/* * This file is part of the Chelsio T6 Crypto driver for Linux. * * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Written and Maintained by: * Manoj Malviya (manojmalviya@chelsio.com) * Atul Gupta (atul.gupta@chelsio.com) * Jitendra Lulla (jlulla@chelsio.com) * Yeshaswi M R Gowda (yeshaswi@chelsio.com) * Harsh Jain (harsh@chelsio.com) */ #define pr_fmt(fmt) "chcr:" fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "t4fw_api.h" #include "t4_msg.h" #include "chcr_core.h" #include "chcr_algo.h" #include "chcr_crypto.h" #define IV AES_BLOCK_SIZE static unsigned int sgl_ent_len[] = { 0, 0, 16, 24, 40, 48, 64, 72, 88, 96, 112, 120, 136, 144, 160, 168, 184, 192, 208, 216, 232, 240, 256, 264, 280, 288, 304, 312, 328, 336, 352, 360, 376 }; static unsigned int dsgl_ent_len[] = { 0, 32, 32, 48, 48, 64, 64, 80, 80, 112, 112, 128, 128, 144, 144, 160, 160, 192, 192, 208, 208, 224, 224, 240, 240, 272, 272, 288, 288, 304, 304, 320, 320 }; static u32 round_constant[11] = { 0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000, 0x20000000, 0x40000000, 0x80000000, 0x1B000000, 0x36000000, 0x6C000000 }; static int chcr_handle_cipher_resp(struct skcipher_request *req, unsigned char *input, int err); static inline struct chcr_aead_ctx *AEAD_CTX(struct chcr_context *ctx) { return ctx->crypto_ctx->aeadctx; } static inline struct ablk_ctx *ABLK_CTX(struct chcr_context *ctx) { return ctx->crypto_ctx->ablkctx; } static inline struct hmac_ctx *HMAC_CTX(struct chcr_context *ctx) { return ctx->crypto_ctx->hmacctx; } static inline struct chcr_gcm_ctx *GCM_CTX(struct chcr_aead_ctx *gctx) { return gctx->ctx->gcm; } static inline struct chcr_authenc_ctx *AUTHENC_CTX(struct chcr_aead_ctx *gctx) { return gctx->ctx->authenc; } static inline struct uld_ctx *ULD_CTX(struct chcr_context *ctx) { return container_of(ctx->dev, struct uld_ctx, dev); } static inline int is_ofld_imm(const struct sk_buff *skb) { return (skb->len <= SGE_MAX_WR_LEN); } static inline void chcr_init_hctx_per_wr(struct chcr_ahash_req_ctx *reqctx) { memset(&reqctx->hctx_wr, 0, sizeof(struct chcr_hctx_per_wr)); } static int sg_nents_xlen(struct scatterlist *sg, unsigned int reqlen, unsigned int entlen, unsigned int skip) { int nents = 0; unsigned int less; unsigned int skip_len = 0; while (sg && skip) { if (sg_dma_len(sg) <= skip) { skip -= sg_dma_len(sg); skip_len = 0; sg = sg_next(sg); } else { skip_len = skip; skip = 0; } } while (sg && reqlen) { less = min(reqlen, sg_dma_len(sg) - skip_len); nents += DIV_ROUND_UP(less, entlen); reqlen -= less; skip_len = 0; sg = sg_next(sg); } return nents; } static inline int get_aead_subtype(struct crypto_aead *aead) { struct aead_alg *alg = crypto_aead_alg(aead); struct chcr_alg_template *chcr_crypto_alg = container_of(alg, struct chcr_alg_template, alg.aead); return chcr_crypto_alg->type & CRYPTO_ALG_SUB_TYPE_MASK; } void chcr_verify_tag(struct aead_request *req, u8 *input, int *err) { u8 temp[SHA512_DIGEST_SIZE]; struct crypto_aead *tfm = crypto_aead_reqtfm(req); int authsize = crypto_aead_authsize(tfm); struct cpl_fw6_pld *fw6_pld; int cmp = 0; fw6_pld = (struct cpl_fw6_pld *)input; if ((get_aead_subtype(tfm) == CRYPTO_ALG_SUB_TYPE_AEAD_RFC4106) || (get_aead_subtype(tfm) == CRYPTO_ALG_SUB_TYPE_AEAD_GCM)) { cmp = crypto_memneq(&fw6_pld->data[2], (fw6_pld + 1), authsize); } else { sg_pcopy_to_buffer(req->src, sg_nents(req->src), temp, authsize, req->assoclen + req->cryptlen - authsize); cmp = crypto_memneq(temp, (fw6_pld + 1), authsize); } if (cmp) *err = -EBADMSG; else *err = 0; } static int chcr_inc_wrcount(struct chcr_dev *dev) { if (dev->state == CHCR_DETACH) return 1; atomic_inc(&dev->inflight); return 0; } static inline void chcr_dec_wrcount(struct chcr_dev *dev) { atomic_dec(&dev->inflight); } static inline int chcr_handle_aead_resp(struct aead_request *req, unsigned char *input, int err) { struct chcr_aead_reqctx *reqctx = aead_request_ctx(req); struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct chcr_dev *dev = a_ctx(tfm)->dev; chcr_aead_common_exit(req); if (reqctx->verify == VERIFY_SW) { chcr_verify_tag(req, input, &err); reqctx->verify = VERIFY_HW; } chcr_dec_wrcount(dev); req->base.complete(&req->base, err); return err; } static void get_aes_decrypt_key(unsigned char *dec_key, const unsigned char *key, unsigned int keylength) { u32 temp; u32 w_ring[MAX_NK]; int i, j, k; u8 nr, nk; switch (keylength) { case AES_KEYLENGTH_128BIT: nk = KEYLENGTH_4BYTES; nr = NUMBER_OF_ROUNDS_10; break; case AES_KEYLENGTH_192BIT: nk = KEYLENGTH_6BYTES; nr = NUMBER_OF_ROUNDS_12; break; case AES_KEYLENGTH_256BIT: nk = KEYLENGTH_8BYTES; nr = NUMBER_OF_ROUNDS_14; break; default: return; } for (i = 0; i < nk; i++) w_ring[i] = get_unaligned_be32(&key[i * 4]); i = 0; temp = w_ring[nk - 1]; while (i + nk < (nr + 1) * 4) { if (!(i % nk)) { /* RotWord(temp) */ temp = (temp << 8) | (temp >> 24); temp = aes_ks_subword(temp); temp ^= round_constant[i / nk]; } else if (nk == 8 && (i % 4 == 0)) { temp = aes_ks_subword(temp); } w_ring[i % nk] ^= temp; temp = w_ring[i % nk]; i++; } i--; for (k = 0, j = i % nk; k < nk; k++) { put_unaligned_be32(w_ring[j], &dec_key[k * 4]); j--; if (j < 0) j += nk; } } static struct crypto_shash *chcr_alloc_shash(unsigned int ds) { struct crypto_shash *base_hash = ERR_PTR(-EINVAL); switch (ds) { case SHA1_DIGEST_SIZE: base_hash = crypto_alloc_shash("sha1", 0, 0); break; case SHA224_DIGEST_SIZE: base_hash = crypto_alloc_shash("sha224", 0, 0); break; case SHA256_DIGEST_SIZE: base_hash = crypto_alloc_shash("sha256", 0, 0); break; case SHA384_DIGEST_SIZE: base_hash = crypto_alloc_shash("sha384", 0, 0); break; case SHA512_DIGEST_SIZE: base_hash = crypto_alloc_shash("sha512", 0, 0); break; } return base_hash; } static int chcr_compute_partial_hash(struct shash_desc *desc, char *iopad, char *result_hash, int digest_size) { struct sha1_state sha1_st; struct sha256_state sha256_st; struct sha512_state sha512_st; int error; if (digest_size == SHA1_DIGEST_SIZE) { error = crypto_shash_init(desc) ?: crypto_shash_update(desc, iopad, SHA1_BLOCK_SIZE) ?: crypto_shash_export(desc, (void *)&sha1_st); memcpy(result_hash, sha1_st.state, SHA1_DIGEST_SIZE); } else if (digest_size == SHA224_DIGEST_SIZE) { error = crypto_shash_init(desc) ?: crypto_shash_update(desc, iopad, SHA256_BLOCK_SIZE) ?: crypto_shash_export(desc, (void *)&sha256_st); memcpy(result_hash, sha256_st.state, SHA256_DIGEST_SIZE); } else if (digest_size == SHA256_DIGEST_SIZE) { error = crypto_shash_init(desc) ?: crypto_shash_update(desc, iopad, SHA256_BLOCK_SIZE) ?: crypto_shash_export(desc, (void *)&sha256_st); memcpy(result_hash, sha256_st.state, SHA256_DIGEST_SIZE); } else if (digest_size == SHA384_DIGEST_SIZE) { error = crypto_shash_init(desc) ?: crypto_shash_update(desc, iopad, SHA512_BLOCK_SIZE) ?: crypto_shash_export(desc, (void *)&sha512_st); memcpy(result_hash, sha512_st.state, SHA512_DIGEST_SIZE); } else if (digest_size == SHA512_DIGEST_SIZE) { error = crypto_shash_init(desc) ?: crypto_shash_update(desc, iopad, SHA512_BLOCK_SIZE) ?: crypto_shash_export(desc, (void *)&sha512_st); memcpy(result_hash, sha512_st.state, SHA512_DIGEST_SIZE); } else { error = -EINVAL; pr_err("Unknown digest size %d\n", digest_size); } return error; } static void chcr_change_order(char *buf, int ds) { int i; if (ds == SHA512_DIGEST_SIZE) { for (i = 0; i < (ds / sizeof(u64)); i++) *((__be64 *)buf + i) = cpu_to_be64(*((u64 *)buf + i)); } else { for (i = 0; i < (ds / sizeof(u32)); i++) *((__be32 *)buf + i) = cpu_to_be32(*((u32 *)buf + i)); } } static inline int is_hmac(struct crypto_tfm *tfm) { struct crypto_alg *alg = tfm->__crt_alg; struct chcr_alg_template *chcr_crypto_alg = container_of(__crypto_ahash_alg(alg), struct chcr_alg_template, alg.hash); if (chcr_crypto_alg->type == CRYPTO_ALG_TYPE_HMAC) return 1; return 0; } static inline void dsgl_walk_init(struct dsgl_walk *walk, struct cpl_rx_phys_dsgl *dsgl) { walk->dsgl = dsgl; walk->nents = 0; walk->to = (struct phys_sge_pairs *)(dsgl + 1); } static inline void dsgl_walk_end(struct dsgl_walk *walk, unsigned short qid, int pci_chan_id) { struct cpl_rx_phys_dsgl *phys_cpl; phys_cpl = walk->dsgl; phys_cpl->op_to_tid = htonl(CPL_RX_PHYS_DSGL_OPCODE_V(CPL_RX_PHYS_DSGL) | CPL_RX_PHYS_DSGL_ISRDMA_V(0)); phys_cpl->pcirlxorder_to_noofsgentr = htonl(CPL_RX_PHYS_DSGL_PCIRLXORDER_V(0) | CPL_RX_PHYS_DSGL_PCINOSNOOP_V(0) | CPL_RX_PHYS_DSGL_PCITPHNTENB_V(0) | CPL_RX_PHYS_DSGL_PCITPHNT_V(0) | CPL_RX_PHYS_DSGL_DCAID_V(0) | CPL_RX_PHYS_DSGL_NOOFSGENTR_V(walk->nents)); phys_cpl->rss_hdr_int.opcode = CPL_RX_PHYS_ADDR; phys_cpl->rss_hdr_int.qid = htons(qid); phys_cpl->rss_hdr_int.hash_val = 0; phys_cpl->rss_hdr_int.channel = pci_chan_id; } static inline void dsgl_walk_add_page(struct dsgl_walk *walk, size_t size, dma_addr_t addr) { int j; if (!size) return; j = walk->nents; walk->to->len[j % 8] = htons(size); walk->to->addr[j % 8] = cpu_to_be64(addr); j++; if ((j % 8) == 0) walk->to++; walk->nents = j; } static void dsgl_walk_add_sg(struct dsgl_walk *walk, struct scatterlist *sg, unsigned int slen, unsigned int skip) { int skip_len = 0; unsigned int left_size = slen, len = 0; unsigned int j = walk->nents; int offset, ent_len; if (!slen) return; while (sg && skip) { if (sg_dma_len(sg) <= skip) { skip -= sg_dma_len(sg); skip_len = 0; sg = sg_next(sg); } else { skip_len = skip; skip = 0; } } while (left_size && sg) { len = min_t(u32, left_size, sg_dma_len(sg) - skip_len); offset = 0; while (len) { ent_len = min_t(u32, len, CHCR_DST_SG_SIZE); walk->to->len[j % 8] = htons(ent_len); walk->to->addr[j % 8] = cpu_to_be64(sg_dma_address(sg) + offset + skip_len); offset += ent_len; len -= ent_len; j++; if ((j % 8) == 0) walk->to++; } walk->last_sg = sg; walk->last_sg_len = min_t(u32, left_size, sg_dma_len(sg) - skip_len) + skip_len; left_size -= min_t(u32, left_size, sg_dma_len(sg) - skip_len); skip_len = 0; sg = sg_next(sg); } walk->nents = j; } static inline void ulptx_walk_init(struct ulptx_walk *walk, struct ulptx_sgl *ulp) { walk->sgl = ulp; walk->nents = 0; walk->pair_idx = 0; walk->pair = ulp->sge; walk->last_sg = NULL; walk->last_sg_len = 0; } static inline void ulptx_walk_end(struct ulptx_walk *walk) { walk->sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) | ULPTX_NSGE_V(walk->nents)); } static inline void ulptx_walk_add_page(struct ulptx_walk *walk, size_t size, dma_addr_t addr) { if (!size) return; if (walk->nents == 0) { walk->sgl->len0 = cpu_to_be32(size); walk->sgl->addr0 = cpu_to_be64(addr); } else { walk->pair->addr[walk->pair_idx] = cpu_to_be64(addr); walk->pair->len[walk->pair_idx] = cpu_to_be32(size); walk->pair_idx = !walk->pair_idx; if (!walk->pair_idx) walk->pair++; } walk->nents++; } static void ulptx_walk_add_sg(struct ulptx_walk *walk, struct scatterlist *sg, unsigned int len, unsigned int skip) { int small; int skip_len = 0; unsigned int sgmin; if (!len) return; while (sg && skip) { if (sg_dma_len(sg) <= skip) { skip -= sg_dma_len(sg); skip_len = 0; sg = sg_next(sg); } else { skip_len = skip; skip = 0; } } WARN(!sg, "SG should not be null here\n"); if (sg && (walk->nents == 0)) { small = min_t(unsigned int, sg_dma_len(sg) - skip_len, len); sgmin = min_t(unsigned int, small, CHCR_SRC_SG_SIZE); walk->sgl->len0 = cpu_to_be32(sgmin); walk->sgl->addr0 = cpu_to_be64(sg_dma_address(sg) + skip_len); walk->nents++; len -= sgmin; walk->last_sg = sg; walk->last_sg_len = sgmin + skip_len; skip_len += sgmin; if (sg_dma_len(sg) == skip_len) { sg = sg_next(sg); skip_len = 0; } } while (sg && len) { small = min(sg_dma_len(sg) - skip_len, len); sgmin = min_t(unsigned int, small, CHCR_SRC_SG_SIZE); walk->pair->len[walk->pair_idx] = cpu_to_be32(sgmin); walk->pair->addr[walk->pair_idx] = cpu_to_be64(sg_dma_address(sg) + skip_len); walk->pair_idx = !walk->pair_idx; walk->nents++; if (!walk->pair_idx) walk->pair++; len -= sgmin; skip_len += sgmin; walk->last_sg = sg; walk->last_sg_len = skip_len; if (sg_dma_len(sg) == skip_len) { sg = sg_next(sg); skip_len = 0; } } } static inline int get_cryptoalg_subtype(struct crypto_skcipher *tfm) { struct skcipher_alg *alg = crypto_skcipher_alg(tfm); struct chcr_alg_template *chcr_crypto_alg = container_of(alg, struct chcr_alg_template, alg.skcipher); return chcr_crypto_alg->type & CRYPTO_ALG_SUB_TYPE_MASK; } static int cxgb4_is_crypto_q_full(struct net_device *dev, unsigned int idx) { struct adapter *adap = netdev2adap(dev); struct sge_uld_txq_info *txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO]; struct sge_uld_txq *txq; int ret = 0; local_bh_disable(); txq = &txq_info->uldtxq[idx]; spin_lock(&txq->sendq.lock); if (txq->full) ret = -1; spin_unlock(&txq->sendq.lock); local_bh_enable(); return ret; } static int generate_copy_rrkey(struct ablk_ctx *ablkctx, struct _key_ctx *key_ctx) { if (ablkctx->ciph_mode == CHCR_SCMD_CIPHER_MODE_AES_CBC) { memcpy(key_ctx->key, ablkctx->rrkey, ablkctx->enckey_len); } else { memcpy(key_ctx->key, ablkctx->key + (ablkctx->enckey_len >> 1), ablkctx->enckey_len >> 1); memcpy(key_ctx->key + (ablkctx->enckey_len >> 1), ablkctx->rrkey, ablkctx->enckey_len >> 1); } return 0; } static int chcr_hash_ent_in_wr(struct scatterlist *src, unsigned int minsg, unsigned int space, unsigned int srcskip) { int srclen = 0; int srcsg = minsg; int soffset = 0, sless; if (sg_dma_len(src) == srcskip) { src = sg_next(src); srcskip = 0; } while (src && space > (sgl_ent_len[srcsg + 1])) { sless = min_t(unsigned int, sg_dma_len(src) - soffset - srcskip, CHCR_SRC_SG_SIZE); srclen += sless; soffset += sless; srcsg++; if (sg_dma_len(src) == (soffset + srcskip)) { src = sg_next(src); soffset = 0; srcskip = 0; } } return srclen; } static int chcr_sg_ent_in_wr(struct scatterlist *src, struct scatterlist *dst, unsigned int minsg, unsigned int space, unsigned int srcskip, unsigned int dstskip) { int srclen = 0, dstlen = 0; int srcsg = minsg, dstsg = minsg; int offset = 0, soffset = 0, less, sless = 0; if (sg_dma_len(src) == srcskip) { src = sg_next(src); srcskip = 0; } if (sg_dma_len(dst) == dstskip) { dst = sg_next(dst); dstskip = 0; } while (src && dst && space > (sgl_ent_len[srcsg + 1] + dsgl_ent_len[dstsg])) { sless = min_t(unsigned int, sg_dma_len(src) - srcskip - soffset, CHCR_SRC_SG_SIZE); srclen += sless; srcsg++; offset = 0; while (dst && ((dstsg + 1) <= MAX_DSGL_ENT) && space > (sgl_ent_len[srcsg] + dsgl_ent_len[dstsg + 1])) { if (srclen <= dstlen) break; less = min_t(unsigned int, sg_dma_len(dst) - offset - dstskip, CHCR_DST_SG_SIZE); dstlen += less; offset += less; if ((offset + dstskip) == sg_dma_len(dst)) { dst = sg_next(dst); offset = 0; } dstsg++; dstskip = 0; } soffset += sless; if ((soffset + srcskip) == sg_dma_len(src)) { src = sg_next(src); srcskip = 0; soffset = 0; } } return min(srclen, dstlen); } static int chcr_cipher_fallback(struct crypto_sync_skcipher *cipher, u32 flags, struct scatterlist *src, struct scatterlist *dst, unsigned int nbytes, u8 *iv, unsigned short op_type) { int err; SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, cipher); skcipher_request_set_sync_tfm(subreq, cipher); skcipher_request_set_callback(subreq, flags, NULL, NULL); skcipher_request_set_crypt(subreq, src, dst, nbytes, iv); err = op_type ? crypto_skcipher_decrypt(subreq) : crypto_skcipher_encrypt(subreq); skcipher_request_zero(subreq); return err; } static inline int get_qidxs(struct crypto_async_request *req, unsigned int *txqidx, unsigned int *rxqidx) { struct crypto_tfm *tfm = req->tfm; int ret = 0; switch (tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK) { case CRYPTO_ALG_TYPE_AEAD: { struct aead_request *aead_req = container_of(req, struct aead_request, base); struct chcr_aead_reqctx *reqctx = aead_request_ctx(aead_req); *txqidx = reqctx->txqidx; *rxqidx = reqctx->rxqidx; break; } case CRYPTO_ALG_TYPE_SKCIPHER: { struct skcipher_request *sk_req = container_of(req, struct skcipher_request, base); struct chcr_skcipher_req_ctx *reqctx = skcipher_request_ctx(sk_req); *txqidx = reqctx->txqidx; *rxqidx = reqctx->rxqidx; break; } case CRYPTO_ALG_TYPE_AHASH: { struct ahash_request *ahash_req = container_of(req, struct ahash_request, base); struct chcr_ahash_req_ctx *reqctx = ahash_request_ctx(ahash_req); *txqidx = reqctx->txqidx; *rxqidx = reqctx->rxqidx; break; } default: ret = -EINVAL; /* should never get here */ BUG(); break; } return ret; } static inline void create_wreq(struct chcr_context *ctx, struct chcr_wr *chcr_req, struct crypto_async_request *req, unsigned int imm, int hash_sz, unsigned int len16, unsigned int sc_len, unsigned int lcb) { struct uld_ctx *u_ctx = ULD_CTX(ctx); unsigned int tx_channel_id, rx_channel_id; unsigned int txqidx = 0, rxqidx = 0; unsigned int qid, fid; get_qidxs(req, &txqidx, &rxqidx); qid = u_ctx->lldi.rxq_ids[rxqidx]; fid = u_ctx->lldi.rxq_ids[0]; tx_channel_id = txqidx / ctx->txq_perchan; rx_channel_id = rxqidx / ctx->rxq_perchan; chcr_req->wreq.op_to_cctx_size = FILL_WR_OP_CCTX_SIZE; chcr_req->wreq.pld_size_hash_size = htonl(FW_CRYPTO_LOOKASIDE_WR_HASH_SIZE_V(hash_sz)); chcr_req->wreq.len16_pkd = htonl(FW_CRYPTO_LOOKASIDE_WR_LEN16_V(DIV_ROUND_UP(len16, 16))); chcr_req->wreq.cookie = cpu_to_be64((uintptr_t)req); chcr_req->wreq.rx_chid_to_rx_q_id = FILL_WR_RX_Q_ID(rx_channel_id, qid, !!lcb, txqidx); chcr_req->ulptx.cmd_dest = FILL_ULPTX_CMD_DEST(tx_channel_id, fid); chcr_req->ulptx.len = htonl((DIV_ROUND_UP(len16, 16) - ((sizeof(chcr_req->wreq)) >> 4))); chcr_req->sc_imm.cmd_more = FILL_CMD_MORE(!imm); chcr_req->sc_imm.len = cpu_to_be32(sizeof(struct cpl_tx_sec_pdu) + sizeof(chcr_req->key_ctx) + sc_len); } /** * create_cipher_wr - form the WR for cipher operations * @req: cipher req. * @ctx: crypto driver context of the request. * @qid: ingress qid where response of this WR should be received. * @op_type: encryption or decryption */ static struct sk_buff *create_cipher_wr(struct cipher_wr_param *wrparam) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(wrparam->req); struct chcr_context *ctx = c_ctx(tfm); struct ablk_ctx *ablkctx = ABLK_CTX(ctx); struct sk_buff *skb = NULL; struct chcr_wr *chcr_req; struct cpl_rx_phys_dsgl *phys_cpl; struct ulptx_sgl *ulptx; struct chcr_skcipher_req_ctx *reqctx = skcipher_request_ctx(wrparam->req); unsigned int temp = 0, transhdr_len, dst_size; int error; int nents; unsigned int kctx_len; gfp_t flags = wrparam->req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL : GFP_ATOMIC; struct adapter *adap = padap(ctx->dev); unsigned int rx_channel_id = reqctx->rxqidx / ctx->rxq_perchan; nents = sg_nents_xlen(reqctx->dstsg, wrparam->bytes, CHCR_DST_SG_SIZE, reqctx->dst_ofst); dst_size = get_space_for_phys_dsgl(nents); kctx_len = roundup(ablkctx->enckey_len, 16); transhdr_len = CIPHER_TRANSHDR_SIZE(kctx_len, dst_size); nents = sg_nents_xlen(reqctx->srcsg, wrparam->bytes, CHCR_SRC_SG_SIZE, reqctx->src_ofst); temp = reqctx->imm ? roundup(wrparam->bytes, 16) : (sgl_len(nents) * 8); transhdr_len += temp; transhdr_len = roundup(transhdr_len, 16); skb = alloc_skb(SGE_MAX_WR_LEN, flags); if (!skb) { error = -ENOMEM; goto err; } chcr_req = __skb_put_zero(skb, transhdr_len); chcr_req->sec_cpl.op_ivinsrtofst = FILL_SEC_CPL_OP_IVINSR(rx_channel_id, 2, 1); chcr_req->sec_cpl.pldlen = htonl(IV + wrparam->bytes); chcr_req->sec_cpl.aadstart_cipherstop_hi = FILL_SEC_CPL_CIPHERSTOP_HI(0, 0, IV + 1, 0); chcr_req->sec_cpl.cipherstop_lo_authinsert = FILL_SEC_CPL_AUTHINSERT(0, 0, 0, 0); chcr_req->sec_cpl.seqno_numivs = FILL_SEC_CPL_SCMD0_SEQNO(reqctx->op, 0, ablkctx->ciph_mode, 0, 0, IV >> 1); chcr_req->sec_cpl.ivgen_hdrlen = FILL_SEC_CPL_IVGEN_HDRLEN(0, 0, 0, 0, 1, dst_size); chcr_req->key_ctx.ctx_hdr = ablkctx->key_ctx_hdr; if ((reqctx->op == CHCR_DECRYPT_OP) && (!(get_cryptoalg_subtype(tfm) == CRYPTO_ALG_SUB_TYPE_CTR)) && (!(get_cryptoalg_subtype(tfm) == CRYPTO_ALG_SUB_TYPE_CTR_RFC3686))) { generate_copy_rrkey(ablkctx, &chcr_req->key_ctx); } else { if ((ablkctx->ciph_mode == CHCR_SCMD_CIPHER_MODE_AES_CBC) || (ablkctx->ciph_mode == CHCR_SCMD_CIPHER_MODE_AES_CTR)) { memcpy(chcr_req->key_ctx.key, ablkctx->key, ablkctx->enckey_len); } else { memcpy(chcr_req->key_ctx.key, ablkctx->key + (ablkctx->enckey_len >> 1), ablkctx->enckey_len >> 1); memcpy(chcr_req->key_ctx.key + (ablkctx->enckey_len >> 1), ablkctx->key, ablkctx->enckey_len >> 1); } } phys_cpl = (struct cpl_rx_phys_dsgl *)((u8 *)(chcr_req + 1) + kctx_len); ulptx = (struct ulptx_sgl *)((u8 *)(phys_cpl + 1) + dst_size); chcr_add_cipher_src_ent(wrparam->req, ulptx, wrparam); chcr_add_cipher_dst_ent(wrparam->req, phys_cpl, wrparam, wrparam->qid); atomic_inc(&adap->chcr_stats.cipher_rqst); temp = sizeof(struct cpl_rx_phys_dsgl) + dst_size + kctx_len + IV + (reqctx->imm ? (wrparam->bytes) : 0); create_wreq(c_ctx(tfm), chcr_req, &(wrparam->req->base), reqctx->imm, 0, transhdr_len, temp, ablkctx->ciph_mode == CHCR_SCMD_CIPHER_MODE_AES_CBC); reqctx->skb = skb; if (reqctx->op && (ablkctx->ciph_mode == CHCR_SCMD_CIPHER_MODE_AES_CBC)) sg_pcopy_to_buffer(wrparam->req->src, sg_nents(wrparam->req->src), wrparam->req->iv, 16, reqctx->processed + wrparam->bytes - AES_BLOCK_SIZE); return skb; err: return ERR_PTR(error); } static inline int chcr_keyctx_ck_size(unsigned int keylen) { int ck_size = 0; if (keylen == AES_KEYSIZE_128) ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_128; else if (keylen == AES_KEYSIZE_192) ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_192; else if (keylen == AES_KEYSIZE_256) ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_256; else ck_size = 0; return ck_size; } static int chcr_cipher_fallback_setkey(struct crypto_skcipher *cipher, const u8 *key, unsigned int keylen) { struct ablk_ctx *ablkctx = ABLK_CTX(c_ctx(cipher)); crypto_sync_skcipher_clear_flags(ablkctx->sw_cipher, CRYPTO_TFM_REQ_MASK); crypto_sync_skcipher_set_flags(ablkctx->sw_cipher, cipher->base.crt_flags & CRYPTO_TFM_REQ_MASK); return crypto_sync_skcipher_setkey(ablkctx->sw_cipher, key, keylen); } static int chcr_aes_cbc_setkey(struct crypto_skcipher *cipher, const u8 *key, unsigned int keylen) { struct ablk_ctx *ablkctx = ABLK_CTX(c_ctx(cipher)); unsigned int ck_size, context_size; u16 alignment = 0; int err; err = chcr_cipher_fallback_setkey(cipher, key, keylen); if (err) goto badkey_err; ck_size = chcr_keyctx_ck_size(keylen); alignment = ck_size == CHCR_KEYCTX_CIPHER_KEY_SIZE_192 ? 8 : 0; memcpy(ablkctx->key, key, keylen); ablkctx->enckey_len = keylen; get_aes_decrypt_key(ablkctx->rrkey, ablkctx->key, keylen << 3); context_size = (KEY_CONTEXT_HDR_SALT_AND_PAD + keylen + alignment) >> 4; ablkctx->key_ctx_hdr = FILL_KEY_CTX_HDR(ck_size, CHCR_KEYCTX_NO_KEY, 0, 0, context_size); ablkctx->ciph_mode = CHCR_SCMD_CIPHER_MODE_AES_CBC; return 0; badkey_err: ablkctx->enckey_len = 0; return err; } static int chcr_aes_ctr_setkey(struct crypto_skcipher *cipher, const u8 *key, unsigned int keylen) { struct ablk_ctx *ablkctx = ABLK_CTX(c_ctx(cipher)); unsigned int ck_size, context_size; u16 alignment = 0; int err; err = chcr_cipher_fallback_setkey(cipher, key, keylen); if (err) goto badkey_err; ck_size = chcr_keyctx_ck_size(keylen); alignment = (ck_size == CHCR_KEYCTX_CIPHER_KEY_SIZE_192) ? 8 : 0; memcpy(ablkctx->key, key, keylen); ablkctx->enckey_len = keylen; context_size = (KEY_CONTEXT_HDR_SALT_AND_PAD + keylen + alignment) >> 4; ablkctx->key_ctx_hdr = FILL_KEY_CTX_HDR(ck_size, CHCR_KEYCTX_NO_KEY, 0, 0, context_size); ablkctx->ciph_mode = CHCR_SCMD_CIPHER_MODE_AES_CTR; return 0; badkey_err: ablkctx->enckey_len = 0; return err; } static int chcr_aes_rfc3686_setkey(struct crypto_skcipher *cipher, const u8 *key, unsigned int keylen) { struct ablk_ctx *ablkctx = ABLK_CTX(c_ctx(cipher)); unsigned int ck_size, context_size; u16 alignment = 0; int err; if (keylen < CTR_RFC3686_NONCE_SIZE) return -EINVAL; memcpy(ablkctx->nonce, key + (keylen - CTR_RFC3686_NONCE_SIZE), CTR_RFC3686_NONCE_SIZE); keylen -= CTR_RFC3686_NONCE_SIZE; err = chcr_cipher_fallback_setkey(cipher, key, keylen); if (err) goto badkey_err; ck_size = chcr_keyctx_ck_size(keylen); alignment = (ck_size == CHCR_KEYCTX_CIPHER_KEY_SIZE_192) ? 8 : 0; memcpy(ablkctx->key, key, keylen); ablkctx->enckey_len = keylen; context_size = (KEY_CONTEXT_HDR_SALT_AND_PAD + keylen + alignment) >> 4; ablkctx->key_ctx_hdr = FILL_KEY_CTX_HDR(ck_size, CHCR_KEYCTX_NO_KEY, 0, 0, context_size); ablkctx->ciph_mode = CHCR_SCMD_CIPHER_MODE_AES_CTR; return 0; badkey_err: ablkctx->enckey_len = 0; return err; } static void ctr_add_iv(u8 *dstiv, u8 *srciv, u32 add) { unsigned int size = AES_BLOCK_SIZE; __be32 *b = (__be32 *)(dstiv + size); u32 c, prev; memcpy(dstiv, srciv, AES_BLOCK_SIZE); for (; size >= 4; size -= 4) { prev = be32_to_cpu(*--b); c = prev + add; *b = cpu_to_be32(c); if (prev < c) break; add = 1; } } static unsigned int adjust_ctr_overflow(u8 *iv, u32 bytes) { __be32 *b = (__be32 *)(iv + AES_BLOCK_SIZE); u64 c; u32 temp = be32_to_cpu(*--b); temp = ~temp; c = (u64)temp + 1; // No of block can processed without overflow if ((bytes / AES_BLOCK_SIZE) >= c) bytes = c * AES_BLOCK_SIZE; return bytes; } static int chcr_update_tweak(struct skcipher_request *req, u8 *iv, u32 isfinal) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct ablk_ctx *ablkctx = ABLK_CTX(c_ctx(tfm)); struct chcr_skcipher_req_ctx *reqctx = skcipher_request_ctx(req); struct crypto_aes_ctx aes; int ret, i; u8 *key; unsigned int keylen; int round = reqctx->last_req_len / AES_BLOCK_SIZE; int round8 = round / 8; memcpy(iv, reqctx->iv, AES_BLOCK_SIZE); keylen = ablkctx->enckey_len / 2; key = ablkctx->key + keylen; /* For a 192 bit key remove the padded zeroes which was * added in chcr_xts_setkey */ if (KEY_CONTEXT_CK_SIZE_G(ntohl(ablkctx->key_ctx_hdr)) == CHCR_KEYCTX_CIPHER_KEY_SIZE_192) ret = aes_expandkey(&aes, key, keylen - 8); else ret = aes_expandkey(&aes, key, keylen); if (ret) return ret; aes_encrypt(&aes, iv, iv); for (i = 0; i < round8; i++) gf128mul_x8_ble((le128 *)iv, (le128 *)iv); for (i = 0; i < (round % 8); i++) gf128mul_x_ble((le128 *)iv, (le128 *)iv); if (!isfinal) aes_decrypt(&aes, iv, iv); memzero_explicit(&aes, sizeof(aes)); return 0; } static int chcr_update_cipher_iv(struct skcipher_request *req, struct cpl_fw6_pld *fw6_pld, u8 *iv) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct chcr_skcipher_req_ctx *reqctx = skcipher_request_ctx(req); int subtype = get_cryptoalg_subtype(tfm); int ret = 0; if (subtype == CRYPTO_ALG_SUB_TYPE_CTR) ctr_add_iv(iv, req->iv, (reqctx->processed / AES_BLOCK_SIZE)); else if (subtype == CRYPTO_ALG_SUB_TYPE_CTR_RFC3686) *(__be32 *)(reqctx->iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) = cpu_to_be32((reqctx->processed / AES_BLOCK_SIZE) + 1); else if (subtype == CRYPTO_ALG_SUB_TYPE_XTS) ret = chcr_update_tweak(req, iv, 0); else if (subtype == CRYPTO_ALG_SUB_TYPE_CBC) { if (reqctx->op) /*Updated before sending last WR*/ memcpy(iv, req->iv, AES_BLOCK_SIZE); else memcpy(iv, &fw6_pld->data[2], AES_BLOCK_SIZE); } return ret; } /* We need separate function for final iv because in rfc3686 Initial counter * starts from 1 and buffer size of iv is 8 byte only which remains constant * for subsequent update requests */ static int chcr_final_cipher_iv(struct skcipher_request *req, struct cpl_fw6_pld *fw6_pld, u8 *iv) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct chcr_skcipher_req_ctx *reqctx = skcipher_request_ctx(req); int subtype = get_cryptoalg_subtype(tfm); int ret = 0; if (subtype == CRYPTO_ALG_SUB_TYPE_CTR) ctr_add_iv(iv, req->iv, DIV_ROUND_UP(reqctx->processed, AES_BLOCK_SIZE)); else if (subtype == CRYPTO_ALG_SUB_TYPE_XTS) { if (!reqctx->partial_req) memcpy(iv, reqctx->iv, AES_BLOCK_SIZE); else ret = chcr_update_tweak(req, iv, 1); } else if (subtype == CRYPTO_ALG_SUB_TYPE_CBC) { /*Already updated for Decrypt*/ if (!reqctx->op) memcpy(iv, &fw6_pld->data[2], AES_BLOCK_SIZE); } return ret; } static int chcr_handle_cipher_resp(struct skcipher_request *req, unsigned char *input, int err) { struct chcr_skcipher_req_ctx *reqctx = skcipher_request_ctx(req); struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct cpl_fw6_pld *fw6_pld = (struct cpl_fw6_pld *)input; struct ablk_ctx *ablkctx = ABLK_CTX(c_ctx(tfm)); struct uld_ctx *u_ctx = ULD_CTX(c_ctx(tfm)); struct chcr_dev *dev = c_ctx(tfm)->dev; struct chcr_context *ctx = c_ctx(tfm); struct adapter *adap = padap(ctx->dev); struct cipher_wr_param wrparam; struct sk_buff *skb; int bytes; if (err) goto unmap; if (req->cryptlen == reqctx->processed) { chcr_cipher_dma_unmap(&ULD_CTX(c_ctx(tfm))->lldi.pdev->dev, req); err = chcr_final_cipher_iv(req, fw6_pld, req->iv); goto complete; } if (!reqctx->imm) { bytes = chcr_sg_ent_in_wr(reqctx->srcsg, reqctx->dstsg, 0, CIP_SPACE_LEFT(ablkctx->enckey_len), reqctx->src_ofst, reqctx->dst_ofst); if ((bytes + reqctx->processed) >= req->cryptlen) bytes = req->cryptlen - reqctx->processed; else bytes = rounddown(bytes, 16); } else { /*CTR mode counter overfloa*/ bytes = req->cryptlen - reqctx->processed; } err = chcr_update_cipher_iv(req, fw6_pld, reqctx->iv); if (err) goto unmap; if (unlikely(bytes == 0)) { chcr_cipher_dma_unmap(&ULD_CTX(c_ctx(tfm))->lldi.pdev->dev, req); memcpy(req->iv, reqctx->init_iv, IV); atomic_inc(&adap->chcr_stats.fallback); err = chcr_cipher_fallback(ablkctx->sw_cipher, req->base.flags, req->src, req->dst, req->cryptlen, req->iv, reqctx->op); goto complete; } if (get_cryptoalg_subtype(tfm) == CRYPTO_ALG_SUB_TYPE_CTR) bytes = adjust_ctr_overflow(reqctx->iv, bytes); wrparam.qid = u_ctx->lldi.rxq_ids[reqctx->rxqidx]; wrparam.req = req; wrparam.bytes = bytes; skb = create_cipher_wr(&wrparam); if (IS_ERR(skb)) { pr_err("chcr : %s : Failed to form WR. No memory\n", __func__); err = PTR_ERR(skb); goto unmap; } skb->dev = u_ctx->lldi.ports[0]; set_wr_txq(skb, CPL_PRIORITY_DATA, reqctx->txqidx); chcr_send_wr(skb); reqctx->last_req_len = bytes; reqctx->processed += bytes; if (get_cryptoalg_subtype(tfm) == CRYPTO_ALG_SUB_TYPE_CBC && req->base.flags == CRYPTO_TFM_REQ_MAY_SLEEP ) { complete(&ctx->cbc_aes_aio_done); } return 0; unmap: chcr_cipher_dma_unmap(&ULD_CTX(c_ctx(tfm))->lldi.pdev->dev, req); complete: if (get_cryptoalg_subtype(tfm) == CRYPTO_ALG_SUB_TYPE_CBC && req->base.flags == CRYPTO_TFM_REQ_MAY_SLEEP ) { complete(&ctx->cbc_aes_aio_done); } chcr_dec_wrcount(dev); req->base.complete(&req->base, err); return err; } static int process_cipher(struct skcipher_request *req, unsigned short qid, struct sk_buff **skb, unsigned short op_type) { struct chcr_skcipher_req_ctx *reqctx = skcipher_request_ctx(req); struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); unsigned int ivsize = crypto_skcipher_ivsize(tfm); struct ablk_ctx *ablkctx = ABLK_CTX(c_ctx(tfm)); struct adapter *adap = padap(c_ctx(tfm)->dev); struct cipher_wr_param wrparam; int bytes, err = -EINVAL; int subtype; reqctx->processed = 0; reqctx->partial_req = 0; if (!req->iv) goto error; subtype = get_cryptoalg_subtype(tfm); if ((ablkctx->enckey_len == 0) || (ivsize > AES_BLOCK_SIZE) || (req->cryptlen == 0) || (req->cryptlen % crypto_skcipher_blocksize(tfm))) { if (req->cryptlen == 0 && subtype != CRYPTO_ALG_SUB_TYPE_XTS) goto fallback; else if (req->cryptlen % crypto_skcipher_blocksize(tfm) && subtype == CRYPTO_ALG_SUB_TYPE_XTS) goto fallback; pr_err("AES: Invalid value of Key Len %d nbytes %d IV Len %d\n", ablkctx->enckey_len, req->cryptlen, ivsize); goto error; } err = chcr_cipher_dma_map(&ULD_CTX(c_ctx(tfm))->lldi.pdev->dev, req); if (err) goto error; if (req->cryptlen < (SGE_MAX_WR_LEN - (sizeof(struct chcr_wr) + AES_MIN_KEY_SIZE + sizeof(struct cpl_rx_phys_dsgl) + /*Min dsgl size*/ 32))) { /* Can be sent as Imm*/ unsigned int dnents = 0, transhdr_len, phys_dsgl, kctx_len; dnents = sg_nents_xlen(req->dst, req->cryptlen, CHCR_DST_SG_SIZE, 0); phys_dsgl = get_space_for_phys_dsgl(dnents); kctx_len = roundup(ablkctx->enckey_len, 16); transhdr_len = CIPHER_TRANSHDR_SIZE(kctx_len, phys_dsgl); reqctx->imm = (transhdr_len + IV + req->cryptlen) <= SGE_MAX_WR_LEN; bytes = IV + req->cryptlen; } else { reqctx->imm = 0; } if (!reqctx->imm) { bytes = chcr_sg_ent_in_wr(req->src, req->dst, 0, CIP_SPACE_LEFT(ablkctx->enckey_len), 0, 0); if ((bytes + reqctx->processed) >= req->cryptlen) bytes = req->cryptlen - reqctx->processed; else bytes = rounddown(bytes, 16); } else { bytes = req->cryptlen; } if (subtype == CRYPTO_ALG_SUB_TYPE_CTR) { bytes = adjust_ctr_overflow(req->iv, bytes); } if (subtype == CRYPTO_ALG_SUB_TYPE_CTR_RFC3686) { memcpy(reqctx->iv, ablkctx->nonce, CTR_RFC3686_NONCE_SIZE); memcpy(reqctx->iv + CTR_RFC3686_NONCE_SIZE, req->iv, CTR_RFC3686_IV_SIZE); /* initialize counter portion of counter block */ *(__be32 *)(reqctx->iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) = cpu_to_be32(1); memcpy(reqctx->init_iv, reqctx->iv, IV); } else { memcpy(reqctx->iv, req->iv, IV); memcpy(reqctx->init_iv, req->iv, IV); } if (unlikely(bytes == 0)) { chcr_cipher_dma_unmap(&ULD_CTX(c_ctx(tfm))->lldi.pdev->dev, req); fallback: atomic_inc(&adap->chcr_stats.fallback); err = chcr_cipher_fallback(ablkctx->sw_cipher, req->base.flags, req->src, req->dst, req->cryptlen, subtype == CRYPTO_ALG_SUB_TYPE_CTR_RFC3686 ? reqctx->iv : req->iv, op_type); goto error; } reqctx->op = op_type; reqctx->srcsg = req->src; reqctx->dstsg = req->dst; reqctx->src_ofst = 0; reqctx->dst_ofst = 0; wrparam.qid = qid; wrparam.req = req; wrparam.bytes = bytes; *skb = create_cipher_wr(&wrparam); if (IS_ERR(*skb)) { err = PTR_ERR(*skb); goto unmap; } reqctx->processed = bytes; reqctx->last_req_len = bytes; reqctx->partial_req = !!(req->cryptlen - reqctx->processed); return 0; unmap: chcr_cipher_dma_unmap(&ULD_CTX(c_ctx(tfm))->lldi.pdev->dev, req); error: return err; } static int chcr_aes_encrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct chcr_skcipher_req_ctx *reqctx = skcipher_request_ctx(req); struct chcr_dev *dev = c_ctx(tfm)->dev; struct sk_buff *skb = NULL; int err; struct uld_ctx *u_ctx = ULD_CTX(c_ctx(tfm)); struct chcr_context *ctx = c_ctx(tfm); unsigned int cpu; cpu = get_cpu(); reqctx->txqidx = cpu % ctx->ntxq; reqctx->rxqidx = cpu % ctx->nrxq; put_cpu(); err = chcr_inc_wrcount(dev); if (err) return -ENXIO; if (unlikely(cxgb4_is_crypto_q_full(u_ctx->lldi.ports[0], reqctx->txqidx) && (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)))) { err = -ENOSPC; goto error; } err = process_cipher(req, u_ctx->lldi.rxq_ids[reqctx->rxqidx], &skb, CHCR_ENCRYPT_OP); if (err || !skb) return err; skb->dev = u_ctx->lldi.ports[0]; set_wr_txq(skb, CPL_PRIORITY_DATA, reqctx->txqidx); chcr_send_wr(skb); if (get_cryptoalg_subtype(tfm) == CRYPTO_ALG_SUB_TYPE_CBC && req->base.flags == CRYPTO_TFM_REQ_MAY_SLEEP ) { reqctx->partial_req = 1; wait_for_completion(&ctx->cbc_aes_aio_done); } return -EINPROGRESS; error: chcr_dec_wrcount(dev); return err; } static int chcr_aes_decrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct chcr_skcipher_req_ctx *reqctx = skcipher_request_ctx(req); struct uld_ctx *u_ctx = ULD_CTX(c_ctx(tfm)); struct chcr_dev *dev = c_ctx(tfm)->dev; struct sk_buff *skb = NULL; int err; struct chcr_context *ctx = c_ctx(tfm); unsigned int cpu; cpu = get_cpu(); reqctx->txqidx = cpu % ctx->ntxq; reqctx->rxqidx = cpu % ctx->nrxq; put_cpu(); err = chcr_inc_wrcount(dev); if (err) return -ENXIO; if (unlikely(cxgb4_is_crypto_q_full(u_ctx->lldi.ports[0], reqctx->txqidx) && (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)))) return -ENOSPC; err = process_cipher(req, u_ctx->lldi.rxq_ids[reqctx->rxqidx], &skb, CHCR_DECRYPT_OP); if (err || !skb) return err; skb->dev = u_ctx->lldi.ports[0]; set_wr_txq(skb, CPL_PRIORITY_DATA, reqctx->txqidx); chcr_send_wr(skb); return -EINPROGRESS; } static int chcr_device_init(struct chcr_context *ctx) { struct uld_ctx *u_ctx = NULL; int txq_perchan, ntxq; int err = 0, rxq_perchan; if (!ctx->dev) { u_ctx = assign_chcr_device(); if (!u_ctx) { err = -ENXIO; pr_err("chcr device assignment fails\n"); goto out; } ctx->dev = &u_ctx->dev; ntxq = u_ctx->lldi.ntxq; rxq_perchan = u_ctx->lldi.nrxq / u_ctx->lldi.nchan; txq_perchan = ntxq / u_ctx->lldi.nchan; ctx->ntxq = ntxq; ctx->nrxq = u_ctx->lldi.nrxq; ctx->rxq_perchan = rxq_perchan; ctx->txq_perchan = txq_perchan; } out: return err; } static int chcr_init_tfm(struct crypto_skcipher *tfm) { struct skcipher_alg *alg = crypto_skcipher_alg(tfm); struct chcr_context *ctx = crypto_skcipher_ctx(tfm); struct ablk_ctx *ablkctx = ABLK_CTX(ctx); ablkctx->sw_cipher = crypto_alloc_sync_skcipher(alg->base.cra_name, 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(ablkctx->sw_cipher)) { pr_err("failed to allocate fallback for %s\n", alg->base.cra_name); return PTR_ERR(ablkctx->sw_cipher); } init_completion(&ctx->cbc_aes_aio_done); crypto_skcipher_set_reqsize(tfm, sizeof(struct chcr_skcipher_req_ctx)); return chcr_device_init(ctx); } static int chcr_rfc3686_init(struct crypto_skcipher *tfm) { struct skcipher_alg *alg = crypto_skcipher_alg(tfm); struct chcr_context *ctx = crypto_skcipher_ctx(tfm); struct ablk_ctx *ablkctx = ABLK_CTX(ctx); /*RFC3686 initialises IV counter value to 1, rfc3686(ctr(aes)) * cannot be used as fallback in chcr_handle_cipher_response */ ablkctx->sw_cipher = crypto_alloc_sync_skcipher("ctr(aes)", 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(ablkctx->sw_cipher)) { pr_err("failed to allocate fallback for %s\n", alg->base.cra_name); return PTR_ERR(ablkctx->sw_cipher); } crypto_skcipher_set_reqsize(tfm, sizeof(struct chcr_skcipher_req_ctx)); return chcr_device_init(ctx); } static void chcr_exit_tfm(struct crypto_skcipher *tfm) { struct chcr_context *ctx = crypto_skcipher_ctx(tfm); struct ablk_ctx *ablkctx = ABLK_CTX(ctx); crypto_free_sync_skcipher(ablkctx->sw_cipher); } static int get_alg_config(struct algo_param *params, unsigned int auth_size) { switch (auth_size) { case SHA1_DIGEST_SIZE: params->mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_160; params->auth_mode = CHCR_SCMD_AUTH_MODE_SHA1; params->result_size = SHA1_DIGEST_SIZE; break; case SHA224_DIGEST_SIZE: params->mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_256; params->auth_mode = CHCR_SCMD_AUTH_MODE_SHA224; params->result_size = SHA256_DIGEST_SIZE; break; case SHA256_DIGEST_SIZE: params->mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_256; params->auth_mode = CHCR_SCMD_AUTH_MODE_SHA256; params->result_size = SHA256_DIGEST_SIZE; break; case SHA384_DIGEST_SIZE: params->mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_512; params->auth_mode = CHCR_SCMD_AUTH_MODE_SHA512_384; params->result_size = SHA512_DIGEST_SIZE; break; case SHA512_DIGEST_SIZE: params->mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_512; params->auth_mode = CHCR_SCMD_AUTH_MODE_SHA512_512; params->result_size = SHA512_DIGEST_SIZE; break; default: pr_err("chcr : ERROR, unsupported digest size\n"); return -EINVAL; } return 0; } static inline void chcr_free_shash(struct crypto_shash *base_hash) { crypto_free_shash(base_hash); } /** * create_hash_wr - Create hash work request * @req - Cipher req base */ static struct sk_buff *create_hash_wr(struct ahash_request *req, struct hash_wr_param *param) { struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct chcr_context *ctx = h_ctx(tfm); struct hmac_ctx *hmacctx = HMAC_CTX(ctx); struct sk_buff *skb = NULL; struct uld_ctx *u_ctx = ULD_CTX(ctx); struct chcr_wr *chcr_req; struct ulptx_sgl *ulptx; unsigned int nents = 0, transhdr_len; unsigned int temp = 0; gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL : GFP_ATOMIC; struct adapter *adap = padap(h_ctx(tfm)->dev); int error = 0; unsigned int rx_channel_id = req_ctx->rxqidx / ctx->rxq_perchan; transhdr_len = HASH_TRANSHDR_SIZE(param->kctx_len); req_ctx->hctx_wr.imm = (transhdr_len + param->bfr_len + param->sg_len) <= SGE_MAX_WR_LEN; nents = sg_nents_xlen(req_ctx->hctx_wr.srcsg, param->sg_len, CHCR_SRC_SG_SIZE, req_ctx->hctx_wr.src_ofst); nents += param->bfr_len ? 1 : 0; transhdr_len += req_ctx->hctx_wr.imm ? roundup(param->bfr_len + param->sg_len, 16) : (sgl_len(nents) * 8); transhdr_len = roundup(transhdr_len, 16); skb = alloc_skb(transhdr_len, flags); if (!skb) return ERR_PTR(-ENOMEM); chcr_req = __skb_put_zero(skb, transhdr_len); chcr_req->sec_cpl.op_ivinsrtofst = FILL_SEC_CPL_OP_IVINSR(rx_channel_id, 2, 0); chcr_req->sec_cpl.pldlen = htonl(param->bfr_len + param->sg_len); chcr_req->sec_cpl.aadstart_cipherstop_hi = FILL_SEC_CPL_CIPHERSTOP_HI(0, 0, 0, 0); chcr_req->sec_cpl.cipherstop_lo_authinsert = FILL_SEC_CPL_AUTHINSERT(0, 1, 0, 0); chcr_req->sec_cpl.seqno_numivs = FILL_SEC_CPL_SCMD0_SEQNO(0, 0, 0, param->alg_prm.auth_mode, param->opad_needed, 0); chcr_req->sec_cpl.ivgen_hdrlen = FILL_SEC_CPL_IVGEN_HDRLEN(param->last, param->more, 0, 1, 0, 0); memcpy(chcr_req->key_ctx.key, req_ctx->partial_hash, param->alg_prm.result_size); if (param->opad_needed) memcpy(chcr_req->key_ctx.key + ((param->alg_prm.result_size <= 32) ? 32 : CHCR_HASH_MAX_DIGEST_SIZE), hmacctx->opad, param->alg_prm.result_size); chcr_req->key_ctx.ctx_hdr = FILL_KEY_CTX_HDR(CHCR_KEYCTX_NO_KEY, param->alg_prm.mk_size, 0, param->opad_needed, ((param->kctx_len + sizeof(chcr_req->key_ctx)) >> 4)); chcr_req->sec_cpl.scmd1 = cpu_to_be64((u64)param->scmd1); ulptx = (struct ulptx_sgl *)((u8 *)(chcr_req + 1) + param->kctx_len + DUMMY_BYTES); if (param->bfr_len != 0) { req_ctx->hctx_wr.dma_addr = dma_map_single(&u_ctx->lldi.pdev->dev, req_ctx->reqbfr, param->bfr_len, DMA_TO_DEVICE); if (dma_mapping_error(&u_ctx->lldi.pdev->dev, req_ctx->hctx_wr. dma_addr)) { error = -ENOMEM; goto err; } req_ctx->hctx_wr.dma_len = param->bfr_len; } else { req_ctx->hctx_wr.dma_addr = 0; } chcr_add_hash_src_ent(req, ulptx, param); /* Request upto max wr size */ temp = param->kctx_len + DUMMY_BYTES + (req_ctx->hctx_wr.imm ? (param->sg_len + param->bfr_len) : 0); atomic_inc(&adap->chcr_stats.digest_rqst); create_wreq(h_ctx(tfm), chcr_req, &req->base, req_ctx->hctx_wr.imm, param->hash_size, transhdr_len, temp, 0); req_ctx->hctx_wr.skb = skb; return skb; err: kfree_skb(skb); return ERR_PTR(error); } static int chcr_ahash_update(struct ahash_request *req) { struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(req); struct crypto_ahash *rtfm = crypto_ahash_reqtfm(req); struct uld_ctx *u_ctx = ULD_CTX(h_ctx(rtfm)); struct chcr_context *ctx = h_ctx(rtfm); struct chcr_dev *dev = h_ctx(rtfm)->dev; struct sk_buff *skb; u8 remainder = 0, bs; unsigned int nbytes = req->nbytes; struct hash_wr_param params; int error; unsigned int cpu; cpu = get_cpu(); req_ctx->txqidx = cpu % ctx->ntxq; req_ctx->rxqidx = cpu % ctx->nrxq; put_cpu(); bs = crypto_tfm_alg_blocksize(crypto_ahash_tfm(rtfm)); if (nbytes + req_ctx->reqlen >= bs) { remainder = (nbytes + req_ctx->reqlen) % bs; nbytes = nbytes + req_ctx->reqlen - remainder; } else { sg_pcopy_to_buffer(req->src, sg_nents(req->src), req_ctx->reqbfr + req_ctx->reqlen, nbytes, 0); req_ctx->reqlen += nbytes; return 0; } error = chcr_inc_wrcount(dev); if (error) return -ENXIO; /* Detach state for CHCR means lldi or padap is freed. Increasing * inflight count for dev guarantees that lldi and padap is valid */ if (unlikely(cxgb4_is_crypto_q_full(u_ctx->lldi.ports[0], req_ctx->txqidx) && (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)))) { error = -ENOSPC; goto err; } chcr_init_hctx_per_wr(req_ctx); error = chcr_hash_dma_map(&u_ctx->lldi.pdev->dev, req); if (error) { error = -ENOMEM; goto err; } get_alg_config(¶ms.alg_prm, crypto_ahash_digestsize(rtfm)); params.kctx_len = roundup(params.alg_prm.result_size, 16); params.sg_len = chcr_hash_ent_in_wr(req->src, !!req_ctx->reqlen, HASH_SPACE_LEFT(params.kctx_len), 0); if (params.sg_len > req->nbytes) params.sg_len = req->nbytes; params.sg_len = rounddown(params.sg_len + req_ctx->reqlen, bs) - req_ctx->reqlen; params.opad_needed = 0; params.more = 1; params.last = 0; params.bfr_len = req_ctx->reqlen; params.scmd1 = 0; req_ctx->hctx_wr.srcsg = req->src; params.hash_size = params.alg_prm.result_size; req_ctx->data_len += params.sg_len + params.bfr_len; skb = create_hash_wr(req, ¶ms); if (IS_ERR(skb)) { error = PTR_ERR(skb); goto unmap; } req_ctx->hctx_wr.processed += params.sg_len; if (remainder) { /* Swap buffers */ swap(req_ctx->reqbfr, req_ctx->skbfr); sg_pcopy_to_buffer(req->src, sg_nents(req->src), req_ctx->reqbfr, remainder, req->nbytes - remainder); } req_ctx->reqlen = remainder; skb->dev = u_ctx->lldi.ports[0]; set_wr_txq(skb, CPL_PRIORITY_DATA, req_ctx->txqidx); chcr_send_wr(skb); return -EINPROGRESS; unmap: chcr_hash_dma_unmap(&u_ctx->lldi.pdev->dev, req); err: chcr_dec_wrcount(dev); return error; } static void create_last_hash_block(char *bfr_ptr, unsigned int bs, u64 scmd1) { memset(bfr_ptr, 0, bs); *bfr_ptr = 0x80; if (bs == 64) *(__be64 *)(bfr_ptr + 56) = cpu_to_be64(scmd1 << 3); else *(__be64 *)(bfr_ptr + 120) = cpu_to_be64(scmd1 << 3); } static int chcr_ahash_final(struct ahash_request *req) { struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(req); struct crypto_ahash *rtfm = crypto_ahash_reqtfm(req); struct chcr_dev *dev = h_ctx(rtfm)->dev; struct hash_wr_param params; struct sk_buff *skb; struct uld_ctx *u_ctx = ULD_CTX(h_ctx(rtfm)); struct chcr_context *ctx = h_ctx(rtfm); u8 bs = crypto_tfm_alg_blocksize(crypto_ahash_tfm(rtfm)); int error; unsigned int cpu; cpu = get_cpu(); req_ctx->txqidx = cpu % ctx->ntxq; req_ctx->rxqidx = cpu % ctx->nrxq; put_cpu(); error = chcr_inc_wrcount(dev); if (error) return -ENXIO; chcr_init_hctx_per_wr(req_ctx); if (is_hmac(crypto_ahash_tfm(rtfm))) params.opad_needed = 1; else params.opad_needed = 0; params.sg_len = 0; req_ctx->hctx_wr.isfinal = 1; get_alg_config(¶ms.alg_prm, crypto_ahash_digestsize(rtfm)); params.kctx_len = roundup(params.alg_prm.result_size, 16); if (is_hmac(crypto_ahash_tfm(rtfm))) { params.opad_needed = 1; params.kctx_len *= 2; } else { params.opad_needed = 0; } req_ctx->hctx_wr.result = 1; params.bfr_len = req_ctx->reqlen; req_ctx->data_len += params.bfr_len + params.sg_len; req_ctx->hctx_wr.srcsg = req->src; if (req_ctx->reqlen == 0) { create_last_hash_block(req_ctx->reqbfr, bs, req_ctx->data_len); params.last = 0; params.more = 1; params.scmd1 = 0; params.bfr_len = bs; } else { params.scmd1 = req_ctx->data_len; params.last = 1; params.more = 0; } params.hash_size = crypto_ahash_digestsize(rtfm); skb = create_hash_wr(req, ¶ms); if (IS_ERR(skb)) { error = PTR_ERR(skb); goto err; } req_ctx->reqlen = 0; skb->dev = u_ctx->lldi.ports[0]; set_wr_txq(skb, CPL_PRIORITY_DATA, req_ctx->txqidx); chcr_send_wr(skb); return -EINPROGRESS; err: chcr_dec_wrcount(dev); return error; } static int chcr_ahash_finup(struct ahash_request *req) { struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(req); struct crypto_ahash *rtfm = crypto_ahash_reqtfm(req); struct chcr_dev *dev = h_ctx(rtfm)->dev; struct uld_ctx *u_ctx = ULD_CTX(h_ctx(rtfm)); struct chcr_context *ctx = h_ctx(rtfm); struct sk_buff *skb; struct hash_wr_param params; u8 bs; int error; unsigned int cpu; cpu = get_cpu(); req_ctx->txqidx = cpu % ctx->ntxq; req_ctx->rxqidx = cpu % ctx->nrxq; put_cpu(); bs = crypto_tfm_alg_blocksize(crypto_ahash_tfm(rtfm)); error = chcr_inc_wrcount(dev); if (error) return -ENXIO; if (unlikely(cxgb4_is_crypto_q_full(u_ctx->lldi.ports[0], req_ctx->txqidx) && (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)))) { error = -ENOSPC; goto err; } chcr_init_hctx_per_wr(req_ctx); error = chcr_hash_dma_map(&u_ctx->lldi.pdev->dev, req); if (error) { error = -ENOMEM; goto err; } get_alg_config(¶ms.alg_prm, crypto_ahash_digestsize(rtfm)); params.kctx_len = roundup(params.alg_prm.result_size, 16); if (is_hmac(crypto_ahash_tfm(rtfm))) { params.kctx_len *= 2; params.opad_needed = 1; } else { params.opad_needed = 0; } params.sg_len = chcr_hash_ent_in_wr(req->src, !!req_ctx->reqlen, HASH_SPACE_LEFT(params.kctx_len), 0); if (params.sg_len < req->nbytes) { if (is_hmac(crypto_ahash_tfm(rtfm))) { params.kctx_len /= 2; params.opad_needed = 0; } params.last = 0; params.more = 1; params.sg_len = rounddown(params.sg_len + req_ctx->reqlen, bs) - req_ctx->reqlen; params.hash_size = params.alg_prm.result_size; params.scmd1 = 0; } else { params.last = 1; params.more = 0; params.sg_len = req->nbytes; params.hash_size = crypto_ahash_digestsize(rtfm); params.scmd1 = req_ctx->data_len + req_ctx->reqlen + params.sg_len; } params.bfr_len = req_ctx->reqlen; req_ctx->data_len += params.bfr_len + params.sg_len; req_ctx->hctx_wr.result = 1; req_ctx->hctx_wr.srcsg = req->src; if ((req_ctx->reqlen + req->nbytes) == 0) { create_last_hash_block(req_ctx->reqbfr, bs, req_ctx->data_len); params.last = 0; params.more = 1; params.scmd1 = 0; params.bfr_len = bs; } skb = create_hash_wr(req, ¶ms); if (IS_ERR(skb)) { error = PTR_ERR(skb); goto unmap; } req_ctx->reqlen = 0; req_ctx->hctx_wr.processed += params.sg_len; skb->dev = u_ctx->lldi.ports[0]; set_wr_txq(skb, CPL_PRIORITY_DATA, req_ctx->txqidx); chcr_send_wr(skb); return -EINPROGRESS; unmap: chcr_hash_dma_unmap(&u_ctx->lldi.pdev->dev, req); err: chcr_dec_wrcount(dev); return error; } static int chcr_ahash_digest(struct ahash_request *req) { struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(req); struct crypto_ahash *rtfm = crypto_ahash_reqtfm(req); struct chcr_dev *dev = h_ctx(rtfm)->dev; struct uld_ctx *u_ctx = ULD_CTX(h_ctx(rtfm)); struct chcr_context *ctx = h_ctx(rtfm); struct sk_buff *skb; struct hash_wr_param params; u8 bs; int error; unsigned int cpu; cpu = get_cpu(); req_ctx->txqidx = cpu % ctx->ntxq; req_ctx->rxqidx = cpu % ctx->nrxq; put_cpu(); rtfm->init(req); bs = crypto_tfm_alg_blocksize(crypto_ahash_tfm(rtfm)); error = chcr_inc_wrcount(dev); if (error) return -ENXIO; if (unlikely(cxgb4_is_crypto_q_full(u_ctx->lldi.ports[0], req_ctx->txqidx) && (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)))) { error = -ENOSPC; goto err; } chcr_init_hctx_per_wr(req_ctx); error = chcr_hash_dma_map(&u_ctx->lldi.pdev->dev, req); if (error) { error = -ENOMEM; goto err; } get_alg_config(¶ms.alg_prm, crypto_ahash_digestsize(rtfm)); params.kctx_len = roundup(params.alg_prm.result_size, 16); if (is_hmac(crypto_ahash_tfm(rtfm))) { params.kctx_len *= 2; params.opad_needed = 1; } else { params.opad_needed = 0; } params.sg_len = chcr_hash_ent_in_wr(req->src, !!req_ctx->reqlen, HASH_SPACE_LEFT(params.kctx_len), 0); if (params.sg_len < req->nbytes) { if (is_hmac(crypto_ahash_tfm(rtfm))) { params.kctx_len /= 2; params.opad_needed = 0; } params.last = 0; params.more = 1; params.scmd1 = 0; params.sg_len = rounddown(params.sg_len, bs); params.hash_size = params.alg_prm.result_size; } else { params.sg_len = req->nbytes; params.hash_size = crypto_ahash_digestsize(rtfm); params.last = 1; params.more = 0; params.scmd1 = req->nbytes + req_ctx->data_len; } params.bfr_len = 0; req_ctx->hctx_wr.result = 1; req_ctx->hctx_wr.srcsg = req->src; req_ctx->data_len += params.bfr_len + params.sg_len; if (req->nbytes == 0) { create_last_hash_block(req_ctx->reqbfr, bs, req_ctx->data_len); params.more = 1; params.bfr_len = bs; } skb = create_hash_wr(req, ¶ms); if (IS_ERR(skb)) { error = PTR_ERR(skb); goto unmap; } req_ctx->hctx_wr.processed += params.sg_len; skb->dev = u_ctx->lldi.ports[0]; set_wr_txq(skb, CPL_PRIORITY_DATA, req_ctx->txqidx); chcr_send_wr(skb); return -EINPROGRESS; unmap: chcr_hash_dma_unmap(&u_ctx->lldi.pdev->dev, req); err: chcr_dec_wrcount(dev); return error; } static int chcr_ahash_continue(struct ahash_request *req) { struct chcr_ahash_req_ctx *reqctx = ahash_request_ctx(req); struct chcr_hctx_per_wr *hctx_wr = &reqctx->hctx_wr; struct crypto_ahash *rtfm = crypto_ahash_reqtfm(req); struct chcr_context *ctx = h_ctx(rtfm); struct uld_ctx *u_ctx = ULD_CTX(ctx); struct sk_buff *skb; struct hash_wr_param params; u8 bs; int error; unsigned int cpu; cpu = get_cpu(); reqctx->txqidx = cpu % ctx->ntxq; reqctx->rxqidx = cpu % ctx->nrxq; put_cpu(); bs = crypto_tfm_alg_blocksize(crypto_ahash_tfm(rtfm)); get_alg_config(¶ms.alg_prm, crypto_ahash_digestsize(rtfm)); params.kctx_len = roundup(params.alg_prm.result_size, 16); if (is_hmac(crypto_ahash_tfm(rtfm))) { params.kctx_len *= 2; params.opad_needed = 1; } else { params.opad_needed = 0; } params.sg_len = chcr_hash_ent_in_wr(hctx_wr->srcsg, 0, HASH_SPACE_LEFT(params.kctx_len), hctx_wr->src_ofst); if ((params.sg_len + hctx_wr->processed) > req->nbytes) params.sg_len = req->nbytes - hctx_wr->processed; if (!hctx_wr->result || ((params.sg_len + hctx_wr->processed) < req->nbytes)) { if (is_hmac(crypto_ahash_tfm(rtfm))) { params.kctx_len /= 2; params.opad_needed = 0; } params.last = 0; params.more = 1; params.sg_len = rounddown(params.sg_len, bs); params.hash_size = params.alg_prm.result_size; params.scmd1 = 0; } else { params.last = 1; params.more = 0; params.hash_size = crypto_ahash_digestsize(rtfm); params.scmd1 = reqctx->data_len + params.sg_len; } params.bfr_len = 0; reqctx->data_len += params.sg_len; skb = create_hash_wr(req, ¶ms); if (IS_ERR(skb)) { error = PTR_ERR(skb); goto err; } hctx_wr->processed += params.sg_len; skb->dev = u_ctx->lldi.ports[0]; set_wr_txq(skb, CPL_PRIORITY_DATA, reqctx->txqidx); chcr_send_wr(skb); return 0; err: return error; } static inline void chcr_handle_ahash_resp(struct ahash_request *req, unsigned char *input, int err) { struct chcr_ahash_req_ctx *reqctx = ahash_request_ctx(req); struct chcr_hctx_per_wr *hctx_wr = &reqctx->hctx_wr; int digestsize, updated_digestsize; struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct uld_ctx *u_ctx = ULD_CTX(h_ctx(tfm)); struct chcr_dev *dev = h_ctx(tfm)->dev; if (input == NULL) goto out; digestsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(req)); updated_digestsize = digestsize; if (digestsize == SHA224_DIGEST_SIZE) updated_digestsize = SHA256_DIGEST_SIZE; else if (digestsize == SHA384_DIGEST_SIZE) updated_digestsize = SHA512_DIGEST_SIZE; if (hctx_wr->dma_addr) { dma_unmap_single(&u_ctx->lldi.pdev->dev, hctx_wr->dma_addr, hctx_wr->dma_len, DMA_TO_DEVICE); hctx_wr->dma_addr = 0; } if (hctx_wr->isfinal || ((hctx_wr->processed + reqctx->reqlen) == req->nbytes)) { if (hctx_wr->result == 1) { hctx_wr->result = 0; memcpy(req->result, input + sizeof(struct cpl_fw6_pld), digestsize); } else { memcpy(reqctx->partial_hash, input + sizeof(struct cpl_fw6_pld), updated_digestsize); } goto unmap; } memcpy(reqctx->partial_hash, input + sizeof(struct cpl_fw6_pld), updated_digestsize); err = chcr_ahash_continue(req); if (err) goto unmap; return; unmap: if (hctx_wr->is_sg_map) chcr_hash_dma_unmap(&u_ctx->lldi.pdev->dev, req); out: chcr_dec_wrcount(dev); req->base.complete(&req->base, err); } /* * chcr_handle_resp - Unmap the DMA buffers associated with the request * @req: crypto request */ int chcr_handle_resp(struct crypto_async_request *req, unsigned char *input, int err) { struct crypto_tfm *tfm = req->tfm; struct chcr_context *ctx = crypto_tfm_ctx(tfm); struct adapter *adap = padap(ctx->dev); switch (tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK) { case CRYPTO_ALG_TYPE_AEAD: err = chcr_handle_aead_resp(aead_request_cast(req), input, err); break; case CRYPTO_ALG_TYPE_SKCIPHER: chcr_handle_cipher_resp(skcipher_request_cast(req), input, err); break; case CRYPTO_ALG_TYPE_AHASH: chcr_handle_ahash_resp(ahash_request_cast(req), input, err); } atomic_inc(&adap->chcr_stats.complete); return err; } static int chcr_ahash_export(struct ahash_request *areq, void *out) { struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(areq); struct chcr_ahash_req_ctx *state = out; state->reqlen = req_ctx->reqlen; state->data_len = req_ctx->data_len; memcpy(state->bfr1, req_ctx->reqbfr, req_ctx->reqlen); memcpy(state->partial_hash, req_ctx->partial_hash, CHCR_HASH_MAX_DIGEST_SIZE); chcr_init_hctx_per_wr(state); return 0; } static int chcr_ahash_import(struct ahash_request *areq, const void *in) { struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(areq); struct chcr_ahash_req_ctx *state = (struct chcr_ahash_req_ctx *)in; req_ctx->reqlen = state->reqlen; req_ctx->data_len = state->data_len; req_ctx->reqbfr = req_ctx->bfr1; req_ctx->skbfr = req_ctx->bfr2; memcpy(req_ctx->bfr1, state->bfr1, CHCR_HASH_MAX_BLOCK_SIZE_128); memcpy(req_ctx->partial_hash, state->partial_hash, CHCR_HASH_MAX_DIGEST_SIZE); chcr_init_hctx_per_wr(req_ctx); return 0; } static int chcr_ahash_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen) { struct hmac_ctx *hmacctx = HMAC_CTX(h_ctx(tfm)); unsigned int digestsize = crypto_ahash_digestsize(tfm); unsigned int bs = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); unsigned int i, err = 0, updated_digestsize; SHASH_DESC_ON_STACK(shash, hmacctx->base_hash); /* use the key to calculate the ipad and opad. ipad will sent with the * first request's data. opad will be sent with the final hash result * ipad in hmacctx->ipad and opad in hmacctx->opad location */ shash->tfm = hmacctx->base_hash; if (keylen > bs) { err = crypto_shash_digest(shash, key, keylen, hmacctx->ipad); if (err) goto out; keylen = digestsize; } else { memcpy(hmacctx->ipad, key, keylen); } memset(hmacctx->ipad + keylen, 0, bs - keylen); memcpy(hmacctx->opad, hmacctx->ipad, bs); for (i = 0; i < bs / sizeof(int); i++) { *((unsigned int *)(&hmacctx->ipad) + i) ^= IPAD_DATA; *((unsigned int *)(&hmacctx->opad) + i) ^= OPAD_DATA; } updated_digestsize = digestsize; if (digestsize == SHA224_DIGEST_SIZE) updated_digestsize = SHA256_DIGEST_SIZE; else if (digestsize == SHA384_DIGEST_SIZE) updated_digestsize = SHA512_DIGEST_SIZE; err = chcr_compute_partial_hash(shash, hmacctx->ipad, hmacctx->ipad, digestsize); if (err) goto out; chcr_change_order(hmacctx->ipad, updated_digestsize); err = chcr_compute_partial_hash(shash, hmacctx->opad, hmacctx->opad, digestsize); if (err) goto out; chcr_change_order(hmacctx->opad, updated_digestsize); out: return err; } static int chcr_aes_xts_setkey(struct crypto_skcipher *cipher, const u8 *key, unsigned int key_len) { struct ablk_ctx *ablkctx = ABLK_CTX(c_ctx(cipher)); unsigned short context_size = 0; int err; err = chcr_cipher_fallback_setkey(cipher, key, key_len); if (err) goto badkey_err; memcpy(ablkctx->key, key, key_len); ablkctx->enckey_len = key_len; get_aes_decrypt_key(ablkctx->rrkey, ablkctx->key, key_len << 2); context_size = (KEY_CONTEXT_HDR_SALT_AND_PAD + key_len) >> 4; /* Both keys for xts must be aligned to 16 byte boundary * by padding with zeros. So for 24 byte keys padding 8 zeroes. */ if (key_len == 48) { context_size = (KEY_CONTEXT_HDR_SALT_AND_PAD + key_len + 16) >> 4; memmove(ablkctx->key + 32, ablkctx->key + 24, 24); memset(ablkctx->key + 24, 0, 8); memset(ablkctx->key + 56, 0, 8); ablkctx->enckey_len = 64; ablkctx->key_ctx_hdr = FILL_KEY_CTX_HDR(CHCR_KEYCTX_CIPHER_KEY_SIZE_192, CHCR_KEYCTX_NO_KEY, 1, 0, context_size); } else { ablkctx->key_ctx_hdr = FILL_KEY_CTX_HDR((key_len == AES_KEYSIZE_256) ? CHCR_KEYCTX_CIPHER_KEY_SIZE_128 : CHCR_KEYCTX_CIPHER_KEY_SIZE_256, CHCR_KEYCTX_NO_KEY, 1, 0, context_size); } ablkctx->ciph_mode = CHCR_SCMD_CIPHER_MODE_AES_XTS; return 0; badkey_err: ablkctx->enckey_len = 0; return err; } static int chcr_sha_init(struct ahash_request *areq) { struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(areq); struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq); int digestsize = crypto_ahash_digestsize(tfm); req_ctx->data_len = 0; req_ctx->reqlen = 0; req_ctx->reqbfr = req_ctx->bfr1; req_ctx->skbfr = req_ctx->bfr2; copy_hash_init_values(req_ctx->partial_hash, digestsize); return 0; } static int chcr_sha_cra_init(struct crypto_tfm *tfm) { crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), sizeof(struct chcr_ahash_req_ctx)); return chcr_device_init(crypto_tfm_ctx(tfm)); } static int chcr_hmac_init(struct ahash_request *areq) { struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(areq); struct crypto_ahash *rtfm = crypto_ahash_reqtfm(areq); struct hmac_ctx *hmacctx = HMAC_CTX(h_ctx(rtfm)); unsigned int digestsize = crypto_ahash_digestsize(rtfm); unsigned int bs = crypto_tfm_alg_blocksize(crypto_ahash_tfm(rtfm)); chcr_sha_init(areq); req_ctx->data_len = bs; if (is_hmac(crypto_ahash_tfm(rtfm))) { if (digestsize == SHA224_DIGEST_SIZE) memcpy(req_ctx->partial_hash, hmacctx->ipad, SHA256_DIGEST_SIZE); else if (digestsize == SHA384_DIGEST_SIZE) memcpy(req_ctx->partial_hash, hmacctx->ipad, SHA512_DIGEST_SIZE); else memcpy(req_ctx->partial_hash, hmacctx->ipad, digestsize); } return 0; } static int chcr_hmac_cra_init(struct crypto_tfm *tfm) { struct chcr_context *ctx = crypto_tfm_ctx(tfm); struct hmac_ctx *hmacctx = HMAC_CTX(ctx); unsigned int digestsize = crypto_ahash_digestsize(__crypto_ahash_cast(tfm)); crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), sizeof(struct chcr_ahash_req_ctx)); hmacctx->base_hash = chcr_alloc_shash(digestsize); if (IS_ERR(hmacctx->base_hash)) return PTR_ERR(hmacctx->base_hash); return chcr_device_init(crypto_tfm_ctx(tfm)); } static void chcr_hmac_cra_exit(struct crypto_tfm *tfm) { struct chcr_context *ctx = crypto_tfm_ctx(tfm); struct hmac_ctx *hmacctx = HMAC_CTX(ctx); if (hmacctx->base_hash) { chcr_free_shash(hmacctx->base_hash); hmacctx->base_hash = NULL; } } inline void chcr_aead_common_exit(struct aead_request *req) { struct chcr_aead_reqctx *reqctx = aead_request_ctx(req); struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct uld_ctx *u_ctx = ULD_CTX(a_ctx(tfm)); chcr_aead_dma_unmap(&u_ctx->lldi.pdev->dev, req, reqctx->op); } static int chcr_aead_common_init(struct aead_request *req) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct chcr_aead_ctx *aeadctx = AEAD_CTX(a_ctx(tfm)); struct chcr_aead_reqctx *reqctx = aead_request_ctx(req); unsigned int authsize = crypto_aead_authsize(tfm); int error = -EINVAL; /* validate key size */ if (aeadctx->enckey_len == 0) goto err; if (reqctx->op && req->cryptlen < authsize) goto err; if (reqctx->b0_len) reqctx->scratch_pad = reqctx->iv + IV; else reqctx->scratch_pad = NULL; error = chcr_aead_dma_map(&ULD_CTX(a_ctx(tfm))->lldi.pdev->dev, req, reqctx->op); if (error) { error = -ENOMEM; goto err; } return 0; err: return error; } static int chcr_aead_need_fallback(struct aead_request *req, int dst_nents, int aadmax, int wrlen, unsigned short op_type) { unsigned int authsize = crypto_aead_authsize(crypto_aead_reqtfm(req)); if (((req->cryptlen - (op_type ? authsize : 0)) == 0) || dst_nents > MAX_DSGL_ENT || (req->assoclen > aadmax) || (wrlen > SGE_MAX_WR_LEN)) return 1; return 0; } static int chcr_aead_fallback(struct aead_request *req, unsigned short op_type) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct chcr_aead_ctx *aeadctx = AEAD_CTX(a_ctx(tfm)); struct aead_request *subreq = aead_request_ctx(req); aead_request_set_tfm(subreq, aeadctx->sw_cipher); aead_request_set_callback(subreq, req->base.flags, req->base.complete, req->base.data); aead_request_set_crypt(subreq, req->src, req->dst, req->cryptlen, req->iv); aead_request_set_ad(subreq, req->assoclen); return op_type ? crypto_aead_decrypt(subreq) : crypto_aead_encrypt(subreq); } static struct sk_buff *create_authenc_wr(struct aead_request *req, unsigned short qid, int size) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct chcr_context *ctx = a_ctx(tfm); struct chcr_aead_ctx *aeadctx = AEAD_CTX(ctx); struct chcr_authenc_ctx *actx = AUTHENC_CTX(aeadctx); struct chcr_aead_reqctx *reqctx = aead_request_ctx(req); struct sk_buff *skb = NULL; struct chcr_wr *chcr_req; struct cpl_rx_phys_dsgl *phys_cpl; struct ulptx_sgl *ulptx; unsigned int transhdr_len; unsigned int dst_size = 0, temp, subtype = get_aead_subtype(tfm); unsigned int kctx_len = 0, dnents, snents; unsigned int authsize = crypto_aead_authsize(tfm); int error = -EINVAL; u8 *ivptr; int null = 0; gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL : GFP_ATOMIC; struct adapter *adap = padap(ctx->dev); unsigned int rx_channel_id = reqctx->rxqidx / ctx->rxq_perchan; if (req->cryptlen == 0) return NULL; reqctx->b0_len = 0; error = chcr_aead_common_init(req); if (error) return ERR_PTR(error); if (subtype == CRYPTO_ALG_SUB_TYPE_CBC_NULL || subtype == CRYPTO_ALG_SUB_TYPE_CTR_NULL) { null = 1; } dnents = sg_nents_xlen(req->dst, req->assoclen + req->cryptlen + (reqctx->op ? -authsize : authsize), CHCR_DST_SG_SIZE, 0); dnents += MIN_AUTH_SG; // For IV snents = sg_nents_xlen(req->src, req->assoclen + req->cryptlen, CHCR_SRC_SG_SIZE, 0); dst_size = get_space_for_phys_dsgl(dnents); kctx_len = (KEY_CONTEXT_CTX_LEN_G(ntohl(aeadctx->key_ctx_hdr)) << 4) - sizeof(chcr_req->key_ctx); transhdr_len = CIPHER_TRANSHDR_SIZE(kctx_len, dst_size); reqctx->imm = (transhdr_len + req->assoclen + req->cryptlen) < SGE_MAX_WR_LEN; temp = reqctx->imm ? roundup(req->assoclen + req->cryptlen, 16) : (sgl_len(snents) * 8); transhdr_len += temp; transhdr_len = roundup(transhdr_len, 16); if (chcr_aead_need_fallback(req, dnents, T6_MAX_AAD_SIZE, transhdr_len, reqctx->op)) { atomic_inc(&adap->chcr_stats.fallback); chcr_aead_common_exit(req); return ERR_PTR(chcr_aead_fallback(req, reqctx->op)); } skb = alloc_skb(transhdr_len, flags); if (!skb) { error = -ENOMEM; goto err; } chcr_req = __skb_put_zero(skb, transhdr_len); temp = (reqctx->op == CHCR_ENCRYPT_OP) ? 0 : authsize; /* * Input order is AAD,IV and Payload. where IV should be included as * the part of authdata. All other fields should be filled according * to the hardware spec */ chcr_req->sec_cpl.op_ivinsrtofst = FILL_SEC_CPL_OP_IVINSR(rx_channel_id, 2, 1); chcr_req->sec_cpl.pldlen = htonl(req->assoclen + IV + req->cryptlen); chcr_req->sec_cpl.aadstart_cipherstop_hi = FILL_SEC_CPL_CIPHERSTOP_HI( null ? 0 : 1 + IV, null ? 0 : IV + req->assoclen, req->assoclen + IV + 1, (temp & 0x1F0) >> 4); chcr_req->sec_cpl.cipherstop_lo_authinsert = FILL_SEC_CPL_AUTHINSERT( temp & 0xF, null ? 0 : req->assoclen + IV + 1, temp, temp); if (subtype == CRYPTO_ALG_SUB_TYPE_CTR_NULL || subtype == CRYPTO_ALG_SUB_TYPE_CTR_SHA) temp = CHCR_SCMD_CIPHER_MODE_AES_CTR; else temp = CHCR_SCMD_CIPHER_MODE_AES_CBC; chcr_req->sec_cpl.seqno_numivs = FILL_SEC_CPL_SCMD0_SEQNO(reqctx->op, (reqctx->op == CHCR_ENCRYPT_OP) ? 1 : 0, temp, actx->auth_mode, aeadctx->hmac_ctrl, IV >> 1); chcr_req->sec_cpl.ivgen_hdrlen = FILL_SEC_CPL_IVGEN_HDRLEN(0, 0, 1, 0, 0, dst_size); chcr_req->key_ctx.ctx_hdr = aeadctx->key_ctx_hdr; if (reqctx->op == CHCR_ENCRYPT_OP || subtype == CRYPTO_ALG_SUB_TYPE_CTR_SHA || subtype == CRYPTO_ALG_SUB_TYPE_CTR_NULL) memcpy(chcr_req->key_ctx.key, aeadctx->key, aeadctx->enckey_len); else memcpy(chcr_req->key_ctx.key, actx->dec_rrkey, aeadctx->enckey_len); memcpy(chcr_req->key_ctx.key + roundup(aeadctx->enckey_len, 16), actx->h_iopad, kctx_len - roundup(aeadctx->enckey_len, 16)); phys_cpl = (struct cpl_rx_phys_dsgl *)((u8 *)(chcr_req + 1) + kctx_len); ivptr = (u8 *)(phys_cpl + 1) + dst_size; ulptx = (struct ulptx_sgl *)(ivptr + IV); if (subtype == CRYPTO_ALG_SUB_TYPE_CTR_SHA || subtype == CRYPTO_ALG_SUB_TYPE_CTR_NULL) { memcpy(ivptr, aeadctx->nonce, CTR_RFC3686_NONCE_SIZE); memcpy(ivptr + CTR_RFC3686_NONCE_SIZE, req->iv, CTR_RFC3686_IV_SIZE); *(__be32 *)(ivptr + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) = cpu_to_be32(1); } else { memcpy(ivptr, req->iv, IV); } chcr_add_aead_dst_ent(req, phys_cpl, qid); chcr_add_aead_src_ent(req, ulptx); atomic_inc(&adap->chcr_stats.cipher_rqst); temp = sizeof(struct cpl_rx_phys_dsgl) + dst_size + IV + kctx_len + (reqctx->imm ? (req->assoclen + req->cryptlen) : 0); create_wreq(a_ctx(tfm), chcr_req, &req->base, reqctx->imm, size, transhdr_len, temp, 0); reqctx->skb = skb; return skb; err: chcr_aead_common_exit(req); return ERR_PTR(error); } int chcr_aead_dma_map(struct device *dev, struct aead_request *req, unsigned short op_type) { int error; struct chcr_aead_reqctx *reqctx = aead_request_ctx(req); struct crypto_aead *tfm = crypto_aead_reqtfm(req); unsigned int authsize = crypto_aead_authsize(tfm); int src_len, dst_len; /* calculate and handle src and dst sg length separately * for inplace and out-of place operations */ if (req->src == req->dst) { src_len = req->assoclen + req->cryptlen + (op_type ? 0 : authsize); dst_len = src_len; } else { src_len = req->assoclen + req->cryptlen; dst_len = req->assoclen + req->cryptlen + (op_type ? -authsize : authsize); } if (!req->cryptlen || !src_len || !dst_len) return 0; reqctx->iv_dma = dma_map_single(dev, reqctx->iv, (IV + reqctx->b0_len), DMA_BIDIRECTIONAL); if (dma_mapping_error(dev, reqctx->iv_dma)) return -ENOMEM; if (reqctx->b0_len) reqctx->b0_dma = reqctx->iv_dma + IV; else reqctx->b0_dma = 0; if (req->src == req->dst) { error = dma_map_sg(dev, req->src, sg_nents_for_len(req->src, src_len), DMA_BIDIRECTIONAL); if (!error) goto err; } else { error = dma_map_sg(dev, req->src, sg_nents_for_len(req->src, src_len), DMA_TO_DEVICE); if (!error) goto err; error = dma_map_sg(dev, req->dst, sg_nents_for_len(req->dst, dst_len), DMA_FROM_DEVICE); if (!error) { dma_unmap_sg(dev, req->src, sg_nents_for_len(req->src, src_len), DMA_TO_DEVICE); goto err; } } return 0; err: dma_unmap_single(dev, reqctx->iv_dma, IV, DMA_BIDIRECTIONAL); return -ENOMEM; } void chcr_aead_dma_unmap(struct device *dev, struct aead_request *req, unsigned short op_type) { struct chcr_aead_reqctx *reqctx = aead_request_ctx(req); struct crypto_aead *tfm = crypto_aead_reqtfm(req); unsigned int authsize = crypto_aead_authsize(tfm); int src_len, dst_len; /* calculate and handle src and dst sg length separately * for inplace and out-of place operations */ if (req->src == req->dst) { src_len = req->assoclen + req->cryptlen + (op_type ? 0 : authsize); dst_len = src_len; } else { src_len = req->assoclen + req->cryptlen; dst_len = req->assoclen + req->cryptlen + (op_type ? -authsize : authsize); } if (!req->cryptlen || !src_len || !dst_len) return; dma_unmap_single(dev, reqctx->iv_dma, (IV + reqctx->b0_len), DMA_BIDIRECTIONAL); if (req->src == req->dst) { dma_unmap_sg(dev, req->src, sg_nents_for_len(req->src, src_len), DMA_BIDIRECTIONAL); } else { dma_unmap_sg(dev, req->src, sg_nents_for_len(req->src, src_len), DMA_TO_DEVICE); dma_unmap_sg(dev, req->dst, sg_nents_for_len(req->dst, dst_len), DMA_FROM_DEVICE); } } void chcr_add_aead_src_ent(struct aead_request *req, struct ulptx_sgl *ulptx) { struct ulptx_walk ulp_walk; struct chcr_aead_reqctx *reqctx = aead_request_ctx(req); if (reqctx->imm) { u8 *buf = (u8 *)ulptx; if (reqctx->b0_len) { memcpy(buf, reqctx->scratch_pad, reqctx->b0_len); buf += reqctx->b0_len; } sg_pcopy_to_buffer(req->src, sg_nents(req->src), buf, req->cryptlen + req->assoclen, 0); } else { ulptx_walk_init(&ulp_walk, ulptx); if (reqctx->b0_len) ulptx_walk_add_page(&ulp_walk, reqctx->b0_len, reqctx->b0_dma); ulptx_walk_add_sg(&ulp_walk, req->src, req->cryptlen + req->assoclen, 0); ulptx_walk_end(&ulp_walk); } } void chcr_add_aead_dst_ent(struct aead_request *req, struct cpl_rx_phys_dsgl *phys_cpl, unsigned short qid) { struct chcr_aead_reqctx *reqctx = aead_request_ctx(req); struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct dsgl_walk dsgl_walk; unsigned int authsize = crypto_aead_authsize(tfm); struct chcr_context *ctx = a_ctx(tfm); u32 temp; unsigned int rx_channel_id = reqctx->rxqidx / ctx->rxq_perchan; dsgl_walk_init(&dsgl_walk, phys_cpl); dsgl_walk_add_page(&dsgl_walk, IV + reqctx->b0_len, reqctx->iv_dma); temp = req->assoclen + req->cryptlen + (reqctx->op ? -authsize : authsize); dsgl_walk_add_sg(&dsgl_walk, req->dst, temp, 0); dsgl_walk_end(&dsgl_walk, qid, rx_channel_id); } void chcr_add_cipher_src_ent(struct skcipher_request *req, void *ulptx, struct cipher_wr_param *wrparam) { struct ulptx_walk ulp_walk; struct chcr_skcipher_req_ctx *reqctx = skcipher_request_ctx(req); u8 *buf = ulptx; memcpy(buf, reqctx->iv, IV); buf += IV; if (reqctx->imm) { sg_pcopy_to_buffer(req->src, sg_nents(req->src), buf, wrparam->bytes, reqctx->processed); } else { ulptx_walk_init(&ulp_walk, (struct ulptx_sgl *)buf); ulptx_walk_add_sg(&ulp_walk, reqctx->srcsg, wrparam->bytes, reqctx->src_ofst); reqctx->srcsg = ulp_walk.last_sg; reqctx->src_ofst = ulp_walk.last_sg_len; ulptx_walk_end(&ulp_walk); } } void chcr_add_cipher_dst_ent(struct skcipher_request *req, struct cpl_rx_phys_dsgl *phys_cpl, struct cipher_wr_param *wrparam, unsigned short qid) { struct chcr_skcipher_req_ctx *reqctx = skcipher_request_ctx(req); struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(wrparam->req); struct chcr_context *ctx = c_ctx(tfm); struct dsgl_walk dsgl_walk; unsigned int rx_channel_id = reqctx->rxqidx / ctx->rxq_perchan; dsgl_walk_init(&dsgl_walk, phys_cpl); dsgl_walk_add_sg(&dsgl_walk, reqctx->dstsg, wrparam->bytes, reqctx->dst_ofst); reqctx->dstsg = dsgl_walk.last_sg; reqctx->dst_ofst = dsgl_walk.last_sg_len; dsgl_walk_end(&dsgl_walk, qid, rx_channel_id); } void chcr_add_hash_src_ent(struct ahash_request *req, struct ulptx_sgl *ulptx, struct hash_wr_param *param) { struct ulptx_walk ulp_walk; struct chcr_ahash_req_ctx *reqctx = ahash_request_ctx(req); if (reqctx->hctx_wr.imm) { u8 *buf = (u8 *)ulptx; if (param->bfr_len) { memcpy(buf, reqctx->reqbfr, param->bfr_len); buf += param->bfr_len; } sg_pcopy_to_buffer(reqctx->hctx_wr.srcsg, sg_nents(reqctx->hctx_wr.srcsg), buf, param->sg_len, 0); } else { ulptx_walk_init(&ulp_walk, ulptx); if (param->bfr_len) ulptx_walk_add_page(&ulp_walk, param->bfr_len, reqctx->hctx_wr.dma_addr); ulptx_walk_add_sg(&ulp_walk, reqctx->hctx_wr.srcsg, param->sg_len, reqctx->hctx_wr.src_ofst); reqctx->hctx_wr.srcsg = ulp_walk.last_sg; reqctx->hctx_wr.src_ofst = ulp_walk.last_sg_len; ulptx_walk_end(&ulp_walk); } } int chcr_hash_dma_map(struct device *dev, struct ahash_request *req) { struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(req); int error = 0; if (!req->nbytes) return 0; error = dma_map_sg(dev, req->src, sg_nents(req->src), DMA_TO_DEVICE); if (!error) return -ENOMEM; req_ctx->hctx_wr.is_sg_map = 1; return 0; } void chcr_hash_dma_unmap(struct device *dev, struct ahash_request *req) { struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(req); if (!req->nbytes) return; dma_unmap_sg(dev, req->src, sg_nents(req->src), DMA_TO_DEVICE); req_ctx->hctx_wr.is_sg_map = 0; } int chcr_cipher_dma_map(struct device *dev, struct skcipher_request *req) { int error; if (req->src == req->dst) { error = dma_map_sg(dev, req->src, sg_nents(req->src), DMA_BIDIRECTIONAL); if (!error) goto err; } else { error = dma_map_sg(dev, req->src, sg_nents(req->src), DMA_TO_DEVICE); if (!error) goto err; error = dma_map_sg(dev, req->dst, sg_nents(req->dst), DMA_FROM_DEVICE); if (!error) { dma_unmap_sg(dev, req->src, sg_nents(req->src), DMA_TO_DEVICE); goto err; } } return 0; err: return -ENOMEM; } void chcr_cipher_dma_unmap(struct device *dev, struct skcipher_request *req) { if (req->src == req->dst) { dma_unmap_sg(dev, req->src, sg_nents(req->src), DMA_BIDIRECTIONAL); } else { dma_unmap_sg(dev, req->src, sg_nents(req->src), DMA_TO_DEVICE); dma_unmap_sg(dev, req->dst, sg_nents(req->dst), DMA_FROM_DEVICE); } } static int set_msg_len(u8 *block, unsigned int msglen, int csize) { __be32 data; memset(block, 0, csize); block += csize; if (csize >= 4) csize = 4; else if (msglen > (unsigned int)(1 << (8 * csize))) return -EOVERFLOW; data = cpu_to_be32(msglen); memcpy(block - csize, (u8 *)&data + 4 - csize, csize); return 0; } static int generate_b0(struct aead_request *req, u8 *ivptr, unsigned short op_type) { unsigned int l, lp, m; int rc; struct crypto_aead *aead = crypto_aead_reqtfm(req); struct chcr_aead_reqctx *reqctx = aead_request_ctx(req); u8 *b0 = reqctx->scratch_pad; m = crypto_aead_authsize(aead); memcpy(b0, ivptr, 16); lp = b0[0]; l = lp + 1; /* set m, bits 3-5 */ *b0 |= (8 * ((m - 2) / 2)); /* set adata, bit 6, if associated data is used */ if (req->assoclen) *b0 |= 64; rc = set_msg_len(b0 + 16 - l, (op_type == CHCR_DECRYPT_OP) ? req->cryptlen - m : req->cryptlen, l); return rc; } static inline int crypto_ccm_check_iv(const u8 *iv) { /* 2 <= L <= 8, so 1 <= L' <= 7. */ if (iv[0] < 1 || iv[0] > 7) return -EINVAL; return 0; } static int ccm_format_packet(struct aead_request *req, u8 *ivptr, unsigned int sub_type, unsigned short op_type, unsigned int assoclen) { struct chcr_aead_reqctx *reqctx = aead_request_ctx(req); struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct chcr_aead_ctx *aeadctx = AEAD_CTX(a_ctx(tfm)); int rc = 0; if (sub_type == CRYPTO_ALG_SUB_TYPE_AEAD_RFC4309) { ivptr[0] = 3; memcpy(ivptr + 1, &aeadctx->salt[0], 3); memcpy(ivptr + 4, req->iv, 8); memset(ivptr + 12, 0, 4); } else { memcpy(ivptr, req->iv, 16); } if (assoclen) put_unaligned_be16(assoclen, &reqctx->scratch_pad[16]); rc = generate_b0(req, ivptr, op_type); /* zero the ctr value */ memset(ivptr + 15 - ivptr[0], 0, ivptr[0] + 1); return rc; } static void fill_sec_cpl_for_aead(struct cpl_tx_sec_pdu *sec_cpl, unsigned int dst_size, struct aead_request *req, unsigned short op_type) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct chcr_context *ctx = a_ctx(tfm); struct chcr_aead_ctx *aeadctx = AEAD_CTX(ctx); struct chcr_aead_reqctx *reqctx = aead_request_ctx(req); unsigned int cipher_mode = CHCR_SCMD_CIPHER_MODE_AES_CCM; unsigned int mac_mode = CHCR_SCMD_AUTH_MODE_CBCMAC; unsigned int rx_channel_id = reqctx->rxqidx / ctx->rxq_perchan; unsigned int ccm_xtra; unsigned int tag_offset = 0, auth_offset = 0; unsigned int assoclen; if (get_aead_subtype(tfm) == CRYPTO_ALG_SUB_TYPE_AEAD_RFC4309) assoclen = req->assoclen - 8; else assoclen = req->assoclen; ccm_xtra = CCM_B0_SIZE + ((assoclen) ? CCM_AAD_FIELD_SIZE : 0); auth_offset = req->cryptlen ? (req->assoclen + IV + 1 + ccm_xtra) : 0; if (op_type == CHCR_DECRYPT_OP) { if (crypto_aead_authsize(tfm) != req->cryptlen) tag_offset = crypto_aead_authsize(tfm); else auth_offset = 0; } sec_cpl->op_ivinsrtofst = FILL_SEC_CPL_OP_IVINSR(rx_channel_id, 2, 1); sec_cpl->pldlen = htonl(req->assoclen + IV + req->cryptlen + ccm_xtra); /* For CCM there wil be b0 always. So AAD start will be 1 always */ sec_cpl->aadstart_cipherstop_hi = FILL_SEC_CPL_CIPHERSTOP_HI( 1 + IV, IV + assoclen + ccm_xtra, req->assoclen + IV + 1 + ccm_xtra, 0); sec_cpl->cipherstop_lo_authinsert = FILL_SEC_CPL_AUTHINSERT(0, auth_offset, tag_offset, (op_type == CHCR_ENCRYPT_OP) ? 0 : crypto_aead_authsize(tfm)); sec_cpl->seqno_numivs = FILL_SEC_CPL_SCMD0_SEQNO(op_type, (op_type == CHCR_ENCRYPT_OP) ? 0 : 1, cipher_mode, mac_mode, aeadctx->hmac_ctrl, IV >> 1); sec_cpl->ivgen_hdrlen = FILL_SEC_CPL_IVGEN_HDRLEN(0, 0, 1, 0, 0, dst_size); } static int aead_ccm_validate_input(unsigned short op_type, struct aead_request *req, struct chcr_aead_ctx *aeadctx, unsigned int sub_type) { if (sub_type != CRYPTO_ALG_SUB_TYPE_AEAD_RFC4309) { if (crypto_ccm_check_iv(req->iv)) { pr_err("CCM: IV check fails\n"); return -EINVAL; } } else { if (req->assoclen != 16 && req->assoclen != 20) { pr_err("RFC4309: Invalid AAD length %d\n", req->assoclen); return -EINVAL; } } return 0; } static struct sk_buff *create_aead_ccm_wr(struct aead_request *req, unsigned short qid, int size) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct chcr_aead_ctx *aeadctx = AEAD_CTX(a_ctx(tfm)); struct chcr_aead_reqctx *reqctx = aead_request_ctx(req); struct sk_buff *skb = NULL; struct chcr_wr *chcr_req; struct cpl_rx_phys_dsgl *phys_cpl; struct ulptx_sgl *ulptx; unsigned int transhdr_len; unsigned int dst_size = 0, kctx_len, dnents, temp, snents; unsigned int sub_type, assoclen = req->assoclen; unsigned int authsize = crypto_aead_authsize(tfm); int error = -EINVAL; u8 *ivptr; gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL : GFP_ATOMIC; struct adapter *adap = padap(a_ctx(tfm)->dev); sub_type = get_aead_subtype(tfm); if (sub_type == CRYPTO_ALG_SUB_TYPE_AEAD_RFC4309) assoclen -= 8; reqctx->b0_len = CCM_B0_SIZE + (assoclen ? CCM_AAD_FIELD_SIZE : 0); error = chcr_aead_common_init(req); if (error) return ERR_PTR(error); error = aead_ccm_validate_input(reqctx->op, req, aeadctx, sub_type); if (error) goto err; dnents = sg_nents_xlen(req->dst, req->assoclen + req->cryptlen + (reqctx->op ? -authsize : authsize), CHCR_DST_SG_SIZE, 0); dnents += MIN_CCM_SG; // For IV and B0 dst_size = get_space_for_phys_dsgl(dnents); snents = sg_nents_xlen(req->src, req->assoclen + req->cryptlen, CHCR_SRC_SG_SIZE, 0); snents += MIN_CCM_SG; //For B0 kctx_len = roundup(aeadctx->enckey_len, 16) * 2; transhdr_len = CIPHER_TRANSHDR_SIZE(kctx_len, dst_size); reqctx->imm = (transhdr_len + req->assoclen + req->cryptlen + reqctx->b0_len) <= SGE_MAX_WR_LEN; temp = reqctx->imm ? roundup(req->assoclen + req->cryptlen + reqctx->b0_len, 16) : (sgl_len(snents) * 8); transhdr_len += temp; transhdr_len = roundup(transhdr_len, 16); if (chcr_aead_need_fallback(req, dnents, T6_MAX_AAD_SIZE - reqctx->b0_len, transhdr_len, reqctx->op)) { atomic_inc(&adap->chcr_stats.fallback); chcr_aead_common_exit(req); return ERR_PTR(chcr_aead_fallback(req, reqctx->op)); } skb = alloc_skb(transhdr_len, flags); if (!skb) { error = -ENOMEM; goto err; } chcr_req = __skb_put_zero(skb, transhdr_len); fill_sec_cpl_for_aead(&chcr_req->sec_cpl, dst_size, req, reqctx->op); chcr_req->key_ctx.ctx_hdr = aeadctx->key_ctx_hdr; memcpy(chcr_req->key_ctx.key, aeadctx->key, aeadctx->enckey_len); memcpy(chcr_req->key_ctx.key + roundup(aeadctx->enckey_len, 16), aeadctx->key, aeadctx->enckey_len); phys_cpl = (struct cpl_rx_phys_dsgl *)((u8 *)(chcr_req + 1) + kctx_len); ivptr = (u8 *)(phys_cpl + 1) + dst_size; ulptx = (struct ulptx_sgl *)(ivptr + IV); error = ccm_format_packet(req, ivptr, sub_type, reqctx->op, assoclen); if (error) goto dstmap_fail; chcr_add_aead_dst_ent(req, phys_cpl, qid); chcr_add_aead_src_ent(req, ulptx); atomic_inc(&adap->chcr_stats.aead_rqst); temp = sizeof(struct cpl_rx_phys_dsgl) + dst_size + IV + kctx_len + (reqctx->imm ? (req->assoclen + req->cryptlen + reqctx->b0_len) : 0); create_wreq(a_ctx(tfm), chcr_req, &req->base, reqctx->imm, 0, transhdr_len, temp, 0); reqctx->skb = skb; return skb; dstmap_fail: kfree_skb(skb); err: chcr_aead_common_exit(req); return ERR_PTR(error); } static struct sk_buff *create_gcm_wr(struct aead_request *req, unsigned short qid, int size) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct chcr_context *ctx = a_ctx(tfm); struct chcr_aead_ctx *aeadctx = AEAD_CTX(ctx); struct chcr_aead_reqctx *reqctx = aead_request_ctx(req); struct sk_buff *skb = NULL; struct chcr_wr *chcr_req; struct cpl_rx_phys_dsgl *phys_cpl; struct ulptx_sgl *ulptx; unsigned int transhdr_len, dnents = 0, snents; unsigned int dst_size = 0, temp = 0, kctx_len, assoclen = req->assoclen; unsigned int authsize = crypto_aead_authsize(tfm); int error = -EINVAL; u8 *ivptr; gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL : GFP_ATOMIC; struct adapter *adap = padap(ctx->dev); unsigned int rx_channel_id = reqctx->rxqidx / ctx->rxq_perchan; if (get_aead_subtype(tfm) == CRYPTO_ALG_SUB_TYPE_AEAD_RFC4106) assoclen = req->assoclen - 8; reqctx->b0_len = 0; error = chcr_aead_common_init(req); if (error) return ERR_PTR(error); dnents = sg_nents_xlen(req->dst, req->assoclen + req->cryptlen + (reqctx->op ? -authsize : authsize), CHCR_DST_SG_SIZE, 0); snents = sg_nents_xlen(req->src, req->assoclen + req->cryptlen, CHCR_SRC_SG_SIZE, 0); dnents += MIN_GCM_SG; // For IV dst_size = get_space_for_phys_dsgl(dnents); kctx_len = roundup(aeadctx->enckey_len, 16) + AEAD_H_SIZE; transhdr_len = CIPHER_TRANSHDR_SIZE(kctx_len, dst_size); reqctx->imm = (transhdr_len + req->assoclen + req->cryptlen) <= SGE_MAX_WR_LEN; temp = reqctx->imm ? roundup(req->assoclen + req->cryptlen, 16) : (sgl_len(snents) * 8); transhdr_len += temp; transhdr_len = roundup(transhdr_len, 16); if (chcr_aead_need_fallback(req, dnents, T6_MAX_AAD_SIZE, transhdr_len, reqctx->op)) { atomic_inc(&adap->chcr_stats.fallback); chcr_aead_common_exit(req); return ERR_PTR(chcr_aead_fallback(req, reqctx->op)); } skb = alloc_skb(transhdr_len, flags); if (!skb) { error = -ENOMEM; goto err; } chcr_req = __skb_put_zero(skb, transhdr_len); //Offset of tag from end temp = (reqctx->op == CHCR_ENCRYPT_OP) ? 0 : authsize; chcr_req->sec_cpl.op_ivinsrtofst = FILL_SEC_CPL_OP_IVINSR( rx_channel_id, 2, 1); chcr_req->sec_cpl.pldlen = htonl(req->assoclen + IV + req->cryptlen); chcr_req->sec_cpl.aadstart_cipherstop_hi = FILL_SEC_CPL_CIPHERSTOP_HI( assoclen ? 1 + IV : 0, assoclen ? IV + assoclen : 0, req->assoclen + IV + 1, 0); chcr_req->sec_cpl.cipherstop_lo_authinsert = FILL_SEC_CPL_AUTHINSERT(0, req->assoclen + IV + 1, temp, temp); chcr_req->sec_cpl.seqno_numivs = FILL_SEC_CPL_SCMD0_SEQNO(reqctx->op, (reqctx->op == CHCR_ENCRYPT_OP) ? 1 : 0, CHCR_SCMD_CIPHER_MODE_AES_GCM, CHCR_SCMD_AUTH_MODE_GHASH, aeadctx->hmac_ctrl, IV >> 1); chcr_req->sec_cpl.ivgen_hdrlen = FILL_SEC_CPL_IVGEN_HDRLEN(0, 0, 1, 0, 0, dst_size); chcr_req->key_ctx.ctx_hdr = aeadctx->key_ctx_hdr; memcpy(chcr_req->key_ctx.key, aeadctx->key, aeadctx->enckey_len); memcpy(chcr_req->key_ctx.key + roundup(aeadctx->enckey_len, 16), GCM_CTX(aeadctx)->ghash_h, AEAD_H_SIZE); phys_cpl = (struct cpl_rx_phys_dsgl *)((u8 *)(chcr_req + 1) + kctx_len); ivptr = (u8 *)(phys_cpl + 1) + dst_size; /* prepare a 16 byte iv */ /* S A L T | IV | 0x00000001 */ if (get_aead_subtype(tfm) == CRYPTO_ALG_SUB_TYPE_AEAD_RFC4106) { memcpy(ivptr, aeadctx->salt, 4); memcpy(ivptr + 4, req->iv, GCM_RFC4106_IV_SIZE); } else { memcpy(ivptr, req->iv, GCM_AES_IV_SIZE); } put_unaligned_be32(0x01, &ivptr[12]); ulptx = (struct ulptx_sgl *)(ivptr + 16); chcr_add_aead_dst_ent(req, phys_cpl, qid); chcr_add_aead_src_ent(req, ulptx); atomic_inc(&adap->chcr_stats.aead_rqst); temp = sizeof(struct cpl_rx_phys_dsgl) + dst_size + IV + kctx_len + (reqctx->imm ? (req->assoclen + req->cryptlen) : 0); create_wreq(a_ctx(tfm), chcr_req, &req->base, reqctx->imm, size, transhdr_len, temp, reqctx->verify); reqctx->skb = skb; return skb; err: chcr_aead_common_exit(req); return ERR_PTR(error); } static int chcr_aead_cra_init(struct crypto_aead *tfm) { struct chcr_aead_ctx *aeadctx = AEAD_CTX(a_ctx(tfm)); struct aead_alg *alg = crypto_aead_alg(tfm); aeadctx->sw_cipher = crypto_alloc_aead(alg->base.cra_name, 0, CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC); if (IS_ERR(aeadctx->sw_cipher)) return PTR_ERR(aeadctx->sw_cipher); crypto_aead_set_reqsize(tfm, max(sizeof(struct chcr_aead_reqctx), sizeof(struct aead_request) + crypto_aead_reqsize(aeadctx->sw_cipher))); return chcr_device_init(a_ctx(tfm)); } static void chcr_aead_cra_exit(struct crypto_aead *tfm) { struct chcr_aead_ctx *aeadctx = AEAD_CTX(a_ctx(tfm)); crypto_free_aead(aeadctx->sw_cipher); } static int chcr_authenc_null_setauthsize(struct crypto_aead *tfm, unsigned int authsize) { struct chcr_aead_ctx *aeadctx = AEAD_CTX(a_ctx(tfm)); aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_NOP; aeadctx->mayverify = VERIFY_HW; return crypto_aead_setauthsize(aeadctx->sw_cipher, authsize); } static int chcr_authenc_setauthsize(struct crypto_aead *tfm, unsigned int authsize) { struct chcr_aead_ctx *aeadctx = AEAD_CTX(a_ctx(tfm)); u32 maxauth = crypto_aead_maxauthsize(tfm); /*SHA1 authsize in ipsec is 12 instead of 10 i.e maxauthsize / 2 is not * true for sha1. authsize == 12 condition should be before * authsize == (maxauth >> 1) */ if (authsize == ICV_4) { aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_PL1; aeadctx->mayverify = VERIFY_HW; } else if (authsize == ICV_6) { aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_PL2; aeadctx->mayverify = VERIFY_HW; } else if (authsize == ICV_10) { aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_TRUNC_RFC4366; aeadctx->mayverify = VERIFY_HW; } else if (authsize == ICV_12) { aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_IPSEC_96BIT; aeadctx->mayverify = VERIFY_HW; } else if (authsize == ICV_14) { aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_PL3; aeadctx->mayverify = VERIFY_HW; } else if (authsize == (maxauth >> 1)) { aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_DIV2; aeadctx->mayverify = VERIFY_HW; } else if (authsize == maxauth) { aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_NO_TRUNC; aeadctx->mayverify = VERIFY_HW; } else { aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_NO_TRUNC; aeadctx->mayverify = VERIFY_SW; } return crypto_aead_setauthsize(aeadctx->sw_cipher, authsize); } static int chcr_gcm_setauthsize(struct crypto_aead *tfm, unsigned int authsize) { struct chcr_aead_ctx *aeadctx = AEAD_CTX(a_ctx(tfm)); switch (authsize) { case ICV_4: aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_PL1; aeadctx->mayverify = VERIFY_HW; break; case ICV_8: aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_DIV2; aeadctx->mayverify = VERIFY_HW; break; case ICV_12: aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_IPSEC_96BIT; aeadctx->mayverify = VERIFY_HW; break; case ICV_14: aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_PL3; aeadctx->mayverify = VERIFY_HW; break; case ICV_16: aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_NO_TRUNC; aeadctx->mayverify = VERIFY_HW; break; case ICV_13: case ICV_15: aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_NO_TRUNC; aeadctx->mayverify = VERIFY_SW; break; default: return -EINVAL; } return crypto_aead_setauthsize(aeadctx->sw_cipher, authsize); } static int chcr_4106_4309_setauthsize(struct crypto_aead *tfm, unsigned int authsize) { struct chcr_aead_ctx *aeadctx = AEAD_CTX(a_ctx(tfm)); switch (authsize) { case ICV_8: aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_DIV2; aeadctx->mayverify = VERIFY_HW; break; case ICV_12: aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_IPSEC_96BIT; aeadctx->mayverify = VERIFY_HW; break; case ICV_16: aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_NO_TRUNC; aeadctx->mayverify = VERIFY_HW; break; default: return -EINVAL; } return crypto_aead_setauthsize(aeadctx->sw_cipher, authsize); } static int chcr_ccm_setauthsize(struct crypto_aead *tfm, unsigned int authsize) { struct chcr_aead_ctx *aeadctx = AEAD_CTX(a_ctx(tfm)); switch (authsize) { case ICV_4: aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_PL1; aeadctx->mayverify = VERIFY_HW; break; case ICV_6: aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_PL2; aeadctx->mayverify = VERIFY_HW; break; case ICV_8: aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_DIV2; aeadctx->mayverify = VERIFY_HW; break; case ICV_10: aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_TRUNC_RFC4366; aeadctx->mayverify = VERIFY_HW; break; case ICV_12: aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_IPSEC_96BIT; aeadctx->mayverify = VERIFY_HW; break; case ICV_14: aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_PL3; aeadctx->mayverify = VERIFY_HW; break; case ICV_16: aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_NO_TRUNC; aeadctx->mayverify = VERIFY_HW; break; default: return -EINVAL; } return crypto_aead_setauthsize(aeadctx->sw_cipher, authsize); } static int chcr_ccm_common_setkey(struct crypto_aead *aead, const u8 *key, unsigned int keylen) { struct chcr_aead_ctx *aeadctx = AEAD_CTX(a_ctx(aead)); unsigned char ck_size, mk_size; int key_ctx_size = 0; key_ctx_size = sizeof(struct _key_ctx) + roundup(keylen, 16) * 2; if (keylen == AES_KEYSIZE_128) { ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_128; mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_128; } else if (keylen == AES_KEYSIZE_192) { ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_192; mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_192; } else if (keylen == AES_KEYSIZE_256) { ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_256; mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_256; } else { aeadctx->enckey_len = 0; return -EINVAL; } aeadctx->key_ctx_hdr = FILL_KEY_CTX_HDR(ck_size, mk_size, 0, 0, key_ctx_size >> 4); memcpy(aeadctx->key, key, keylen); aeadctx->enckey_len = keylen; return 0; } static int chcr_aead_ccm_setkey(struct crypto_aead *aead, const u8 *key, unsigned int keylen) { struct chcr_aead_ctx *aeadctx = AEAD_CTX(a_ctx(aead)); int error; crypto_aead_clear_flags(aeadctx->sw_cipher, CRYPTO_TFM_REQ_MASK); crypto_aead_set_flags(aeadctx->sw_cipher, crypto_aead_get_flags(aead) & CRYPTO_TFM_REQ_MASK); error = crypto_aead_setkey(aeadctx->sw_cipher, key, keylen); if (error) return error; return chcr_ccm_common_setkey(aead, key, keylen); } static int chcr_aead_rfc4309_setkey(struct crypto_aead *aead, const u8 *key, unsigned int keylen) { struct chcr_aead_ctx *aeadctx = AEAD_CTX(a_ctx(aead)); int error; if (keylen < 3) { aeadctx->enckey_len = 0; return -EINVAL; } crypto_aead_clear_flags(aeadctx->sw_cipher, CRYPTO_TFM_REQ_MASK); crypto_aead_set_flags(aeadctx->sw_cipher, crypto_aead_get_flags(aead) & CRYPTO_TFM_REQ_MASK); error = crypto_aead_setkey(aeadctx->sw_cipher, key, keylen); if (error) return error; keylen -= 3; memcpy(aeadctx->salt, key + keylen, 3); return chcr_ccm_common_setkey(aead, key, keylen); } static int chcr_gcm_setkey(struct crypto_aead *aead, const u8 *key, unsigned int keylen) { struct chcr_aead_ctx *aeadctx = AEAD_CTX(a_ctx(aead)); struct chcr_gcm_ctx *gctx = GCM_CTX(aeadctx); unsigned int ck_size; int ret = 0, key_ctx_size = 0; struct crypto_aes_ctx aes; aeadctx->enckey_len = 0; crypto_aead_clear_flags(aeadctx->sw_cipher, CRYPTO_TFM_REQ_MASK); crypto_aead_set_flags(aeadctx->sw_cipher, crypto_aead_get_flags(aead) & CRYPTO_TFM_REQ_MASK); ret = crypto_aead_setkey(aeadctx->sw_cipher, key, keylen); if (ret) goto out; if (get_aead_subtype(aead) == CRYPTO_ALG_SUB_TYPE_AEAD_RFC4106 && keylen > 3) { keylen -= 4; /* nonce/salt is present in the last 4 bytes */ memcpy(aeadctx->salt, key + keylen, 4); } if (keylen == AES_KEYSIZE_128) { ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_128; } else if (keylen == AES_KEYSIZE_192) { ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_192; } else if (keylen == AES_KEYSIZE_256) { ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_256; } else { pr_err("GCM: Invalid key length %d\n", keylen); ret = -EINVAL; goto out; } memcpy(aeadctx->key, key, keylen); aeadctx->enckey_len = keylen; key_ctx_size = sizeof(struct _key_ctx) + roundup(keylen, 16) + AEAD_H_SIZE; aeadctx->key_ctx_hdr = FILL_KEY_CTX_HDR(ck_size, CHCR_KEYCTX_MAC_KEY_SIZE_128, 0, 0, key_ctx_size >> 4); /* Calculate the H = CIPH(K, 0 repeated 16 times). * It will go in key context */ ret = aes_expandkey(&aes, key, keylen); if (ret) { aeadctx->enckey_len = 0; goto out; } memset(gctx->ghash_h, 0, AEAD_H_SIZE); aes_encrypt(&aes, gctx->ghash_h, gctx->ghash_h); memzero_explicit(&aes, sizeof(aes)); out: return ret; } static int chcr_authenc_setkey(struct crypto_aead *authenc, const u8 *key, unsigned int keylen) { struct chcr_aead_ctx *aeadctx = AEAD_CTX(a_ctx(authenc)); struct chcr_authenc_ctx *actx = AUTHENC_CTX(aeadctx); /* it contains auth and cipher key both*/ struct crypto_authenc_keys keys; unsigned int bs, subtype; unsigned int max_authsize = crypto_aead_alg(authenc)->maxauthsize; int err = 0, i, key_ctx_len = 0; unsigned char ck_size = 0; unsigned char pad[CHCR_HASH_MAX_BLOCK_SIZE_128] = { 0 }; struct crypto_shash *base_hash = ERR_PTR(-EINVAL); struct algo_param param; int align; u8 *o_ptr = NULL; crypto_aead_clear_flags(aeadctx->sw_cipher, CRYPTO_TFM_REQ_MASK); crypto_aead_set_flags(aeadctx->sw_cipher, crypto_aead_get_flags(authenc) & CRYPTO_TFM_REQ_MASK); err = crypto_aead_setkey(aeadctx->sw_cipher, key, keylen); if (err) goto out; if (crypto_authenc_extractkeys(&keys, key, keylen) != 0) goto out; if (get_alg_config(¶m, max_authsize)) { pr_err("chcr : Unsupported digest size\n"); goto out; } subtype = get_aead_subtype(authenc); if (subtype == CRYPTO_ALG_SUB_TYPE_CTR_SHA || subtype == CRYPTO_ALG_SUB_TYPE_CTR_NULL) { if (keys.enckeylen < CTR_RFC3686_NONCE_SIZE) goto out; memcpy(aeadctx->nonce, keys.enckey + (keys.enckeylen - CTR_RFC3686_NONCE_SIZE), CTR_RFC3686_NONCE_SIZE); keys.enckeylen -= CTR_RFC3686_NONCE_SIZE; } if (keys.enckeylen == AES_KEYSIZE_128) { ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_128; } else if (keys.enckeylen == AES_KEYSIZE_192) { ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_192; } else if (keys.enckeylen == AES_KEYSIZE_256) { ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_256; } else { pr_err("chcr : Unsupported cipher key\n"); goto out; } /* Copy only encryption key. We use authkey to generate h(ipad) and * h(opad) so authkey is not needed again. authkeylen size have the * size of the hash digest size. */ memcpy(aeadctx->key, keys.enckey, keys.enckeylen); aeadctx->enckey_len = keys.enckeylen; if (subtype == CRYPTO_ALG_SUB_TYPE_CBC_SHA || subtype == CRYPTO_ALG_SUB_TYPE_CBC_NULL) { get_aes_decrypt_key(actx->dec_rrkey, aeadctx->key, aeadctx->enckey_len << 3); } base_hash = chcr_alloc_shash(max_authsize); if (IS_ERR(base_hash)) { pr_err("chcr : Base driver cannot be loaded\n"); aeadctx->enckey_len = 0; memzero_explicit(&keys, sizeof(keys)); return -EINVAL; } { SHASH_DESC_ON_STACK(shash, base_hash); shash->tfm = base_hash; bs = crypto_shash_blocksize(base_hash); align = KEYCTX_ALIGN_PAD(max_authsize); o_ptr = actx->h_iopad + param.result_size + align; if (keys.authkeylen > bs) { err = crypto_shash_digest(shash, keys.authkey, keys.authkeylen, o_ptr); if (err) { pr_err("chcr : Base driver cannot be loaded\n"); goto out; } keys.authkeylen = max_authsize; } else memcpy(o_ptr, keys.authkey, keys.authkeylen); /* Compute the ipad-digest*/ memset(pad + keys.authkeylen, 0, bs - keys.authkeylen); memcpy(pad, o_ptr, keys.authkeylen); for (i = 0; i < bs >> 2; i++) *((unsigned int *)pad + i) ^= IPAD_DATA; if (chcr_compute_partial_hash(shash, pad, actx->h_iopad, max_authsize)) goto out; /* Compute the opad-digest */ memset(pad + keys.authkeylen, 0, bs - keys.authkeylen); memcpy(pad, o_ptr, keys.authkeylen); for (i = 0; i < bs >> 2; i++) *((unsigned int *)pad + i) ^= OPAD_DATA; if (chcr_compute_partial_hash(shash, pad, o_ptr, max_authsize)) goto out; /* convert the ipad and opad digest to network order */ chcr_change_order(actx->h_iopad, param.result_size); chcr_change_order(o_ptr, param.result_size); key_ctx_len = sizeof(struct _key_ctx) + roundup(keys.enckeylen, 16) + (param.result_size + align) * 2; aeadctx->key_ctx_hdr = FILL_KEY_CTX_HDR(ck_size, param.mk_size, 0, 1, key_ctx_len >> 4); actx->auth_mode = param.auth_mode; chcr_free_shash(base_hash); memzero_explicit(&keys, sizeof(keys)); return 0; } out: aeadctx->enckey_len = 0; memzero_explicit(&keys, sizeof(keys)); if (!IS_ERR(base_hash)) chcr_free_shash(base_hash); return -EINVAL; } static int chcr_aead_digest_null_setkey(struct crypto_aead *authenc, const u8 *key, unsigned int keylen) { struct chcr_aead_ctx *aeadctx = AEAD_CTX(a_ctx(authenc)); struct chcr_authenc_ctx *actx = AUTHENC_CTX(aeadctx); struct crypto_authenc_keys keys; int err; /* it contains auth and cipher key both*/ unsigned int subtype; int key_ctx_len = 0; unsigned char ck_size = 0; crypto_aead_clear_flags(aeadctx->sw_cipher, CRYPTO_TFM_REQ_MASK); crypto_aead_set_flags(aeadctx->sw_cipher, crypto_aead_get_flags(authenc) & CRYPTO_TFM_REQ_MASK); err = crypto_aead_setkey(aeadctx->sw_cipher, key, keylen); if (err) goto out; if (crypto_authenc_extractkeys(&keys, key, keylen) != 0) goto out; subtype = get_aead_subtype(authenc); if (subtype == CRYPTO_ALG_SUB_TYPE_CTR_SHA || subtype == CRYPTO_ALG_SUB_TYPE_CTR_NULL) { if (keys.enckeylen < CTR_RFC3686_NONCE_SIZE) goto out; memcpy(aeadctx->nonce, keys.enckey + (keys.enckeylen - CTR_RFC3686_NONCE_SIZE), CTR_RFC3686_NONCE_SIZE); keys.enckeylen -= CTR_RFC3686_NONCE_SIZE; } if (keys.enckeylen == AES_KEYSIZE_128) { ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_128; } else if (keys.enckeylen == AES_KEYSIZE_192) { ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_192; } else if (keys.enckeylen == AES_KEYSIZE_256) { ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_256; } else { pr_err("chcr : Unsupported cipher key %d\n", keys.enckeylen); goto out; } memcpy(aeadctx->key, keys.enckey, keys.enckeylen); aeadctx->enckey_len = keys.enckeylen; if (subtype == CRYPTO_ALG_SUB_TYPE_CBC_SHA || subtype == CRYPTO_ALG_SUB_TYPE_CBC_NULL) { get_aes_decrypt_key(actx->dec_rrkey, aeadctx->key, aeadctx->enckey_len << 3); } key_ctx_len = sizeof(struct _key_ctx) + roundup(keys.enckeylen, 16); aeadctx->key_ctx_hdr = FILL_KEY_CTX_HDR(ck_size, CHCR_KEYCTX_NO_KEY, 0, 0, key_ctx_len >> 4); actx->auth_mode = CHCR_SCMD_AUTH_MODE_NOP; memzero_explicit(&keys, sizeof(keys)); return 0; out: aeadctx->enckey_len = 0; memzero_explicit(&keys, sizeof(keys)); return -EINVAL; } static int chcr_aead_op(struct aead_request *req, int size, create_wr_t create_wr_fn) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct chcr_aead_reqctx *reqctx = aead_request_ctx(req); struct chcr_context *ctx = a_ctx(tfm); struct uld_ctx *u_ctx = ULD_CTX(ctx); struct sk_buff *skb; struct chcr_dev *cdev; cdev = a_ctx(tfm)->dev; if (!cdev) { pr_err("chcr : %s : No crypto device.\n", __func__); return -ENXIO; } if (chcr_inc_wrcount(cdev)) { /* Detach state for CHCR means lldi or padap is freed. * We cannot increment fallback here. */ return chcr_aead_fallback(req, reqctx->op); } if (cxgb4_is_crypto_q_full(u_ctx->lldi.ports[0], reqctx->txqidx) && (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))) { chcr_dec_wrcount(cdev); return -ENOSPC; } if (get_aead_subtype(tfm) == CRYPTO_ALG_SUB_TYPE_AEAD_RFC4106 && crypto_ipsec_check_assoclen(req->assoclen) != 0) { pr_err("RFC4106: Invalid value of assoclen %d\n", req->assoclen); return -EINVAL; } /* Form a WR from req */ skb = create_wr_fn(req, u_ctx->lldi.rxq_ids[reqctx->rxqidx], size); if (IS_ERR_OR_NULL(skb)) { chcr_dec_wrcount(cdev); return PTR_ERR_OR_ZERO(skb); } skb->dev = u_ctx->lldi.ports[0]; set_wr_txq(skb, CPL_PRIORITY_DATA, reqctx->txqidx); chcr_send_wr(skb); return -EINPROGRESS; } static int chcr_aead_encrypt(struct aead_request *req) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct chcr_aead_reqctx *reqctx = aead_request_ctx(req); struct chcr_context *ctx = a_ctx(tfm); unsigned int cpu; cpu = get_cpu(); reqctx->txqidx = cpu % ctx->ntxq; reqctx->rxqidx = cpu % ctx->nrxq; put_cpu(); reqctx->verify = VERIFY_HW; reqctx->op = CHCR_ENCRYPT_OP; switch (get_aead_subtype(tfm)) { case CRYPTO_ALG_SUB_TYPE_CTR_SHA: case CRYPTO_ALG_SUB_TYPE_CBC_SHA: case CRYPTO_ALG_SUB_TYPE_CBC_NULL: case CRYPTO_ALG_SUB_TYPE_CTR_NULL: return chcr_aead_op(req, 0, create_authenc_wr); case CRYPTO_ALG_SUB_TYPE_AEAD_CCM: case CRYPTO_ALG_SUB_TYPE_AEAD_RFC4309: return chcr_aead_op(req, 0, create_aead_ccm_wr); default: return chcr_aead_op(req, 0, create_gcm_wr); } } static int chcr_aead_decrypt(struct aead_request *req) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct chcr_context *ctx = a_ctx(tfm); struct chcr_aead_ctx *aeadctx = AEAD_CTX(ctx); struct chcr_aead_reqctx *reqctx = aead_request_ctx(req); int size; unsigned int cpu; cpu = get_cpu(); reqctx->txqidx = cpu % ctx->ntxq; reqctx->rxqidx = cpu % ctx->nrxq; put_cpu(); if (aeadctx->mayverify == VERIFY_SW) { size = crypto_aead_maxauthsize(tfm); reqctx->verify = VERIFY_SW; } else { size = 0; reqctx->verify = VERIFY_HW; } reqctx->op = CHCR_DECRYPT_OP; switch (get_aead_subtype(tfm)) { case CRYPTO_ALG_SUB_TYPE_CBC_SHA: case CRYPTO_ALG_SUB_TYPE_CTR_SHA: case CRYPTO_ALG_SUB_TYPE_CBC_NULL: case CRYPTO_ALG_SUB_TYPE_CTR_NULL: return chcr_aead_op(req, size, create_authenc_wr); case CRYPTO_ALG_SUB_TYPE_AEAD_CCM: case CRYPTO_ALG_SUB_TYPE_AEAD_RFC4309: return chcr_aead_op(req, size, create_aead_ccm_wr); default: return chcr_aead_op(req, size, create_gcm_wr); } } static struct chcr_alg_template driver_algs[] = { /* AES-CBC */ { .type = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_SUB_TYPE_CBC, .is_registered = 0, .alg.skcipher = { .base.cra_name = "cbc(aes)", .base.cra_driver_name = "cbc-aes-chcr", .base.cra_blocksize = AES_BLOCK_SIZE, .init = chcr_init_tfm, .exit = chcr_exit_tfm, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = chcr_aes_cbc_setkey, .encrypt = chcr_aes_encrypt, .decrypt = chcr_aes_decrypt, } }, { .type = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_SUB_TYPE_XTS, .is_registered = 0, .alg.skcipher = { .base.cra_name = "xts(aes)", .base.cra_driver_name = "xts-aes-chcr", .base.cra_blocksize = AES_BLOCK_SIZE, .init = chcr_init_tfm, .exit = chcr_exit_tfm, .min_keysize = 2 * AES_MIN_KEY_SIZE, .max_keysize = 2 * AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = chcr_aes_xts_setkey, .encrypt = chcr_aes_encrypt, .decrypt = chcr_aes_decrypt, } }, { .type = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_SUB_TYPE_CTR, .is_registered = 0, .alg.skcipher = { .base.cra_name = "ctr(aes)", .base.cra_driver_name = "ctr-aes-chcr", .base.cra_blocksize = 1, .init = chcr_init_tfm, .exit = chcr_exit_tfm, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = chcr_aes_ctr_setkey, .encrypt = chcr_aes_encrypt, .decrypt = chcr_aes_decrypt, } }, { .type = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_SUB_TYPE_CTR_RFC3686, .is_registered = 0, .alg.skcipher = { .base.cra_name = "rfc3686(ctr(aes))", .base.cra_driver_name = "rfc3686-ctr-aes-chcr", .base.cra_blocksize = 1, .init = chcr_rfc3686_init, .exit = chcr_exit_tfm, .min_keysize = AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE, .max_keysize = AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE, .ivsize = CTR_RFC3686_IV_SIZE, .setkey = chcr_aes_rfc3686_setkey, .encrypt = chcr_aes_encrypt, .decrypt = chcr_aes_decrypt, } }, /* SHA */ { .type = CRYPTO_ALG_TYPE_AHASH, .is_registered = 0, .alg.hash = { .halg.digestsize = SHA1_DIGEST_SIZE, .halg.base = { .cra_name = "sha1", .cra_driver_name = "sha1-chcr", .cra_blocksize = SHA1_BLOCK_SIZE, } } }, { .type = CRYPTO_ALG_TYPE_AHASH, .is_registered = 0, .alg.hash = { .halg.digestsize = SHA256_DIGEST_SIZE, .halg.base = { .cra_name = "sha256", .cra_driver_name = "sha256-chcr", .cra_blocksize = SHA256_BLOCK_SIZE, } } }, { .type = CRYPTO_ALG_TYPE_AHASH, .is_registered = 0, .alg.hash = { .halg.digestsize = SHA224_DIGEST_SIZE, .halg.base = { .cra_name = "sha224", .cra_driver_name = "sha224-chcr", .cra_blocksize = SHA224_BLOCK_SIZE, } } }, { .type = CRYPTO_ALG_TYPE_AHASH, .is_registered = 0, .alg.hash = { .halg.digestsize = SHA384_DIGEST_SIZE, .halg.base = { .cra_name = "sha384", .cra_driver_name = "sha384-chcr", .cra_blocksize = SHA384_BLOCK_SIZE, } } }, { .type = CRYPTO_ALG_TYPE_AHASH, .is_registered = 0, .alg.hash = { .halg.digestsize = SHA512_DIGEST_SIZE, .halg.base = { .cra_name = "sha512", .cra_driver_name = "sha512-chcr", .cra_blocksize = SHA512_BLOCK_SIZE, } } }, /* HMAC */ { .type = CRYPTO_ALG_TYPE_HMAC, .is_registered = 0, .alg.hash = { .halg.digestsize = SHA1_DIGEST_SIZE, .halg.base = { .cra_name = "hmac(sha1)", .cra_driver_name = "hmac-sha1-chcr", .cra_blocksize = SHA1_BLOCK_SIZE, } } }, { .type = CRYPTO_ALG_TYPE_HMAC, .is_registered = 0, .alg.hash = { .halg.digestsize = SHA224_DIGEST_SIZE, .halg.base = { .cra_name = "hmac(sha224)", .cra_driver_name = "hmac-sha224-chcr", .cra_blocksize = SHA224_BLOCK_SIZE, } } }, { .type = CRYPTO_ALG_TYPE_HMAC, .is_registered = 0, .alg.hash = { .halg.digestsize = SHA256_DIGEST_SIZE, .halg.base = { .cra_name = "hmac(sha256)", .cra_driver_name = "hmac-sha256-chcr", .cra_blocksize = SHA256_BLOCK_SIZE, } } }, { .type = CRYPTO_ALG_TYPE_HMAC, .is_registered = 0, .alg.hash = { .halg.digestsize = SHA384_DIGEST_SIZE, .halg.base = { .cra_name = "hmac(sha384)", .cra_driver_name = "hmac-sha384-chcr", .cra_blocksize = SHA384_BLOCK_SIZE, } } }, { .type = CRYPTO_ALG_TYPE_HMAC, .is_registered = 0, .alg.hash = { .halg.digestsize = SHA512_DIGEST_SIZE, .halg.base = { .cra_name = "hmac(sha512)", .cra_driver_name = "hmac-sha512-chcr", .cra_blocksize = SHA512_BLOCK_SIZE, } } }, /* Add AEAD Algorithms */ { .type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_AEAD_GCM, .is_registered = 0, .alg.aead = { .base = { .cra_name = "gcm(aes)", .cra_driver_name = "gcm-aes-chcr", .cra_blocksize = 1, .cra_priority = CHCR_AEAD_PRIORITY, .cra_ctxsize = sizeof(struct chcr_context) + sizeof(struct chcr_aead_ctx) + sizeof(struct chcr_gcm_ctx), }, .ivsize = GCM_AES_IV_SIZE, .maxauthsize = GHASH_DIGEST_SIZE, .setkey = chcr_gcm_setkey, .setauthsize = chcr_gcm_setauthsize, } }, { .type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_AEAD_RFC4106, .is_registered = 0, .alg.aead = { .base = { .cra_name = "rfc4106(gcm(aes))", .cra_driver_name = "rfc4106-gcm-aes-chcr", .cra_blocksize = 1, .cra_priority = CHCR_AEAD_PRIORITY + 1, .cra_ctxsize = sizeof(struct chcr_context) + sizeof(struct chcr_aead_ctx) + sizeof(struct chcr_gcm_ctx), }, .ivsize = GCM_RFC4106_IV_SIZE, .maxauthsize = GHASH_DIGEST_SIZE, .setkey = chcr_gcm_setkey, .setauthsize = chcr_4106_4309_setauthsize, } }, { .type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_AEAD_CCM, .is_registered = 0, .alg.aead = { .base = { .cra_name = "ccm(aes)", .cra_driver_name = "ccm-aes-chcr", .cra_blocksize = 1, .cra_priority = CHCR_AEAD_PRIORITY, .cra_ctxsize = sizeof(struct chcr_context) + sizeof(struct chcr_aead_ctx), }, .ivsize = AES_BLOCK_SIZE, .maxauthsize = GHASH_DIGEST_SIZE, .setkey = chcr_aead_ccm_setkey, .setauthsize = chcr_ccm_setauthsize, } }, { .type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_AEAD_RFC4309, .is_registered = 0, .alg.aead = { .base = { .cra_name = "rfc4309(ccm(aes))", .cra_driver_name = "rfc4309-ccm-aes-chcr", .cra_blocksize = 1, .cra_priority = CHCR_AEAD_PRIORITY + 1, .cra_ctxsize = sizeof(struct chcr_context) + sizeof(struct chcr_aead_ctx), }, .ivsize = 8, .maxauthsize = GHASH_DIGEST_SIZE, .setkey = chcr_aead_rfc4309_setkey, .setauthsize = chcr_4106_4309_setauthsize, } }, { .type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_CBC_SHA, .is_registered = 0, .alg.aead = { .base = { .cra_name = "authenc(hmac(sha1),cbc(aes))", .cra_driver_name = "authenc-hmac-sha1-cbc-aes-chcr", .cra_blocksize = AES_BLOCK_SIZE, .cra_priority = CHCR_AEAD_PRIORITY, .cra_ctxsize = sizeof(struct chcr_context) + sizeof(struct chcr_aead_ctx) + sizeof(struct chcr_authenc_ctx), }, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, .setkey = chcr_authenc_setkey, .setauthsize = chcr_authenc_setauthsize, } }, { .type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_CBC_SHA, .is_registered = 0, .alg.aead = { .base = { .cra_name = "authenc(hmac(sha256),cbc(aes))", .cra_driver_name = "authenc-hmac-sha256-cbc-aes-chcr", .cra_blocksize = AES_BLOCK_SIZE, .cra_priority = CHCR_AEAD_PRIORITY, .cra_ctxsize = sizeof(struct chcr_context) + sizeof(struct chcr_aead_ctx) + sizeof(struct chcr_authenc_ctx), }, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, .setkey = chcr_authenc_setkey, .setauthsize = chcr_authenc_setauthsize, } }, { .type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_CBC_SHA, .is_registered = 0, .alg.aead = { .base = { .cra_name = "authenc(hmac(sha224),cbc(aes))", .cra_driver_name = "authenc-hmac-sha224-cbc-aes-chcr", .cra_blocksize = AES_BLOCK_SIZE, .cra_priority = CHCR_AEAD_PRIORITY, .cra_ctxsize = sizeof(struct chcr_context) + sizeof(struct chcr_aead_ctx) + sizeof(struct chcr_authenc_ctx), }, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, .setkey = chcr_authenc_setkey, .setauthsize = chcr_authenc_setauthsize, } }, { .type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_CBC_SHA, .is_registered = 0, .alg.aead = { .base = { .cra_name = "authenc(hmac(sha384),cbc(aes))", .cra_driver_name = "authenc-hmac-sha384-cbc-aes-chcr", .cra_blocksize = AES_BLOCK_SIZE, .cra_priority = CHCR_AEAD_PRIORITY, .cra_ctxsize = sizeof(struct chcr_context) + sizeof(struct chcr_aead_ctx) + sizeof(struct chcr_authenc_ctx), }, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, .setkey = chcr_authenc_setkey, .setauthsize = chcr_authenc_setauthsize, } }, { .type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_CBC_SHA, .is_registered = 0, .alg.aead = { .base = { .cra_name = "authenc(hmac(sha512),cbc(aes))", .cra_driver_name = "authenc-hmac-sha512-cbc-aes-chcr", .cra_blocksize = AES_BLOCK_SIZE, .cra_priority = CHCR_AEAD_PRIORITY, .cra_ctxsize = sizeof(struct chcr_context) + sizeof(struct chcr_aead_ctx) + sizeof(struct chcr_authenc_ctx), }, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, .setkey = chcr_authenc_setkey, .setauthsize = chcr_authenc_setauthsize, } }, { .type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_CBC_NULL, .is_registered = 0, .alg.aead = { .base = { .cra_name = "authenc(digest_null,cbc(aes))", .cra_driver_name = "authenc-digest_null-cbc-aes-chcr", .cra_blocksize = AES_BLOCK_SIZE, .cra_priority = CHCR_AEAD_PRIORITY, .cra_ctxsize = sizeof(struct chcr_context) + sizeof(struct chcr_aead_ctx) + sizeof(struct chcr_authenc_ctx), }, .ivsize = AES_BLOCK_SIZE, .maxauthsize = 0, .setkey = chcr_aead_digest_null_setkey, .setauthsize = chcr_authenc_null_setauthsize, } }, { .type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_CTR_SHA, .is_registered = 0, .alg.aead = { .base = { .cra_name = "authenc(hmac(sha1),rfc3686(ctr(aes)))", .cra_driver_name = "authenc-hmac-sha1-rfc3686-ctr-aes-chcr", .cra_blocksize = 1, .cra_priority = CHCR_AEAD_PRIORITY, .cra_ctxsize = sizeof(struct chcr_context) + sizeof(struct chcr_aead_ctx) + sizeof(struct chcr_authenc_ctx), }, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, .setkey = chcr_authenc_setkey, .setauthsize = chcr_authenc_setauthsize, } }, { .type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_CTR_SHA, .is_registered = 0, .alg.aead = { .base = { .cra_name = "authenc(hmac(sha256),rfc3686(ctr(aes)))", .cra_driver_name = "authenc-hmac-sha256-rfc3686-ctr-aes-chcr", .cra_blocksize = 1, .cra_priority = CHCR_AEAD_PRIORITY, .cra_ctxsize = sizeof(struct chcr_context) + sizeof(struct chcr_aead_ctx) + sizeof(struct chcr_authenc_ctx), }, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, .setkey = chcr_authenc_setkey, .setauthsize = chcr_authenc_setauthsize, } }, { .type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_CTR_SHA, .is_registered = 0, .alg.aead = { .base = { .cra_name = "authenc(hmac(sha224),rfc3686(ctr(aes)))", .cra_driver_name = "authenc-hmac-sha224-rfc3686-ctr-aes-chcr", .cra_blocksize = 1, .cra_priority = CHCR_AEAD_PRIORITY, .cra_ctxsize = sizeof(struct chcr_context) + sizeof(struct chcr_aead_ctx) + sizeof(struct chcr_authenc_ctx), }, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, .setkey = chcr_authenc_setkey, .setauthsize = chcr_authenc_setauthsize, } }, { .type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_CTR_SHA, .is_registered = 0, .alg.aead = { .base = { .cra_name = "authenc(hmac(sha384),rfc3686(ctr(aes)))", .cra_driver_name = "authenc-hmac-sha384-rfc3686-ctr-aes-chcr", .cra_blocksize = 1, .cra_priority = CHCR_AEAD_PRIORITY, .cra_ctxsize = sizeof(struct chcr_context) + sizeof(struct chcr_aead_ctx) + sizeof(struct chcr_authenc_ctx), }, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, .setkey = chcr_authenc_setkey, .setauthsize = chcr_authenc_setauthsize, } }, { .type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_CTR_SHA, .is_registered = 0, .alg.aead = { .base = { .cra_name = "authenc(hmac(sha512),rfc3686(ctr(aes)))", .cra_driver_name = "authenc-hmac-sha512-rfc3686-ctr-aes-chcr", .cra_blocksize = 1, .cra_priority = CHCR_AEAD_PRIORITY, .cra_ctxsize = sizeof(struct chcr_context) + sizeof(struct chcr_aead_ctx) + sizeof(struct chcr_authenc_ctx), }, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, .setkey = chcr_authenc_setkey, .setauthsize = chcr_authenc_setauthsize, } }, { .type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_CTR_NULL, .is_registered = 0, .alg.aead = { .base = { .cra_name = "authenc(digest_null,rfc3686(ctr(aes)))", .cra_driver_name = "authenc-digest_null-rfc3686-ctr-aes-chcr", .cra_blocksize = 1, .cra_priority = CHCR_AEAD_PRIORITY, .cra_ctxsize = sizeof(struct chcr_context) + sizeof(struct chcr_aead_ctx) + sizeof(struct chcr_authenc_ctx), }, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = 0, .setkey = chcr_aead_digest_null_setkey, .setauthsize = chcr_authenc_null_setauthsize, } }, }; /* * chcr_unregister_alg - Deregister crypto algorithms with * kernel framework. */ static int chcr_unregister_alg(void) { int i; for (i = 0; i < ARRAY_SIZE(driver_algs); i++) { switch (driver_algs[i].type & CRYPTO_ALG_TYPE_MASK) { case CRYPTO_ALG_TYPE_SKCIPHER: if (driver_algs[i].is_registered) crypto_unregister_skcipher( &driver_algs[i].alg.skcipher); break; case CRYPTO_ALG_TYPE_AEAD: if (driver_algs[i].is_registered) crypto_unregister_aead( &driver_algs[i].alg.aead); break; case CRYPTO_ALG_TYPE_AHASH: if (driver_algs[i].is_registered) crypto_unregister_ahash( &driver_algs[i].alg.hash); break; } driver_algs[i].is_registered = 0; } return 0; } #define SZ_AHASH_CTX sizeof(struct chcr_context) #define SZ_AHASH_H_CTX (sizeof(struct chcr_context) + sizeof(struct hmac_ctx)) #define SZ_AHASH_REQ_CTX sizeof(struct chcr_ahash_req_ctx) /* * chcr_register_alg - Register crypto algorithms with kernel framework. */ static int chcr_register_alg(void) { struct crypto_alg ai; struct ahash_alg *a_hash; int err = 0, i; char *name = NULL; for (i = 0; i < ARRAY_SIZE(driver_algs); i++) { if (driver_algs[i].is_registered) continue; switch (driver_algs[i].type & CRYPTO_ALG_TYPE_MASK) { case CRYPTO_ALG_TYPE_SKCIPHER: driver_algs[i].alg.skcipher.base.cra_priority = CHCR_CRA_PRIORITY; driver_algs[i].alg.skcipher.base.cra_module = THIS_MODULE; driver_algs[i].alg.skcipher.base.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK; driver_algs[i].alg.skcipher.base.cra_ctxsize = sizeof(struct chcr_context) + sizeof(struct ablk_ctx); driver_algs[i].alg.skcipher.base.cra_alignmask = 0; err = crypto_register_skcipher(&driver_algs[i].alg.skcipher); name = driver_algs[i].alg.skcipher.base.cra_driver_name; break; case CRYPTO_ALG_TYPE_AEAD: driver_algs[i].alg.aead.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK; driver_algs[i].alg.aead.encrypt = chcr_aead_encrypt; driver_algs[i].alg.aead.decrypt = chcr_aead_decrypt; driver_algs[i].alg.aead.init = chcr_aead_cra_init; driver_algs[i].alg.aead.exit = chcr_aead_cra_exit; driver_algs[i].alg.aead.base.cra_module = THIS_MODULE; err = crypto_register_aead(&driver_algs[i].alg.aead); name = driver_algs[i].alg.aead.base.cra_driver_name; break; case CRYPTO_ALG_TYPE_AHASH: a_hash = &driver_algs[i].alg.hash; a_hash->update = chcr_ahash_update; a_hash->final = chcr_ahash_final; a_hash->finup = chcr_ahash_finup; a_hash->digest = chcr_ahash_digest; a_hash->export = chcr_ahash_export; a_hash->import = chcr_ahash_import; a_hash->halg.statesize = SZ_AHASH_REQ_CTX; a_hash->halg.base.cra_priority = CHCR_CRA_PRIORITY; a_hash->halg.base.cra_module = THIS_MODULE; a_hash->halg.base.cra_flags = CRYPTO_ALG_ASYNC; a_hash->halg.base.cra_alignmask = 0; a_hash->halg.base.cra_exit = NULL; if (driver_algs[i].type == CRYPTO_ALG_TYPE_HMAC) { a_hash->halg.base.cra_init = chcr_hmac_cra_init; a_hash->halg.base.cra_exit = chcr_hmac_cra_exit; a_hash->init = chcr_hmac_init; a_hash->setkey = chcr_ahash_setkey; a_hash->halg.base.cra_ctxsize = SZ_AHASH_H_CTX; } else { a_hash->init = chcr_sha_init; a_hash->halg.base.cra_ctxsize = SZ_AHASH_CTX; a_hash->halg.base.cra_init = chcr_sha_cra_init; } err = crypto_register_ahash(&driver_algs[i].alg.hash); ai = driver_algs[i].alg.hash.halg.base; name = ai.cra_driver_name; break; } if (err) { pr_err("chcr : %s : Algorithm registration failed\n", name); goto register_err; } else { driver_algs[i].is_registered = 1; } } return 0; register_err: chcr_unregister_alg(); return err; } /* * start_crypto - Register the crypto algorithms. * This should called once when the first device comesup. After this * kernel will start calling driver APIs for crypto operations. */ int start_crypto(void) { return chcr_register_alg(); } /* * stop_crypto - Deregister all the crypto algorithms with kernel. * This should be called once when the last device goes down. After this * kernel will not call the driver API for crypto operations. */ int stop_crypto(void) { chcr_unregister_alg(); return 0; }