx86DataAddCPUID(virCPUx86Data *data,
const virCPUx86CPUID *cpuid)
{
virCPUx86CPUID *existing;
if ((existing = x86DataCpuid(data, cpuid->function))) {
x86cpuidSetBits(existing, cpuid);
} else {
if (VIR_APPEND_ELEMENT_COPY(data->data, data->len,
*((virCPUx86CPUID *)cpuid)) < 0)
return -1;
qsort(data->data, data->len,
sizeof(virCPUx86CPUID), virCPUx86CPUIDSorter);
}
return 0;
}
static int
x86DataAdd(virCPUx86Data *data1,
const virCPUx86Data *data2)
{
struct virCPUx86DataIterator iter = virCPUx86DataIteratorInit(data2);
virCPUx86CPUID *cpuid1;
virCPUx86CPUID *cpuid2;
while ((cpuid2 = x86DataCpuidNext(&iter))) {
cpuid1 = x86DataCpuid(data1, cpuid2->function);
if (cpuid1) {
x86cpuidSetBits(cpuid1, cpuid2);
} else {
if (virCPUx86DataAddCPUID(data1, cpuid2) < 0)
return -1;
}
}
return 0;
}
static void
x86DataSubtract(virCPUx86Data *data1,
const virCPUx86Data *data2)
{
struct virCPUx86DataIterator iter = virCPUx86DataIteratorInit(data1);
virCPUx86CPUID *cpuid1;
virCPUx86CPUID *cpuid2;
while ((cpuid1 = x86DataCpuidNext(&iter))) {
cpuid2 = x86DataCpuid(data2, cpuid1->function);
x86cpuidClearBits(cpuid1, cpuid2);
}
}
static void
x86DataIntersect(virCPUx86Data *data1,
const virCPUx86Data *data2)
{
struct virCPUx86DataIterator iter = virCPUx86DataIteratorInit(data1);
virCPUx86CPUID *cpuid1;
virCPUx86CPUID *cpuid2;
while ((cpuid1 = x86DataCpuidNext(&iter))) {
cpuid2 = x86DataCpuid(data2, cpuid1->function);
if (cpuid2)
x86cpuidAndBits(cpuid1, cpuid2);
else
x86cpuidClearBits(cpuid1, cpuid1);
}
}
static bool
x86DataIsEmpty(virCPUx86Data *data)
{
struct virCPUx86DataIterator iter = virCPUx86DataIteratorInit(data);
return x86DataCpuidNext(&iter) == NULL;
}
static bool
x86DataIsSubset(const virCPUx86Data *data,
const virCPUx86Data *subset)
{
struct virCPUx86DataIterator iter = virCPUx86DataIteratorInit((virCPUx86Data *)subset);
const virCPUx86CPUID *cpuid;
const virCPUx86CPUID *cpuidSubset;
while ((cpuidSubset = x86DataCpuidNext(&iter))) {
if (!(cpuid = x86DataCpuid(data, cpuidSubset->function)) ||
!x86cpuidMatchMasked(cpuid, cpuidSubset))
return false;
}
return true;
}
/* also removes all detected features from data */
static int
x86DataToCPUFeatures(virCPUDefPtr cpu,
int policy,
virCPUx86Data *data,
const struct x86_map *map)
{
const struct x86_feature *feature = map->features;
while (feature != NULL) {
if (x86DataIsSubset(data, feature->data)) {
x86DataSubtract(data, feature->data);
if (virCPUDefAddFeature(cpu, feature->name, policy) < 0)
return -1;
}
feature = feature->next;
}
return 0;
}
/* also removes bits corresponding to vendor string from data */
static const struct x86_vendor *
x86DataToVendor(virCPUx86Data *data,
const struct x86_map *map)
{
const struct x86_vendor *vendor = map->vendors;
virCPUx86CPUID *cpuid;
while (vendor) {
if ((cpuid = x86DataCpuid(data, vendor->cpuid.function)) &&
x86cpuidMatchMasked(cpuid, &vendor->cpuid)) {
x86cpuidClearBits(cpuid, &vendor->cpuid);
return vendor;
}
vendor = vendor->next;
}
return NULL;
}
static virCPUDefPtr
x86DataToCPU(const virCPUx86Data *data,
const struct x86_model *model,
const struct x86_map *map)
{
virCPUDefPtr cpu;
virCPUx86Data *copy = NULL;
virCPUx86Data *modelData = NULL;
const struct x86_vendor *vendor;
if (VIR_ALLOC(cpu) < 0 ||
VIR_STRDUP(cpu->model, model->name) < 0 ||
!(copy = x86DataCopy(data)) ||
!(modelData = x86DataCopy(model->data)))
goto error;
if ((vendor = x86DataToVendor(copy, map)) &&
VIR_STRDUP(cpu->vendor, vendor->name) < 0)
goto error;
x86DataSubtract(copy, modelData);
x86DataSubtract(modelData, data);
/* because feature policy is ignored for host CPU */
cpu->type = VIR_CPU_TYPE_GUEST;
if (x86DataToCPUFeatures(cpu, VIR_CPU_FEATURE_REQUIRE, copy, map) ||
x86DataToCPUFeatures(cpu, VIR_CPU_FEATURE_DISABLE, modelData, map))
goto error;
cleanup:
virCPUx86DataFree(modelData);
virCPUx86DataFree(copy);
return cpu;
error:
virCPUDefFree(cpu);
cpu = NULL;
goto cleanup;
}
static void
x86VendorFree(struct x86_vendor *vendor)
{
if (!vendor)
return;
VIR_FREE(vendor->name);
VIR_FREE(vendor);
}
static struct x86_vendor *
x86VendorFind(const struct x86_map *map,
const char *name)
{
struct x86_vendor *vendor;
vendor = map->vendors;
while (vendor) {
if (STREQ(vendor->name, name))
return vendor;
vendor = vendor->next;
}
return NULL;
}
static int
x86VendorLoad(xmlXPathContextPtr ctxt,
struct x86_map *map)
{
struct x86_vendor *vendor = NULL;
char *string = NULL;
int ret = 0;
if (VIR_ALLOC(vendor) < 0)
goto error;
vendor->name = virXPathString("string(@name)", ctxt);
if (!vendor->name) {
virReportError(VIR_ERR_INTERNAL_ERROR, "%s",
_("Missing CPU vendor name"));
goto ignore;
}
if (x86VendorFind(map, vendor->name)) {
virReportError(VIR_ERR_INTERNAL_ERROR,
_("CPU vendor %s already defined"), vendor->name);
goto ignore;
}
string = virXPathString("string(@string)", ctxt);
if (!string) {
virReportError(VIR_ERR_INTERNAL_ERROR,
_("Missing vendor string for CPU vendor %s"),
vendor->name);
goto ignore;
}
if (strlen(string) != VENDOR_STRING_LENGTH) {
virReportError(VIR_ERR_INTERNAL_ERROR,
_("Invalid CPU vendor string '%s'"), string);
goto ignore;
}
vendor->cpuid.function = 0;
vendor->cpuid.ebx = virReadBufInt32LE(string);
vendor->cpuid.edx = virReadBufInt32LE(string + 4);
vendor->cpuid.ecx = virReadBufInt32LE(string + 8);
if (!map->vendors) {
map->vendors = vendor;
} else {
vendor->next = map->vendors;
map->vendors = vendor;
}
out:
VIR_FREE(string);
return ret;
error:
ret = -1;
ignore:
x86VendorFree(vendor);
goto out;
}
static struct x86_feature *
x86FeatureNew(void)
{
struct x86_feature *feature;
if (VIR_ALLOC(feature) < 0)
return NULL;
if (VIR_ALLOC(feature->data) < 0) {
VIR_FREE(feature);
return NULL;
}
return feature;
}
static void
x86FeatureFree(struct x86_feature *feature)
{
if (feature == NULL)
return;
VIR_FREE(feature->name);
virCPUx86DataFree(feature->data);
VIR_FREE(feature);
}
static struct x86_feature *
x86FeatureCopy(const struct x86_feature *src)
{
struct x86_feature *feature;
if (VIR_ALLOC(feature) < 0)
return NULL;
if (VIR_STRDUP(feature->name, src->name) < 0)
goto error;
if ((feature->data = x86DataCopy(src->data)) == NULL)
goto error;
return feature;
error:
x86FeatureFree(feature);
return NULL;
}
static struct x86_feature *
x86FeatureFind(const struct x86_map *map,
const char *name)
{
struct x86_feature *feature;
feature = map->features;
while (feature != NULL) {
if (STREQ(feature->name, name))
return feature;
feature = feature->next;
}
return NULL;
}
static char *
x86FeatureNames(const struct x86_map *map,
const char *separator,
virCPUx86Data *data)
{
virBuffer ret = VIR_BUFFER_INITIALIZER;
bool first = true;
struct x86_feature *next_feature = map->features;
virBufferAdd(&ret, "", 0);
while (next_feature) {
if (x86DataIsSubset(data, next_feature->data)) {
if (!first)
virBufferAdd(&ret, separator, -1);
else
first = false;
virBufferAdd(&ret, next_feature->name, -1);
}
next_feature = next_feature->next;
}
return virBufferContentAndReset(&ret);
}
static int
x86ParseCPUID(xmlXPathContextPtr ctxt,
virCPUx86CPUID *cpuid)
{
unsigned long fun, eax, ebx, ecx, edx;
int ret_fun, ret_eax, ret_ebx, ret_ecx, ret_edx;
memset(cpuid, 0, sizeof(*cpuid));
fun = eax = ebx = ecx = edx = 0;
ret_fun = virXPathULongHex("string(@function)", ctxt, &fun);
ret_eax = virXPathULongHex("string(@eax)", ctxt, &eax);
ret_ebx = virXPathULongHex("string(@ebx)", ctxt, &ebx);
ret_ecx = virXPathULongHex("string(@ecx)", ctxt, &ecx);
ret_edx = virXPathULongHex("string(@edx)", ctxt, &edx);
if (ret_fun < 0 || ret_eax == -2 || ret_ebx == -2
|| ret_ecx == -2 || ret_edx == -2)
return -1;
cpuid->function = fun;
cpuid->eax = eax;
cpuid->ebx = ebx;
cpuid->ecx = ecx;
cpuid->edx = edx;
return 0;
}
static int
x86FeatureLoad(xmlXPathContextPtr ctxt,
struct x86_map *map)
{
xmlNodePtr *nodes = NULL;
xmlNodePtr ctxt_node = ctxt->node;
struct x86_feature *feature;
virCPUx86CPUID cpuid;
int ret = 0;
size_t i;
int n;
char *str = NULL;
bool migratable = true;
struct x86_feature *migrate_blocker = NULL;
if (!(feature = x86FeatureNew()))
goto error;
feature->name = virXPathString("string(@name)", ctxt);
if (feature->name == NULL) {
virReportError(VIR_ERR_INTERNAL_ERROR,
"%s", _("Missing CPU feature name"));
goto ignore;
}
if (x86FeatureFind(map, feature->name)) {
virReportError(VIR_ERR_INTERNAL_ERROR,
_("CPU feature %s already defined"), feature->name);
goto ignore;
}
str = virXPathString("string(@migratable)", ctxt);
if (STREQ_NULLABLE(str, "no"))
migratable = false;
n = virXPathNodeSet("./cpuid", ctxt, &nodes);
if (n < 0)
goto ignore;
for (i = 0; i < n; i++) {
ctxt->node = nodes[i];
if (x86ParseCPUID(ctxt, &cpuid) < 0) {
virReportError(VIR_ERR_INTERNAL_ERROR,
_("Invalid cpuid[%zu] in %s feature"),
i, feature->name);
goto ignore;
}
if (virCPUx86DataAddCPUID(feature->data, &cpuid))
goto error;
}
if (!migratable) {
if ((migrate_blocker = x86FeatureCopy(feature)) == NULL)
goto error;
migrate_blocker->next = map->migrate_blockers;
map->migrate_blockers = migrate_blocker;
}
if (map->features == NULL) {
map->features = feature;
} else {
feature->next = map->features;
map->features = feature;
}
out:
ctxt->node = ctxt_node;
VIR_FREE(nodes);
VIR_FREE(str);
return ret;
error:
ret = -1;
ignore:
x86FeatureFree(feature);
x86FeatureFree(migrate_blocker);
goto out;
}
static virCPUx86Data *
x86DataFromCPUFeatures(virCPUDefPtr cpu,
const struct x86_map *map)
{
virCPUx86Data *data;
size_t i;
if (VIR_ALLOC(data) < 0)
return NULL;
for (i = 0; i < cpu->nfeatures; i++) {
const struct x86_feature *feature;
if (!(feature = x86FeatureFind(map, cpu->features[i].name))) {
virReportError(VIR_ERR_INTERNAL_ERROR,
_("Unknown CPU feature %s"), cpu->features[i].name);
goto error;
}
if (x86DataAdd(data, feature->data) < 0)
goto error;
}
return data;
error:
virCPUx86DataFree(data);
return NULL;
}
static struct x86_model *
x86ModelNew(void)
{
struct x86_model *model;
if (VIR_ALLOC(model) < 0)
return NULL;
if (VIR_ALLOC(model->data) < 0) {
VIR_FREE(model);
return NULL;
}
return model;
}
static void
x86ModelFree(struct x86_model *model)
{
if (model == NULL)
return;
VIR_FREE(model->name);
virCPUx86DataFree(model->data);
VIR_FREE(model);
}
static struct x86_model *
x86ModelCopy(const struct x86_model *model)
{
struct x86_model *copy;
if (VIR_ALLOC(copy) < 0 ||
VIR_STRDUP(copy->name, model->name) < 0 ||
!(copy->data = x86DataCopy(model->data))) {
x86ModelFree(copy);
return NULL;
}
copy->vendor = model->vendor;
return copy;
}
static struct x86_model *
x86ModelFind(const struct x86_map *map,
const char *name)
{
struct x86_model *model;
model = map->models;
while (model != NULL) {
if (STREQ(model->name, name))
return model;
model = model->next;
}
return NULL;
}
static struct x86_model *
x86ModelFromCPU(const virCPUDef *cpu,
const struct x86_map *map,
int policy)
{
struct x86_model *model = NULL;
size_t i;
if (policy == VIR_CPU_FEATURE_REQUIRE) {
if ((model = x86ModelFind(map, cpu->model)) == NULL) {
virReportError(VIR_ERR_INTERNAL_ERROR,
_("Unknown CPU model %s"), cpu->model);
goto error;
}
if ((model = x86ModelCopy(model)) == NULL)
goto error;
} else if (!(model = x86ModelNew())) {
goto error;
} else if (cpu->type == VIR_CPU_TYPE_HOST) {
return model;
}
for (i = 0; i < cpu->nfeatures; i++) {
const struct x86_feature *feature;
if (cpu->type == VIR_CPU_TYPE_GUEST
&& cpu->features[i].policy != policy)
continue;
if ((feature = x86FeatureFind(map, cpu->features[i].name)) == NULL) {
virReportError(VIR_ERR_INTERNAL_ERROR,
_("Unknown CPU feature %s"), cpu->features[i].name);
goto error;
}
if (x86DataAdd(model->data, feature->data))
goto error;
}
return model;
error:
x86ModelFree(model);
return NULL;
}
static int
x86ModelSubtractCPU(struct x86_model *model,
const virCPUDef *cpu,
const struct x86_map *map)
{
const struct x86_model *cpu_model;
size_t i;
if (!(cpu_model = x86ModelFind(map, cpu->model))) {
virReportError(VIR_ERR_INTERNAL_ERROR,
_("Unknown CPU model %s"),
cpu->model);
return -1;
}
x86DataSubtract(model->data, cpu_model->data);
for (i = 0; i < cpu->nfeatures; i++) {
const struct x86_feature *feature;
if (!(feature = x86FeatureFind(map, cpu->features[i].name))) {
virReportError(VIR_ERR_INTERNAL_ERROR,
_("Unknown CPU feature %s"),
cpu->features[i].name);
return -1;
}
x86DataSubtract(model->data, feature->data);
}
return 0;
}
static enum compare_result
x86ModelCompare(const struct x86_model *model1,
const struct x86_model *model2)
{
enum compare_result result = EQUAL;
struct virCPUx86DataIterator iter1 = virCPUx86DataIteratorInit(model1->data);
struct virCPUx86DataIterator iter2 = virCPUx86DataIteratorInit(model2->data);
virCPUx86CPUID *cpuid1;
virCPUx86CPUID *cpuid2;
while ((cpuid1 = x86DataCpuidNext(&iter1))) {
enum compare_result match = SUPERSET;
if ((cpuid2 = x86DataCpuid(model2->data, cpuid1->function))) {
if (x86cpuidMatch(cpuid1, cpuid2))
continue;
else if (!x86cpuidMatchMasked(cpuid1, cpuid2))
match = SUBSET;
}
if (result == EQUAL)
result = match;
else if (result != match)
return UNRELATED;
}
while ((cpuid2 = x86DataCpuidNext(&iter2))) {
enum compare_result match = SUBSET;
if ((cpuid1 = x86DataCpuid(model1->data, cpuid2->function))) {
if (x86cpuidMatch(cpuid2, cpuid1))
continue;
else if (!x86cpuidMatchMasked(cpuid2, cpuid1))
match = SUPERSET;
}
if (result == EQUAL)
result = match;
else if (result != match)
return UNRELATED;
}
return result;
}
static int
x86ModelLoad(xmlXPathContextPtr ctxt,
struct x86_map *map)
{
xmlNodePtr *nodes = NULL;
struct x86_model *model;
char *vendor = NULL;
int ret = 0;
size_t i;
int n;
if (!(model = x86ModelNew()))
goto error;
model->name = virXPathString("string(@name)", ctxt);
if (model->name == NULL) {
virReportError(VIR_ERR_INTERNAL_ERROR,
"%s", _("Missing CPU model name"));
goto ignore;
}
if (virXPathNode("./model", ctxt) != NULL) {
const struct x86_model *ancestor;
char *name;
name = virXPathString("string(./model/@name)", ctxt);
if (name == NULL) {
virReportError(VIR_ERR_INTERNAL_ERROR,
_("Missing ancestor's name in CPU model %s"),
model->name);
goto ignore;
}
if ((ancestor = x86ModelFind(map, name)) == NULL) {
virReportError(VIR_ERR_INTERNAL_ERROR,
_("Ancestor model %s not found for CPU model %s"),
name, model->name);
VIR_FREE(name);
goto ignore;
}
VIR_FREE(name);
model->vendor = ancestor->vendor;
virCPUx86DataFree(model->data);
if (!(model->data = x86DataCopy(ancestor->data)))
goto error;
}
if (virXPathBoolean("boolean(./vendor)", ctxt)) {
vendor = virXPathString("string(./vendor/@name)", ctxt);
if (!vendor) {
virReportError(VIR_ERR_INTERNAL_ERROR,
_("Invalid vendor element in CPU model %s"),
model->name);
goto ignore;
}
if (!(model->vendor = x86VendorFind(map, vendor))) {
virReportError(VIR_ERR_INTERNAL_ERROR,
_("Unknown vendor %s referenced by CPU model %s"),
vendor, model->name);
goto ignore;
}
}
n = virXPathNodeSet("./feature", ctxt, &nodes);
if (n < 0)
goto ignore;
for (i = 0; i < n; i++) {
const struct x86_feature *feature;
char *name;
if ((name = virXMLPropString(nodes[i], "name")) == NULL) {
virReportError(VIR_ERR_INTERNAL_ERROR,
_("Missing feature name for CPU model %s"), model->name);
goto ignore;
}
if ((feature = x86FeatureFind(map, name)) == NULL) {
virReportError(VIR_ERR_INTERNAL_ERROR,
_("Feature %s required by CPU model %s not found"),
name, model->name);
VIR_FREE(name);
goto ignore;
}
VIR_FREE(name);
if (x86DataAdd(model->data, feature->data))
goto error;
}
if (map->models == NULL) {
map->models = model;
} else {
model->next = map->models;
map->models = model;
}
out:
VIR_FREE(vendor);
VIR_FREE(nodes);
return ret;
error:
ret = -1;
ignore:
x86ModelFree(model);
goto out;
}
static void
x86MapFree(struct x86_map *map)
{
if (map == NULL)
return;
while (map->features != NULL) {
struct x86_feature *feature = map->features;
map->features = feature->next;
x86FeatureFree(feature);
}
while (map->models != NULL) {
struct x86_model *model = map->models;
map->models = model->next;
x86ModelFree(model);
}
while (map->vendors != NULL) {
struct x86_vendor *vendor = map->vendors;
map->vendors = vendor->next;
x86VendorFree(vendor);
}
while (map->migrate_blockers != NULL) {
struct x86_feature *migrate_blocker = map->migrate_blockers;
map->migrate_blockers = migrate_blocker->next;
x86FeatureFree(migrate_blocker);
}
VIR_FREE(map);
}
static int
x86MapLoadCallback(cpuMapElement element,
xmlXPathContextPtr ctxt,
void *data)
{
struct x86_map *map = data;
switch (element) {
case CPU_MAP_ELEMENT_VENDOR:
return x86VendorLoad(ctxt, map);
case CPU_MAP_ELEMENT_FEATURE:
return x86FeatureLoad(ctxt, map);
case CPU_MAP_ELEMENT_MODEL:
return x86ModelLoad(ctxt, map);
case CPU_MAP_ELEMENT_LAST:
break;
}
return 0;
}
static int
x86MapLoadInternalFeatures(struct x86_map *map)
{
size_t i;
struct x86_feature *feature = NULL;
for (i = 0; i < ARRAY_CARDINALITY(x86_kvm_features); i++) {
const char *name = x86_kvm_features[i].name;
if (x86FeatureFind(map, name)) {
virReportError(VIR_ERR_INTERNAL_ERROR,
_("CPU feature %s already defined"), name);
return -1;
}
if (!(feature = x86FeatureNew()))
goto error;
if (VIR_STRDUP(feature->name, name) < 0)
goto error;
if (virCPUx86DataAddCPUID(feature->data, &x86_kvm_features[i].cpuid))
goto error;
if (map->features == NULL) {
map->features = feature;
} else {
feature->next = map->features;
map->features = feature;
}
feature = NULL;
}
return 0;
error:
x86FeatureFree(feature);
return -1;
}
static struct x86_map *
virCPUx86LoadMap(void)
{
struct x86_map *map;
if (VIR_ALLOC(map) < 0)
return NULL;
if (cpuMapLoad("x86", x86MapLoadCallback, map) < 0)
goto error;
if (x86MapLoadInternalFeatures(map) < 0)
goto error;
return map;
error:
x86MapFree(map);
return NULL;
}
int
virCPUx86MapOnceInit(void)
{
if (!(virCPUx86Map = virCPUx86LoadMap()))
return -1;
return 0;
}
static const struct x86_map *
virCPUx86GetMap(void)
{
if (virCPUx86MapInitialize() < 0)
return NULL;
return virCPUx86Map;
}
static char *
x86CPUDataFormat(const virCPUData *data)
{
struct virCPUx86DataIterator iter = virCPUx86DataIteratorInit(data->data.x86);
virCPUx86CPUID *cpuid;
virBuffer buf = VIR_BUFFER_INITIALIZER;
virBufferAddLit(&buf, "\n");
while ((cpuid = x86DataCpuidNext(&iter))) {
virBufferAsprintf(&buf,
" \n",
cpuid->function,
cpuid->eax, cpuid->ebx, cpuid->ecx, cpuid->edx);
}
virBufferAddLit(&buf, "\n");
if (virBufferCheckError(&buf) < 0)
return NULL;
return virBufferContentAndReset(&buf);
}
static virCPUDataPtr
x86CPUDataParse(const char *xmlStr)
{
xmlDocPtr xml = NULL;
xmlXPathContextPtr ctxt = NULL;
xmlNodePtr *nodes = NULL;
virCPUDataPtr cpuData = NULL;
virCPUx86Data *data = NULL;
virCPUx86CPUID cpuid;
size_t i;
int n;
if (VIR_ALLOC(data) < 0)
goto cleanup;
if (!(xml = virXMLParseStringCtxt(xmlStr, _("CPU data"), &ctxt))) {
virReportError(VIR_ERR_INTERNAL_ERROR, "%s",
_("cannot parse CPU data"));
goto cleanup;
}
ctxt->node = xmlDocGetRootElement(xml);
n = virXPathNodeSet("/cpudata[@arch='x86']/data", ctxt, &nodes);
if (n < 0) {
virReportError(VIR_ERR_INTERNAL_ERROR, "%s",
_("no x86 CPU data found"));
goto cleanup;
}
for (i = 0; i < n; i++) {
ctxt->node = nodes[i];
if (x86ParseCPUID(ctxt, &cpuid) < 0) {
virReportError(VIR_ERR_INTERNAL_ERROR,
_("failed to parse cpuid[%zu]"), i);
goto cleanup;
}
if (virCPUx86DataAddCPUID(data, &cpuid) < 0)
goto cleanup;
}
cpuData = virCPUx86MakeData(VIR_ARCH_X86_64, &data);
cleanup:
VIR_FREE(nodes);
xmlXPathFreeContext(ctxt);
xmlFreeDoc(xml);
virCPUx86DataFree(data);
return cpuData;
}
/* A helper macro to exit the cpu computation function without writing
* redundant code:
* MSG: error message
* CPU_DEF: a virCPUx86Data pointer with flags that are conflicting
* RET: return code to set
*
* This macro generates the error string outputs it into logs.
*/
#define virX86CpuIncompatible(MSG, CPU_DEF) \
do { \
char *flagsStr = NULL; \
if (!(flagsStr = x86FeatureNames(map, ", ", (CPU_DEF)))) { \
virReportOOMError(); \
goto error; \
} \
if (message && \
virAsprintf(message, "%s: %s", _(MSG), flagsStr) < 0) { \
VIR_FREE(flagsStr); \
goto error; \
} \
VIR_DEBUG("%s: %s", MSG, flagsStr); \
VIR_FREE(flagsStr); \
ret = VIR_CPU_COMPARE_INCOMPATIBLE; \
} while (0)
static virCPUCompareResult
x86Compute(virCPUDefPtr host,
virCPUDefPtr cpu,
virCPUDataPtr *guest,
char **message)
{
const struct x86_map *map = NULL;
struct x86_model *host_model = NULL;
struct x86_model *cpu_force = NULL;
struct x86_model *cpu_require = NULL;
struct x86_model *cpu_optional = NULL;
struct x86_model *cpu_disable = NULL;
struct x86_model *cpu_forbid = NULL;
struct x86_model *diff = NULL;
struct x86_model *guest_model = NULL;
virCPUCompareResult ret;
enum compare_result result;
virArch arch;
size_t i;
if (cpu->arch != VIR_ARCH_NONE) {
bool found = false;
for (i = 0; i < ARRAY_CARDINALITY(archs); i++) {
if (archs[i] == cpu->arch) {
found = true;
break;
}
}
if (!found) {
VIR_DEBUG("CPU arch %s does not match host arch",
virArchToString(cpu->arch));
if (message &&
virAsprintf(message,
_("CPU arch %s does not match host arch"),
virArchToString(cpu->arch)) < 0)
goto error;
return VIR_CPU_COMPARE_INCOMPATIBLE;
}
arch = cpu->arch;
} else {
arch = host->arch;
}
if (cpu->vendor &&
(!host->vendor || STRNEQ(cpu->vendor, host->vendor))) {
VIR_DEBUG("host CPU vendor does not match required CPU vendor %s",
cpu->vendor);
if (message &&
virAsprintf(message,
_("host CPU vendor does not match required "
"CPU vendor %s"),
cpu->vendor) < 0)
goto error;
return VIR_CPU_COMPARE_INCOMPATIBLE;
}
if (!(map = virCPUx86GetMap()) ||
!(host_model = x86ModelFromCPU(host, map, VIR_CPU_FEATURE_REQUIRE)) ||
!(cpu_force = x86ModelFromCPU(cpu, map, VIR_CPU_FEATURE_FORCE)) ||
!(cpu_require = x86ModelFromCPU(cpu, map, VIR_CPU_FEATURE_REQUIRE)) ||
!(cpu_optional = x86ModelFromCPU(cpu, map, VIR_CPU_FEATURE_OPTIONAL)) ||
!(cpu_disable = x86ModelFromCPU(cpu, map, VIR_CPU_FEATURE_DISABLE)) ||
!(cpu_forbid = x86ModelFromCPU(cpu, map, VIR_CPU_FEATURE_FORBID)))
goto error;
x86DataIntersect(cpu_forbid->data, host_model->data);
if (!x86DataIsEmpty(cpu_forbid->data)) {
virX86CpuIncompatible(N_("Host CPU provides forbidden features"),
cpu_forbid->data);
goto cleanup;
}
/* first remove features that were inherited from the CPU model and were
* explicitly forced, disabled, or made optional
*/
x86DataSubtract(cpu_require->data, cpu_force->data);
x86DataSubtract(cpu_require->data, cpu_optional->data);
x86DataSubtract(cpu_require->data, cpu_disable->data);
result = x86ModelCompare(host_model, cpu_require);
if (result == SUBSET || result == UNRELATED) {
x86DataSubtract(cpu_require->data, host_model->data);
virX86CpuIncompatible(N_("Host CPU does not provide required "
"features"),
cpu_require->data);
goto cleanup;
}
ret = VIR_CPU_COMPARE_IDENTICAL;
if ((diff = x86ModelCopy(host_model)) == NULL)
goto error;
x86DataSubtract(diff->data, cpu_optional->data);
x86DataSubtract(diff->data, cpu_require->data);
x86DataSubtract(diff->data, cpu_disable->data);
x86DataSubtract(diff->data, cpu_force->data);
if (!x86DataIsEmpty(diff->data))
ret = VIR_CPU_COMPARE_SUPERSET;
if (ret == VIR_CPU_COMPARE_SUPERSET
&& cpu->type == VIR_CPU_TYPE_GUEST
&& cpu->match == VIR_CPU_MATCH_STRICT) {
virX86CpuIncompatible(N_("Host CPU does not strictly match guest CPU: "
"Extra features"),
diff->data);
goto cleanup;
}
if (guest != NULL) {
virCPUx86Data *guestData;
if ((guest_model = x86ModelCopy(host_model)) == NULL)
goto error;
if (cpu->type == VIR_CPU_TYPE_GUEST
&& cpu->match == VIR_CPU_MATCH_EXACT)
x86DataSubtract(guest_model->data, diff->data);
if (x86DataAdd(guest_model->data, cpu_force->data))
goto error;
x86DataSubtract(guest_model->data, cpu_disable->data);
if (!(guestData = x86DataCopy(guest_model->data)) ||
!(*guest = virCPUx86MakeData(arch, &guestData))) {
virCPUx86DataFree(guestData);
goto error;
}
}
cleanup:
x86ModelFree(host_model);
x86ModelFree(diff);
x86ModelFree(cpu_force);
x86ModelFree(cpu_require);
x86ModelFree(cpu_optional);
x86ModelFree(cpu_disable);
x86ModelFree(cpu_forbid);
x86ModelFree(guest_model);
return ret;
error:
ret = VIR_CPU_COMPARE_ERROR;
goto cleanup;
}
#undef virX86CpuIncompatible
static virCPUCompareResult
x86Compare(virCPUDefPtr host,
virCPUDefPtr cpu,
bool failIncomaptible)
{
virCPUCompareResult ret;
char *message = NULL;
ret = x86Compute(host, cpu, NULL, &message);
if (failIncomaptible && ret == VIR_CPU_COMPARE_INCOMPATIBLE) {
ret = VIR_CPU_COMPARE_ERROR;
if (message) {
virReportError(VIR_ERR_CPU_INCOMPATIBLE, "%s", message);
} else {
virReportError(VIR_ERR_CPU_INCOMPATIBLE, NULL);
}
}
VIR_FREE(message);
return ret;
}
static virCPUCompareResult
x86GuestData(virCPUDefPtr host,
virCPUDefPtr guest,
virCPUDataPtr *data,
char **message)
{
return x86Compute(host, guest, data, message);
}
static int
x86Decode(virCPUDefPtr cpu,
const virCPUx86Data *data,
const char **models,
unsigned int nmodels,
const char *preferred,
unsigned int flags)
{
int ret = -1;
const struct x86_map *map;
const struct x86_model *candidate;
virCPUDefPtr cpuCandidate;
virCPUDefPtr cpuModel = NULL;
virCPUx86Data *copy = NULL;
virCPUx86Data *features = NULL;
const virCPUx86Data *cpuData = NULL;
size_t i;
virCheckFlags(VIR_CONNECT_BASELINE_CPU_EXPAND_FEATURES, -1);
if (!data || !(map = virCPUx86GetMap()))
return -1;
candidate = map->models;
while (candidate != NULL) {
if (!cpuModelIsAllowed(candidate->name, models, nmodels)) {
if (preferred && STREQ(candidate->name, preferred)) {
if (cpu->fallback != VIR_CPU_FALLBACK_ALLOW) {
virReportError(VIR_ERR_CONFIG_UNSUPPORTED,
_("CPU model %s is not supported by hypervisor"),
preferred);
goto out;
} else {
VIR_WARN("Preferred CPU model %s not allowed by"
" hypervisor; closest supported model will be"
" used", preferred);
}
} else {
VIR_DEBUG("CPU model %s not allowed by hypervisor; ignoring",
candidate->name);
}
goto next;
}
if (!(cpuCandidate = x86DataToCPU(data, candidate, map)))
goto out;
if (candidate->vendor && cpuCandidate->vendor &&
STRNEQ(candidate->vendor->name, cpuCandidate->vendor)) {
VIR_DEBUG("CPU vendor %s of model %s differs from %s; ignoring",
candidate->vendor->name, candidate->name,
cpuCandidate->vendor);
virCPUDefFree(cpuCandidate);
goto next;
}
if (cpu->type == VIR_CPU_TYPE_HOST) {
cpuCandidate->type = VIR_CPU_TYPE_HOST;
for (i = 0; i < cpuCandidate->nfeatures; i++) {
switch (cpuCandidate->features[i].policy) {
case VIR_CPU_FEATURE_DISABLE:
virCPUDefFree(cpuCandidate);
goto next;
default:
cpuCandidate->features[i].policy = -1;
}
}
}
if (preferred && STREQ(cpuCandidate->model, preferred)) {
virCPUDefFree(cpuModel);
cpuModel = cpuCandidate;
cpuData = candidate->data;
break;
}
if (cpuModel == NULL
|| cpuModel->nfeatures > cpuCandidate->nfeatures) {
virCPUDefFree(cpuModel);
cpuModel = cpuCandidate;
cpuData = candidate->data;
} else {
virCPUDefFree(cpuCandidate);
}
next:
candidate = candidate->next;
}
if (cpuModel == NULL) {
virReportError(VIR_ERR_INTERNAL_ERROR,
"%s", _("Cannot find suitable CPU model for given data"));
goto out;
}
if (flags & VIR_CONNECT_BASELINE_CPU_EXPAND_FEATURES) {
if (!(copy = x86DataCopy(cpuData)) ||
!(features = x86DataFromCPUFeatures(cpuModel, map)))
goto out;
x86DataSubtract(copy, features);
if (x86DataToCPUFeatures(cpuModel, VIR_CPU_FEATURE_REQUIRE,
copy, map) < 0)
goto out;
}
cpu->model = cpuModel->model;
cpu->vendor = cpuModel->vendor;
cpu->nfeatures = cpuModel->nfeatures;
cpu->features = cpuModel->features;
VIR_FREE(cpuModel);
ret = 0;
out:
virCPUDefFree(cpuModel);
virCPUx86DataFree(copy);
virCPUx86DataFree(features);
return ret;
}
static int
x86DecodeCPUData(virCPUDefPtr cpu,
const virCPUData *data,
const char **models,
unsigned int nmodels,
const char *preferred,
unsigned int flags)
{
return x86Decode(cpu, data->data.x86, models, nmodels, preferred, flags);
}
static virCPUx86Data *
x86EncodePolicy(const virCPUDef *cpu,
const struct x86_map *map,
virCPUFeaturePolicy policy)
{
struct x86_model *model;
virCPUx86Data *data = NULL;
if (!(model = x86ModelFromCPU(cpu, map, policy)))
return NULL;
data = model->data;
model->data = NULL;
x86ModelFree(model);
return data;
}
static int
x86Encode(virArch arch,
const virCPUDef *cpu,
virCPUDataPtr *forced,
virCPUDataPtr *required,
virCPUDataPtr *optional,
virCPUDataPtr *disabled,
virCPUDataPtr *forbidden,
virCPUDataPtr *vendor)
{
const struct x86_map *map = NULL;
virCPUx86Data *data_forced = NULL;
virCPUx86Data *data_required = NULL;
virCPUx86Data *data_optional = NULL;
virCPUx86Data *data_disabled = NULL;
virCPUx86Data *data_forbidden = NULL;
virCPUx86Data *data_vendor = NULL;
if (forced)
*forced = NULL;
if (required)
*required = NULL;
if (optional)
*optional = NULL;
if (disabled)
*disabled = NULL;
if (forbidden)
*forbidden = NULL;
if (vendor)
*vendor = NULL;
if ((map = virCPUx86GetMap()) == NULL)
goto error;
if (forced) {
data_forced = x86EncodePolicy(cpu, map, VIR_CPU_FEATURE_FORCE);
if (!data_forced)
goto error;
}
if (required) {
data_required = x86EncodePolicy(cpu, map, VIR_CPU_FEATURE_REQUIRE);
if (!data_required)
goto error;
}
if (optional) {
data_optional = x86EncodePolicy(cpu, map, VIR_CPU_FEATURE_OPTIONAL);
if (!data_optional)
goto error;
}
if (disabled) {
data_disabled = x86EncodePolicy(cpu, map, VIR_CPU_FEATURE_DISABLE);
if (!data_disabled)
goto error;
}
if (forbidden) {
data_forbidden = x86EncodePolicy(cpu, map, VIR_CPU_FEATURE_FORBID);
if (!data_forbidden)
goto error;
}
if (vendor) {
const struct x86_vendor *v = NULL;
if (cpu->vendor && !(v = x86VendorFind(map, cpu->vendor))) {
virReportError(VIR_ERR_OPERATION_FAILED,
_("CPU vendor %s not found"), cpu->vendor);
goto error;
}
if (v &&
(VIR_ALLOC(data_vendor) < 0 ||
virCPUx86DataAddCPUID(data_vendor, &v->cpuid) < 0)) {
goto error;
}
}
if (forced &&
!(*forced = virCPUx86MakeData(arch, &data_forced)))
goto error;
if (required &&
!(*required = virCPUx86MakeData(arch, &data_required)))
goto error;
if (optional &&
!(*optional = virCPUx86MakeData(arch, &data_optional)))
goto error;
if (disabled &&
!(*disabled = virCPUx86MakeData(arch, &data_disabled)))
goto error;
if (forbidden &&
!(*forbidden = virCPUx86MakeData(arch, &data_forbidden)))
goto error;
if (vendor &&
!(*vendor = virCPUx86MakeData(arch, &data_vendor)))
goto error;
return 0;
error:
virCPUx86DataFree(data_forced);
virCPUx86DataFree(data_required);
virCPUx86DataFree(data_optional);
virCPUx86DataFree(data_disabled);
virCPUx86DataFree(data_forbidden);
virCPUx86DataFree(data_vendor);
if (forced)
x86FreeCPUData(*forced);
if (required)
x86FreeCPUData(*required);
if (optional)
x86FreeCPUData(*optional);
if (disabled)
x86FreeCPUData(*disabled);
if (forbidden)
x86FreeCPUData(*forbidden);
if (vendor)
x86FreeCPUData(*vendor);
return -1;
}
#if HAVE_CPUID
static inline void
cpuidCall(virCPUx86CPUID *cpuid)
{
# if __x86_64__
asm("xor %%ebx, %%ebx;" /* clear the other registers as some cpuid */
"xor %%ecx, %%ecx;" /* functions may use them as additional */
"xor %%edx, %%edx;" /* arguments */
"cpuid;"
: "=a" (cpuid->eax),
"=b" (cpuid->ebx),
"=c" (cpuid->ecx),
"=d" (cpuid->edx)
: "a" (cpuid->function));
# else
/* we need to avoid direct use of ebx for CPUID output as it is used
* for global offset table on i386 with -fPIC
*/
asm("push %%ebx;"
"xor %%ebx, %%ebx;" /* clear the other registers as some cpuid */
"xor %%ecx, %%ecx;" /* functions may use them as additional */
"xor %%edx, %%edx;" /* arguments */
"cpuid;"
"mov %%ebx, %1;"
"pop %%ebx;"
: "=a" (cpuid->eax),
"=r" (cpuid->ebx),
"=c" (cpuid->ecx),
"=d" (cpuid->edx)
: "a" (cpuid->function)
: "cc");
# endif
}
static int
cpuidSet(uint32_t base, virCPUx86Data *data)
{
uint32_t max;
uint32_t i;
virCPUx86CPUID cpuid = { base, 0, 0, 0, 0 };
cpuidCall(&cpuid);
max = cpuid.eax;
for (i = base; i <= max; i++) {
cpuid.function = i;
cpuidCall(&cpuid);
if (virCPUx86DataAddCPUID(data, &cpuid) < 0)
return -1;
}
return 0;
}
static virCPUDataPtr
x86NodeData(virArch arch)
{
virCPUDataPtr cpuData = NULL;
virCPUx86Data *data;
if (VIR_ALLOC(data) < 0)
return NULL;
if (cpuidSet(CPUX86_BASIC, data) < 0)
goto error;
if (cpuidSet(CPUX86_EXTENDED, data) < 0)
goto error;
if (!(cpuData = virCPUx86MakeData(arch, &data)))
goto error;
return cpuData;
error:
virCPUx86DataFree(data);
return NULL;
}
#endif
static virCPUDefPtr
x86Baseline(virCPUDefPtr *cpus,
unsigned int ncpus,
const char **models,
unsigned int nmodels,
unsigned int flags)
{
const struct x86_map *map = NULL;
struct x86_model *base_model = NULL;
virCPUDefPtr cpu = NULL;
size_t i;
const struct x86_vendor *vendor = NULL;
struct x86_model *model = NULL;
bool outputVendor = true;
const char *modelName;
bool matchingNames = true;
if (!(map = virCPUx86GetMap()))
goto error;
if (!(base_model = x86ModelFromCPU(cpus[0], map, VIR_CPU_FEATURE_REQUIRE)))
goto error;
if (VIR_ALLOC(cpu) < 0)
goto error;
cpu->arch = cpus[0]->arch;
cpu->type = VIR_CPU_TYPE_GUEST;
cpu->match = VIR_CPU_MATCH_EXACT;
if (!cpus[0]->vendor) {
outputVendor = false;
} else if (!(vendor = x86VendorFind(map, cpus[0]->vendor))) {
virReportError(VIR_ERR_OPERATION_FAILED,
_("Unknown CPU vendor %s"), cpus[0]->vendor);
goto error;
}
modelName = cpus[0]->model;
for (i = 1; i < ncpus; i++) {
const char *vn = NULL;
if (matchingNames && cpus[i]->model) {
if (!modelName) {
modelName = cpus[i]->model;
} else if (STRNEQ(modelName, cpus[i]->model)) {
modelName = NULL;
matchingNames = false;
}
}
if (!(model = x86ModelFromCPU(cpus[i], map, VIR_CPU_FEATURE_REQUIRE)))
goto error;
if (cpus[i]->vendor && model->vendor &&
STRNEQ(cpus[i]->vendor, model->vendor->name)) {
virReportError(VIR_ERR_OPERATION_FAILED,
_("CPU vendor %s of model %s differs from vendor %s"),
model->vendor->name, model->name, cpus[i]->vendor);
goto error;
}
if (cpus[i]->vendor) {
vn = cpus[i]->vendor;
} else {
outputVendor = false;
if (model->vendor)
vn = model->vendor->name;
}
if (vn) {
if (!vendor) {
if (!(vendor = x86VendorFind(map, vn))) {
virReportError(VIR_ERR_OPERATION_FAILED,
_("Unknown CPU vendor %s"), vn);
goto error;
}
} else if (STRNEQ(vendor->name, vn)) {
virReportError(VIR_ERR_OPERATION_FAILED,
"%s", _("CPU vendors do not match"));
goto error;
}
}
x86DataIntersect(base_model->data, model->data);
x86ModelFree(model);
model = NULL;
}
if (x86DataIsEmpty(base_model->data)) {
virReportError(VIR_ERR_OPERATION_FAILED,
"%s", _("CPUs are incompatible"));
goto error;
}
if (vendor && virCPUx86DataAddCPUID(base_model->data, &vendor->cpuid) < 0)
goto error;
if (x86Decode(cpu, base_model->data, models, nmodels, modelName, flags) < 0)
goto error;
if (STREQ_NULLABLE(cpu->model, modelName))
cpu->fallback = VIR_CPU_FALLBACK_FORBID;
if (!outputVendor)
VIR_FREE(cpu->vendor);
cpu->arch = VIR_ARCH_NONE;
cleanup:
x86ModelFree(base_model);
return cpu;
error:
x86ModelFree(model);
virCPUDefFree(cpu);
cpu = NULL;
goto cleanup;
}
static int
x86UpdateCustom(virCPUDefPtr guest,
const virCPUDef *host)
{
int ret = -1;
size_t i;
const struct x86_map *map;
struct x86_model *host_model = NULL;
if (!(map = virCPUx86GetMap()) ||
!(host_model = x86ModelFromCPU(host, map, VIR_CPU_FEATURE_REQUIRE)))
goto cleanup;
for (i = 0; i < guest->nfeatures; i++) {
if (guest->features[i].policy == VIR_CPU_FEATURE_OPTIONAL) {
const struct x86_feature *feature;
if (!(feature = x86FeatureFind(map, guest->features[i].name))) {
virReportError(VIR_ERR_INTERNAL_ERROR,
_("Unknown CPU feature %s"),
guest->features[i].name);
goto cleanup;
}
if (x86DataIsSubset(host_model->data, feature->data))
guest->features[i].policy = VIR_CPU_FEATURE_REQUIRE;
else
guest->features[i].policy = VIR_CPU_FEATURE_DISABLE;
}
}
if (guest->match == VIR_CPU_MATCH_MINIMUM) {
guest->match = VIR_CPU_MATCH_EXACT;
if (x86ModelSubtractCPU(host_model, guest, map) ||
x86DataToCPUFeatures(guest, VIR_CPU_FEATURE_REQUIRE,
host_model->data, map))
goto cleanup;
}
ret = 0;
cleanup:
x86ModelFree(host_model);
return ret;
}
static int
x86UpdateHostModel(virCPUDefPtr guest,
const virCPUDef *host)
{
virCPUDefPtr oldguest = NULL;
const struct x86_map *map;
const struct x86_feature *feat;
size_t i;
int ret = -1;
guest->match = VIR_CPU_MATCH_EXACT;
if (!(map = virCPUx86GetMap()))
goto cleanup;
/* update the host model according to the desired configuration */
if (!(oldguest = virCPUDefCopy(guest)))
goto cleanup;
virCPUDefFreeModel(guest);
if (virCPUDefCopyModel(guest, host, true) < 0)
goto cleanup;
/* Remove non-migratable features by default
* Note: this only works as long as no CPU model contains non-migratable
* features directly */
for (i = 0; i < guest->nfeatures; i++) {
for (feat = map->migrate_blockers; feat; feat = feat->next) {
if (STREQ(feat->name, guest->features[i].name)) {
VIR_FREE(guest->features[i].name);
VIR_DELETE_ELEMENT_INPLACE(guest->features, i, guest->nfeatures);
}
}
}
for (i = 0; i < oldguest->nfeatures; i++) {
if (virCPUDefUpdateFeature(guest,
oldguest->features[i].name,
oldguest->features[i].policy) < 0)
goto cleanup;
}
ret = 0;
cleanup:
virCPUDefFree(oldguest);
return ret;
}
static int
x86Update(virCPUDefPtr guest,
const virCPUDef *host)
{
switch ((virCPUMode) guest->mode) {
case VIR_CPU_MODE_CUSTOM:
return x86UpdateCustom(guest, host);
case VIR_CPU_MODE_HOST_MODEL:
return x86UpdateHostModel(guest, host);
case VIR_CPU_MODE_HOST_PASSTHROUGH:
guest->match = VIR_CPU_MATCH_MINIMUM;
virCPUDefFreeModel(guest);
return virCPUDefCopyModel(guest, host, true);
case VIR_CPU_MODE_LAST:
break;
}
virReportError(VIR_ERR_INTERNAL_ERROR,
_("Unexpected CPU mode: %d"), guest->mode);
return -1;
}
static int
x86HasFeature(const virCPUData *data,
const char *name)
{
const struct x86_map *map;
struct x86_feature *feature;
int ret = -1;
if (!(map = virCPUx86GetMap()))
return -1;
if (!(feature = x86FeatureFind(map, name)))
goto cleanup;
ret = x86DataIsSubset(data->data.x86, feature->data) ? 1 : 0;
cleanup:
return ret;
}
struct cpuArchDriver cpuDriverX86 = {
.name = "x86",
.arch = archs,
.narch = ARRAY_CARDINALITY(archs),
.compare = x86Compare,
.decode = x86DecodeCPUData,
.encode = x86Encode,
.free = x86FreeCPUData,
#if HAVE_CPUID
.nodeData = x86NodeData,
#else
.nodeData = NULL,
#endif
.guestData = x86GuestData,
.baseline = x86Baseline,
.update = x86Update,
.hasFeature = x86HasFeature,
.dataFormat = x86CPUDataFormat,
.dataParse = x86CPUDataParse,
};