/***************************************************************************** * * * File: subr.c * * $Revision: 1.27 $ * * $Date: 2005/06/22 01:08:36 $ * * Description: * * Various subroutines (intr,pio,etc.) used by Chelsio 10G Ethernet driver. * * part of the Chelsio 10Gb Ethernet Driver. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License, version 2, as * * published by the Free Software Foundation. * * * * You should have received a copy of the GNU General Public License along * * with this program; if not, see . * * * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED * * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF * * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. * * * * http://www.chelsio.com * * * * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. * * All rights reserved. * * * * Maintainers: maintainers@chelsio.com * * * * Authors: Dimitrios Michailidis * * Tina Yang * * Felix Marti * * Scott Bardone * * Kurt Ottaway * * Frank DiMambro * * * * History: * * * ****************************************************************************/ #include "common.h" #include "elmer0.h" #include "regs.h" #include "gmac.h" #include "cphy.h" #include "sge.h" #include "tp.h" #include "espi.h" /** * t1_wait_op_done - wait until an operation is completed * @adapter: the adapter performing the operation * @reg: the register to check for completion * @mask: a single-bit field within @reg that indicates completion * @polarity: the value of the field when the operation is completed * @attempts: number of check iterations * @delay: delay in usecs between iterations * * Wait until an operation is completed by checking a bit in a register * up to @attempts times. Returns %0 if the operation completes and %1 * otherwise. */ static int t1_wait_op_done(adapter_t *adapter, int reg, u32 mask, int polarity, int attempts, int delay) { while (1) { u32 val = readl(adapter->regs + reg) & mask; if (!!val == polarity) return 0; if (--attempts == 0) return 1; if (delay) udelay(delay); } } #define TPI_ATTEMPTS 50 /* * Write a register over the TPI interface (unlocked and locked versions). */ int __t1_tpi_write(adapter_t *adapter, u32 addr, u32 value) { int tpi_busy; writel(addr, adapter->regs + A_TPI_ADDR); writel(value, adapter->regs + A_TPI_WR_DATA); writel(F_TPIWR, adapter->regs + A_TPI_CSR); tpi_busy = t1_wait_op_done(adapter, A_TPI_CSR, F_TPIRDY, 1, TPI_ATTEMPTS, 3); if (tpi_busy) pr_alert("%s: TPI write to 0x%x failed\n", adapter->name, addr); return tpi_busy; } int t1_tpi_write(adapter_t *adapter, u32 addr, u32 value) { int ret; spin_lock(&adapter->tpi_lock); ret = __t1_tpi_write(adapter, addr, value); spin_unlock(&adapter->tpi_lock); return ret; } /* * Read a register over the TPI interface (unlocked and locked versions). */ int __t1_tpi_read(adapter_t *adapter, u32 addr, u32 *valp) { int tpi_busy; writel(addr, adapter->regs + A_TPI_ADDR); writel(0, adapter->regs + A_TPI_CSR); tpi_busy = t1_wait_op_done(adapter, A_TPI_CSR, F_TPIRDY, 1, TPI_ATTEMPTS, 3); if (tpi_busy) pr_alert("%s: TPI read from 0x%x failed\n", adapter->name, addr); else *valp = readl(adapter->regs + A_TPI_RD_DATA); return tpi_busy; } int t1_tpi_read(adapter_t *adapter, u32 addr, u32 *valp) { int ret; spin_lock(&adapter->tpi_lock); ret = __t1_tpi_read(adapter, addr, valp); spin_unlock(&adapter->tpi_lock); return ret; } /* * Set a TPI parameter. */ static void t1_tpi_par(adapter_t *adapter, u32 value) { writel(V_TPIPAR(value), adapter->regs + A_TPI_PAR); } /* * Called when a port's link settings change to propagate the new values to the * associated PHY and MAC. After performing the common tasks it invokes an * OS-specific handler. */ void t1_link_changed(adapter_t *adapter, int port_id) { int link_ok, speed, duplex, fc; struct cphy *phy = adapter->port[port_id].phy; struct link_config *lc = &adapter->port[port_id].link_config; phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc); lc->speed = speed < 0 ? SPEED_INVALID : speed; lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex; if (!(lc->requested_fc & PAUSE_AUTONEG)) fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) { /* Set MAC speed, duplex, and flow control to match PHY. */ struct cmac *mac = adapter->port[port_id].mac; mac->ops->set_speed_duplex_fc(mac, speed, duplex, fc); lc->fc = (unsigned char)fc; } t1_link_negotiated(adapter, port_id, link_ok, speed, duplex, fc); } static int t1_pci_intr_handler(adapter_t *adapter) { u32 pcix_cause; pci_read_config_dword(adapter->pdev, A_PCICFG_INTR_CAUSE, &pcix_cause); if (pcix_cause) { pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_CAUSE, pcix_cause); t1_fatal_err(adapter); /* PCI errors are fatal */ } return 0; } #ifdef CONFIG_CHELSIO_T1_1G #include "fpga_defs.h" /* * PHY interrupt handler for FPGA boards. */ static int fpga_phy_intr_handler(adapter_t *adapter) { int p; u32 cause = readl(adapter->regs + FPGA_GMAC_ADDR_INTERRUPT_CAUSE); for_each_port(adapter, p) if (cause & (1 << p)) { struct cphy *phy = adapter->port[p].phy; int phy_cause = phy->ops->interrupt_handler(phy); if (phy_cause & cphy_cause_link_change) t1_link_changed(adapter, p); } writel(cause, adapter->regs + FPGA_GMAC_ADDR_INTERRUPT_CAUSE); return 0; } /* * Slow path interrupt handler for FPGAs. */ static irqreturn_t fpga_slow_intr(adapter_t *adapter) { u32 cause = readl(adapter->regs + A_PL_CAUSE); cause &= ~F_PL_INTR_SGE_DATA; if (cause & F_PL_INTR_SGE_ERR) t1_sge_intr_error_handler(adapter->sge); if (cause & FPGA_PCIX_INTERRUPT_GMAC) fpga_phy_intr_handler(adapter); if (cause & FPGA_PCIX_INTERRUPT_TP) { /* * FPGA doesn't support MC4 interrupts and it requires * this odd layer of indirection for MC5. */ u32 tp_cause = readl(adapter->regs + FPGA_TP_ADDR_INTERRUPT_CAUSE); /* Clear TP interrupt */ writel(tp_cause, adapter->regs + FPGA_TP_ADDR_INTERRUPT_CAUSE); } if (cause & FPGA_PCIX_INTERRUPT_PCIX) t1_pci_intr_handler(adapter); /* Clear the interrupts just processed. */ if (cause) writel(cause, adapter->regs + A_PL_CAUSE); return cause == 0 ? IRQ_NONE : IRQ_HANDLED; } #endif /* * Wait until Elmer's MI1 interface is ready for new operations. */ static int mi1_wait_until_ready(adapter_t *adapter, int mi1_reg) { int attempts = 100, busy; do { u32 val; __t1_tpi_read(adapter, mi1_reg, &val); busy = val & F_MI1_OP_BUSY; if (busy) udelay(10); } while (busy && --attempts); if (busy) pr_alert("%s: MDIO operation timed out\n", adapter->name); return busy; } /* * MI1 MDIO initialization. */ static void mi1_mdio_init(adapter_t *adapter, const struct board_info *bi) { u32 clkdiv = bi->clock_elmer0 / (2 * bi->mdio_mdc) - 1; u32 val = F_MI1_PREAMBLE_ENABLE | V_MI1_MDI_INVERT(bi->mdio_mdiinv) | V_MI1_MDI_ENABLE(bi->mdio_mdien) | V_MI1_CLK_DIV(clkdiv); if (!(bi->caps & SUPPORTED_10000baseT_Full)) val |= V_MI1_SOF(1); t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_CFG, val); } #if defined(CONFIG_CHELSIO_T1_1G) /* * Elmer MI1 MDIO read/write operations. */ static int mi1_mdio_read(struct net_device *dev, int phy_addr, int mmd_addr, u16 reg_addr) { struct adapter *adapter = dev->ml_priv; u32 addr = V_MI1_REG_ADDR(reg_addr) | V_MI1_PHY_ADDR(phy_addr); unsigned int val; spin_lock(&adapter->tpi_lock); __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr); __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP, MI1_OP_DIRECT_READ); mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP); __t1_tpi_read(adapter, A_ELMER0_PORT0_MI1_DATA, &val); spin_unlock(&adapter->tpi_lock); return val; } static int mi1_mdio_write(struct net_device *dev, int phy_addr, int mmd_addr, u16 reg_addr, u16 val) { struct adapter *adapter = dev->ml_priv; u32 addr = V_MI1_REG_ADDR(reg_addr) | V_MI1_PHY_ADDR(phy_addr); spin_lock(&adapter->tpi_lock); __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr); __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, val); __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP, MI1_OP_DIRECT_WRITE); mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP); spin_unlock(&adapter->tpi_lock); return 0; } static const struct mdio_ops mi1_mdio_ops = { .init = mi1_mdio_init, .read = mi1_mdio_read, .write = mi1_mdio_write, .mode_support = MDIO_SUPPORTS_C22 }; #endif static int mi1_mdio_ext_read(struct net_device *dev, int phy_addr, int mmd_addr, u16 reg_addr) { struct adapter *adapter = dev->ml_priv; u32 addr = V_MI1_REG_ADDR(mmd_addr) | V_MI1_PHY_ADDR(phy_addr); unsigned int val; spin_lock(&adapter->tpi_lock); /* Write the address we want. */ __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr); __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, reg_addr); __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP, MI1_OP_INDIRECT_ADDRESS); mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP); /* Write the operation we want. */ __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP, MI1_OP_INDIRECT_READ); mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP); /* Read the data. */ __t1_tpi_read(adapter, A_ELMER0_PORT0_MI1_DATA, &val); spin_unlock(&adapter->tpi_lock); return val; } static int mi1_mdio_ext_write(struct net_device *dev, int phy_addr, int mmd_addr, u16 reg_addr, u16 val) { struct adapter *adapter = dev->ml_priv; u32 addr = V_MI1_REG_ADDR(mmd_addr) | V_MI1_PHY_ADDR(phy_addr); spin_lock(&adapter->tpi_lock); /* Write the address we want. */ __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr); __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, reg_addr); __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP, MI1_OP_INDIRECT_ADDRESS); mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP); /* Write the data. */ __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, val); __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP, MI1_OP_INDIRECT_WRITE); mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP); spin_unlock(&adapter->tpi_lock); return 0; } static const struct mdio_ops mi1_mdio_ext_ops = { .init = mi1_mdio_init, .read = mi1_mdio_ext_read, .write = mi1_mdio_ext_write, .mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22 }; enum { CH_BRD_T110_1CU, CH_BRD_N110_1F, CH_BRD_N210_1F, CH_BRD_T210_1F, CH_BRD_T210_1CU, CH_BRD_N204_4CU, }; static const struct board_info t1_board[] = { { .board = CHBT_BOARD_CHT110, .port_number = 1, .caps = SUPPORTED_10000baseT_Full, .chip_term = CHBT_TERM_T1, .chip_mac = CHBT_MAC_PM3393, .chip_phy = CHBT_PHY_MY3126, .clock_core = 125000000, .clock_mc3 = 150000000, .clock_mc4 = 125000000, .espi_nports = 1, .clock_elmer0 = 44, .mdio_mdien = 1, .mdio_mdiinv = 1, .mdio_mdc = 1, .mdio_phybaseaddr = 1, .gmac = &t1_pm3393_ops, .gphy = &t1_my3126_ops, .mdio_ops = &mi1_mdio_ext_ops, .desc = "Chelsio T110 1x10GBase-CX4 TOE", }, { .board = CHBT_BOARD_N110, .port_number = 1, .caps = SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE, .chip_term = CHBT_TERM_T1, .chip_mac = CHBT_MAC_PM3393, .chip_phy = CHBT_PHY_88X2010, .clock_core = 125000000, .espi_nports = 1, .clock_elmer0 = 44, .mdio_mdien = 0, .mdio_mdiinv = 0, .mdio_mdc = 1, .mdio_phybaseaddr = 0, .gmac = &t1_pm3393_ops, .gphy = &t1_mv88x201x_ops, .mdio_ops = &mi1_mdio_ext_ops, .desc = "Chelsio N110 1x10GBaseX NIC", }, { .board = CHBT_BOARD_N210, .port_number = 1, .caps = SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE, .chip_term = CHBT_TERM_T2, .chip_mac = CHBT_MAC_PM3393, .chip_phy = CHBT_PHY_88X2010, .clock_core = 125000000, .espi_nports = 1, .clock_elmer0 = 44, .mdio_mdien = 0, .mdio_mdiinv = 0, .mdio_mdc = 1, .mdio_phybaseaddr = 0, .gmac = &t1_pm3393_ops, .gphy = &t1_mv88x201x_ops, .mdio_ops = &mi1_mdio_ext_ops, .desc = "Chelsio N210 1x10GBaseX NIC", }, { .board = CHBT_BOARD_CHT210, .port_number = 1, .caps = SUPPORTED_10000baseT_Full, .chip_term = CHBT_TERM_T2, .chip_mac = CHBT_MAC_PM3393, .chip_phy = CHBT_PHY_88X2010, .clock_core = 125000000, .clock_mc3 = 133000000, .clock_mc4 = 125000000, .espi_nports = 1, .clock_elmer0 = 44, .mdio_mdien = 0, .mdio_mdiinv = 0, .mdio_mdc = 1, .mdio_phybaseaddr = 0, .gmac = &t1_pm3393_ops, .gphy = &t1_mv88x201x_ops, .mdio_ops = &mi1_mdio_ext_ops, .desc = "Chelsio T210 1x10GBaseX TOE", }, { .board = CHBT_BOARD_CHT210, .port_number = 1, .caps = SUPPORTED_10000baseT_Full, .chip_term = CHBT_TERM_T2, .chip_mac = CHBT_MAC_PM3393, .chip_phy = CHBT_PHY_MY3126, .clock_core = 125000000, .clock_mc3 = 133000000, .clock_mc4 = 125000000, .espi_nports = 1, .clock_elmer0 = 44, .mdio_mdien = 1, .mdio_mdiinv = 1, .mdio_mdc = 1, .mdio_phybaseaddr = 1, .gmac = &t1_pm3393_ops, .gphy = &t1_my3126_ops, .mdio_ops = &mi1_mdio_ext_ops, .desc = "Chelsio T210 1x10GBase-CX4 TOE", }, #ifdef CONFIG_CHELSIO_T1_1G { .board = CHBT_BOARD_CHN204, .port_number = 4, .caps = SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_PAUSE | SUPPORTED_TP, .chip_term = CHBT_TERM_T2, .chip_mac = CHBT_MAC_VSC7321, .chip_phy = CHBT_PHY_88E1111, .clock_core = 100000000, .espi_nports = 4, .clock_elmer0 = 44, .mdio_mdien = 0, .mdio_mdiinv = 0, .mdio_mdc = 0, .mdio_phybaseaddr = 4, .gmac = &t1_vsc7326_ops, .gphy = &t1_mv88e1xxx_ops, .mdio_ops = &mi1_mdio_ops, .desc = "Chelsio N204 4x100/1000BaseT NIC", }, #endif }; const struct pci_device_id t1_pci_tbl[] = { CH_DEVICE(8, 0, CH_BRD_T110_1CU), CH_DEVICE(8, 1, CH_BRD_T110_1CU), CH_DEVICE(7, 0, CH_BRD_N110_1F), CH_DEVICE(10, 1, CH_BRD_N210_1F), CH_DEVICE(11, 1, CH_BRD_T210_1F), CH_DEVICE(14, 1, CH_BRD_T210_1CU), CH_DEVICE(16, 1, CH_BRD_N204_4CU), { 0 } }; MODULE_DEVICE_TABLE(pci, t1_pci_tbl); /* * Return the board_info structure with a given index. Out-of-range indices * return NULL. */ const struct board_info *t1_get_board_info(unsigned int board_id) { return board_id < ARRAY_SIZE(t1_board) ? &t1_board[board_id] : NULL; } struct chelsio_vpd_t { u32 format_version; u8 serial_number[16]; u8 mac_base_address[6]; u8 pad[2]; /* make multiple-of-4 size requirement explicit */ }; #define EEPROMSIZE (8 * 1024) #define EEPROM_MAX_POLL 4 /* * Read SEEPROM. A zero is written to the flag register when the address is * written to the Control register. The hardware device will set the flag to a * one when 4B have been transferred to the Data register. */ int t1_seeprom_read(adapter_t *adapter, u32 addr, __le32 *data) { int i = EEPROM_MAX_POLL; u16 val; u32 v; if (addr >= EEPROMSIZE || (addr & 3)) return -EINVAL; pci_write_config_word(adapter->pdev, A_PCICFG_VPD_ADDR, (u16)addr); do { udelay(50); pci_read_config_word(adapter->pdev, A_PCICFG_VPD_ADDR, &val); } while (!(val & F_VPD_OP_FLAG) && --i); if (!(val & F_VPD_OP_FLAG)) { pr_err("%s: reading EEPROM address 0x%x failed\n", adapter->name, addr); return -EIO; } pci_read_config_dword(adapter->pdev, A_PCICFG_VPD_DATA, &v); *data = cpu_to_le32(v); return 0; } static int t1_eeprom_vpd_get(adapter_t *adapter, struct chelsio_vpd_t *vpd) { int addr, ret = 0; for (addr = 0; !ret && addr < sizeof(*vpd); addr += sizeof(u32)) ret = t1_seeprom_read(adapter, addr, (__le32 *)((u8 *)vpd + addr)); return ret; } /* * Read a port's MAC address from the VPD ROM. */ static int vpd_macaddress_get(adapter_t *adapter, int index, u8 mac_addr[]) { struct chelsio_vpd_t vpd; if (t1_eeprom_vpd_get(adapter, &vpd)) return 1; memcpy(mac_addr, vpd.mac_base_address, 5); mac_addr[5] = vpd.mac_base_address[5] + index; return 0; } /* * Set up the MAC/PHY according to the requested link settings. * * If the PHY can auto-negotiate first decide what to advertise, then * enable/disable auto-negotiation as desired and reset. * * If the PHY does not auto-negotiate we just reset it. * * If auto-negotiation is off set the MAC to the proper speed/duplex/FC, * otherwise do it later based on the outcome of auto-negotiation. */ int t1_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc) { unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); if (lc->supported & SUPPORTED_Autoneg) { lc->advertising &= ~(ADVERTISED_ASYM_PAUSE | ADVERTISED_PAUSE); if (fc) { if (fc == ((PAUSE_RX | PAUSE_TX) & (mac->adapter->params.nports < 2))) lc->advertising |= ADVERTISED_PAUSE; else { lc->advertising |= ADVERTISED_ASYM_PAUSE; if (fc == PAUSE_RX) lc->advertising |= ADVERTISED_PAUSE; } } phy->ops->advertise(phy, lc->advertising); if (lc->autoneg == AUTONEG_DISABLE) { lc->speed = lc->requested_speed; lc->duplex = lc->requested_duplex; lc->fc = (unsigned char)fc; mac->ops->set_speed_duplex_fc(mac, lc->speed, lc->duplex, fc); /* Also disables autoneg */ phy->state = PHY_AUTONEG_RDY; phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex); phy->ops->reset(phy, 0); } else { phy->state = PHY_AUTONEG_EN; phy->ops->autoneg_enable(phy); /* also resets PHY */ } } else { phy->state = PHY_AUTONEG_RDY; mac->ops->set_speed_duplex_fc(mac, -1, -1, fc); lc->fc = (unsigned char)fc; phy->ops->reset(phy, 0); } return 0; } /* * External interrupt handler for boards using elmer0. */ int t1_elmer0_ext_intr_handler(adapter_t *adapter) { struct cphy *phy; int phy_cause; u32 cause; t1_tpi_read(adapter, A_ELMER0_INT_CAUSE, &cause); switch (board_info(adapter)->board) { #ifdef CONFIG_CHELSIO_T1_1G case CHBT_BOARD_CHT204: case CHBT_BOARD_CHT204E: case CHBT_BOARD_CHN204: case CHBT_BOARD_CHT204V: { int i, port_bit; for_each_port(adapter, i) { port_bit = i + 1; if (!(cause & (1 << port_bit))) continue; phy = adapter->port[i].phy; phy_cause = phy->ops->interrupt_handler(phy); if (phy_cause & cphy_cause_link_change) t1_link_changed(adapter, i); } break; } case CHBT_BOARD_CHT101: if (cause & ELMER0_GP_BIT1) { /* Marvell 88E1111 interrupt */ phy = adapter->port[0].phy; phy_cause = phy->ops->interrupt_handler(phy); if (phy_cause & cphy_cause_link_change) t1_link_changed(adapter, 0); } break; case CHBT_BOARD_7500: { int p; /* * Elmer0's interrupt cause isn't useful here because there is * only one bit that can be set for all 4 ports. This means * we are forced to check every PHY's interrupt status * register to see who initiated the interrupt. */ for_each_port(adapter, p) { phy = adapter->port[p].phy; phy_cause = phy->ops->interrupt_handler(phy); if (phy_cause & cphy_cause_link_change) t1_link_changed(adapter, p); } break; } #endif case CHBT_BOARD_CHT210: case CHBT_BOARD_N210: case CHBT_BOARD_N110: if (cause & ELMER0_GP_BIT6) { /* Marvell 88x2010 interrupt */ phy = adapter->port[0].phy; phy_cause = phy->ops->interrupt_handler(phy); if (phy_cause & cphy_cause_link_change) t1_link_changed(adapter, 0); } break; case CHBT_BOARD_8000: case CHBT_BOARD_CHT110: if (netif_msg_intr(adapter)) dev_dbg(&adapter->pdev->dev, "External interrupt cause 0x%x\n", cause); if (cause & ELMER0_GP_BIT1) { /* PMC3393 INTB */ struct cmac *mac = adapter->port[0].mac; mac->ops->interrupt_handler(mac); } if (cause & ELMER0_GP_BIT5) { /* XPAK MOD_DETECT */ u32 mod_detect; t1_tpi_read(adapter, A_ELMER0_GPI_STAT, &mod_detect); if (netif_msg_link(adapter)) dev_info(&adapter->pdev->dev, "XPAK %s\n", mod_detect ? "removed" : "inserted"); } break; } t1_tpi_write(adapter, A_ELMER0_INT_CAUSE, cause); return 0; } /* Enables all interrupts. */ void t1_interrupts_enable(adapter_t *adapter) { unsigned int i; adapter->slow_intr_mask = F_PL_INTR_SGE_ERR | F_PL_INTR_TP; t1_sge_intr_enable(adapter->sge); t1_tp_intr_enable(adapter->tp); if (adapter->espi) { adapter->slow_intr_mask |= F_PL_INTR_ESPI; t1_espi_intr_enable(adapter->espi); } /* Enable MAC/PHY interrupts for each port. */ for_each_port(adapter, i) { adapter->port[i].mac->ops->interrupt_enable(adapter->port[i].mac); adapter->port[i].phy->ops->interrupt_enable(adapter->port[i].phy); } /* Enable PCIX & external chip interrupts on ASIC boards. */ if (t1_is_asic(adapter)) { u32 pl_intr = readl(adapter->regs + A_PL_ENABLE); /* PCI-X interrupts */ pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_ENABLE, 0xffffffff); adapter->slow_intr_mask |= F_PL_INTR_EXT | F_PL_INTR_PCIX; pl_intr |= F_PL_INTR_EXT | F_PL_INTR_PCIX; writel(pl_intr, adapter->regs + A_PL_ENABLE); } } /* Disables all interrupts. */ void t1_interrupts_disable(adapter_t* adapter) { unsigned int i; t1_sge_intr_disable(adapter->sge); t1_tp_intr_disable(adapter->tp); if (adapter->espi) t1_espi_intr_disable(adapter->espi); /* Disable MAC/PHY interrupts for each port. */ for_each_port(adapter, i) { adapter->port[i].mac->ops->interrupt_disable(adapter->port[i].mac); adapter->port[i].phy->ops->interrupt_disable(adapter->port[i].phy); } /* Disable PCIX & external chip interrupts. */ if (t1_is_asic(adapter)) writel(0, adapter->regs + A_PL_ENABLE); /* PCI-X interrupts */ pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_ENABLE, 0); adapter->slow_intr_mask = 0; } /* Clears all interrupts */ void t1_interrupts_clear(adapter_t* adapter) { unsigned int i; t1_sge_intr_clear(adapter->sge); t1_tp_intr_clear(adapter->tp); if (adapter->espi) t1_espi_intr_clear(adapter->espi); /* Clear MAC/PHY interrupts for each port. */ for_each_port(adapter, i) { adapter->port[i].mac->ops->interrupt_clear(adapter->port[i].mac); adapter->port[i].phy->ops->interrupt_clear(adapter->port[i].phy); } /* Enable interrupts for external devices. */ if (t1_is_asic(adapter)) { u32 pl_intr = readl(adapter->regs + A_PL_CAUSE); writel(pl_intr | F_PL_INTR_EXT | F_PL_INTR_PCIX, adapter->regs + A_PL_CAUSE); } /* PCI-X interrupts */ pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_CAUSE, 0xffffffff); } /* * Slow path interrupt handler for ASICs. */ static irqreturn_t asic_slow_intr(adapter_t *adapter) { u32 cause = readl(adapter->regs + A_PL_CAUSE); irqreturn_t ret = IRQ_HANDLED; cause &= adapter->slow_intr_mask; if (!cause) return IRQ_NONE; if (cause & F_PL_INTR_SGE_ERR) t1_sge_intr_error_handler(adapter->sge); if (cause & F_PL_INTR_TP) t1_tp_intr_handler(adapter->tp); if (cause & F_PL_INTR_ESPI) t1_espi_intr_handler(adapter->espi); if (cause & F_PL_INTR_PCIX) t1_pci_intr_handler(adapter); if (cause & F_PL_INTR_EXT) { /* Wake the threaded interrupt to handle external interrupts as * we require a process context. We disable EXT interrupts in * the interim and let the thread reenable them when it's done. */ adapter->pending_thread_intr |= F_PL_INTR_EXT; adapter->slow_intr_mask &= ~F_PL_INTR_EXT; writel(adapter->slow_intr_mask | F_PL_INTR_SGE_DATA, adapter->regs + A_PL_ENABLE); ret = IRQ_WAKE_THREAD; } /* Clear the interrupts just processed. */ writel(cause, adapter->regs + A_PL_CAUSE); readl(adapter->regs + A_PL_CAUSE); /* flush writes */ return ret; } irqreturn_t t1_slow_intr_handler(adapter_t *adapter) { #ifdef CONFIG_CHELSIO_T1_1G if (!t1_is_asic(adapter)) return fpga_slow_intr(adapter); #endif return asic_slow_intr(adapter); } /* Power sequencing is a work-around for Intel's XPAKs. */ static void power_sequence_xpak(adapter_t* adapter) { u32 mod_detect; u32 gpo; /* Check for XPAK */ t1_tpi_read(adapter, A_ELMER0_GPI_STAT, &mod_detect); if (!(ELMER0_GP_BIT5 & mod_detect)) { /* XPAK is present */ t1_tpi_read(adapter, A_ELMER0_GPO, &gpo); gpo |= ELMER0_GP_BIT18; t1_tpi_write(adapter, A_ELMER0_GPO, gpo); } } int t1_get_board_rev(adapter_t *adapter, const struct board_info *bi, struct adapter_params *p) { p->chip_version = bi->chip_term; p->is_asic = (p->chip_version != CHBT_TERM_FPGA); if (p->chip_version == CHBT_TERM_T1 || p->chip_version == CHBT_TERM_T2 || p->chip_version == CHBT_TERM_FPGA) { u32 val = readl(adapter->regs + A_TP_PC_CONFIG); val = G_TP_PC_REV(val); if (val == 2) p->chip_revision = TERM_T1B; else if (val == 3) p->chip_revision = TERM_T2; else return -1; } else return -1; return 0; } /* * Enable board components other than the Chelsio chip, such as external MAC * and PHY. */ static int board_init(adapter_t *adapter, const struct board_info *bi) { switch (bi->board) { case CHBT_BOARD_8000: case CHBT_BOARD_N110: case CHBT_BOARD_N210: case CHBT_BOARD_CHT210: t1_tpi_par(adapter, 0xf); t1_tpi_write(adapter, A_ELMER0_GPO, 0x800); break; case CHBT_BOARD_CHT110: t1_tpi_par(adapter, 0xf); t1_tpi_write(adapter, A_ELMER0_GPO, 0x1800); /* TBD XXX Might not need. This fixes a problem * described in the Intel SR XPAK errata. */ power_sequence_xpak(adapter); break; #ifdef CONFIG_CHELSIO_T1_1G case CHBT_BOARD_CHT204E: /* add config space write here */ case CHBT_BOARD_CHT204: case CHBT_BOARD_CHT204V: case CHBT_BOARD_CHN204: t1_tpi_par(adapter, 0xf); t1_tpi_write(adapter, A_ELMER0_GPO, 0x804); break; case CHBT_BOARD_CHT101: case CHBT_BOARD_7500: t1_tpi_par(adapter, 0xf); t1_tpi_write(adapter, A_ELMER0_GPO, 0x1804); break; #endif } return 0; } /* * Initialize and configure the Terminator HW modules. Note that external * MAC and PHYs are initialized separately. */ int t1_init_hw_modules(adapter_t *adapter) { int err = -EIO; const struct board_info *bi = board_info(adapter); if (!bi->clock_mc4) { u32 val = readl(adapter->regs + A_MC4_CFG); writel(val | F_READY | F_MC4_SLOW, adapter->regs + A_MC4_CFG); writel(F_M_BUS_ENABLE | F_TCAM_RESET, adapter->regs + A_MC5_CONFIG); } if (adapter->espi && t1_espi_init(adapter->espi, bi->chip_mac, bi->espi_nports)) goto out_err; if (t1_tp_reset(adapter->tp, &adapter->params.tp, bi->clock_core)) goto out_err; err = t1_sge_configure(adapter->sge, &adapter->params.sge); if (err) goto out_err; err = 0; out_err: return err; } /* * Determine a card's PCI mode. */ static void get_pci_mode(adapter_t *adapter, struct chelsio_pci_params *p) { static const unsigned short speed_map[] = { 33, 66, 100, 133 }; u32 pci_mode; pci_read_config_dword(adapter->pdev, A_PCICFG_MODE, &pci_mode); p->speed = speed_map[G_PCI_MODE_CLK(pci_mode)]; p->width = (pci_mode & F_PCI_MODE_64BIT) ? 64 : 32; p->is_pcix = (pci_mode & F_PCI_MODE_PCIX) != 0; } /* * Release the structures holding the SW per-Terminator-HW-module state. */ void t1_free_sw_modules(adapter_t *adapter) { unsigned int i; for_each_port(adapter, i) { struct cmac *mac = adapter->port[i].mac; struct cphy *phy = adapter->port[i].phy; if (mac) mac->ops->destroy(mac); if (phy) phy->ops->destroy(phy); } if (adapter->sge) t1_sge_destroy(adapter->sge); if (adapter->tp) t1_tp_destroy(adapter->tp); if (adapter->espi) t1_espi_destroy(adapter->espi); } static void init_link_config(struct link_config *lc, const struct board_info *bi) { lc->supported = bi->caps; lc->requested_speed = lc->speed = SPEED_INVALID; lc->requested_duplex = lc->duplex = DUPLEX_INVALID; lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; if (lc->supported & SUPPORTED_Autoneg) { lc->advertising = lc->supported; lc->autoneg = AUTONEG_ENABLE; lc->requested_fc |= PAUSE_AUTONEG; } else { lc->advertising = 0; lc->autoneg = AUTONEG_DISABLE; } } /* * Allocate and initialize the data structures that hold the SW state of * the Terminator HW modules. */ int t1_init_sw_modules(adapter_t *adapter, const struct board_info *bi) { unsigned int i; adapter->params.brd_info = bi; adapter->params.nports = bi->port_number; adapter->params.stats_update_period = bi->gmac->stats_update_period; adapter->sge = t1_sge_create(adapter, &adapter->params.sge); if (!adapter->sge) { pr_err("%s: SGE initialization failed\n", adapter->name); goto error; } if (bi->espi_nports && !(adapter->espi = t1_espi_create(adapter))) { pr_err("%s: ESPI initialization failed\n", adapter->name); goto error; } adapter->tp = t1_tp_create(adapter, &adapter->params.tp); if (!adapter->tp) { pr_err("%s: TP initialization failed\n", adapter->name); goto error; } board_init(adapter, bi); bi->mdio_ops->init(adapter, bi); if (bi->gphy->reset) bi->gphy->reset(adapter); if (bi->gmac->reset) bi->gmac->reset(adapter); for_each_port(adapter, i) { u8 hw_addr[6]; struct cmac *mac; int phy_addr = bi->mdio_phybaseaddr + i; adapter->port[i].phy = bi->gphy->create(adapter->port[i].dev, phy_addr, bi->mdio_ops); if (!adapter->port[i].phy) { pr_err("%s: PHY %d initialization failed\n", adapter->name, i); goto error; } adapter->port[i].mac = mac = bi->gmac->create(adapter, i); if (!mac) { pr_err("%s: MAC %d initialization failed\n", adapter->name, i); goto error; } /* * Get the port's MAC addresses either from the EEPROM if one * exists or the one hardcoded in the MAC. */ if (!t1_is_asic(adapter) || bi->chip_mac == CHBT_MAC_DUMMY) mac->ops->macaddress_get(mac, hw_addr); else if (vpd_macaddress_get(adapter, i, hw_addr)) { pr_err("%s: could not read MAC address from VPD ROM\n", adapter->port[i].dev->name); goto error; } memcpy(adapter->port[i].dev->dev_addr, hw_addr, ETH_ALEN); init_link_config(&adapter->port[i].link_config, bi); } get_pci_mode(adapter, &adapter->params.pci); t1_interrupts_clear(adapter); return 0; error: t1_free_sw_modules(adapter); return -1; }