/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Robert Olsson Uppsala Universitet * & Swedish University of Agricultural Sciences. * * Jens Laas Swedish University of * Agricultural Sciences. * * Hans Liss Uppsala Universitet * * This work is based on the LPC-trie which is originally described in: * * An experimental study of compression methods for dynamic tries * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. * http://www.csc.kth.se/~snilsson/software/dyntrie2/ * * * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 * * * Code from fib_hash has been reused which includes the following header: * * * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * IPv4 FIB: lookup engine and maintenance routines. * * * Authors: Alexey Kuznetsov, * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Substantial contributions to this work comes from: * * David S. Miller, * Stephen Hemminger * Paul E. McKenney * Patrick McHardy */ #define VERSION "0.409" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "fib_lookup.h" #define MAX_STAT_DEPTH 32 #define KEYLENGTH (8*sizeof(t_key)) typedef unsigned int t_key; #define IS_TNODE(n) ((n)->bits) #define IS_LEAF(n) (!(n)->bits) #define get_index(_key, _kv) (((_key) ^ (_kv)->key) >> (_kv)->pos) struct tnode { t_key key; unsigned char bits; /* 2log(KEYLENGTH) bits needed */ unsigned char pos; /* 2log(KEYLENGTH) bits needed */ struct tnode __rcu *parent; struct rcu_head rcu; union { /* The fields in this struct are valid if bits > 0 (TNODE) */ struct { unsigned int full_children; /* KEYLENGTH bits needed */ unsigned int empty_children; /* KEYLENGTH bits needed */ struct tnode __rcu *child[0]; }; /* This list pointer if valid if bits == 0 (LEAF) */ struct hlist_head list; }; }; struct leaf_info { struct hlist_node hlist; int plen; u32 mask_plen; /* ntohl(inet_make_mask(plen)) */ struct list_head falh; struct rcu_head rcu; }; #ifdef CONFIG_IP_FIB_TRIE_STATS struct trie_use_stats { unsigned int gets; unsigned int backtrack; unsigned int semantic_match_passed; unsigned int semantic_match_miss; unsigned int null_node_hit; unsigned int resize_node_skipped; }; #endif struct trie_stat { unsigned int totdepth; unsigned int maxdepth; unsigned int tnodes; unsigned int leaves; unsigned int nullpointers; unsigned int prefixes; unsigned int nodesizes[MAX_STAT_DEPTH]; }; struct trie { struct tnode __rcu *trie; #ifdef CONFIG_IP_FIB_TRIE_STATS struct trie_use_stats __percpu *stats; #endif }; static void resize(struct trie *t, struct tnode *tn); static size_t tnode_free_size; /* * synchronize_rcu after call_rcu for that many pages; it should be especially * useful before resizing the root node with PREEMPT_NONE configs; the value was * obtained experimentally, aiming to avoid visible slowdown. */ static const int sync_pages = 128; static struct kmem_cache *fn_alias_kmem __read_mostly; static struct kmem_cache *trie_leaf_kmem __read_mostly; /* caller must hold RTNL */ #define node_parent(n) rtnl_dereference((n)->parent) /* caller must hold RCU read lock or RTNL */ #define node_parent_rcu(n) rcu_dereference_rtnl((n)->parent) /* wrapper for rcu_assign_pointer */ static inline void node_set_parent(struct tnode *n, struct tnode *tp) { if (n) rcu_assign_pointer(n->parent, tp); } #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER((n)->parent, p) /* This provides us with the number of children in this node, in the case of a * leaf this will return 0 meaning none of the children are accessible. */ static inline unsigned long tnode_child_length(const struct tnode *tn) { return (1ul << tn->bits) & ~(1ul); } /* caller must hold RTNL */ static inline struct tnode *tnode_get_child(const struct tnode *tn, unsigned long i) { BUG_ON(i >= tnode_child_length(tn)); return rtnl_dereference(tn->child[i]); } /* caller must hold RCU read lock or RTNL */ static inline struct tnode *tnode_get_child_rcu(const struct tnode *tn, unsigned long i) { BUG_ON(i >= tnode_child_length(tn)); return rcu_dereference_rtnl(tn->child[i]); } /* To understand this stuff, an understanding of keys and all their bits is * necessary. Every node in the trie has a key associated with it, but not * all of the bits in that key are significant. * * Consider a node 'n' and its parent 'tp'. * * If n is a leaf, every bit in its key is significant. Its presence is * necessitated by path compression, since during a tree traversal (when * searching for a leaf - unless we are doing an insertion) we will completely * ignore all skipped bits we encounter. Thus we need to verify, at the end of * a potentially successful search, that we have indeed been walking the * correct key path. * * Note that we can never "miss" the correct key in the tree if present by * following the wrong path. Path compression ensures that segments of the key * that are the same for all keys with a given prefix are skipped, but the * skipped part *is* identical for each node in the subtrie below the skipped * bit! trie_insert() in this implementation takes care of that. * * if n is an internal node - a 'tnode' here, the various parts of its key * have many different meanings. * * Example: * _________________________________________________________________ * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | * ----------------------------------------------------------------- * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 * * _________________________________________________________________ * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | * ----------------------------------------------------------------- * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 * * tp->pos = 22 * tp->bits = 3 * n->pos = 13 * n->bits = 4 * * First, let's just ignore the bits that come before the parent tp, that is * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this * point we do not use them for anything. * * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the * index into the parent's child array. That is, they will be used to find * 'n' among tp's children. * * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits * for the node n. * * All the bits we have seen so far are significant to the node n. The rest * of the bits are really not needed or indeed known in n->key. * * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into * n's child array, and will of course be different for each child. * * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown * at this point. */ static const int halve_threshold = 25; static const int inflate_threshold = 50; static const int halve_threshold_root = 15; static const int inflate_threshold_root = 30; static void __alias_free_mem(struct rcu_head *head) { struct fib_alias *fa = container_of(head, struct fib_alias, rcu); kmem_cache_free(fn_alias_kmem, fa); } static inline void alias_free_mem_rcu(struct fib_alias *fa) { call_rcu(&fa->rcu, __alias_free_mem); } #define TNODE_KMALLOC_MAX \ ilog2((PAGE_SIZE - sizeof(struct tnode)) / sizeof(struct tnode *)) static void __node_free_rcu(struct rcu_head *head) { struct tnode *n = container_of(head, struct tnode, rcu); if (IS_LEAF(n)) kmem_cache_free(trie_leaf_kmem, n); else if (n->bits <= TNODE_KMALLOC_MAX) kfree(n); else vfree(n); } #define node_free(n) call_rcu(&n->rcu, __node_free_rcu) static inline void free_leaf_info(struct leaf_info *leaf) { kfree_rcu(leaf, rcu); } static struct tnode *tnode_alloc(size_t size) { if (size <= PAGE_SIZE) return kzalloc(size, GFP_KERNEL); else return vzalloc(size); } static struct tnode *leaf_new(t_key key) { struct tnode *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); if (l) { l->parent = NULL; /* set key and pos to reflect full key value * any trailing zeros in the key should be ignored * as the nodes are searched */ l->key = key; l->pos = 0; /* set bits to 0 indicating we are not a tnode */ l->bits = 0; INIT_HLIST_HEAD(&l->list); } return l; } static struct leaf_info *leaf_info_new(int plen) { struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL); if (li) { li->plen = plen; li->mask_plen = ntohl(inet_make_mask(plen)); INIT_LIST_HEAD(&li->falh); } return li; } static struct tnode *tnode_new(t_key key, int pos, int bits) { size_t sz = offsetof(struct tnode, child[1 << bits]); struct tnode *tn = tnode_alloc(sz); unsigned int shift = pos + bits; /* verify bits and pos their msb bits clear and values are valid */ BUG_ON(!bits || (shift > KEYLENGTH)); if (tn) { tn->parent = NULL; tn->pos = pos; tn->bits = bits; tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0; tn->full_children = 0; tn->empty_children = 1<pos + n->bits) == tn->pos) && IS_TNODE(n); } /* Add a child at position i overwriting the old value. * Update the value of full_children and empty_children. */ static void put_child(struct tnode *tn, unsigned long i, struct tnode *n) { struct tnode *chi = rtnl_dereference(tn->child[i]); int isfull, wasfull; BUG_ON(i >= tnode_child_length(tn)); /* update emptyChildren */ if (n == NULL && chi != NULL) tn->empty_children++; else if (n != NULL && chi == NULL) tn->empty_children--; /* update fullChildren */ wasfull = tnode_full(tn, chi); isfull = tnode_full(tn, n); if (wasfull && !isfull) tn->full_children--; else if (!wasfull && isfull) tn->full_children++; node_set_parent(n, tn); rcu_assign_pointer(tn->child[i], n); } static void put_child_root(struct tnode *tp, struct trie *t, t_key key, struct tnode *n) { if (tp) put_child(tp, get_index(key, tp), n); else rcu_assign_pointer(t->trie, n); } static inline void tnode_free_init(struct tnode *tn) { tn->rcu.next = NULL; } static inline void tnode_free_append(struct tnode *tn, struct tnode *n) { n->rcu.next = tn->rcu.next; tn->rcu.next = &n->rcu; } static void tnode_free(struct tnode *tn) { struct callback_head *head = &tn->rcu; while (head) { head = head->next; tnode_free_size += offsetof(struct tnode, child[1 << tn->bits]); node_free(tn); tn = container_of(head, struct tnode, rcu); } if (tnode_free_size >= PAGE_SIZE * sync_pages) { tnode_free_size = 0; synchronize_rcu(); } } static int inflate(struct trie *t, struct tnode *oldtnode) { unsigned long olen = tnode_child_length(oldtnode); struct tnode *tp = node_parent(oldtnode); struct tnode *tn; unsigned long i; t_key m; pr_debug("In inflate\n"); tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1); if (!tn) return -ENOMEM; /* * Preallocate and store tnodes before the actual work so we * don't get into an inconsistent state if memory allocation * fails. In case of failure we return the oldnode and inflate * of tnode is ignored. */ for (i = 0, m = 1u << tn->pos; i < olen; i++) { struct tnode *inode = tnode_get_child(oldtnode, i); if (tnode_full(oldtnode, inode) && (inode->bits > 1)) { struct tnode *left, *right; left = tnode_new(inode->key & ~m, inode->pos, inode->bits - 1); if (!left) goto nomem; tnode_free_append(tn, left); right = tnode_new(inode->key | m, inode->pos, inode->bits - 1); if (!right) goto nomem; tnode_free_append(tn, right); put_child(tn, 2*i, left); put_child(tn, 2*i+1, right); } } /* prepare oldtnode to be freed */ tnode_free_init(oldtnode); for (i = 0; i < olen; i++) { struct tnode *inode = tnode_get_child(oldtnode, i); struct tnode *left, *right; unsigned long size, j; /* An empty child */ if (inode == NULL) continue; /* A leaf or an internal node with skipped bits */ if (!tnode_full(oldtnode, inode)) { put_child(tn, get_index(inode->key, tn), inode); continue; } /* drop the node in the old tnode free list */ tnode_free_append(oldtnode, inode); /* An internal node with two children */ if (inode->bits == 1) { put_child(tn, 2*i, rtnl_dereference(inode->child[0])); put_child(tn, 2*i+1, rtnl_dereference(inode->child[1])); continue; } /* An internal node with more than two children */ /* We will replace this node 'inode' with two new * ones, 'left' and 'right', each with half of the * original children. The two new nodes will have * a position one bit further down the key and this * means that the "significant" part of their keys * (see the discussion near the top of this file) * will differ by one bit, which will be "0" in * left's key and "1" in right's key. Since we are * moving the key position by one step, the bit that * we are moving away from - the bit at position * (inode->pos) - is the one that will differ between * left and right. So... we synthesize that bit in the * two new keys. * The mask 'm' below will be a single "one" bit at * the position (inode->pos) */ /* Use the old key, but set the new significant * bit to zero. */ left = tnode_get_child(tn, 2*i); put_child(tn, 2*i, NULL); BUG_ON(!left); right = tnode_get_child(tn, 2*i+1); put_child(tn, 2*i+1, NULL); BUG_ON(!right); size = tnode_child_length(left); for (j = 0; j < size; j++) { put_child(left, j, rtnl_dereference(inode->child[j])); put_child(right, j, rtnl_dereference(inode->child[j + size])); } put_child(tn, 2 * i, left); put_child(tn, 2 * i + 1, right); /* resize child nodes */ resize(t, left); resize(t, right); } put_child_root(tp, t, tn->key, tn); /* we completed without error, prepare to free old node */ tnode_free(oldtnode); return 0; nomem: /* all pointers should be clean so we are done */ tnode_free(tn); return -ENOMEM; } static int halve(struct trie *t, struct tnode *oldtnode) { unsigned long olen = tnode_child_length(oldtnode); struct tnode *tp = node_parent(oldtnode); struct tnode *tn, *left, *right; int i; pr_debug("In halve\n"); tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1); if (!tn) return -ENOMEM; /* * Preallocate and store tnodes before the actual work so we * don't get into an inconsistent state if memory allocation * fails. In case of failure we return the oldnode and halve * of tnode is ignored. */ for (i = 0; i < olen; i += 2) { left = tnode_get_child(oldtnode, i); right = tnode_get_child(oldtnode, i+1); /* Two nonempty children */ if (left && right) { struct tnode *newn; newn = tnode_new(left->key, oldtnode->pos, 1); if (!newn) { tnode_free(tn); return -ENOMEM; } tnode_free_append(tn, newn); put_child(tn, i/2, newn); } } /* prepare oldtnode to be freed */ tnode_free_init(oldtnode); for (i = 0; i < olen; i += 2) { struct tnode *newBinNode; left = tnode_get_child(oldtnode, i); right = tnode_get_child(oldtnode, i+1); /* At least one of the children is empty */ if (left == NULL) { if (right == NULL) /* Both are empty */ continue; put_child(tn, i/2, right); continue; } if (right == NULL) { put_child(tn, i/2, left); continue; } /* Two nonempty children */ newBinNode = tnode_get_child(tn, i/2); put_child(newBinNode, 0, left); put_child(newBinNode, 1, right); put_child(tn, i / 2, newBinNode); /* resize child node */ resize(t, newBinNode); } put_child_root(tp, t, tn->key, tn); /* all pointers should be clean so we are done */ tnode_free(oldtnode); return 0; } /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of * the Helsinki University of Technology and Matti Tikkanen of Nokia * Telecommunications, page 6: * "A node is doubled if the ratio of non-empty children to all * children in the *doubled* node is at least 'high'." * * 'high' in this instance is the variable 'inflate_threshold'. It * is expressed as a percentage, so we multiply it with * tnode_child_length() and instead of multiplying by 2 (since the * child array will be doubled by inflate()) and multiplying * the left-hand side by 100 (to handle the percentage thing) we * multiply the left-hand side by 50. * * The left-hand side may look a bit weird: tnode_child_length(tn) * - tn->empty_children is of course the number of non-null children * in the current node. tn->full_children is the number of "full" * children, that is non-null tnodes with a skip value of 0. * All of those will be doubled in the resulting inflated tnode, so * we just count them one extra time here. * * A clearer way to write this would be: * * to_be_doubled = tn->full_children; * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children - * tn->full_children; * * new_child_length = tnode_child_length(tn) * 2; * * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / * new_child_length; * if (new_fill_factor >= inflate_threshold) * * ...and so on, tho it would mess up the while () loop. * * anyway, * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= * inflate_threshold * * avoid a division: * 100 * (not_to_be_doubled + 2*to_be_doubled) >= * inflate_threshold * new_child_length * * expand not_to_be_doubled and to_be_doubled, and shorten: * 100 * (tnode_child_length(tn) - tn->empty_children + * tn->full_children) >= inflate_threshold * new_child_length * * expand new_child_length: * 100 * (tnode_child_length(tn) - tn->empty_children + * tn->full_children) >= * inflate_threshold * tnode_child_length(tn) * 2 * * shorten again: * 50 * (tn->full_children + tnode_child_length(tn) - * tn->empty_children) >= inflate_threshold * * tnode_child_length(tn) * */ static bool should_inflate(const struct tnode *tp, const struct tnode *tn) { unsigned long used = tnode_child_length(tn); unsigned long threshold = used; /* Keep root node larger */ threshold *= tp ? inflate_threshold : inflate_threshold_root; used += tn->full_children; used -= tn->empty_children; return tn->pos && ((50 * used) >= threshold); } static bool should_halve(const struct tnode *tp, const struct tnode *tn) { unsigned long used = tnode_child_length(tn); unsigned long threshold = used; /* Keep root node larger */ threshold *= tp ? halve_threshold : halve_threshold_root; used -= tn->empty_children; return (tn->bits > 1) && ((100 * used) < threshold); } #define MAX_WORK 10 static void resize(struct trie *t, struct tnode *tn) { struct tnode *tp = node_parent(tn), *n = NULL; struct tnode __rcu **cptr; int max_work; pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", tn, inflate_threshold, halve_threshold); /* track the tnode via the pointer from the parent instead of * doing it ourselves. This way we can let RCU fully do its * thing without us interfering */ cptr = tp ? &tp->child[get_index(tn->key, tp)] : &t->trie; BUG_ON(tn != rtnl_dereference(*cptr)); /* No children */ if (tn->empty_children > (tnode_child_length(tn) - 1)) goto no_children; /* One child */ if (tn->empty_children == (tnode_child_length(tn) - 1)) goto one_child; /* Double as long as the resulting node has a number of * nonempty nodes that are above the threshold. */ max_work = MAX_WORK; while (should_inflate(tp, tn) && max_work--) { if (inflate(t, tn)) { #ifdef CONFIG_IP_FIB_TRIE_STATS this_cpu_inc(t->stats->resize_node_skipped); #endif break; } tn = rtnl_dereference(*cptr); } /* Return if at least one inflate is run */ if (max_work != MAX_WORK) return; /* Halve as long as the number of empty children in this * node is above threshold. */ max_work = MAX_WORK; while (should_halve(tp, tn) && max_work--) { if (halve(t, tn)) { #ifdef CONFIG_IP_FIB_TRIE_STATS this_cpu_inc(t->stats->resize_node_skipped); #endif break; } tn = rtnl_dereference(*cptr); } /* Only one child remains */ if (tn->empty_children == (tnode_child_length(tn) - 1)) { unsigned long i; one_child: for (i = tnode_child_length(tn); !n && i;) n = tnode_get_child(tn, --i); no_children: /* compress one level */ put_child_root(tp, t, tn->key, n); node_set_parent(n, tp); /* drop dead node */ tnode_free_init(tn); tnode_free(tn); } } /* readside must use rcu_read_lock currently dump routines via get_fa_head and dump */ static struct leaf_info *find_leaf_info(struct tnode *l, int plen) { struct hlist_head *head = &l->list; struct leaf_info *li; hlist_for_each_entry_rcu(li, head, hlist) if (li->plen == plen) return li; return NULL; } static inline struct list_head *get_fa_head(struct tnode *l, int plen) { struct leaf_info *li = find_leaf_info(l, plen); if (!li) return NULL; return &li->falh; } static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new) { struct leaf_info *li = NULL, *last = NULL; if (hlist_empty(head)) { hlist_add_head_rcu(&new->hlist, head); } else { hlist_for_each_entry(li, head, hlist) { if (new->plen > li->plen) break; last = li; } if (last) hlist_add_behind_rcu(&new->hlist, &last->hlist); else hlist_add_before_rcu(&new->hlist, &li->hlist); } } /* rcu_read_lock needs to be hold by caller from readside */ static struct tnode *fib_find_node(struct trie *t, u32 key) { struct tnode *n = rcu_dereference_rtnl(t->trie); while (n) { unsigned long index = get_index(key, n); /* This bit of code is a bit tricky but it combines multiple * checks into a single check. The prefix consists of the * prefix plus zeros for the bits in the cindex. The index * is the difference between the key and this value. From * this we can actually derive several pieces of data. * if !(index >> bits) * we know the value is cindex * else * we have a mismatch in skip bits and failed */ if (index >> n->bits) return NULL; /* we have found a leaf. Prefixes have already been compared */ if (IS_LEAF(n)) break; n = rcu_dereference_rtnl(n->child[index]); } return n; } static void trie_rebalance(struct trie *t, struct tnode *tn) { struct tnode *tp; while ((tp = node_parent(tn)) != NULL) { resize(t, tn); tn = tp; } /* Handle last (top) tnode */ if (IS_TNODE(tn)) resize(t, tn); } /* only used from updater-side */ static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen) { struct list_head *fa_head = NULL; struct tnode *l, *n, *tp = NULL; struct leaf_info *li; li = leaf_info_new(plen); if (!li) return NULL; fa_head = &li->falh; n = rtnl_dereference(t->trie); /* If we point to NULL, stop. Either the tree is empty and we should * just put a new leaf in if, or we have reached an empty child slot, * and we should just put our new leaf in that. * * If we hit a node with a key that does't match then we should stop * and create a new tnode to replace that node and insert ourselves * and the other node into the new tnode. */ while (n) { unsigned long index = get_index(key, n); /* This bit of code is a bit tricky but it combines multiple * checks into a single check. The prefix consists of the * prefix plus zeros for the "bits" in the prefix. The index * is the difference between the key and this value. From * this we can actually derive several pieces of data. * if !(index >> bits) * we know the value is child index * else * we have a mismatch in skip bits and failed */ if (index >> n->bits) break; /* we have found a leaf. Prefixes have already been compared */ if (IS_LEAF(n)) { /* Case 1: n is a leaf, and prefixes match*/ insert_leaf_info(&n->list, li); return fa_head; } tp = n; n = rcu_dereference_rtnl(n->child[index]); } l = leaf_new(key); if (!l) { free_leaf_info(li); return NULL; } insert_leaf_info(&l->list, li); /* Case 2: n is a LEAF or a TNODE and the key doesn't match. * * Add a new tnode here * first tnode need some special handling * leaves us in position for handling as case 3 */ if (n) { struct tnode *tn; tn = tnode_new(key, __fls(key ^ n->key), 1); if (!tn) { free_leaf_info(li); node_free(l); return NULL; } /* initialize routes out of node */ NODE_INIT_PARENT(tn, tp); put_child(tn, get_index(key, tn) ^ 1, n); /* start adding routes into the node */ put_child_root(tp, t, key, tn); node_set_parent(n, tn); /* parent now has a NULL spot where the leaf can go */ tp = tn; } /* Case 3: n is NULL, and will just insert a new leaf */ if (tp) { NODE_INIT_PARENT(l, tp); put_child(tp, get_index(key, tp), l); trie_rebalance(t, tp); } else { rcu_assign_pointer(t->trie, l); } return fa_head; } /* * Caller must hold RTNL. */ int fib_table_insert(struct fib_table *tb, struct fib_config *cfg) { struct trie *t = (struct trie *) tb->tb_data; struct fib_alias *fa, *new_fa; struct list_head *fa_head = NULL; struct fib_info *fi; int plen = cfg->fc_dst_len; u8 tos = cfg->fc_tos; u32 key, mask; int err; struct tnode *l; if (plen > 32) return -EINVAL; key = ntohl(cfg->fc_dst); pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); mask = ntohl(inet_make_mask(plen)); if (key & ~mask) return -EINVAL; key = key & mask; fi = fib_create_info(cfg); if (IS_ERR(fi)) { err = PTR_ERR(fi); goto err; } l = fib_find_node(t, key); fa = NULL; if (l) { fa_head = get_fa_head(l, plen); fa = fib_find_alias(fa_head, tos, fi->fib_priority); } /* Now fa, if non-NULL, points to the first fib alias * with the same keys [prefix,tos,priority], if such key already * exists or to the node before which we will insert new one. * * If fa is NULL, we will need to allocate a new one and * insert to the head of f. * * If f is NULL, no fib node matched the destination key * and we need to allocate a new one of those as well. */ if (fa && fa->fa_tos == tos && fa->fa_info->fib_priority == fi->fib_priority) { struct fib_alias *fa_first, *fa_match; err = -EEXIST; if (cfg->fc_nlflags & NLM_F_EXCL) goto out; /* We have 2 goals: * 1. Find exact match for type, scope, fib_info to avoid * duplicate routes * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it */ fa_match = NULL; fa_first = fa; fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list); list_for_each_entry_continue(fa, fa_head, fa_list) { if (fa->fa_tos != tos) break; if (fa->fa_info->fib_priority != fi->fib_priority) break; if (fa->fa_type == cfg->fc_type && fa->fa_info == fi) { fa_match = fa; break; } } if (cfg->fc_nlflags & NLM_F_REPLACE) { struct fib_info *fi_drop; u8 state; fa = fa_first; if (fa_match) { if (fa == fa_match) err = 0; goto out; } err = -ENOBUFS; new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); if (new_fa == NULL) goto out; fi_drop = fa->fa_info; new_fa->fa_tos = fa->fa_tos; new_fa->fa_info = fi; new_fa->fa_type = cfg->fc_type; state = fa->fa_state; new_fa->fa_state = state & ~FA_S_ACCESSED; list_replace_rcu(&fa->fa_list, &new_fa->fa_list); alias_free_mem_rcu(fa); fib_release_info(fi_drop); if (state & FA_S_ACCESSED) rt_cache_flush(cfg->fc_nlinfo.nl_net); rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE); goto succeeded; } /* Error if we find a perfect match which * uses the same scope, type, and nexthop * information. */ if (fa_match) goto out; if (!(cfg->fc_nlflags & NLM_F_APPEND)) fa = fa_first; } err = -ENOENT; if (!(cfg->fc_nlflags & NLM_F_CREATE)) goto out; err = -ENOBUFS; new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); if (new_fa == NULL) goto out; new_fa->fa_info = fi; new_fa->fa_tos = tos; new_fa->fa_type = cfg->fc_type; new_fa->fa_state = 0; /* * Insert new entry to the list. */ if (!fa_head) { fa_head = fib_insert_node(t, key, plen); if (unlikely(!fa_head)) { err = -ENOMEM; goto out_free_new_fa; } } if (!plen) tb->tb_num_default++; list_add_tail_rcu(&new_fa->fa_list, (fa ? &fa->fa_list : fa_head)); rt_cache_flush(cfg->fc_nlinfo.nl_net); rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, &cfg->fc_nlinfo, 0); succeeded: return 0; out_free_new_fa: kmem_cache_free(fn_alias_kmem, new_fa); out: fib_release_info(fi); err: return err; } static inline t_key prefix_mismatch(t_key key, struct tnode *n) { t_key prefix = n->key; return (key ^ prefix) & (prefix | -prefix); } /* should be called with rcu_read_lock */ int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, struct fib_result *res, int fib_flags) { struct trie *t = (struct trie *)tb->tb_data; #ifdef CONFIG_IP_FIB_TRIE_STATS struct trie_use_stats __percpu *stats = t->stats; #endif const t_key key = ntohl(flp->daddr); struct tnode *n, *pn; struct leaf_info *li; t_key cindex; n = rcu_dereference(t->trie); if (!n) return -EAGAIN; #ifdef CONFIG_IP_FIB_TRIE_STATS this_cpu_inc(stats->gets); #endif pn = n; cindex = 0; /* Step 1: Travel to the longest prefix match in the trie */ for (;;) { unsigned long index = get_index(key, n); /* This bit of code is a bit tricky but it combines multiple * checks into a single check. The prefix consists of the * prefix plus zeros for the "bits" in the prefix. The index * is the difference between the key and this value. From * this we can actually derive several pieces of data. * if !(index >> bits) * we know the value is child index * else * we have a mismatch in skip bits and failed */ if (index >> n->bits) break; /* we have found a leaf. Prefixes have already been compared */ if (IS_LEAF(n)) goto found; /* only record pn and cindex if we are going to be chopping * bits later. Otherwise we are just wasting cycles. */ if (index) { pn = n; cindex = index; } n = rcu_dereference(n->child[index]); if (unlikely(!n)) goto backtrace; } /* Step 2: Sort out leaves and begin backtracing for longest prefix */ for (;;) { /* record the pointer where our next node pointer is stored */ struct tnode __rcu **cptr = n->child; /* This test verifies that none of the bits that differ * between the key and the prefix exist in the region of * the lsb and higher in the prefix. */ if (unlikely(prefix_mismatch(key, n))) goto backtrace; /* exit out and process leaf */ if (unlikely(IS_LEAF(n))) break; /* Don't bother recording parent info. Since we are in * prefix match mode we will have to come back to wherever * we started this traversal anyway */ while ((n = rcu_dereference(*cptr)) == NULL) { backtrace: #ifdef CONFIG_IP_FIB_TRIE_STATS if (!n) this_cpu_inc(stats->null_node_hit); #endif /* If we are at cindex 0 there are no more bits for * us to strip at this level so we must ascend back * up one level to see if there are any more bits to * be stripped there. */ while (!cindex) { t_key pkey = pn->key; pn = node_parent_rcu(pn); if (unlikely(!pn)) return -EAGAIN; #ifdef CONFIG_IP_FIB_TRIE_STATS this_cpu_inc(stats->backtrack); #endif /* Get Child's index */ cindex = get_index(pkey, pn); } /* strip the least significant bit from the cindex */ cindex &= cindex - 1; /* grab pointer for next child node */ cptr = &pn->child[cindex]; } } found: /* Step 3: Process the leaf, if that fails fall back to backtracing */ hlist_for_each_entry_rcu(li, &n->list, hlist) { struct fib_alias *fa; if ((key ^ n->key) & li->mask_plen) continue; list_for_each_entry_rcu(fa, &li->falh, fa_list) { struct fib_info *fi = fa->fa_info; int nhsel, err; if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos) continue; if (fi->fib_dead) continue; if (fa->fa_info->fib_scope < flp->flowi4_scope) continue; fib_alias_accessed(fa); err = fib_props[fa->fa_type].error; if (unlikely(err < 0)) { #ifdef CONFIG_IP_FIB_TRIE_STATS this_cpu_inc(stats->semantic_match_passed); #endif return err; } if (fi->fib_flags & RTNH_F_DEAD) continue; for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) { const struct fib_nh *nh = &fi->fib_nh[nhsel]; if (nh->nh_flags & RTNH_F_DEAD) continue; if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif) continue; if (!(fib_flags & FIB_LOOKUP_NOREF)) atomic_inc(&fi->fib_clntref); res->prefixlen = li->plen; res->nh_sel = nhsel; res->type = fa->fa_type; res->scope = fi->fib_scope; res->fi = fi; res->table = tb; res->fa_head = &li->falh; #ifdef CONFIG_IP_FIB_TRIE_STATS this_cpu_inc(stats->semantic_match_passed); #endif return err; } } #ifdef CONFIG_IP_FIB_TRIE_STATS this_cpu_inc(stats->semantic_match_miss); #endif } goto backtrace; } EXPORT_SYMBOL_GPL(fib_table_lookup); /* * Remove the leaf and return parent. */ static void trie_leaf_remove(struct trie *t, struct tnode *l) { struct tnode *tp = node_parent(l); pr_debug("entering trie_leaf_remove(%p)\n", l); if (tp) { put_child(tp, get_index(l->key, tp), NULL); trie_rebalance(t, tp); } else { RCU_INIT_POINTER(t->trie, NULL); } node_free(l); } /* * Caller must hold RTNL. */ int fib_table_delete(struct fib_table *tb, struct fib_config *cfg) { struct trie *t = (struct trie *) tb->tb_data; u32 key, mask; int plen = cfg->fc_dst_len; u8 tos = cfg->fc_tos; struct fib_alias *fa, *fa_to_delete; struct list_head *fa_head; struct tnode *l; struct leaf_info *li; if (plen > 32) return -EINVAL; key = ntohl(cfg->fc_dst); mask = ntohl(inet_make_mask(plen)); if (key & ~mask) return -EINVAL; key = key & mask; l = fib_find_node(t, key); if (!l) return -ESRCH; li = find_leaf_info(l, plen); if (!li) return -ESRCH; fa_head = &li->falh; fa = fib_find_alias(fa_head, tos, 0); if (!fa) return -ESRCH; pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); fa_to_delete = NULL; fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list); list_for_each_entry_continue(fa, fa_head, fa_list) { struct fib_info *fi = fa->fa_info; if (fa->fa_tos != tos) break; if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && (cfg->fc_scope == RT_SCOPE_NOWHERE || fa->fa_info->fib_scope == cfg->fc_scope) && (!cfg->fc_prefsrc || fi->fib_prefsrc == cfg->fc_prefsrc) && (!cfg->fc_protocol || fi->fib_protocol == cfg->fc_protocol) && fib_nh_match(cfg, fi) == 0) { fa_to_delete = fa; break; } } if (!fa_to_delete) return -ESRCH; fa = fa_to_delete; rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id, &cfg->fc_nlinfo, 0); list_del_rcu(&fa->fa_list); if (!plen) tb->tb_num_default--; if (list_empty(fa_head)) { hlist_del_rcu(&li->hlist); free_leaf_info(li); } if (hlist_empty(&l->list)) trie_leaf_remove(t, l); if (fa->fa_state & FA_S_ACCESSED) rt_cache_flush(cfg->fc_nlinfo.nl_net); fib_release_info(fa->fa_info); alias_free_mem_rcu(fa); return 0; } static int trie_flush_list(struct list_head *head) { struct fib_alias *fa, *fa_node; int found = 0; list_for_each_entry_safe(fa, fa_node, head, fa_list) { struct fib_info *fi = fa->fa_info; if (fi && (fi->fib_flags & RTNH_F_DEAD)) { list_del_rcu(&fa->fa_list); fib_release_info(fa->fa_info); alias_free_mem_rcu(fa); found++; } } return found; } static int trie_flush_leaf(struct tnode *l) { int found = 0; struct hlist_head *lih = &l->list; struct hlist_node *tmp; struct leaf_info *li = NULL; hlist_for_each_entry_safe(li, tmp, lih, hlist) { found += trie_flush_list(&li->falh); if (list_empty(&li->falh)) { hlist_del_rcu(&li->hlist); free_leaf_info(li); } } return found; } /* * Scan for the next right leaf starting at node p->child[idx] * Since we have back pointer, no recursion necessary. */ static struct tnode *leaf_walk_rcu(struct tnode *p, struct tnode *c) { do { unsigned long idx = c ? idx = get_index(c->key, p) + 1 : 0; while (idx < tnode_child_length(p)) { c = tnode_get_child_rcu(p, idx++); if (!c) continue; if (IS_LEAF(c)) return c; /* Rescan start scanning in new node */ p = c; idx = 0; } /* Node empty, walk back up to parent */ c = p; } while ((p = node_parent_rcu(c)) != NULL); return NULL; /* Root of trie */ } static struct tnode *trie_firstleaf(struct trie *t) { struct tnode *n = rcu_dereference_rtnl(t->trie); if (!n) return NULL; if (IS_LEAF(n)) /* trie is just a leaf */ return n; return leaf_walk_rcu(n, NULL); } static struct tnode *trie_nextleaf(struct tnode *l) { struct tnode *p = node_parent_rcu(l); if (!p) return NULL; /* trie with just one leaf */ return leaf_walk_rcu(p, l); } static struct tnode *trie_leafindex(struct trie *t, int index) { struct tnode *l = trie_firstleaf(t); while (l && index-- > 0) l = trie_nextleaf(l); return l; } /* * Caller must hold RTNL. */ int fib_table_flush(struct fib_table *tb) { struct trie *t = (struct trie *) tb->tb_data; struct tnode *l, *ll = NULL; int found = 0; for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) { found += trie_flush_leaf(l); if (ll && hlist_empty(&ll->list)) trie_leaf_remove(t, ll); ll = l; } if (ll && hlist_empty(&ll->list)) trie_leaf_remove(t, ll); pr_debug("trie_flush found=%d\n", found); return found; } void fib_free_table(struct fib_table *tb) { #ifdef CONFIG_IP_FIB_TRIE_STATS struct trie *t = (struct trie *)tb->tb_data; free_percpu(t->stats); #endif /* CONFIG_IP_FIB_TRIE_STATS */ kfree(tb); } static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, struct fib_table *tb, struct sk_buff *skb, struct netlink_callback *cb) { int i, s_i; struct fib_alias *fa; __be32 xkey = htonl(key); s_i = cb->args[5]; i = 0; /* rcu_read_lock is hold by caller */ list_for_each_entry_rcu(fa, fah, fa_list) { if (i < s_i) { i++; continue; } if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, RTM_NEWROUTE, tb->tb_id, fa->fa_type, xkey, plen, fa->fa_tos, fa->fa_info, NLM_F_MULTI) < 0) { cb->args[5] = i; return -1; } i++; } cb->args[5] = i; return skb->len; } static int fn_trie_dump_leaf(struct tnode *l, struct fib_table *tb, struct sk_buff *skb, struct netlink_callback *cb) { struct leaf_info *li; int i, s_i; s_i = cb->args[4]; i = 0; /* rcu_read_lock is hold by caller */ hlist_for_each_entry_rcu(li, &l->list, hlist) { if (i < s_i) { i++; continue; } if (i > s_i) cb->args[5] = 0; if (list_empty(&li->falh)) continue; if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) { cb->args[4] = i; return -1; } i++; } cb->args[4] = i; return skb->len; } int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, struct netlink_callback *cb) { struct tnode *l; struct trie *t = (struct trie *) tb->tb_data; t_key key = cb->args[2]; int count = cb->args[3]; rcu_read_lock(); /* Dump starting at last key. * Note: 0.0.0.0/0 (ie default) is first key. */ if (count == 0) l = trie_firstleaf(t); else { /* Normally, continue from last key, but if that is missing * fallback to using slow rescan */ l = fib_find_node(t, key); if (!l) l = trie_leafindex(t, count); } while (l) { cb->args[2] = l->key; if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) { cb->args[3] = count; rcu_read_unlock(); return -1; } ++count; l = trie_nextleaf(l); memset(&cb->args[4], 0, sizeof(cb->args) - 4*sizeof(cb->args[0])); } cb->args[3] = count; rcu_read_unlock(); return skb->len; } void __init fib_trie_init(void) { fn_alias_kmem = kmem_cache_create("ip_fib_alias", sizeof(struct fib_alias), 0, SLAB_PANIC, NULL); trie_leaf_kmem = kmem_cache_create("ip_fib_trie", max(sizeof(struct tnode), sizeof(struct leaf_info)), 0, SLAB_PANIC, NULL); } struct fib_table *fib_trie_table(u32 id) { struct fib_table *tb; struct trie *t; tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie), GFP_KERNEL); if (tb == NULL) return NULL; tb->tb_id = id; tb->tb_default = -1; tb->tb_num_default = 0; t = (struct trie *) tb->tb_data; RCU_INIT_POINTER(t->trie, NULL); #ifdef CONFIG_IP_FIB_TRIE_STATS t->stats = alloc_percpu(struct trie_use_stats); if (!t->stats) { kfree(tb); tb = NULL; } #endif return tb; } #ifdef CONFIG_PROC_FS /* Depth first Trie walk iterator */ struct fib_trie_iter { struct seq_net_private p; struct fib_table *tb; struct tnode *tnode; unsigned int index; unsigned int depth; }; static struct tnode *fib_trie_get_next(struct fib_trie_iter *iter) { unsigned long cindex = iter->index; struct tnode *tn = iter->tnode; struct tnode *p; /* A single entry routing table */ if (!tn) return NULL; pr_debug("get_next iter={node=%p index=%d depth=%d}\n", iter->tnode, iter->index, iter->depth); rescan: while (cindex < tnode_child_length(tn)) { struct tnode *n = tnode_get_child_rcu(tn, cindex); if (n) { if (IS_LEAF(n)) { iter->tnode = tn; iter->index = cindex + 1; } else { /* push down one level */ iter->tnode = n; iter->index = 0; ++iter->depth; } return n; } ++cindex; } /* Current node exhausted, pop back up */ p = node_parent_rcu(tn); if (p) { cindex = get_index(tn->key, p) + 1; tn = p; --iter->depth; goto rescan; } /* got root? */ return NULL; } static struct tnode *fib_trie_get_first(struct fib_trie_iter *iter, struct trie *t) { struct tnode *n; if (!t) return NULL; n = rcu_dereference(t->trie); if (!n) return NULL; if (IS_TNODE(n)) { iter->tnode = n; iter->index = 0; iter->depth = 1; } else { iter->tnode = NULL; iter->index = 0; iter->depth = 0; } return n; } static void trie_collect_stats(struct trie *t, struct trie_stat *s) { struct tnode *n; struct fib_trie_iter iter; memset(s, 0, sizeof(*s)); rcu_read_lock(); for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { if (IS_LEAF(n)) { struct leaf_info *li; s->leaves++; s->totdepth += iter.depth; if (iter.depth > s->maxdepth) s->maxdepth = iter.depth; hlist_for_each_entry_rcu(li, &n->list, hlist) ++s->prefixes; } else { unsigned long i; s->tnodes++; if (n->bits < MAX_STAT_DEPTH) s->nodesizes[n->bits]++; for (i = 0; i < tnode_child_length(n); i++) { if (!rcu_access_pointer(n->child[i])) s->nullpointers++; } } } rcu_read_unlock(); } /* * This outputs /proc/net/fib_triestats */ static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) { unsigned int i, max, pointers, bytes, avdepth; if (stat->leaves) avdepth = stat->totdepth*100 / stat->leaves; else avdepth = 0; seq_printf(seq, "\tAver depth: %u.%02d\n", avdepth / 100, avdepth % 100); seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); seq_printf(seq, "\tLeaves: %u\n", stat->leaves); bytes = sizeof(struct tnode) * stat->leaves; seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); bytes += sizeof(struct leaf_info) * stat->prefixes; seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); bytes += sizeof(struct tnode) * stat->tnodes; max = MAX_STAT_DEPTH; while (max > 0 && stat->nodesizes[max-1] == 0) max--; pointers = 0; for (i = 1; i < max; i++) if (stat->nodesizes[i] != 0) { seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); pointers += (1<nodesizes[i]; } seq_putc(seq, '\n'); seq_printf(seq, "\tPointers: %u\n", pointers); bytes += sizeof(struct tnode *) * pointers; seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); } #ifdef CONFIG_IP_FIB_TRIE_STATS static void trie_show_usage(struct seq_file *seq, const struct trie_use_stats __percpu *stats) { struct trie_use_stats s = { 0 }; int cpu; /* loop through all of the CPUs and gather up the stats */ for_each_possible_cpu(cpu) { const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu); s.gets += pcpu->gets; s.backtrack += pcpu->backtrack; s.semantic_match_passed += pcpu->semantic_match_passed; s.semantic_match_miss += pcpu->semantic_match_miss; s.null_node_hit += pcpu->null_node_hit; s.resize_node_skipped += pcpu->resize_node_skipped; } seq_printf(seq, "\nCounters:\n---------\n"); seq_printf(seq, "gets = %u\n", s.gets); seq_printf(seq, "backtracks = %u\n", s.backtrack); seq_printf(seq, "semantic match passed = %u\n", s.semantic_match_passed); seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss); seq_printf(seq, "null node hit= %u\n", s.null_node_hit); seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped); } #endif /* CONFIG_IP_FIB_TRIE_STATS */ static void fib_table_print(struct seq_file *seq, struct fib_table *tb) { if (tb->tb_id == RT_TABLE_LOCAL) seq_puts(seq, "Local:\n"); else if (tb->tb_id == RT_TABLE_MAIN) seq_puts(seq, "Main:\n"); else seq_printf(seq, "Id %d:\n", tb->tb_id); } static int fib_triestat_seq_show(struct seq_file *seq, void *v) { struct net *net = (struct net *)seq->private; unsigned int h; seq_printf(seq, "Basic info: size of leaf:" " %Zd bytes, size of tnode: %Zd bytes.\n", sizeof(struct tnode), sizeof(struct tnode)); for (h = 0; h < FIB_TABLE_HASHSZ; h++) { struct hlist_head *head = &net->ipv4.fib_table_hash[h]; struct fib_table *tb; hlist_for_each_entry_rcu(tb, head, tb_hlist) { struct trie *t = (struct trie *) tb->tb_data; struct trie_stat stat; if (!t) continue; fib_table_print(seq, tb); trie_collect_stats(t, &stat); trie_show_stats(seq, &stat); #ifdef CONFIG_IP_FIB_TRIE_STATS trie_show_usage(seq, t->stats); #endif } } return 0; } static int fib_triestat_seq_open(struct inode *inode, struct file *file) { return single_open_net(inode, file, fib_triestat_seq_show); } static const struct file_operations fib_triestat_fops = { .owner = THIS_MODULE, .open = fib_triestat_seq_open, .read = seq_read, .llseek = seq_lseek, .release = single_release_net, }; static struct tnode *fib_trie_get_idx(struct seq_file *seq, loff_t pos) { struct fib_trie_iter *iter = seq->private; struct net *net = seq_file_net(seq); loff_t idx = 0; unsigned int h; for (h = 0; h < FIB_TABLE_HASHSZ; h++) { struct hlist_head *head = &net->ipv4.fib_table_hash[h]; struct fib_table *tb; hlist_for_each_entry_rcu(tb, head, tb_hlist) { struct tnode *n; for (n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); n; n = fib_trie_get_next(iter)) if (pos == idx++) { iter->tb = tb; return n; } } } return NULL; } static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) __acquires(RCU) { rcu_read_lock(); return fib_trie_get_idx(seq, *pos); } static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct fib_trie_iter *iter = seq->private; struct net *net = seq_file_net(seq); struct fib_table *tb = iter->tb; struct hlist_node *tb_node; unsigned int h; struct tnode *n; ++*pos; /* next node in same table */ n = fib_trie_get_next(iter); if (n) return n; /* walk rest of this hash chain */ h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { tb = hlist_entry(tb_node, struct fib_table, tb_hlist); n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); if (n) goto found; } /* new hash chain */ while (++h < FIB_TABLE_HASHSZ) { struct hlist_head *head = &net->ipv4.fib_table_hash[h]; hlist_for_each_entry_rcu(tb, head, tb_hlist) { n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); if (n) goto found; } } return NULL; found: iter->tb = tb; return n; } static void fib_trie_seq_stop(struct seq_file *seq, void *v) __releases(RCU) { rcu_read_unlock(); } static void seq_indent(struct seq_file *seq, int n) { while (n-- > 0) seq_puts(seq, " "); } static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) { switch (s) { case RT_SCOPE_UNIVERSE: return "universe"; case RT_SCOPE_SITE: return "site"; case RT_SCOPE_LINK: return "link"; case RT_SCOPE_HOST: return "host"; case RT_SCOPE_NOWHERE: return "nowhere"; default: snprintf(buf, len, "scope=%d", s); return buf; } } static const char *const rtn_type_names[__RTN_MAX] = { [RTN_UNSPEC] = "UNSPEC", [RTN_UNICAST] = "UNICAST", [RTN_LOCAL] = "LOCAL", [RTN_BROADCAST] = "BROADCAST", [RTN_ANYCAST] = "ANYCAST", [RTN_MULTICAST] = "MULTICAST", [RTN_BLACKHOLE] = "BLACKHOLE", [RTN_UNREACHABLE] = "UNREACHABLE", [RTN_PROHIBIT] = "PROHIBIT", [RTN_THROW] = "THROW", [RTN_NAT] = "NAT", [RTN_XRESOLVE] = "XRESOLVE", }; static inline const char *rtn_type(char *buf, size_t len, unsigned int t) { if (t < __RTN_MAX && rtn_type_names[t]) return rtn_type_names[t]; snprintf(buf, len, "type %u", t); return buf; } /* Pretty print the trie */ static int fib_trie_seq_show(struct seq_file *seq, void *v) { const struct fib_trie_iter *iter = seq->private; struct tnode *n = v; if (!node_parent_rcu(n)) fib_table_print(seq, iter->tb); if (IS_TNODE(n)) { __be32 prf = htonl(n->key); seq_indent(seq, iter->depth-1); seq_printf(seq, " +-- %pI4/%zu %u %u %u\n", &prf, KEYLENGTH - n->pos - n->bits, n->bits, n->full_children, n->empty_children); } else { struct leaf_info *li; __be32 val = htonl(n->key); seq_indent(seq, iter->depth); seq_printf(seq, " |-- %pI4\n", &val); hlist_for_each_entry_rcu(li, &n->list, hlist) { struct fib_alias *fa; list_for_each_entry_rcu(fa, &li->falh, fa_list) { char buf1[32], buf2[32]; seq_indent(seq, iter->depth+1); seq_printf(seq, " /%d %s %s", li->plen, rtn_scope(buf1, sizeof(buf1), fa->fa_info->fib_scope), rtn_type(buf2, sizeof(buf2), fa->fa_type)); if (fa->fa_tos) seq_printf(seq, " tos=%d", fa->fa_tos); seq_putc(seq, '\n'); } } } return 0; } static const struct seq_operations fib_trie_seq_ops = { .start = fib_trie_seq_start, .next = fib_trie_seq_next, .stop = fib_trie_seq_stop, .show = fib_trie_seq_show, }; static int fib_trie_seq_open(struct inode *inode, struct file *file) { return seq_open_net(inode, file, &fib_trie_seq_ops, sizeof(struct fib_trie_iter)); } static const struct file_operations fib_trie_fops = { .owner = THIS_MODULE, .open = fib_trie_seq_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release_net, }; struct fib_route_iter { struct seq_net_private p; struct trie *main_trie; loff_t pos; t_key key; }; static struct tnode *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos) { struct tnode *l = NULL; struct trie *t = iter->main_trie; /* use cache location of last found key */ if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key))) pos -= iter->pos; else { iter->pos = 0; l = trie_firstleaf(t); } while (l && pos-- > 0) { iter->pos++; l = trie_nextleaf(l); } if (l) iter->key = pos; /* remember it */ else iter->pos = 0; /* forget it */ return l; } static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) __acquires(RCU) { struct fib_route_iter *iter = seq->private; struct fib_table *tb; rcu_read_lock(); tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); if (!tb) return NULL; iter->main_trie = (struct trie *) tb->tb_data; if (*pos == 0) return SEQ_START_TOKEN; else return fib_route_get_idx(iter, *pos - 1); } static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct fib_route_iter *iter = seq->private; struct tnode *l = v; ++*pos; if (v == SEQ_START_TOKEN) { iter->pos = 0; l = trie_firstleaf(iter->main_trie); } else { iter->pos++; l = trie_nextleaf(l); } if (l) iter->key = l->key; else iter->pos = 0; return l; } static void fib_route_seq_stop(struct seq_file *seq, void *v) __releases(RCU) { rcu_read_unlock(); } static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi) { unsigned int flags = 0; if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) flags = RTF_REJECT; if (fi && fi->fib_nh->nh_gw) flags |= RTF_GATEWAY; if (mask == htonl(0xFFFFFFFF)) flags |= RTF_HOST; flags |= RTF_UP; return flags; } /* * This outputs /proc/net/route. * The format of the file is not supposed to be changed * and needs to be same as fib_hash output to avoid breaking * legacy utilities */ static int fib_route_seq_show(struct seq_file *seq, void *v) { struct tnode *l = v; struct leaf_info *li; if (v == SEQ_START_TOKEN) { seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" "\tWindow\tIRTT"); return 0; } hlist_for_each_entry_rcu(li, &l->list, hlist) { struct fib_alias *fa; __be32 mask, prefix; mask = inet_make_mask(li->plen); prefix = htonl(l->key); list_for_each_entry_rcu(fa, &li->falh, fa_list) { const struct fib_info *fi = fa->fa_info; unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); if (fa->fa_type == RTN_BROADCAST || fa->fa_type == RTN_MULTICAST) continue; seq_setwidth(seq, 127); if (fi) seq_printf(seq, "%s\t%08X\t%08X\t%04X\t%d\t%u\t" "%d\t%08X\t%d\t%u\t%u", fi->fib_dev ? fi->fib_dev->name : "*", prefix, fi->fib_nh->nh_gw, flags, 0, 0, fi->fib_priority, mask, (fi->fib_advmss ? fi->fib_advmss + 40 : 0), fi->fib_window, fi->fib_rtt >> 3); else seq_printf(seq, "*\t%08X\t%08X\t%04X\t%d\t%u\t" "%d\t%08X\t%d\t%u\t%u", prefix, 0, flags, 0, 0, 0, mask, 0, 0, 0); seq_pad(seq, '\n'); } } return 0; } static const struct seq_operations fib_route_seq_ops = { .start = fib_route_seq_start, .next = fib_route_seq_next, .stop = fib_route_seq_stop, .show = fib_route_seq_show, }; static int fib_route_seq_open(struct inode *inode, struct file *file) { return seq_open_net(inode, file, &fib_route_seq_ops, sizeof(struct fib_route_iter)); } static const struct file_operations fib_route_fops = { .owner = THIS_MODULE, .open = fib_route_seq_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release_net, }; int __net_init fib_proc_init(struct net *net) { if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops)) goto out1; if (!proc_create("fib_triestat", S_IRUGO, net->proc_net, &fib_triestat_fops)) goto out2; if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops)) goto out3; return 0; out3: remove_proc_entry("fib_triestat", net->proc_net); out2: remove_proc_entry("fib_trie", net->proc_net); out1: return -ENOMEM; } void __net_exit fib_proc_exit(struct net *net) { remove_proc_entry("fib_trie", net->proc_net); remove_proc_entry("fib_triestat", net->proc_net); remove_proc_entry("route", net->proc_net); } #endif /* CONFIG_PROC_FS */