/* * Copyright 2014 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include "kfd_priv.h" #include "kfd_crat.h" #include "kfd_topology.h" #include "kfd_device_queue_manager.h" static struct list_head topology_device_list; static int topology_crat_parsed; static struct kfd_system_properties sys_props; static DECLARE_RWSEM(topology_lock); struct kfd_dev *kfd_device_by_id(uint32_t gpu_id) { struct kfd_topology_device *top_dev; struct kfd_dev *device = NULL; down_read(&topology_lock); list_for_each_entry(top_dev, &topology_device_list, list) if (top_dev->gpu_id == gpu_id) { device = top_dev->gpu; break; } up_read(&topology_lock); return device; } struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev) { struct kfd_topology_device *top_dev; struct kfd_dev *device = NULL; down_read(&topology_lock); list_for_each_entry(top_dev, &topology_device_list, list) if (top_dev->gpu->pdev == pdev) { device = top_dev->gpu; break; } up_read(&topology_lock); return device; } static int kfd_topology_get_crat_acpi(void *crat_image, size_t *size) { struct acpi_table_header *crat_table; acpi_status status; if (!size) return -EINVAL; /* * Fetch the CRAT table from ACPI */ status = acpi_get_table(CRAT_SIGNATURE, 0, &crat_table); if (status == AE_NOT_FOUND) { pr_warn("CRAT table not found\n"); return -ENODATA; } else if (ACPI_FAILURE(status)) { const char *err = acpi_format_exception(status); pr_err("CRAT table error: %s\n", err); return -EINVAL; } if (*size >= crat_table->length && crat_image != NULL) memcpy(crat_image, crat_table, crat_table->length); *size = crat_table->length; return 0; } static void kfd_populated_cu_info_cpu(struct kfd_topology_device *dev, struct crat_subtype_computeunit *cu) { dev->node_props.cpu_cores_count = cu->num_cpu_cores; dev->node_props.cpu_core_id_base = cu->processor_id_low; if (cu->hsa_capability & CRAT_CU_FLAGS_IOMMU_PRESENT) dev->node_props.capability |= HSA_CAP_ATS_PRESENT; pr_info("CU CPU: cores=%d id_base=%d\n", cu->num_cpu_cores, cu->processor_id_low); } static void kfd_populated_cu_info_gpu(struct kfd_topology_device *dev, struct crat_subtype_computeunit *cu) { dev->node_props.simd_id_base = cu->processor_id_low; dev->node_props.simd_count = cu->num_simd_cores; dev->node_props.lds_size_in_kb = cu->lds_size_in_kb; dev->node_props.max_waves_per_simd = cu->max_waves_simd; dev->node_props.wave_front_size = cu->wave_front_size; dev->node_props.mem_banks_count = cu->num_banks; dev->node_props.array_count = cu->num_arrays; dev->node_props.cu_per_simd_array = cu->num_cu_per_array; dev->node_props.simd_per_cu = cu->num_simd_per_cu; dev->node_props.max_slots_scratch_cu = cu->max_slots_scatch_cu; if (cu->hsa_capability & CRAT_CU_FLAGS_HOT_PLUGGABLE) dev->node_props.capability |= HSA_CAP_HOT_PLUGGABLE; pr_info("CU GPU: id_base=%d\n", cu->processor_id_low); } /* kfd_parse_subtype_cu is called when the topology mutex is already acquired */ static int kfd_parse_subtype_cu(struct crat_subtype_computeunit *cu) { struct kfd_topology_device *dev; int i = 0; pr_info("Found CU entry in CRAT table with proximity_domain=%d caps=%x\n", cu->proximity_domain, cu->hsa_capability); list_for_each_entry(dev, &topology_device_list, list) { if (cu->proximity_domain == i) { if (cu->flags & CRAT_CU_FLAGS_CPU_PRESENT) kfd_populated_cu_info_cpu(dev, cu); if (cu->flags & CRAT_CU_FLAGS_GPU_PRESENT) kfd_populated_cu_info_gpu(dev, cu); break; } i++; } return 0; } /* * kfd_parse_subtype_mem is called when the topology mutex is * already acquired */ static int kfd_parse_subtype_mem(struct crat_subtype_memory *mem) { struct kfd_mem_properties *props; struct kfd_topology_device *dev; int i = 0; pr_info("Found memory entry in CRAT table with proximity_domain=%d\n", mem->promixity_domain); list_for_each_entry(dev, &topology_device_list, list) { if (mem->promixity_domain == i) { props = kfd_alloc_struct(props); if (props == NULL) return -ENOMEM; if (dev->node_props.cpu_cores_count == 0) props->heap_type = HSA_MEM_HEAP_TYPE_FB_PRIVATE; else props->heap_type = HSA_MEM_HEAP_TYPE_SYSTEM; if (mem->flags & CRAT_MEM_FLAGS_HOT_PLUGGABLE) props->flags |= HSA_MEM_FLAGS_HOT_PLUGGABLE; if (mem->flags & CRAT_MEM_FLAGS_NON_VOLATILE) props->flags |= HSA_MEM_FLAGS_NON_VOLATILE; props->size_in_bytes = ((uint64_t)mem->length_high << 32) + mem->length_low; props->width = mem->width; dev->mem_bank_count++; list_add_tail(&props->list, &dev->mem_props); break; } i++; } return 0; } /* * kfd_parse_subtype_cache is called when the topology mutex * is already acquired */ static int kfd_parse_subtype_cache(struct crat_subtype_cache *cache) { struct kfd_cache_properties *props; struct kfd_topology_device *dev; uint32_t id; id = cache->processor_id_low; pr_info("Found cache entry in CRAT table with processor_id=%d\n", id); list_for_each_entry(dev, &topology_device_list, list) if (id == dev->node_props.cpu_core_id_base || id == dev->node_props.simd_id_base) { props = kfd_alloc_struct(props); if (props == NULL) return -ENOMEM; props->processor_id_low = id; props->cache_level = cache->cache_level; props->cache_size = cache->cache_size; props->cacheline_size = cache->cache_line_size; props->cachelines_per_tag = cache->lines_per_tag; props->cache_assoc = cache->associativity; props->cache_latency = cache->cache_latency; if (cache->flags & CRAT_CACHE_FLAGS_DATA_CACHE) props->cache_type |= HSA_CACHE_TYPE_DATA; if (cache->flags & CRAT_CACHE_FLAGS_INST_CACHE) props->cache_type |= HSA_CACHE_TYPE_INSTRUCTION; if (cache->flags & CRAT_CACHE_FLAGS_CPU_CACHE) props->cache_type |= HSA_CACHE_TYPE_CPU; if (cache->flags & CRAT_CACHE_FLAGS_SIMD_CACHE) props->cache_type |= HSA_CACHE_TYPE_HSACU; dev->cache_count++; dev->node_props.caches_count++; list_add_tail(&props->list, &dev->cache_props); break; } return 0; } /* * kfd_parse_subtype_iolink is called when the topology mutex * is already acquired */ static int kfd_parse_subtype_iolink(struct crat_subtype_iolink *iolink) { struct kfd_iolink_properties *props; struct kfd_topology_device *dev; uint32_t i = 0; uint32_t id_from; uint32_t id_to; id_from = iolink->proximity_domain_from; id_to = iolink->proximity_domain_to; pr_info("Found IO link entry in CRAT table with id_from=%d\n", id_from); list_for_each_entry(dev, &topology_device_list, list) { if (id_from == i) { props = kfd_alloc_struct(props); if (props == NULL) return -ENOMEM; props->node_from = id_from; props->node_to = id_to; props->ver_maj = iolink->version_major; props->ver_min = iolink->version_minor; /* * weight factor (derived from CDIR), currently always 1 */ props->weight = 1; props->min_latency = iolink->minimum_latency; props->max_latency = iolink->maximum_latency; props->min_bandwidth = iolink->minimum_bandwidth_mbs; props->max_bandwidth = iolink->maximum_bandwidth_mbs; props->rec_transfer_size = iolink->recommended_transfer_size; dev->io_link_count++; dev->node_props.io_links_count++; list_add_tail(&props->list, &dev->io_link_props); break; } i++; } return 0; } static int kfd_parse_subtype(struct crat_subtype_generic *sub_type_hdr) { struct crat_subtype_computeunit *cu; struct crat_subtype_memory *mem; struct crat_subtype_cache *cache; struct crat_subtype_iolink *iolink; int ret = 0; switch (sub_type_hdr->type) { case CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY: cu = (struct crat_subtype_computeunit *)sub_type_hdr; ret = kfd_parse_subtype_cu(cu); break; case CRAT_SUBTYPE_MEMORY_AFFINITY: mem = (struct crat_subtype_memory *)sub_type_hdr; ret = kfd_parse_subtype_mem(mem); break; case CRAT_SUBTYPE_CACHE_AFFINITY: cache = (struct crat_subtype_cache *)sub_type_hdr; ret = kfd_parse_subtype_cache(cache); break; case CRAT_SUBTYPE_TLB_AFFINITY: /* * For now, nothing to do here */ pr_info("Found TLB entry in CRAT table (not processing)\n"); break; case CRAT_SUBTYPE_CCOMPUTE_AFFINITY: /* * For now, nothing to do here */ pr_info("Found CCOMPUTE entry in CRAT table (not processing)\n"); break; case CRAT_SUBTYPE_IOLINK_AFFINITY: iolink = (struct crat_subtype_iolink *)sub_type_hdr; ret = kfd_parse_subtype_iolink(iolink); break; default: pr_warn("Unknown subtype (%d) in CRAT\n", sub_type_hdr->type); } return ret; } static void kfd_release_topology_device(struct kfd_topology_device *dev) { struct kfd_mem_properties *mem; struct kfd_cache_properties *cache; struct kfd_iolink_properties *iolink; list_del(&dev->list); while (dev->mem_props.next != &dev->mem_props) { mem = container_of(dev->mem_props.next, struct kfd_mem_properties, list); list_del(&mem->list); kfree(mem); } while (dev->cache_props.next != &dev->cache_props) { cache = container_of(dev->cache_props.next, struct kfd_cache_properties, list); list_del(&cache->list); kfree(cache); } while (dev->io_link_props.next != &dev->io_link_props) { iolink = container_of(dev->io_link_props.next, struct kfd_iolink_properties, list); list_del(&iolink->list); kfree(iolink); } kfree(dev); sys_props.num_devices--; } static void kfd_release_live_view(void) { struct kfd_topology_device *dev; while (topology_device_list.next != &topology_device_list) { dev = container_of(topology_device_list.next, struct kfd_topology_device, list); kfd_release_topology_device(dev); } memset(&sys_props, 0, sizeof(sys_props)); } static struct kfd_topology_device *kfd_create_topology_device(void) { struct kfd_topology_device *dev; dev = kfd_alloc_struct(dev); if (!dev) { pr_err("No memory to allocate a topology device"); return NULL; } INIT_LIST_HEAD(&dev->mem_props); INIT_LIST_HEAD(&dev->cache_props); INIT_LIST_HEAD(&dev->io_link_props); list_add_tail(&dev->list, &topology_device_list); sys_props.num_devices++; return dev; } static int kfd_parse_crat_table(void *crat_image) { struct kfd_topology_device *top_dev; struct crat_subtype_generic *sub_type_hdr; uint16_t node_id; int ret; struct crat_header *crat_table = (struct crat_header *)crat_image; uint16_t num_nodes; uint32_t image_len; if (!crat_image) return -EINVAL; num_nodes = crat_table->num_domains; image_len = crat_table->length; pr_info("Parsing CRAT table with %d nodes\n", num_nodes); for (node_id = 0; node_id < num_nodes; node_id++) { top_dev = kfd_create_topology_device(); if (!top_dev) { kfd_release_live_view(); return -ENOMEM; } } sys_props.platform_id = (*((uint64_t *)crat_table->oem_id)) & CRAT_OEMID_64BIT_MASK; sys_props.platform_oem = *((uint64_t *)crat_table->oem_table_id); sys_props.platform_rev = crat_table->revision; sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1); while ((char *)sub_type_hdr + sizeof(struct crat_subtype_generic) < ((char *)crat_image) + image_len) { if (sub_type_hdr->flags & CRAT_SUBTYPE_FLAGS_ENABLED) { ret = kfd_parse_subtype(sub_type_hdr); if (ret != 0) { kfd_release_live_view(); return ret; } } sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + sub_type_hdr->length); } sys_props.generation_count++; topology_crat_parsed = 1; return 0; } #define sysfs_show_gen_prop(buffer, fmt, ...) \ snprintf(buffer, PAGE_SIZE, "%s"fmt, buffer, __VA_ARGS__) #define sysfs_show_32bit_prop(buffer, name, value) \ sysfs_show_gen_prop(buffer, "%s %u\n", name, value) #define sysfs_show_64bit_prop(buffer, name, value) \ sysfs_show_gen_prop(buffer, "%s %llu\n", name, value) #define sysfs_show_32bit_val(buffer, value) \ sysfs_show_gen_prop(buffer, "%u\n", value) #define sysfs_show_str_val(buffer, value) \ sysfs_show_gen_prop(buffer, "%s\n", value) static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr, char *buffer) { ssize_t ret; /* Making sure that the buffer is an empty string */ buffer[0] = 0; if (attr == &sys_props.attr_genid) { ret = sysfs_show_32bit_val(buffer, sys_props.generation_count); } else if (attr == &sys_props.attr_props) { sysfs_show_64bit_prop(buffer, "platform_oem", sys_props.platform_oem); sysfs_show_64bit_prop(buffer, "platform_id", sys_props.platform_id); ret = sysfs_show_64bit_prop(buffer, "platform_rev", sys_props.platform_rev); } else { ret = -EINVAL; } return ret; } static const struct sysfs_ops sysprops_ops = { .show = sysprops_show, }; static struct kobj_type sysprops_type = { .sysfs_ops = &sysprops_ops, }; static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr, char *buffer) { ssize_t ret; struct kfd_iolink_properties *iolink; /* Making sure that the buffer is an empty string */ buffer[0] = 0; iolink = container_of(attr, struct kfd_iolink_properties, attr); sysfs_show_32bit_prop(buffer, "type", iolink->iolink_type); sysfs_show_32bit_prop(buffer, "version_major", iolink->ver_maj); sysfs_show_32bit_prop(buffer, "version_minor", iolink->ver_min); sysfs_show_32bit_prop(buffer, "node_from", iolink->node_from); sysfs_show_32bit_prop(buffer, "node_to", iolink->node_to); sysfs_show_32bit_prop(buffer, "weight", iolink->weight); sysfs_show_32bit_prop(buffer, "min_latency", iolink->min_latency); sysfs_show_32bit_prop(buffer, "max_latency", iolink->max_latency); sysfs_show_32bit_prop(buffer, "min_bandwidth", iolink->min_bandwidth); sysfs_show_32bit_prop(buffer, "max_bandwidth", iolink->max_bandwidth); sysfs_show_32bit_prop(buffer, "recommended_transfer_size", iolink->rec_transfer_size); ret = sysfs_show_32bit_prop(buffer, "flags", iolink->flags); return ret; } static const struct sysfs_ops iolink_ops = { .show = iolink_show, }; static struct kobj_type iolink_type = { .sysfs_ops = &iolink_ops, }; static ssize_t mem_show(struct kobject *kobj, struct attribute *attr, char *buffer) { ssize_t ret; struct kfd_mem_properties *mem; /* Making sure that the buffer is an empty string */ buffer[0] = 0; mem = container_of(attr, struct kfd_mem_properties, attr); sysfs_show_32bit_prop(buffer, "heap_type", mem->heap_type); sysfs_show_64bit_prop(buffer, "size_in_bytes", mem->size_in_bytes); sysfs_show_32bit_prop(buffer, "flags", mem->flags); sysfs_show_32bit_prop(buffer, "width", mem->width); ret = sysfs_show_32bit_prop(buffer, "mem_clk_max", mem->mem_clk_max); return ret; } static const struct sysfs_ops mem_ops = { .show = mem_show, }; static struct kobj_type mem_type = { .sysfs_ops = &mem_ops, }; static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr, char *buffer) { ssize_t ret; uint32_t i; struct kfd_cache_properties *cache; /* Making sure that the buffer is an empty string */ buffer[0] = 0; cache = container_of(attr, struct kfd_cache_properties, attr); sysfs_show_32bit_prop(buffer, "processor_id_low", cache->processor_id_low); sysfs_show_32bit_prop(buffer, "level", cache->cache_level); sysfs_show_32bit_prop(buffer, "size", cache->cache_size); sysfs_show_32bit_prop(buffer, "cache_line_size", cache->cacheline_size); sysfs_show_32bit_prop(buffer, "cache_lines_per_tag", cache->cachelines_per_tag); sysfs_show_32bit_prop(buffer, "association", cache->cache_assoc); sysfs_show_32bit_prop(buffer, "latency", cache->cache_latency); sysfs_show_32bit_prop(buffer, "type", cache->cache_type); snprintf(buffer, PAGE_SIZE, "%ssibling_map ", buffer); for (i = 0; i < KFD_TOPOLOGY_CPU_SIBLINGS; i++) ret = snprintf(buffer, PAGE_SIZE, "%s%d%s", buffer, cache->sibling_map[i], (i == KFD_TOPOLOGY_CPU_SIBLINGS-1) ? "\n" : ","); return ret; } static const struct sysfs_ops cache_ops = { .show = kfd_cache_show, }; static struct kobj_type cache_type = { .sysfs_ops = &cache_ops, }; static ssize_t node_show(struct kobject *kobj, struct attribute *attr, char *buffer) { struct kfd_topology_device *dev; char public_name[KFD_TOPOLOGY_PUBLIC_NAME_SIZE]; uint32_t i; uint32_t log_max_watch_addr; /* Making sure that the buffer is an empty string */ buffer[0] = 0; if (strcmp(attr->name, "gpu_id") == 0) { dev = container_of(attr, struct kfd_topology_device, attr_gpuid); return sysfs_show_32bit_val(buffer, dev->gpu_id); } if (strcmp(attr->name, "name") == 0) { dev = container_of(attr, struct kfd_topology_device, attr_name); for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE; i++) { public_name[i] = (char)dev->node_props.marketing_name[i]; if (dev->node_props.marketing_name[i] == 0) break; } public_name[KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1] = 0x0; return sysfs_show_str_val(buffer, public_name); } dev = container_of(attr, struct kfd_topology_device, attr_props); sysfs_show_32bit_prop(buffer, "cpu_cores_count", dev->node_props.cpu_cores_count); sysfs_show_32bit_prop(buffer, "simd_count", dev->node_props.simd_count); if (dev->mem_bank_count < dev->node_props.mem_banks_count) { pr_info_once("mem_banks_count truncated from %d to %d\n", dev->node_props.mem_banks_count, dev->mem_bank_count); sysfs_show_32bit_prop(buffer, "mem_banks_count", dev->mem_bank_count); } else { sysfs_show_32bit_prop(buffer, "mem_banks_count", dev->node_props.mem_banks_count); } sysfs_show_32bit_prop(buffer, "caches_count", dev->node_props.caches_count); sysfs_show_32bit_prop(buffer, "io_links_count", dev->node_props.io_links_count); sysfs_show_32bit_prop(buffer, "cpu_core_id_base", dev->node_props.cpu_core_id_base); sysfs_show_32bit_prop(buffer, "simd_id_base", dev->node_props.simd_id_base); sysfs_show_32bit_prop(buffer, "max_waves_per_simd", dev->node_props.max_waves_per_simd); sysfs_show_32bit_prop(buffer, "lds_size_in_kb", dev->node_props.lds_size_in_kb); sysfs_show_32bit_prop(buffer, "gds_size_in_kb", dev->node_props.gds_size_in_kb); sysfs_show_32bit_prop(buffer, "wave_front_size", dev->node_props.wave_front_size); sysfs_show_32bit_prop(buffer, "array_count", dev->node_props.array_count); sysfs_show_32bit_prop(buffer, "simd_arrays_per_engine", dev->node_props.simd_arrays_per_engine); sysfs_show_32bit_prop(buffer, "cu_per_simd_array", dev->node_props.cu_per_simd_array); sysfs_show_32bit_prop(buffer, "simd_per_cu", dev->node_props.simd_per_cu); sysfs_show_32bit_prop(buffer, "max_slots_scratch_cu", dev->node_props.max_slots_scratch_cu); sysfs_show_32bit_prop(buffer, "vendor_id", dev->node_props.vendor_id); sysfs_show_32bit_prop(buffer, "device_id", dev->node_props.device_id); sysfs_show_32bit_prop(buffer, "location_id", dev->node_props.location_id); if (dev->gpu) { log_max_watch_addr = __ilog2_u32(dev->gpu->device_info->num_of_watch_points); if (log_max_watch_addr) { dev->node_props.capability |= HSA_CAP_WATCH_POINTS_SUPPORTED; dev->node_props.capability |= ((log_max_watch_addr << HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) & HSA_CAP_WATCH_POINTS_TOTALBITS_MASK); } sysfs_show_32bit_prop(buffer, "max_engine_clk_fcompute", dev->gpu->kfd2kgd->get_max_engine_clock_in_mhz( dev->gpu->kgd)); sysfs_show_64bit_prop(buffer, "local_mem_size", (unsigned long long int) 0); sysfs_show_32bit_prop(buffer, "fw_version", dev->gpu->kfd2kgd->get_fw_version( dev->gpu->kgd, KGD_ENGINE_MEC1)); sysfs_show_32bit_prop(buffer, "capability", dev->node_props.capability); } return sysfs_show_32bit_prop(buffer, "max_engine_clk_ccompute", cpufreq_quick_get_max(0)/1000); } static const struct sysfs_ops node_ops = { .show = node_show, }; static struct kobj_type node_type = { .sysfs_ops = &node_ops, }; static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr) { sysfs_remove_file(kobj, attr); kobject_del(kobj); kobject_put(kobj); } static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev) { struct kfd_iolink_properties *iolink; struct kfd_cache_properties *cache; struct kfd_mem_properties *mem; if (dev->kobj_iolink) { list_for_each_entry(iolink, &dev->io_link_props, list) if (iolink->kobj) { kfd_remove_sysfs_file(iolink->kobj, &iolink->attr); iolink->kobj = NULL; } kobject_del(dev->kobj_iolink); kobject_put(dev->kobj_iolink); dev->kobj_iolink = NULL; } if (dev->kobj_cache) { list_for_each_entry(cache, &dev->cache_props, list) if (cache->kobj) { kfd_remove_sysfs_file(cache->kobj, &cache->attr); cache->kobj = NULL; } kobject_del(dev->kobj_cache); kobject_put(dev->kobj_cache); dev->kobj_cache = NULL; } if (dev->kobj_mem) { list_for_each_entry(mem, &dev->mem_props, list) if (mem->kobj) { kfd_remove_sysfs_file(mem->kobj, &mem->attr); mem->kobj = NULL; } kobject_del(dev->kobj_mem); kobject_put(dev->kobj_mem); dev->kobj_mem = NULL; } if (dev->kobj_node) { sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid); sysfs_remove_file(dev->kobj_node, &dev->attr_name); sysfs_remove_file(dev->kobj_node, &dev->attr_props); kobject_del(dev->kobj_node); kobject_put(dev->kobj_node); dev->kobj_node = NULL; } } static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev, uint32_t id) { struct kfd_iolink_properties *iolink; struct kfd_cache_properties *cache; struct kfd_mem_properties *mem; int ret; uint32_t i; if (WARN_ON(dev->kobj_node)) return -EEXIST; /* * Creating the sysfs folders */ dev->kobj_node = kfd_alloc_struct(dev->kobj_node); if (!dev->kobj_node) return -ENOMEM; ret = kobject_init_and_add(dev->kobj_node, &node_type, sys_props.kobj_nodes, "%d", id); if (ret < 0) return ret; dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node); if (!dev->kobj_mem) return -ENOMEM; dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node); if (!dev->kobj_cache) return -ENOMEM; dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node); if (!dev->kobj_iolink) return -ENOMEM; /* * Creating sysfs files for node properties */ dev->attr_gpuid.name = "gpu_id"; dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE; sysfs_attr_init(&dev->attr_gpuid); dev->attr_name.name = "name"; dev->attr_name.mode = KFD_SYSFS_FILE_MODE; sysfs_attr_init(&dev->attr_name); dev->attr_props.name = "properties"; dev->attr_props.mode = KFD_SYSFS_FILE_MODE; sysfs_attr_init(&dev->attr_props); ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid); if (ret < 0) return ret; ret = sysfs_create_file(dev->kobj_node, &dev->attr_name); if (ret < 0) return ret; ret = sysfs_create_file(dev->kobj_node, &dev->attr_props); if (ret < 0) return ret; i = 0; list_for_each_entry(mem, &dev->mem_props, list) { mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL); if (!mem->kobj) return -ENOMEM; ret = kobject_init_and_add(mem->kobj, &mem_type, dev->kobj_mem, "%d", i); if (ret < 0) return ret; mem->attr.name = "properties"; mem->attr.mode = KFD_SYSFS_FILE_MODE; sysfs_attr_init(&mem->attr); ret = sysfs_create_file(mem->kobj, &mem->attr); if (ret < 0) return ret; i++; } i = 0; list_for_each_entry(cache, &dev->cache_props, list) { cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL); if (!cache->kobj) return -ENOMEM; ret = kobject_init_and_add(cache->kobj, &cache_type, dev->kobj_cache, "%d", i); if (ret < 0) return ret; cache->attr.name = "properties"; cache->attr.mode = KFD_SYSFS_FILE_MODE; sysfs_attr_init(&cache->attr); ret = sysfs_create_file(cache->kobj, &cache->attr); if (ret < 0) return ret; i++; } i = 0; list_for_each_entry(iolink, &dev->io_link_props, list) { iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL); if (!iolink->kobj) return -ENOMEM; ret = kobject_init_and_add(iolink->kobj, &iolink_type, dev->kobj_iolink, "%d", i); if (ret < 0) return ret; iolink->attr.name = "properties"; iolink->attr.mode = KFD_SYSFS_FILE_MODE; sysfs_attr_init(&iolink->attr); ret = sysfs_create_file(iolink->kobj, &iolink->attr); if (ret < 0) return ret; i++; } return 0; } static int kfd_build_sysfs_node_tree(void) { struct kfd_topology_device *dev; int ret; uint32_t i = 0; list_for_each_entry(dev, &topology_device_list, list) { ret = kfd_build_sysfs_node_entry(dev, i); if (ret < 0) return ret; i++; } return 0; } static void kfd_remove_sysfs_node_tree(void) { struct kfd_topology_device *dev; list_for_each_entry(dev, &topology_device_list, list) kfd_remove_sysfs_node_entry(dev); } static int kfd_topology_update_sysfs(void) { int ret; pr_info("Creating topology SYSFS entries\n"); if (!sys_props.kobj_topology) { sys_props.kobj_topology = kfd_alloc_struct(sys_props.kobj_topology); if (!sys_props.kobj_topology) return -ENOMEM; ret = kobject_init_and_add(sys_props.kobj_topology, &sysprops_type, &kfd_device->kobj, "topology"); if (ret < 0) return ret; sys_props.kobj_nodes = kobject_create_and_add("nodes", sys_props.kobj_topology); if (!sys_props.kobj_nodes) return -ENOMEM; sys_props.attr_genid.name = "generation_id"; sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE; sysfs_attr_init(&sys_props.attr_genid); ret = sysfs_create_file(sys_props.kobj_topology, &sys_props.attr_genid); if (ret < 0) return ret; sys_props.attr_props.name = "system_properties"; sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE; sysfs_attr_init(&sys_props.attr_props); ret = sysfs_create_file(sys_props.kobj_topology, &sys_props.attr_props); if (ret < 0) return ret; } kfd_remove_sysfs_node_tree(); return kfd_build_sysfs_node_tree(); } static void kfd_topology_release_sysfs(void) { kfd_remove_sysfs_node_tree(); if (sys_props.kobj_topology) { sysfs_remove_file(sys_props.kobj_topology, &sys_props.attr_genid); sysfs_remove_file(sys_props.kobj_topology, &sys_props.attr_props); if (sys_props.kobj_nodes) { kobject_del(sys_props.kobj_nodes); kobject_put(sys_props.kobj_nodes); sys_props.kobj_nodes = NULL; } kobject_del(sys_props.kobj_topology); kobject_put(sys_props.kobj_topology); sys_props.kobj_topology = NULL; } } int kfd_topology_init(void) { void *crat_image = NULL; size_t image_size = 0; int ret; /* * Initialize the head for the topology device list */ INIT_LIST_HEAD(&topology_device_list); init_rwsem(&topology_lock); topology_crat_parsed = 0; memset(&sys_props, 0, sizeof(sys_props)); /* * Get the CRAT image from the ACPI */ ret = kfd_topology_get_crat_acpi(crat_image, &image_size); if (ret == 0 && image_size > 0) { pr_info("Found CRAT image with size=%zd\n", image_size); crat_image = kmalloc(image_size, GFP_KERNEL); if (!crat_image) { ret = -ENOMEM; pr_err("No memory for allocating CRAT image\n"); goto err; } ret = kfd_topology_get_crat_acpi(crat_image, &image_size); if (ret == 0) { down_write(&topology_lock); ret = kfd_parse_crat_table(crat_image); if (ret == 0) ret = kfd_topology_update_sysfs(); up_write(&topology_lock); } else { pr_err("Couldn't get CRAT table size from ACPI\n"); } kfree(crat_image); } else if (ret == -ENODATA) { ret = 0; } else { pr_err("Couldn't get CRAT table size from ACPI\n"); } err: pr_info("Finished initializing topology ret=%d\n", ret); return ret; } void kfd_topology_shutdown(void) { kfd_topology_release_sysfs(); kfd_release_live_view(); } static void kfd_debug_print_topology(void) { struct kfd_topology_device *dev; uint32_t i = 0; pr_info("DEBUG PRINT OF TOPOLOGY:"); list_for_each_entry(dev, &topology_device_list, list) { pr_info("Node: %d\n", i); pr_info("\tGPU assigned: %s\n", (dev->gpu ? "yes" : "no")); pr_info("\tCPU count: %d\n", dev->node_props.cpu_cores_count); pr_info("\tSIMD count: %d", dev->node_props.simd_count); i++; } } static uint32_t kfd_generate_gpu_id(struct kfd_dev *gpu) { uint32_t hashout; uint32_t buf[7]; uint64_t local_mem_size; int i; struct kfd_local_mem_info local_mem_info; if (!gpu) return 0; gpu->kfd2kgd->get_local_mem_info(gpu->kgd, &local_mem_info); local_mem_size = local_mem_info.local_mem_size_private + local_mem_info.local_mem_size_public; buf[0] = gpu->pdev->devfn; buf[1] = gpu->pdev->subsystem_vendor; buf[2] = gpu->pdev->subsystem_device; buf[3] = gpu->pdev->device; buf[4] = gpu->pdev->bus->number; buf[5] = lower_32_bits(local_mem_size); buf[6] = upper_32_bits(local_mem_size); for (i = 0, hashout = 0; i < 7; i++) hashout ^= hash_32(buf[i], KFD_GPU_ID_HASH_WIDTH); return hashout; } static struct kfd_topology_device *kfd_assign_gpu(struct kfd_dev *gpu) { struct kfd_topology_device *dev; struct kfd_topology_device *out_dev = NULL; list_for_each_entry(dev, &topology_device_list, list) if (!dev->gpu && (dev->node_props.simd_count > 0)) { dev->gpu = gpu; out_dev = dev; break; } return out_dev; } static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival) { /* * TODO: Generate an event for thunk about the arrival/removal * of the GPU */ } int kfd_topology_add_device(struct kfd_dev *gpu) { uint32_t gpu_id; struct kfd_topology_device *dev; struct kfd_cu_info cu_info; int res; gpu_id = kfd_generate_gpu_id(gpu); pr_debug("Adding new GPU (ID: 0x%x) to topology\n", gpu_id); down_write(&topology_lock); /* * Try to assign the GPU to existing topology device (generated from * CRAT table */ dev = kfd_assign_gpu(gpu); if (!dev) { pr_info("GPU was not found in the current topology. Extending.\n"); kfd_debug_print_topology(); dev = kfd_create_topology_device(); if (!dev) { res = -ENOMEM; goto err; } dev->gpu = gpu; /* * TODO: Make a call to retrieve topology information from the * GPU vBIOS */ /* Update the SYSFS tree, since we added another topology * device */ if (kfd_topology_update_sysfs() < 0) kfd_topology_release_sysfs(); } dev->gpu_id = gpu_id; gpu->id = gpu_id; dev->gpu->kfd2kgd->get_cu_info(dev->gpu->kgd, &cu_info); dev->node_props.simd_count = dev->node_props.simd_per_cu * cu_info.cu_active_number; dev->node_props.vendor_id = gpu->pdev->vendor; dev->node_props.device_id = gpu->pdev->device; dev->node_props.location_id = (gpu->pdev->bus->number << 24) + (gpu->pdev->devfn & 0xffffff); /* * TODO: Retrieve max engine clock values from KGD */ if (dev->gpu->device_info->asic_family == CHIP_CARRIZO) { dev->node_props.capability |= HSA_CAP_DOORBELL_PACKET_TYPE; pr_info("Adding doorbell packet type capability\n"); } res = 0; err: up_write(&topology_lock); if (res == 0) kfd_notify_gpu_change(gpu_id, 1); return res; } int kfd_topology_remove_device(struct kfd_dev *gpu) { struct kfd_topology_device *dev; uint32_t gpu_id; int res = -ENODEV; down_write(&topology_lock); list_for_each_entry(dev, &topology_device_list, list) if (dev->gpu == gpu) { gpu_id = dev->gpu_id; kfd_remove_sysfs_node_entry(dev); kfd_release_topology_device(dev); res = 0; if (kfd_topology_update_sysfs() < 0) kfd_topology_release_sysfs(); break; } up_write(&topology_lock); if (res == 0) kfd_notify_gpu_change(gpu_id, 0); return res; } /* * When idx is out of bounds, the function will return NULL */ struct kfd_dev *kfd_topology_enum_kfd_devices(uint8_t idx) { struct kfd_topology_device *top_dev; struct kfd_dev *device = NULL; uint8_t device_idx = 0; down_read(&topology_lock); list_for_each_entry(top_dev, &topology_device_list, list) { if (device_idx == idx) { device = top_dev->gpu; break; } device_idx++; } up_read(&topology_lock); return device; } #if defined(CONFIG_DEBUG_FS) int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data) { struct kfd_topology_device *dev; unsigned int i = 0; int r = 0; down_read(&topology_lock); list_for_each_entry(dev, &topology_device_list, list) { if (!dev->gpu) { i++; continue; } seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id); r = dqm_debugfs_hqds(m, dev->gpu->dqm); if (r) break; } up_read(&topology_lock); return r; } int kfd_debugfs_rls_by_device(struct seq_file *m, void *data) { struct kfd_topology_device *dev; unsigned int i = 0; int r = 0; down_read(&topology_lock); list_for_each_entry(dev, &topology_device_list, list) { if (!dev->gpu) { i++; continue; } seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id); r = pm_debugfs_runlist(m, &dev->gpu->dqm->packets); if (r) break; } up_read(&topology_lock); return r; } #endif