/* * Copyright © 2008-2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt * */ #include #include #include #include "i915_drv.h" #include "i915_gem_dmabuf.h" #include "i915_vgpu.h" #include "i915_trace.h" #include "intel_drv.h" #include "intel_frontbuffer.h" #include "intel_mocs.h" #include #include #include #include #include #include static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj); static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj); static bool cpu_cache_is_coherent(struct drm_device *dev, enum i915_cache_level level) { return HAS_LLC(dev) || level != I915_CACHE_NONE; } static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj) { if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) return false; if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) return true; return obj->pin_display; } static int insert_mappable_node(struct drm_i915_private *i915, struct drm_mm_node *node, u32 size) { memset(node, 0, sizeof(*node)); return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node, size, 0, 0, 0, i915->ggtt.mappable_end, DRM_MM_SEARCH_DEFAULT, DRM_MM_CREATE_DEFAULT); } static void remove_mappable_node(struct drm_mm_node *node) { drm_mm_remove_node(node); } /* some bookkeeping */ static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv, size_t size) { spin_lock(&dev_priv->mm.object_stat_lock); dev_priv->mm.object_count++; dev_priv->mm.object_memory += size; spin_unlock(&dev_priv->mm.object_stat_lock); } static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv, size_t size) { spin_lock(&dev_priv->mm.object_stat_lock); dev_priv->mm.object_count--; dev_priv->mm.object_memory -= size; spin_unlock(&dev_priv->mm.object_stat_lock); } static int i915_gem_wait_for_error(struct i915_gpu_error *error) { int ret; if (!i915_reset_in_progress(error)) return 0; /* * Only wait 10 seconds for the gpu reset to complete to avoid hanging * userspace. If it takes that long something really bad is going on and * we should simply try to bail out and fail as gracefully as possible. */ ret = wait_event_interruptible_timeout(error->reset_queue, !i915_reset_in_progress(error), 10*HZ); if (ret == 0) { DRM_ERROR("Timed out waiting for the gpu reset to complete\n"); return -EIO; } else if (ret < 0) { return ret; } else { return 0; } } int i915_mutex_lock_interruptible(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); int ret; ret = i915_gem_wait_for_error(&dev_priv->gpu_error); if (ret) return ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; return 0; } int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_private *dev_priv = to_i915(dev); struct i915_ggtt *ggtt = &dev_priv->ggtt; struct drm_i915_gem_get_aperture *args = data; struct i915_vma *vma; size_t pinned; pinned = 0; mutex_lock(&dev->struct_mutex); list_for_each_entry(vma, &ggtt->base.active_list, vm_link) if (i915_vma_is_pinned(vma)) pinned += vma->node.size; list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link) if (i915_vma_is_pinned(vma)) pinned += vma->node.size; mutex_unlock(&dev->struct_mutex); args->aper_size = ggtt->base.total; args->aper_available_size = args->aper_size - pinned; return 0; } static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj) { struct address_space *mapping = obj->base.filp->f_mapping; char *vaddr = obj->phys_handle->vaddr; struct sg_table *st; struct scatterlist *sg; int i; if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj))) return -EINVAL; for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { struct page *page; char *src; page = shmem_read_mapping_page(mapping, i); if (IS_ERR(page)) return PTR_ERR(page); src = kmap_atomic(page); memcpy(vaddr, src, PAGE_SIZE); drm_clflush_virt_range(vaddr, PAGE_SIZE); kunmap_atomic(src); put_page(page); vaddr += PAGE_SIZE; } i915_gem_chipset_flush(to_i915(obj->base.dev)); st = kmalloc(sizeof(*st), GFP_KERNEL); if (st == NULL) return -ENOMEM; if (sg_alloc_table(st, 1, GFP_KERNEL)) { kfree(st); return -ENOMEM; } sg = st->sgl; sg->offset = 0; sg->length = obj->base.size; sg_dma_address(sg) = obj->phys_handle->busaddr; sg_dma_len(sg) = obj->base.size; obj->pages = st; return 0; } static void i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj) { int ret; BUG_ON(obj->madv == __I915_MADV_PURGED); ret = i915_gem_object_set_to_cpu_domain(obj, true); if (WARN_ON(ret)) { /* In the event of a disaster, abandon all caches and * hope for the best. */ obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU; } if (obj->madv == I915_MADV_DONTNEED) obj->dirty = 0; if (obj->dirty) { struct address_space *mapping = obj->base.filp->f_mapping; char *vaddr = obj->phys_handle->vaddr; int i; for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { struct page *page; char *dst; page = shmem_read_mapping_page(mapping, i); if (IS_ERR(page)) continue; dst = kmap_atomic(page); drm_clflush_virt_range(vaddr, PAGE_SIZE); memcpy(dst, vaddr, PAGE_SIZE); kunmap_atomic(dst); set_page_dirty(page); if (obj->madv == I915_MADV_WILLNEED) mark_page_accessed(page); put_page(page); vaddr += PAGE_SIZE; } obj->dirty = 0; } sg_free_table(obj->pages); kfree(obj->pages); } static void i915_gem_object_release_phys(struct drm_i915_gem_object *obj) { drm_pci_free(obj->base.dev, obj->phys_handle); } static const struct drm_i915_gem_object_ops i915_gem_phys_ops = { .get_pages = i915_gem_object_get_pages_phys, .put_pages = i915_gem_object_put_pages_phys, .release = i915_gem_object_release_phys, }; int i915_gem_object_unbind(struct drm_i915_gem_object *obj) { struct i915_vma *vma; LIST_HEAD(still_in_list); int ret; lockdep_assert_held(&obj->base.dev->struct_mutex); /* Closed vma are removed from the obj->vma_list - but they may * still have an active binding on the object. To remove those we * must wait for all rendering to complete to the object (as unbinding * must anyway), and retire the requests. */ ret = i915_gem_object_wait_rendering(obj, false); if (ret) return ret; i915_gem_retire_requests(to_i915(obj->base.dev)); while ((vma = list_first_entry_or_null(&obj->vma_list, struct i915_vma, obj_link))) { list_move_tail(&vma->obj_link, &still_in_list); ret = i915_vma_unbind(vma); if (ret) break; } list_splice(&still_in_list, &obj->vma_list); return ret; } /** * Ensures that all rendering to the object has completed and the object is * safe to unbind from the GTT or access from the CPU. * @obj: i915 gem object * @readonly: waiting for just read access or read-write access */ int i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj, bool readonly) { struct reservation_object *resv; struct i915_gem_active *active; unsigned long active_mask; int idx; lockdep_assert_held(&obj->base.dev->struct_mutex); if (!readonly) { active = obj->last_read; active_mask = i915_gem_object_get_active(obj); } else { active_mask = 1; active = &obj->last_write; } for_each_active(active_mask, idx) { int ret; ret = i915_gem_active_wait(&active[idx], &obj->base.dev->struct_mutex); if (ret) return ret; } resv = i915_gem_object_get_dmabuf_resv(obj); if (resv) { long err; err = reservation_object_wait_timeout_rcu(resv, !readonly, true, MAX_SCHEDULE_TIMEOUT); if (err < 0) return err; } return 0; } /* A nonblocking variant of the above wait. Must be called prior to * acquiring the mutex for the object, as the object state may change * during this call. A reference must be held by the caller for the object. */ static __must_check int __unsafe_wait_rendering(struct drm_i915_gem_object *obj, struct intel_rps_client *rps, bool readonly) { struct i915_gem_active *active; unsigned long active_mask; int idx; active_mask = __I915_BO_ACTIVE(obj); if (!active_mask) return 0; if (!readonly) { active = obj->last_read; } else { active_mask = 1; active = &obj->last_write; } for_each_active(active_mask, idx) { int ret; ret = i915_gem_active_wait_unlocked(&active[idx], true, NULL, rps); if (ret) return ret; } return 0; } static struct intel_rps_client *to_rps_client(struct drm_file *file) { struct drm_i915_file_private *fpriv = file->driver_priv; return &fpriv->rps; } int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align) { drm_dma_handle_t *phys; int ret; if (obj->phys_handle) { if ((unsigned long)obj->phys_handle->vaddr & (align -1)) return -EBUSY; return 0; } if (obj->madv != I915_MADV_WILLNEED) return -EFAULT; if (obj->base.filp == NULL) return -EINVAL; ret = i915_gem_object_unbind(obj); if (ret) return ret; ret = i915_gem_object_put_pages(obj); if (ret) return ret; /* create a new object */ phys = drm_pci_alloc(obj->base.dev, obj->base.size, align); if (!phys) return -ENOMEM; obj->phys_handle = phys; obj->ops = &i915_gem_phys_ops; return i915_gem_object_get_pages(obj); } static int i915_gem_phys_pwrite(struct drm_i915_gem_object *obj, struct drm_i915_gem_pwrite *args, struct drm_file *file_priv) { struct drm_device *dev = obj->base.dev; void *vaddr = obj->phys_handle->vaddr + args->offset; char __user *user_data = u64_to_user_ptr(args->data_ptr); int ret = 0; /* We manually control the domain here and pretend that it * remains coherent i.e. in the GTT domain, like shmem_pwrite. */ ret = i915_gem_object_wait_rendering(obj, false); if (ret) return ret; intel_fb_obj_invalidate(obj, ORIGIN_CPU); if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) { unsigned long unwritten; /* The physical object once assigned is fixed for the lifetime * of the obj, so we can safely drop the lock and continue * to access vaddr. */ mutex_unlock(&dev->struct_mutex); unwritten = copy_from_user(vaddr, user_data, args->size); mutex_lock(&dev->struct_mutex); if (unwritten) { ret = -EFAULT; goto out; } } drm_clflush_virt_range(vaddr, args->size); i915_gem_chipset_flush(to_i915(dev)); out: intel_fb_obj_flush(obj, false, ORIGIN_CPU); return ret; } void *i915_gem_object_alloc(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL); } void i915_gem_object_free(struct drm_i915_gem_object *obj) { struct drm_i915_private *dev_priv = to_i915(obj->base.dev); kmem_cache_free(dev_priv->objects, obj); } static int i915_gem_create(struct drm_file *file, struct drm_device *dev, uint64_t size, uint32_t *handle_p) { struct drm_i915_gem_object *obj; int ret; u32 handle; size = roundup(size, PAGE_SIZE); if (size == 0) return -EINVAL; /* Allocate the new object */ obj = i915_gem_object_create(dev, size); if (IS_ERR(obj)) return PTR_ERR(obj); ret = drm_gem_handle_create(file, &obj->base, &handle); /* drop reference from allocate - handle holds it now */ i915_gem_object_put_unlocked(obj); if (ret) return ret; *handle_p = handle; return 0; } int i915_gem_dumb_create(struct drm_file *file, struct drm_device *dev, struct drm_mode_create_dumb *args) { /* have to work out size/pitch and return them */ args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64); args->size = args->pitch * args->height; return i915_gem_create(file, dev, args->size, &args->handle); } /** * Creates a new mm object and returns a handle to it. * @dev: drm device pointer * @data: ioctl data blob * @file: drm file pointer */ int i915_gem_create_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_create *args = data; return i915_gem_create(file, dev, args->size, &args->handle); } static inline int __copy_to_user_swizzled(char __user *cpu_vaddr, const char *gpu_vaddr, int gpu_offset, int length) { int ret, cpu_offset = 0; while (length > 0) { int cacheline_end = ALIGN(gpu_offset + 1, 64); int this_length = min(cacheline_end - gpu_offset, length); int swizzled_gpu_offset = gpu_offset ^ 64; ret = __copy_to_user(cpu_vaddr + cpu_offset, gpu_vaddr + swizzled_gpu_offset, this_length); if (ret) return ret + length; cpu_offset += this_length; gpu_offset += this_length; length -= this_length; } return 0; } static inline int __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset, const char __user *cpu_vaddr, int length) { int ret, cpu_offset = 0; while (length > 0) { int cacheline_end = ALIGN(gpu_offset + 1, 64); int this_length = min(cacheline_end - gpu_offset, length); int swizzled_gpu_offset = gpu_offset ^ 64; ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset, cpu_vaddr + cpu_offset, this_length); if (ret) return ret + length; cpu_offset += this_length; gpu_offset += this_length; length -= this_length; } return 0; } /* * Pins the specified object's pages and synchronizes the object with * GPU accesses. Sets needs_clflush to non-zero if the caller should * flush the object from the CPU cache. */ int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, unsigned int *needs_clflush) { int ret; *needs_clflush = 0; if (!i915_gem_object_has_struct_page(obj)) return -ENODEV; ret = i915_gem_object_wait_rendering(obj, true); if (ret) return ret; ret = i915_gem_object_get_pages(obj); if (ret) return ret; i915_gem_object_pin_pages(obj); i915_gem_object_flush_gtt_write_domain(obj); /* If we're not in the cpu read domain, set ourself into the gtt * read domain and manually flush cachelines (if required). This * optimizes for the case when the gpu will dirty the data * anyway again before the next pread happens. */ if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) *needs_clflush = !cpu_cache_is_coherent(obj->base.dev, obj->cache_level); if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) { ret = i915_gem_object_set_to_cpu_domain(obj, false); if (ret) goto err_unpin; *needs_clflush = 0; } /* return with the pages pinned */ return 0; err_unpin: i915_gem_object_unpin_pages(obj); return ret; } int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj, unsigned int *needs_clflush) { int ret; *needs_clflush = 0; if (!i915_gem_object_has_struct_page(obj)) return -ENODEV; ret = i915_gem_object_wait_rendering(obj, false); if (ret) return ret; ret = i915_gem_object_get_pages(obj); if (ret) return ret; i915_gem_object_pin_pages(obj); i915_gem_object_flush_gtt_write_domain(obj); /* If we're not in the cpu write domain, set ourself into the * gtt write domain and manually flush cachelines (as required). * This optimizes for the case when the gpu will use the data * right away and we therefore have to clflush anyway. */ if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) *needs_clflush |= cpu_write_needs_clflush(obj) << 1; /* Same trick applies to invalidate partially written cachelines read * before writing. */ if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) *needs_clflush |= !cpu_cache_is_coherent(obj->base.dev, obj->cache_level); if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) { ret = i915_gem_object_set_to_cpu_domain(obj, true); if (ret) goto err_unpin; *needs_clflush = 0; } if ((*needs_clflush & CLFLUSH_AFTER) == 0) obj->cache_dirty = true; intel_fb_obj_invalidate(obj, ORIGIN_CPU); obj->dirty = 1; /* return with the pages pinned */ return 0; err_unpin: i915_gem_object_unpin_pages(obj); return ret; } /* Per-page copy function for the shmem pread fastpath. * Flushes invalid cachelines before reading the target if * needs_clflush is set. */ static int shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length, char __user *user_data, bool page_do_bit17_swizzling, bool needs_clflush) { char *vaddr; int ret; if (unlikely(page_do_bit17_swizzling)) return -EINVAL; vaddr = kmap_atomic(page); if (needs_clflush) drm_clflush_virt_range(vaddr + shmem_page_offset, page_length); ret = __copy_to_user_inatomic(user_data, vaddr + shmem_page_offset, page_length); kunmap_atomic(vaddr); return ret ? -EFAULT : 0; } static void shmem_clflush_swizzled_range(char *addr, unsigned long length, bool swizzled) { if (unlikely(swizzled)) { unsigned long start = (unsigned long) addr; unsigned long end = (unsigned long) addr + length; /* For swizzling simply ensure that we always flush both * channels. Lame, but simple and it works. Swizzled * pwrite/pread is far from a hotpath - current userspace * doesn't use it at all. */ start = round_down(start, 128); end = round_up(end, 128); drm_clflush_virt_range((void *)start, end - start); } else { drm_clflush_virt_range(addr, length); } } /* Only difference to the fast-path function is that this can handle bit17 * and uses non-atomic copy and kmap functions. */ static int shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length, char __user *user_data, bool page_do_bit17_swizzling, bool needs_clflush) { char *vaddr; int ret; vaddr = kmap(page); if (needs_clflush) shmem_clflush_swizzled_range(vaddr + shmem_page_offset, page_length, page_do_bit17_swizzling); if (page_do_bit17_swizzling) ret = __copy_to_user_swizzled(user_data, vaddr, shmem_page_offset, page_length); else ret = __copy_to_user(user_data, vaddr + shmem_page_offset, page_length); kunmap(page); return ret ? - EFAULT : 0; } static inline unsigned long slow_user_access(struct io_mapping *mapping, uint64_t page_base, int page_offset, char __user *user_data, unsigned long length, bool pwrite) { void __iomem *ioaddr; void *vaddr; uint64_t unwritten; ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE); /* We can use the cpu mem copy function because this is X86. */ vaddr = (void __force *)ioaddr + page_offset; if (pwrite) unwritten = __copy_from_user(vaddr, user_data, length); else unwritten = __copy_to_user(user_data, vaddr, length); io_mapping_unmap(ioaddr); return unwritten; } static int i915_gem_gtt_pread(struct drm_device *dev, struct drm_i915_gem_object *obj, uint64_t size, uint64_t data_offset, uint64_t data_ptr) { struct drm_i915_private *dev_priv = to_i915(dev); struct i915_ggtt *ggtt = &dev_priv->ggtt; struct i915_vma *vma; struct drm_mm_node node; char __user *user_data; uint64_t remain; uint64_t offset; int ret; vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE); if (!IS_ERR(vma)) { node.start = i915_ggtt_offset(vma); node.allocated = false; ret = i915_vma_put_fence(vma); if (ret) { i915_vma_unpin(vma); vma = ERR_PTR(ret); } } if (IS_ERR(vma)) { ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE); if (ret) goto out; ret = i915_gem_object_get_pages(obj); if (ret) { remove_mappable_node(&node); goto out; } i915_gem_object_pin_pages(obj); } ret = i915_gem_object_set_to_gtt_domain(obj, false); if (ret) goto out_unpin; user_data = u64_to_user_ptr(data_ptr); remain = size; offset = data_offset; mutex_unlock(&dev->struct_mutex); if (likely(!i915.prefault_disable)) { ret = fault_in_multipages_writeable(user_data, remain); if (ret) { mutex_lock(&dev->struct_mutex); goto out_unpin; } } while (remain > 0) { /* Operation in this page * * page_base = page offset within aperture * page_offset = offset within page * page_length = bytes to copy for this page */ u32 page_base = node.start; unsigned page_offset = offset_in_page(offset); unsigned page_length = PAGE_SIZE - page_offset; page_length = remain < page_length ? remain : page_length; if (node.allocated) { wmb(); ggtt->base.insert_page(&ggtt->base, i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), node.start, I915_CACHE_NONE, 0); wmb(); } else { page_base += offset & PAGE_MASK; } /* This is a slow read/write as it tries to read from * and write to user memory which may result into page * faults, and so we cannot perform this under struct_mutex. */ if (slow_user_access(&ggtt->mappable, page_base, page_offset, user_data, page_length, false)) { ret = -EFAULT; break; } remain -= page_length; user_data += page_length; offset += page_length; } mutex_lock(&dev->struct_mutex); if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) { /* The user has modified the object whilst we tried * reading from it, and we now have no idea what domain * the pages should be in. As we have just been touching * them directly, flush everything back to the GTT * domain. */ ret = i915_gem_object_set_to_gtt_domain(obj, false); } out_unpin: if (node.allocated) { wmb(); ggtt->base.clear_range(&ggtt->base, node.start, node.size, true); i915_gem_object_unpin_pages(obj); remove_mappable_node(&node); } else { i915_vma_unpin(vma); } out: return ret; } static int i915_gem_shmem_pread(struct drm_device *dev, struct drm_i915_gem_object *obj, struct drm_i915_gem_pread *args, struct drm_file *file) { char __user *user_data; ssize_t remain; loff_t offset; int shmem_page_offset, page_length, ret = 0; int obj_do_bit17_swizzling, page_do_bit17_swizzling; int prefaulted = 0; int needs_clflush = 0; struct sg_page_iter sg_iter; ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush); if (ret) return ret; obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); user_data = u64_to_user_ptr(args->data_ptr); offset = args->offset; remain = args->size; for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, offset >> PAGE_SHIFT) { struct page *page = sg_page_iter_page(&sg_iter); if (remain <= 0) break; /* Operation in this page * * shmem_page_offset = offset within page in shmem file * page_length = bytes to copy for this page */ shmem_page_offset = offset_in_page(offset); page_length = remain; if ((shmem_page_offset + page_length) > PAGE_SIZE) page_length = PAGE_SIZE - shmem_page_offset; page_do_bit17_swizzling = obj_do_bit17_swizzling && (page_to_phys(page) & (1 << 17)) != 0; ret = shmem_pread_fast(page, shmem_page_offset, page_length, user_data, page_do_bit17_swizzling, needs_clflush); if (ret == 0) goto next_page; mutex_unlock(&dev->struct_mutex); if (likely(!i915.prefault_disable) && !prefaulted) { ret = fault_in_multipages_writeable(user_data, remain); /* Userspace is tricking us, but we've already clobbered * its pages with the prefault and promised to write the * data up to the first fault. Hence ignore any errors * and just continue. */ (void)ret; prefaulted = 1; } ret = shmem_pread_slow(page, shmem_page_offset, page_length, user_data, page_do_bit17_swizzling, needs_clflush); mutex_lock(&dev->struct_mutex); if (ret) goto out; next_page: remain -= page_length; user_data += page_length; offset += page_length; } out: i915_gem_obj_finish_shmem_access(obj); return ret; } /** * Reads data from the object referenced by handle. * @dev: drm device pointer * @data: ioctl data blob * @file: drm file pointer * * On error, the contents of *data are undefined. */ int i915_gem_pread_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_pread *args = data; struct drm_i915_gem_object *obj; int ret = 0; if (args->size == 0) return 0; if (!access_ok(VERIFY_WRITE, u64_to_user_ptr(args->data_ptr), args->size)) return -EFAULT; obj = i915_gem_object_lookup(file, args->handle); if (!obj) return -ENOENT; /* Bounds check source. */ if (args->offset > obj->base.size || args->size > obj->base.size - args->offset) { ret = -EINVAL; goto err; } trace_i915_gem_object_pread(obj, args->offset, args->size); ret = __unsafe_wait_rendering(obj, to_rps_client(file), true); if (ret) goto err; ret = i915_mutex_lock_interruptible(dev); if (ret) goto err; ret = i915_gem_shmem_pread(dev, obj, args, file); /* pread for non shmem backed objects */ if (ret == -EFAULT || ret == -ENODEV) { intel_runtime_pm_get(to_i915(dev)); ret = i915_gem_gtt_pread(dev, obj, args->size, args->offset, args->data_ptr); intel_runtime_pm_put(to_i915(dev)); } i915_gem_object_put(obj); mutex_unlock(&dev->struct_mutex); return ret; err: i915_gem_object_put_unlocked(obj); return ret; } /* This is the fast write path which cannot handle * page faults in the source data */ static inline int fast_user_write(struct io_mapping *mapping, loff_t page_base, int page_offset, char __user *user_data, int length) { void __iomem *vaddr_atomic; void *vaddr; unsigned long unwritten; vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base); /* We can use the cpu mem copy function because this is X86. */ vaddr = (void __force*)vaddr_atomic + page_offset; unwritten = __copy_from_user_inatomic_nocache(vaddr, user_data, length); io_mapping_unmap_atomic(vaddr_atomic); return unwritten; } /** * This is the fast pwrite path, where we copy the data directly from the * user into the GTT, uncached. * @i915: i915 device private data * @obj: i915 gem object * @args: pwrite arguments structure * @file: drm file pointer */ static int i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915, struct drm_i915_gem_object *obj, struct drm_i915_gem_pwrite *args, struct drm_file *file) { struct i915_ggtt *ggtt = &i915->ggtt; struct drm_device *dev = obj->base.dev; struct i915_vma *vma; struct drm_mm_node node; uint64_t remain, offset; char __user *user_data; int ret; bool hit_slow_path = false; if (i915_gem_object_is_tiled(obj)) return -EFAULT; vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE | PIN_NONBLOCK); if (!IS_ERR(vma)) { node.start = i915_ggtt_offset(vma); node.allocated = false; ret = i915_vma_put_fence(vma); if (ret) { i915_vma_unpin(vma); vma = ERR_PTR(ret); } } if (IS_ERR(vma)) { ret = insert_mappable_node(i915, &node, PAGE_SIZE); if (ret) goto out; ret = i915_gem_object_get_pages(obj); if (ret) { remove_mappable_node(&node); goto out; } i915_gem_object_pin_pages(obj); } ret = i915_gem_object_set_to_gtt_domain(obj, true); if (ret) goto out_unpin; intel_fb_obj_invalidate(obj, ORIGIN_CPU); obj->dirty = true; user_data = u64_to_user_ptr(args->data_ptr); offset = args->offset; remain = args->size; while (remain) { /* Operation in this page * * page_base = page offset within aperture * page_offset = offset within page * page_length = bytes to copy for this page */ u32 page_base = node.start; unsigned page_offset = offset_in_page(offset); unsigned page_length = PAGE_SIZE - page_offset; page_length = remain < page_length ? remain : page_length; if (node.allocated) { wmb(); /* flush the write before we modify the GGTT */ ggtt->base.insert_page(&ggtt->base, i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), node.start, I915_CACHE_NONE, 0); wmb(); /* flush modifications to the GGTT (insert_page) */ } else { page_base += offset & PAGE_MASK; } /* If we get a fault while copying data, then (presumably) our * source page isn't available. Return the error and we'll * retry in the slow path. * If the object is non-shmem backed, we retry again with the * path that handles page fault. */ if (fast_user_write(&ggtt->mappable, page_base, page_offset, user_data, page_length)) { hit_slow_path = true; mutex_unlock(&dev->struct_mutex); if (slow_user_access(&ggtt->mappable, page_base, page_offset, user_data, page_length, true)) { ret = -EFAULT; mutex_lock(&dev->struct_mutex); goto out_flush; } mutex_lock(&dev->struct_mutex); } remain -= page_length; user_data += page_length; offset += page_length; } out_flush: if (hit_slow_path) { if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) { /* The user has modified the object whilst we tried * reading from it, and we now have no idea what domain * the pages should be in. As we have just been touching * them directly, flush everything back to the GTT * domain. */ ret = i915_gem_object_set_to_gtt_domain(obj, false); } } intel_fb_obj_flush(obj, false, ORIGIN_CPU); out_unpin: if (node.allocated) { wmb(); ggtt->base.clear_range(&ggtt->base, node.start, node.size, true); i915_gem_object_unpin_pages(obj); remove_mappable_node(&node); } else { i915_vma_unpin(vma); } out: return ret; } /* Per-page copy function for the shmem pwrite fastpath. * Flushes invalid cachelines before writing to the target if * needs_clflush_before is set and flushes out any written cachelines after * writing if needs_clflush is set. */ static int shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length, char __user *user_data, bool page_do_bit17_swizzling, bool needs_clflush_before, bool needs_clflush_after) { char *vaddr; int ret; if (unlikely(page_do_bit17_swizzling)) return -EINVAL; vaddr = kmap_atomic(page); if (needs_clflush_before) drm_clflush_virt_range(vaddr + shmem_page_offset, page_length); ret = __copy_from_user_inatomic(vaddr + shmem_page_offset, user_data, page_length); if (needs_clflush_after) drm_clflush_virt_range(vaddr + shmem_page_offset, page_length); kunmap_atomic(vaddr); return ret ? -EFAULT : 0; } /* Only difference to the fast-path function is that this can handle bit17 * and uses non-atomic copy and kmap functions. */ static int shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length, char __user *user_data, bool page_do_bit17_swizzling, bool needs_clflush_before, bool needs_clflush_after) { char *vaddr; int ret; vaddr = kmap(page); if (unlikely(needs_clflush_before || page_do_bit17_swizzling)) shmem_clflush_swizzled_range(vaddr + shmem_page_offset, page_length, page_do_bit17_swizzling); if (page_do_bit17_swizzling) ret = __copy_from_user_swizzled(vaddr, shmem_page_offset, user_data, page_length); else ret = __copy_from_user(vaddr + shmem_page_offset, user_data, page_length); if (needs_clflush_after) shmem_clflush_swizzled_range(vaddr + shmem_page_offset, page_length, page_do_bit17_swizzling); kunmap(page); return ret ? -EFAULT : 0; } static int i915_gem_shmem_pwrite(struct drm_device *dev, struct drm_i915_gem_object *obj, struct drm_i915_gem_pwrite *args, struct drm_file *file) { ssize_t remain; loff_t offset; char __user *user_data; int shmem_page_offset, page_length, ret = 0; int obj_do_bit17_swizzling, page_do_bit17_swizzling; int hit_slowpath = 0; unsigned int needs_clflush; struct sg_page_iter sg_iter; ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush); if (ret) return ret; obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); user_data = u64_to_user_ptr(args->data_ptr); offset = args->offset; remain = args->size; for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, offset >> PAGE_SHIFT) { struct page *page = sg_page_iter_page(&sg_iter); int partial_cacheline_write; if (remain <= 0) break; /* Operation in this page * * shmem_page_offset = offset within page in shmem file * page_length = bytes to copy for this page */ shmem_page_offset = offset_in_page(offset); page_length = remain; if ((shmem_page_offset + page_length) > PAGE_SIZE) page_length = PAGE_SIZE - shmem_page_offset; /* If we don't overwrite a cacheline completely we need to be * careful to have up-to-date data by first clflushing. Don't * overcomplicate things and flush the entire patch. */ partial_cacheline_write = needs_clflush & CLFLUSH_BEFORE && ((shmem_page_offset | page_length) & (boot_cpu_data.x86_clflush_size - 1)); page_do_bit17_swizzling = obj_do_bit17_swizzling && (page_to_phys(page) & (1 << 17)) != 0; ret = shmem_pwrite_fast(page, shmem_page_offset, page_length, user_data, page_do_bit17_swizzling, partial_cacheline_write, needs_clflush & CLFLUSH_AFTER); if (ret == 0) goto next_page; hit_slowpath = 1; mutex_unlock(&dev->struct_mutex); ret = shmem_pwrite_slow(page, shmem_page_offset, page_length, user_data, page_do_bit17_swizzling, partial_cacheline_write, needs_clflush & CLFLUSH_AFTER); mutex_lock(&dev->struct_mutex); if (ret) goto out; next_page: remain -= page_length; user_data += page_length; offset += page_length; } out: i915_gem_obj_finish_shmem_access(obj); if (hit_slowpath) { /* * Fixup: Flush cpu caches in case we didn't flush the dirty * cachelines in-line while writing and the object moved * out of the cpu write domain while we've dropped the lock. */ if (!(needs_clflush & CLFLUSH_AFTER) && obj->base.write_domain != I915_GEM_DOMAIN_CPU) { if (i915_gem_clflush_object(obj, obj->pin_display)) needs_clflush |= CLFLUSH_AFTER; } } if (needs_clflush & CLFLUSH_AFTER) i915_gem_chipset_flush(to_i915(dev)); intel_fb_obj_flush(obj, false, ORIGIN_CPU); return ret; } /** * Writes data to the object referenced by handle. * @dev: drm device * @data: ioctl data blob * @file: drm file * * On error, the contents of the buffer that were to be modified are undefined. */ int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_private *dev_priv = to_i915(dev); struct drm_i915_gem_pwrite *args = data; struct drm_i915_gem_object *obj; int ret; if (args->size == 0) return 0; if (!access_ok(VERIFY_READ, u64_to_user_ptr(args->data_ptr), args->size)) return -EFAULT; if (likely(!i915.prefault_disable)) { ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr), args->size); if (ret) return -EFAULT; } obj = i915_gem_object_lookup(file, args->handle); if (!obj) return -ENOENT; /* Bounds check destination. */ if (args->offset > obj->base.size || args->size > obj->base.size - args->offset) { ret = -EINVAL; goto err; } trace_i915_gem_object_pwrite(obj, args->offset, args->size); ret = __unsafe_wait_rendering(obj, to_rps_client(file), false); if (ret) goto err; intel_runtime_pm_get(dev_priv); ret = i915_mutex_lock_interruptible(dev); if (ret) goto err_rpm; ret = -EFAULT; /* We can only do the GTT pwrite on untiled buffers, as otherwise * it would end up going through the fenced access, and we'll get * different detiling behavior between reading and writing. * pread/pwrite currently are reading and writing from the CPU * perspective, requiring manual detiling by the client. */ if (!i915_gem_object_has_struct_page(obj) || cpu_write_needs_clflush(obj)) { ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file); /* Note that the gtt paths might fail with non-page-backed user * pointers (e.g. gtt mappings when moving data between * textures). Fallback to the shmem path in that case. */ } if (ret == -EFAULT || ret == -ENOSPC) { if (obj->phys_handle) ret = i915_gem_phys_pwrite(obj, args, file); else ret = i915_gem_shmem_pwrite(dev, obj, args, file); } i915_gem_object_put(obj); mutex_unlock(&dev->struct_mutex); intel_runtime_pm_put(dev_priv); return ret; err_rpm: intel_runtime_pm_put(dev_priv); err: i915_gem_object_put_unlocked(obj); return ret; } static inline enum fb_op_origin write_origin(struct drm_i915_gem_object *obj, unsigned domain) { return (domain == I915_GEM_DOMAIN_GTT ? obj->frontbuffer_ggtt_origin : ORIGIN_CPU); } /** * Called when user space prepares to use an object with the CPU, either * through the mmap ioctl's mapping or a GTT mapping. * @dev: drm device * @data: ioctl data blob * @file: drm file */ int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_set_domain *args = data; struct drm_i915_gem_object *obj; uint32_t read_domains = args->read_domains; uint32_t write_domain = args->write_domain; int ret; /* Only handle setting domains to types used by the CPU. */ if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS) return -EINVAL; /* Having something in the write domain implies it's in the read * domain, and only that read domain. Enforce that in the request. */ if (write_domain != 0 && read_domains != write_domain) return -EINVAL; obj = i915_gem_object_lookup(file, args->handle); if (!obj) return -ENOENT; /* Try to flush the object off the GPU without holding the lock. * We will repeat the flush holding the lock in the normal manner * to catch cases where we are gazumped. */ ret = __unsafe_wait_rendering(obj, to_rps_client(file), !write_domain); if (ret) goto err; ret = i915_mutex_lock_interruptible(dev); if (ret) goto err; if (read_domains & I915_GEM_DOMAIN_GTT) ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0); else ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0); if (write_domain != 0) intel_fb_obj_invalidate(obj, write_origin(obj, write_domain)); i915_gem_object_put(obj); mutex_unlock(&dev->struct_mutex); return ret; err: i915_gem_object_put_unlocked(obj); return ret; } /** * Called when user space has done writes to this buffer * @dev: drm device * @data: ioctl data blob * @file: drm file */ int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_sw_finish *args = data; struct drm_i915_gem_object *obj; int err = 0; obj = i915_gem_object_lookup(file, args->handle); if (!obj) return -ENOENT; /* Pinned buffers may be scanout, so flush the cache */ if (READ_ONCE(obj->pin_display)) { err = i915_mutex_lock_interruptible(dev); if (!err) { i915_gem_object_flush_cpu_write_domain(obj); mutex_unlock(&dev->struct_mutex); } } i915_gem_object_put_unlocked(obj); return err; } /** * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address * it is mapped to. * @dev: drm device * @data: ioctl data blob * @file: drm file * * While the mapping holds a reference on the contents of the object, it doesn't * imply a ref on the object itself. * * IMPORTANT: * * DRM driver writers who look a this function as an example for how to do GEM * mmap support, please don't implement mmap support like here. The modern way * to implement DRM mmap support is with an mmap offset ioctl (like * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly. * That way debug tooling like valgrind will understand what's going on, hiding * the mmap call in a driver private ioctl will break that. The i915 driver only * does cpu mmaps this way because we didn't know better. */ int i915_gem_mmap_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_mmap *args = data; struct drm_i915_gem_object *obj; unsigned long addr; if (args->flags & ~(I915_MMAP_WC)) return -EINVAL; if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT)) return -ENODEV; obj = i915_gem_object_lookup(file, args->handle); if (!obj) return -ENOENT; /* prime objects have no backing filp to GEM mmap * pages from. */ if (!obj->base.filp) { i915_gem_object_put_unlocked(obj); return -EINVAL; } addr = vm_mmap(obj->base.filp, 0, args->size, PROT_READ | PROT_WRITE, MAP_SHARED, args->offset); if (args->flags & I915_MMAP_WC) { struct mm_struct *mm = current->mm; struct vm_area_struct *vma; if (down_write_killable(&mm->mmap_sem)) { i915_gem_object_put_unlocked(obj); return -EINTR; } vma = find_vma(mm, addr); if (vma) vma->vm_page_prot = pgprot_writecombine(vm_get_page_prot(vma->vm_flags)); else addr = -ENOMEM; up_write(&mm->mmap_sem); /* This may race, but that's ok, it only gets set */ WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU); } i915_gem_object_put_unlocked(obj); if (IS_ERR((void *)addr)) return addr; args->addr_ptr = (uint64_t) addr; return 0; } static unsigned int tile_row_pages(struct drm_i915_gem_object *obj) { u64 size; size = i915_gem_object_get_stride(obj); size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8; return size >> PAGE_SHIFT; } /** * i915_gem_fault - fault a page into the GTT * @area: CPU VMA in question * @vmf: fault info * * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped * from userspace. The fault handler takes care of binding the object to * the GTT (if needed), allocating and programming a fence register (again, * only if needed based on whether the old reg is still valid or the object * is tiled) and inserting a new PTE into the faulting process. * * Note that the faulting process may involve evicting existing objects * from the GTT and/or fence registers to make room. So performance may * suffer if the GTT working set is large or there are few fence registers * left. */ int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf) { #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */ struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data); struct drm_device *dev = obj->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct i915_ggtt *ggtt = &dev_priv->ggtt; bool write = !!(vmf->flags & FAULT_FLAG_WRITE); struct i915_vma *vma; pgoff_t page_offset; unsigned long pfn; unsigned int flags; int ret; /* We don't use vmf->pgoff since that has the fake offset */ page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >> PAGE_SHIFT; trace_i915_gem_object_fault(obj, page_offset, true, write); /* Try to flush the object off the GPU first without holding the lock. * Upon acquiring the lock, we will perform our sanity checks and then * repeat the flush holding the lock in the normal manner to catch cases * where we are gazumped. */ ret = __unsafe_wait_rendering(obj, NULL, !write); if (ret) goto err; intel_runtime_pm_get(dev_priv); ret = i915_mutex_lock_interruptible(dev); if (ret) goto err_rpm; /* Access to snoopable pages through the GTT is incoherent. */ if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) { ret = -EFAULT; goto err_unlock; } /* If the object is smaller than a couple of partial vma, it is * not worth only creating a single partial vma - we may as well * clear enough space for the full object. */ flags = PIN_MAPPABLE; if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT) flags |= PIN_NONBLOCK | PIN_NONFAULT; /* Now pin it into the GTT as needed */ vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags); if (IS_ERR(vma)) { struct i915_ggtt_view view; unsigned int chunk_size; /* Use a partial view if it is bigger than available space */ chunk_size = MIN_CHUNK_PAGES; if (i915_gem_object_is_tiled(obj)) chunk_size = max(chunk_size, tile_row_pages(obj)); memset(&view, 0, sizeof(view)); view.type = I915_GGTT_VIEW_PARTIAL; view.params.partial.offset = rounddown(page_offset, chunk_size); view.params.partial.size = min_t(unsigned int, chunk_size, (area->vm_end - area->vm_start) / PAGE_SIZE - view.params.partial.offset); /* If the partial covers the entire object, just create a * normal VMA. */ if (chunk_size >= obj->base.size >> PAGE_SHIFT) view.type = I915_GGTT_VIEW_NORMAL; /* Userspace is now writing through an untracked VMA, abandon * all hope that the hardware is able to track future writes. */ obj->frontbuffer_ggtt_origin = ORIGIN_CPU; vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE); } if (IS_ERR(vma)) { ret = PTR_ERR(vma); goto err_unlock; } ret = i915_gem_object_set_to_gtt_domain(obj, write); if (ret) goto err_unpin; ret = i915_vma_get_fence(vma); if (ret) goto err_unpin; /* Finally, remap it using the new GTT offset */ pfn = ggtt->mappable_base + i915_ggtt_offset(vma); pfn >>= PAGE_SHIFT; if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) { if (!obj->fault_mappable) { unsigned long size = min_t(unsigned long, area->vm_end - area->vm_start, obj->base.size) >> PAGE_SHIFT; unsigned long base = area->vm_start; int i; for (i = 0; i < size; i++) { ret = vm_insert_pfn(area, base + i * PAGE_SIZE, pfn + i); if (ret) break; } } else ret = vm_insert_pfn(area, (unsigned long)vmf->virtual_address, pfn + page_offset); } else { /* Overriding existing pages in partial view does not cause * us any trouble as TLBs are still valid because the fault * is due to userspace losing part of the mapping or never * having accessed it before (at this partials' range). */ const struct i915_ggtt_view *view = &vma->ggtt_view; unsigned long base = area->vm_start + (view->params.partial.offset << PAGE_SHIFT); unsigned int i; for (i = 0; i < view->params.partial.size; i++) { ret = vm_insert_pfn(area, base + i * PAGE_SIZE, pfn + i); if (ret) break; } } obj->fault_mappable = true; err_unpin: __i915_vma_unpin(vma); err_unlock: mutex_unlock(&dev->struct_mutex); err_rpm: intel_runtime_pm_put(dev_priv); err: switch (ret) { case -EIO: /* * We eat errors when the gpu is terminally wedged to avoid * userspace unduly crashing (gl has no provisions for mmaps to * fail). But any other -EIO isn't ours (e.g. swap in failure) * and so needs to be reported. */ if (!i915_terminally_wedged(&dev_priv->gpu_error)) { ret = VM_FAULT_SIGBUS; break; } case -EAGAIN: /* * EAGAIN means the gpu is hung and we'll wait for the error * handler to reset everything when re-faulting in * i915_mutex_lock_interruptible. */ case 0: case -ERESTARTSYS: case -EINTR: case -EBUSY: /* * EBUSY is ok: this just means that another thread * already did the job. */ ret = VM_FAULT_NOPAGE; break; case -ENOMEM: ret = VM_FAULT_OOM; break; case -ENOSPC: case -EFAULT: ret = VM_FAULT_SIGBUS; break; default: WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret); ret = VM_FAULT_SIGBUS; break; } return ret; } /** * i915_gem_release_mmap - remove physical page mappings * @obj: obj in question * * Preserve the reservation of the mmapping with the DRM core code, but * relinquish ownership of the pages back to the system. * * It is vital that we remove the page mapping if we have mapped a tiled * object through the GTT and then lose the fence register due to * resource pressure. Similarly if the object has been moved out of the * aperture, than pages mapped into userspace must be revoked. Removing the * mapping will then trigger a page fault on the next user access, allowing * fixup by i915_gem_fault(). */ void i915_gem_release_mmap(struct drm_i915_gem_object *obj) { /* Serialisation between user GTT access and our code depends upon * revoking the CPU's PTE whilst the mutex is held. The next user * pagefault then has to wait until we release the mutex. */ lockdep_assert_held(&obj->base.dev->struct_mutex); if (!obj->fault_mappable) return; drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->anon_inode->i_mapping); /* Ensure that the CPU's PTE are revoked and there are not outstanding * memory transactions from userspace before we return. The TLB * flushing implied above by changing the PTE above *should* be * sufficient, an extra barrier here just provides us with a bit * of paranoid documentation about our requirement to serialise * memory writes before touching registers / GSM. */ wmb(); obj->fault_mappable = false; } void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv) { struct drm_i915_gem_object *obj; list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) i915_gem_release_mmap(obj); } /** * i915_gem_get_ggtt_size - return required global GTT size for an object * @dev_priv: i915 device * @size: object size * @tiling_mode: tiling mode * * Return the required global GTT size for an object, taking into account * potential fence register mapping. */ u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv, u64 size, int tiling_mode) { u64 ggtt_size; GEM_BUG_ON(size == 0); if (INTEL_GEN(dev_priv) >= 4 || tiling_mode == I915_TILING_NONE) return size; /* Previous chips need a power-of-two fence region when tiling */ if (IS_GEN3(dev_priv)) ggtt_size = 1024*1024; else ggtt_size = 512*1024; while (ggtt_size < size) ggtt_size <<= 1; return ggtt_size; } /** * i915_gem_get_ggtt_alignment - return required global GTT alignment * @dev_priv: i915 device * @size: object size * @tiling_mode: tiling mode * @fenced: is fenced alignment required or not * * Return the required global GTT alignment for an object, taking into account * potential fence register mapping. */ u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size, int tiling_mode, bool fenced) { GEM_BUG_ON(size == 0); /* * Minimum alignment is 4k (GTT page size), but might be greater * if a fence register is needed for the object. */ if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) || tiling_mode == I915_TILING_NONE) return 4096; /* * Previous chips need to be aligned to the size of the smallest * fence register that can contain the object. */ return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode); } static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj) { struct drm_i915_private *dev_priv = to_i915(obj->base.dev); int err; err = drm_gem_create_mmap_offset(&obj->base); if (!err) return 0; /* We can idle the GPU locklessly to flush stale objects, but in order * to claim that space for ourselves, we need to take the big * struct_mutex to free the requests+objects and allocate our slot. */ err = i915_gem_wait_for_idle(dev_priv, true); if (err) return err; err = i915_mutex_lock_interruptible(&dev_priv->drm); if (!err) { i915_gem_retire_requests(dev_priv); err = drm_gem_create_mmap_offset(&obj->base); mutex_unlock(&dev_priv->drm.struct_mutex); } return err; } static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj) { drm_gem_free_mmap_offset(&obj->base); } int i915_gem_mmap_gtt(struct drm_file *file, struct drm_device *dev, uint32_t handle, uint64_t *offset) { struct drm_i915_gem_object *obj; int ret; obj = i915_gem_object_lookup(file, handle); if (!obj) return -ENOENT; ret = i915_gem_object_create_mmap_offset(obj); if (ret == 0) *offset = drm_vma_node_offset_addr(&obj->base.vma_node); i915_gem_object_put_unlocked(obj); return ret; } /** * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing * @dev: DRM device * @data: GTT mapping ioctl data * @file: GEM object info * * Simply returns the fake offset to userspace so it can mmap it. * The mmap call will end up in drm_gem_mmap(), which will set things * up so we can get faults in the handler above. * * The fault handler will take care of binding the object into the GTT * (since it may have been evicted to make room for something), allocating * a fence register, and mapping the appropriate aperture address into * userspace. */ int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_mmap_gtt *args = data; return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset); } /* Immediately discard the backing storage */ static void i915_gem_object_truncate(struct drm_i915_gem_object *obj) { i915_gem_object_free_mmap_offset(obj); if (obj->base.filp == NULL) return; /* Our goal here is to return as much of the memory as * is possible back to the system as we are called from OOM. * To do this we must instruct the shmfs to drop all of its * backing pages, *now*. */ shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1); obj->madv = __I915_MADV_PURGED; } /* Try to discard unwanted pages */ static void i915_gem_object_invalidate(struct drm_i915_gem_object *obj) { struct address_space *mapping; switch (obj->madv) { case I915_MADV_DONTNEED: i915_gem_object_truncate(obj); case __I915_MADV_PURGED: return; } if (obj->base.filp == NULL) return; mapping = obj->base.filp->f_mapping, invalidate_mapping_pages(mapping, 0, (loff_t)-1); } static void i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj) { struct sgt_iter sgt_iter; struct page *page; int ret; BUG_ON(obj->madv == __I915_MADV_PURGED); ret = i915_gem_object_set_to_cpu_domain(obj, true); if (WARN_ON(ret)) { /* In the event of a disaster, abandon all caches and * hope for the best. */ i915_gem_clflush_object(obj, true); obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU; } i915_gem_gtt_finish_object(obj); if (i915_gem_object_needs_bit17_swizzle(obj)) i915_gem_object_save_bit_17_swizzle(obj); if (obj->madv == I915_MADV_DONTNEED) obj->dirty = 0; for_each_sgt_page(page, sgt_iter, obj->pages) { if (obj->dirty) set_page_dirty(page); if (obj->madv == I915_MADV_WILLNEED) mark_page_accessed(page); put_page(page); } obj->dirty = 0; sg_free_table(obj->pages); kfree(obj->pages); } int i915_gem_object_put_pages(struct drm_i915_gem_object *obj) { const struct drm_i915_gem_object_ops *ops = obj->ops; if (obj->pages == NULL) return 0; if (obj->pages_pin_count) return -EBUSY; GEM_BUG_ON(obj->bind_count); /* ->put_pages might need to allocate memory for the bit17 swizzle * array, hence protect them from being reaped by removing them from gtt * lists early. */ list_del(&obj->global_list); if (obj->mapping) { void *ptr; ptr = ptr_mask_bits(obj->mapping); if (is_vmalloc_addr(ptr)) vunmap(ptr); else kunmap(kmap_to_page(ptr)); obj->mapping = NULL; } ops->put_pages(obj); obj->pages = NULL; i915_gem_object_invalidate(obj); return 0; } static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj) { struct drm_i915_private *dev_priv = to_i915(obj->base.dev); int page_count, i; struct address_space *mapping; struct sg_table *st; struct scatterlist *sg; struct sgt_iter sgt_iter; struct page *page; unsigned long last_pfn = 0; /* suppress gcc warning */ int ret; gfp_t gfp; /* Assert that the object is not currently in any GPU domain. As it * wasn't in the GTT, there shouldn't be any way it could have been in * a GPU cache */ BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS); BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS); st = kmalloc(sizeof(*st), GFP_KERNEL); if (st == NULL) return -ENOMEM; page_count = obj->base.size / PAGE_SIZE; if (sg_alloc_table(st, page_count, GFP_KERNEL)) { kfree(st); return -ENOMEM; } /* Get the list of pages out of our struct file. They'll be pinned * at this point until we release them. * * Fail silently without starting the shrinker */ mapping = obj->base.filp->f_mapping; gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM)); gfp |= __GFP_NORETRY | __GFP_NOWARN; sg = st->sgl; st->nents = 0; for (i = 0; i < page_count; i++) { page = shmem_read_mapping_page_gfp(mapping, i, gfp); if (IS_ERR(page)) { i915_gem_shrink(dev_priv, page_count, I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE); page = shmem_read_mapping_page_gfp(mapping, i, gfp); } if (IS_ERR(page)) { /* We've tried hard to allocate the memory by reaping * our own buffer, now let the real VM do its job and * go down in flames if truly OOM. */ i915_gem_shrink_all(dev_priv); page = shmem_read_mapping_page(mapping, i); if (IS_ERR(page)) { ret = PTR_ERR(page); goto err_pages; } } #ifdef CONFIG_SWIOTLB if (swiotlb_nr_tbl()) { st->nents++; sg_set_page(sg, page, PAGE_SIZE, 0); sg = sg_next(sg); continue; } #endif if (!i || page_to_pfn(page) != last_pfn + 1) { if (i) sg = sg_next(sg); st->nents++; sg_set_page(sg, page, PAGE_SIZE, 0); } else { sg->length += PAGE_SIZE; } last_pfn = page_to_pfn(page); /* Check that the i965g/gm workaround works. */ WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL)); } #ifdef CONFIG_SWIOTLB if (!swiotlb_nr_tbl()) #endif sg_mark_end(sg); obj->pages = st; ret = i915_gem_gtt_prepare_object(obj); if (ret) goto err_pages; if (i915_gem_object_needs_bit17_swizzle(obj)) i915_gem_object_do_bit_17_swizzle(obj); if (i915_gem_object_is_tiled(obj) && dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) i915_gem_object_pin_pages(obj); return 0; err_pages: sg_mark_end(sg); for_each_sgt_page(page, sgt_iter, st) put_page(page); sg_free_table(st); kfree(st); /* shmemfs first checks if there is enough memory to allocate the page * and reports ENOSPC should there be insufficient, along with the usual * ENOMEM for a genuine allocation failure. * * We use ENOSPC in our driver to mean that we have run out of aperture * space and so want to translate the error from shmemfs back to our * usual understanding of ENOMEM. */ if (ret == -ENOSPC) ret = -ENOMEM; return ret; } /* Ensure that the associated pages are gathered from the backing storage * and pinned into our object. i915_gem_object_get_pages() may be called * multiple times before they are released by a single call to * i915_gem_object_put_pages() - once the pages are no longer referenced * either as a result of memory pressure (reaping pages under the shrinker) * or as the object is itself released. */ int i915_gem_object_get_pages(struct drm_i915_gem_object *obj) { struct drm_i915_private *dev_priv = to_i915(obj->base.dev); const struct drm_i915_gem_object_ops *ops = obj->ops; int ret; if (obj->pages) return 0; if (obj->madv != I915_MADV_WILLNEED) { DRM_DEBUG("Attempting to obtain a purgeable object\n"); return -EFAULT; } BUG_ON(obj->pages_pin_count); ret = ops->get_pages(obj); if (ret) return ret; list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list); obj->get_page.sg = obj->pages->sgl; obj->get_page.last = 0; return 0; } /* The 'mapping' part of i915_gem_object_pin_map() below */ static void *i915_gem_object_map(const struct drm_i915_gem_object *obj, enum i915_map_type type) { unsigned long n_pages = obj->base.size >> PAGE_SHIFT; struct sg_table *sgt = obj->pages; struct sgt_iter sgt_iter; struct page *page; struct page *stack_pages[32]; struct page **pages = stack_pages; unsigned long i = 0; pgprot_t pgprot; void *addr; /* A single page can always be kmapped */ if (n_pages == 1 && type == I915_MAP_WB) return kmap(sg_page(sgt->sgl)); if (n_pages > ARRAY_SIZE(stack_pages)) { /* Too big for stack -- allocate temporary array instead */ pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY); if (!pages) return NULL; } for_each_sgt_page(page, sgt_iter, sgt) pages[i++] = page; /* Check that we have the expected number of pages */ GEM_BUG_ON(i != n_pages); switch (type) { case I915_MAP_WB: pgprot = PAGE_KERNEL; break; case I915_MAP_WC: pgprot = pgprot_writecombine(PAGE_KERNEL_IO); break; } addr = vmap(pages, n_pages, 0, pgprot); if (pages != stack_pages) drm_free_large(pages); return addr; } /* get, pin, and map the pages of the object into kernel space */ void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj, enum i915_map_type type) { enum i915_map_type has_type; bool pinned; void *ptr; int ret; lockdep_assert_held(&obj->base.dev->struct_mutex); GEM_BUG_ON(!i915_gem_object_has_struct_page(obj)); ret = i915_gem_object_get_pages(obj); if (ret) return ERR_PTR(ret); i915_gem_object_pin_pages(obj); pinned = obj->pages_pin_count > 1; ptr = ptr_unpack_bits(obj->mapping, has_type); if (ptr && has_type != type) { if (pinned) { ret = -EBUSY; goto err; } if (is_vmalloc_addr(ptr)) vunmap(ptr); else kunmap(kmap_to_page(ptr)); ptr = obj->mapping = NULL; } if (!ptr) { ptr = i915_gem_object_map(obj, type); if (!ptr) { ret = -ENOMEM; goto err; } obj->mapping = ptr_pack_bits(ptr, type); } return ptr; err: i915_gem_object_unpin_pages(obj); return ERR_PTR(ret); } static void i915_gem_object_retire__write(struct i915_gem_active *active, struct drm_i915_gem_request *request) { struct drm_i915_gem_object *obj = container_of(active, struct drm_i915_gem_object, last_write); intel_fb_obj_flush(obj, true, ORIGIN_CS); } static void i915_gem_object_retire__read(struct i915_gem_active *active, struct drm_i915_gem_request *request) { int idx = request->engine->id; struct drm_i915_gem_object *obj = container_of(active, struct drm_i915_gem_object, last_read[idx]); GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx)); i915_gem_object_clear_active(obj, idx); if (i915_gem_object_is_active(obj)) return; /* Bump our place on the bound list to keep it roughly in LRU order * so that we don't steal from recently used but inactive objects * (unless we are forced to ofc!) */ if (obj->bind_count) list_move_tail(&obj->global_list, &request->i915->mm.bound_list); i915_gem_object_put(obj); } static bool i915_context_is_banned(const struct i915_gem_context *ctx) { unsigned long elapsed; if (ctx->hang_stats.banned) return true; elapsed = get_seconds() - ctx->hang_stats.guilty_ts; if (ctx->hang_stats.ban_period_seconds && elapsed <= ctx->hang_stats.ban_period_seconds) { DRM_DEBUG("context hanging too fast, banning!\n"); return true; } return false; } static void i915_set_reset_status(struct i915_gem_context *ctx, const bool guilty) { struct i915_ctx_hang_stats *hs = &ctx->hang_stats; if (guilty) { hs->banned = i915_context_is_banned(ctx); hs->batch_active++; hs->guilty_ts = get_seconds(); } else { hs->batch_pending++; } } struct drm_i915_gem_request * i915_gem_find_active_request(struct intel_engine_cs *engine) { struct drm_i915_gem_request *request; /* We are called by the error capture and reset at a random * point in time. In particular, note that neither is crucially * ordered with an interrupt. After a hang, the GPU is dead and we * assume that no more writes can happen (we waited long enough for * all writes that were in transaction to be flushed) - adding an * extra delay for a recent interrupt is pointless. Hence, we do * not need an engine->irq_seqno_barrier() before the seqno reads. */ list_for_each_entry(request, &engine->request_list, link) { if (i915_gem_request_completed(request)) continue; return request; } return NULL; } static void i915_gem_reset_engine_status(struct intel_engine_cs *engine) { struct drm_i915_gem_request *request; bool ring_hung; request = i915_gem_find_active_request(engine); if (request == NULL) return; ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG; i915_set_reset_status(request->ctx, ring_hung); list_for_each_entry_continue(request, &engine->request_list, link) i915_set_reset_status(request->ctx, false); } static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine) { struct drm_i915_gem_request *request; struct intel_ring *ring; /* Mark all pending requests as complete so that any concurrent * (lockless) lookup doesn't try and wait upon the request as we * reset it. */ intel_engine_init_seqno(engine, engine->last_submitted_seqno); /* * Clear the execlists queue up before freeing the requests, as those * are the ones that keep the context and ringbuffer backing objects * pinned in place. */ if (i915.enable_execlists) { /* Ensure irq handler finishes or is cancelled. */ tasklet_kill(&engine->irq_tasklet); intel_execlists_cancel_requests(engine); } /* * We must free the requests after all the corresponding objects have * been moved off active lists. Which is the same order as the normal * retire_requests function does. This is important if object hold * implicit references on things like e.g. ppgtt address spaces through * the request. */ request = i915_gem_active_raw(&engine->last_request, &engine->i915->drm.struct_mutex); if (request) i915_gem_request_retire_upto(request); GEM_BUG_ON(intel_engine_is_active(engine)); /* Having flushed all requests from all queues, we know that all * ringbuffers must now be empty. However, since we do not reclaim * all space when retiring the request (to prevent HEADs colliding * with rapid ringbuffer wraparound) the amount of available space * upon reset is less than when we start. Do one more pass over * all the ringbuffers to reset last_retired_head. */ list_for_each_entry(ring, &engine->buffers, link) { ring->last_retired_head = ring->tail; intel_ring_update_space(ring); } engine->i915->gt.active_engines &= ~intel_engine_flag(engine); } void i915_gem_reset(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); struct intel_engine_cs *engine; /* * Before we free the objects from the requests, we need to inspect * them for finding the guilty party. As the requests only borrow * their reference to the objects, the inspection must be done first. */ for_each_engine(engine, dev_priv) i915_gem_reset_engine_status(engine); for_each_engine(engine, dev_priv) i915_gem_reset_engine_cleanup(engine); mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0); i915_gem_context_reset(dev); i915_gem_restore_fences(dev); } static void i915_gem_retire_work_handler(struct work_struct *work) { struct drm_i915_private *dev_priv = container_of(work, typeof(*dev_priv), gt.retire_work.work); struct drm_device *dev = &dev_priv->drm; /* Come back later if the device is busy... */ if (mutex_trylock(&dev->struct_mutex)) { i915_gem_retire_requests(dev_priv); mutex_unlock(&dev->struct_mutex); } /* Keep the retire handler running until we are finally idle. * We do not need to do this test under locking as in the worst-case * we queue the retire worker once too often. */ if (READ_ONCE(dev_priv->gt.awake)) { i915_queue_hangcheck(dev_priv); queue_delayed_work(dev_priv->wq, &dev_priv->gt.retire_work, round_jiffies_up_relative(HZ)); } } static void i915_gem_idle_work_handler(struct work_struct *work) { struct drm_i915_private *dev_priv = container_of(work, typeof(*dev_priv), gt.idle_work.work); struct drm_device *dev = &dev_priv->drm; struct intel_engine_cs *engine; bool rearm_hangcheck; if (!READ_ONCE(dev_priv->gt.awake)) return; if (READ_ONCE(dev_priv->gt.active_engines)) return; rearm_hangcheck = cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work); if (!mutex_trylock(&dev->struct_mutex)) { /* Currently busy, come back later */ mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, msecs_to_jiffies(50)); goto out_rearm; } if (dev_priv->gt.active_engines) goto out_unlock; for_each_engine(engine, dev_priv) i915_gem_batch_pool_fini(&engine->batch_pool); GEM_BUG_ON(!dev_priv->gt.awake); dev_priv->gt.awake = false; rearm_hangcheck = false; if (INTEL_GEN(dev_priv) >= 6) gen6_rps_idle(dev_priv); intel_runtime_pm_put(dev_priv); out_unlock: mutex_unlock(&dev->struct_mutex); out_rearm: if (rearm_hangcheck) { GEM_BUG_ON(!dev_priv->gt.awake); i915_queue_hangcheck(dev_priv); } } void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file) { struct drm_i915_gem_object *obj = to_intel_bo(gem); struct drm_i915_file_private *fpriv = file->driver_priv; struct i915_vma *vma, *vn; mutex_lock(&obj->base.dev->struct_mutex); list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link) if (vma->vm->file == fpriv) i915_vma_close(vma); mutex_unlock(&obj->base.dev->struct_mutex); } /** * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT * @dev: drm device pointer * @data: ioctl data blob * @file: drm file pointer * * Returns 0 if successful, else an error is returned with the remaining time in * the timeout parameter. * -ETIME: object is still busy after timeout * -ERESTARTSYS: signal interrupted the wait * -ENONENT: object doesn't exist * Also possible, but rare: * -EAGAIN: GPU wedged * -ENOMEM: damn * -ENODEV: Internal IRQ fail * -E?: The add request failed * * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any * non-zero timeout parameter the wait ioctl will wait for the given number of * nanoseconds on an object becoming unbusy. Since the wait itself does so * without holding struct_mutex the object may become re-busied before this * function completes. A similar but shorter * race condition exists in the busy * ioctl */ int i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_wait *args = data; struct intel_rps_client *rps = to_rps_client(file); struct drm_i915_gem_object *obj; unsigned long active; int idx, ret = 0; if (args->flags != 0) return -EINVAL; obj = i915_gem_object_lookup(file, args->bo_handle); if (!obj) return -ENOENT; active = __I915_BO_ACTIVE(obj); for_each_active(active, idx) { s64 *timeout = args->timeout_ns >= 0 ? &args->timeout_ns : NULL; ret = i915_gem_active_wait_unlocked(&obj->last_read[idx], true, timeout, rps); if (ret) break; } i915_gem_object_put_unlocked(obj); return ret; } static int __i915_gem_object_sync(struct drm_i915_gem_request *to, struct drm_i915_gem_request *from) { int ret; if (to->engine == from->engine) return 0; if (!i915.semaphores) { ret = i915_wait_request(from, from->i915->mm.interruptible, NULL, NO_WAITBOOST); if (ret) return ret; } else { int idx = intel_engine_sync_index(from->engine, to->engine); if (from->fence.seqno <= from->engine->semaphore.sync_seqno[idx]) return 0; trace_i915_gem_ring_sync_to(to, from); ret = to->engine->semaphore.sync_to(to, from); if (ret) return ret; from->engine->semaphore.sync_seqno[idx] = from->fence.seqno; } return 0; } /** * i915_gem_object_sync - sync an object to a ring. * * @obj: object which may be in use on another ring. * @to: request we are wishing to use * * This code is meant to abstract object synchronization with the GPU. * Conceptually we serialise writes between engines inside the GPU. * We only allow one engine to write into a buffer at any time, but * multiple readers. To ensure each has a coherent view of memory, we must: * * - If there is an outstanding write request to the object, the new * request must wait for it to complete (either CPU or in hw, requests * on the same ring will be naturally ordered). * * - If we are a write request (pending_write_domain is set), the new * request must wait for outstanding read requests to complete. * * Returns 0 if successful, else propagates up the lower layer error. */ int i915_gem_object_sync(struct drm_i915_gem_object *obj, struct drm_i915_gem_request *to) { struct i915_gem_active *active; unsigned long active_mask; int idx; lockdep_assert_held(&obj->base.dev->struct_mutex); active_mask = i915_gem_object_get_active(obj); if (!active_mask) return 0; if (obj->base.pending_write_domain) { active = obj->last_read; } else { active_mask = 1; active = &obj->last_write; } for_each_active(active_mask, idx) { struct drm_i915_gem_request *request; int ret; request = i915_gem_active_peek(&active[idx], &obj->base.dev->struct_mutex); if (!request) continue; ret = __i915_gem_object_sync(to, request); if (ret) return ret; } return 0; } static void __i915_vma_iounmap(struct i915_vma *vma) { GEM_BUG_ON(i915_vma_is_pinned(vma)); if (vma->iomap == NULL) return; io_mapping_unmap(vma->iomap); vma->iomap = NULL; } int i915_vma_unbind(struct i915_vma *vma) { struct drm_i915_gem_object *obj = vma->obj; unsigned long active; int ret; /* First wait upon any activity as retiring the request may * have side-effects such as unpinning or even unbinding this vma. */ active = i915_vma_get_active(vma); if (active) { int idx; /* When a closed VMA is retired, it is unbound - eek. * In order to prevent it from being recursively closed, * take a pin on the vma so that the second unbind is * aborted. */ __i915_vma_pin(vma); for_each_active(active, idx) { ret = i915_gem_active_retire(&vma->last_read[idx], &vma->vm->dev->struct_mutex); if (ret) break; } __i915_vma_unpin(vma); if (ret) return ret; GEM_BUG_ON(i915_vma_is_active(vma)); } if (i915_vma_is_pinned(vma)) return -EBUSY; if (!drm_mm_node_allocated(&vma->node)) goto destroy; GEM_BUG_ON(obj->bind_count == 0); GEM_BUG_ON(!obj->pages); if (i915_vma_is_map_and_fenceable(vma)) { /* release the fence reg _after_ flushing */ ret = i915_vma_put_fence(vma); if (ret) return ret; /* Force a pagefault for domain tracking on next user access */ i915_gem_release_mmap(obj); __i915_vma_iounmap(vma); vma->flags &= ~I915_VMA_CAN_FENCE; } if (likely(!vma->vm->closed)) { trace_i915_vma_unbind(vma); vma->vm->unbind_vma(vma); } vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND); drm_mm_remove_node(&vma->node); list_move_tail(&vma->vm_link, &vma->vm->unbound_list); if (vma->pages != obj->pages) { GEM_BUG_ON(!vma->pages); sg_free_table(vma->pages); kfree(vma->pages); } vma->pages = NULL; /* Since the unbound list is global, only move to that list if * no more VMAs exist. */ if (--obj->bind_count == 0) list_move_tail(&obj->global_list, &to_i915(obj->base.dev)->mm.unbound_list); /* And finally now the object is completely decoupled from this vma, * we can drop its hold on the backing storage and allow it to be * reaped by the shrinker. */ i915_gem_object_unpin_pages(obj); destroy: if (unlikely(i915_vma_is_closed(vma))) i915_vma_destroy(vma); return 0; } int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv, bool interruptible) { struct intel_engine_cs *engine; int ret; for_each_engine(engine, dev_priv) { if (engine->last_context == NULL) continue; ret = intel_engine_idle(engine, interruptible); if (ret) return ret; } return 0; } static bool i915_gem_valid_gtt_space(struct i915_vma *vma, unsigned long cache_level) { struct drm_mm_node *gtt_space = &vma->node; struct drm_mm_node *other; /* * On some machines we have to be careful when putting differing types * of snoopable memory together to avoid the prefetcher crossing memory * domains and dying. During vm initialisation, we decide whether or not * these constraints apply and set the drm_mm.color_adjust * appropriately. */ if (vma->vm->mm.color_adjust == NULL) return true; if (!drm_mm_node_allocated(gtt_space)) return true; if (list_empty(>t_space->node_list)) return true; other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list); if (other->allocated && !other->hole_follows && other->color != cache_level) return false; other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list); if (other->allocated && !gtt_space->hole_follows && other->color != cache_level) return false; return true; } /** * i915_vma_insert - finds a slot for the vma in its address space * @vma: the vma * @size: requested size in bytes (can be larger than the VMA) * @alignment: required alignment * @flags: mask of PIN_* flags to use * * First we try to allocate some free space that meets the requirements for * the VMA. Failiing that, if the flags permit, it will evict an old VMA, * preferrably the oldest idle entry to make room for the new VMA. * * Returns: * 0 on success, negative error code otherwise. */ static int i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags) { struct drm_i915_private *dev_priv = to_i915(vma->vm->dev); struct drm_i915_gem_object *obj = vma->obj; u64 start, end; int ret; GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND)); GEM_BUG_ON(drm_mm_node_allocated(&vma->node)); size = max(size, vma->size); if (flags & PIN_MAPPABLE) size = i915_gem_get_ggtt_size(dev_priv, size, i915_gem_object_get_tiling(obj)); alignment = max(max(alignment, vma->display_alignment), i915_gem_get_ggtt_alignment(dev_priv, size, i915_gem_object_get_tiling(obj), flags & PIN_MAPPABLE)); start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0; end = vma->vm->total; if (flags & PIN_MAPPABLE) end = min_t(u64, end, dev_priv->ggtt.mappable_end); if (flags & PIN_ZONE_4G) end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE); /* If binding the object/GGTT view requires more space than the entire * aperture has, reject it early before evicting everything in a vain * attempt to find space. */ if (size > end) { DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n", size, obj->base.size, flags & PIN_MAPPABLE ? "mappable" : "total", end); return -E2BIG; } ret = i915_gem_object_get_pages(obj); if (ret) return ret; i915_gem_object_pin_pages(obj); if (flags & PIN_OFFSET_FIXED) { u64 offset = flags & PIN_OFFSET_MASK; if (offset & (alignment - 1) || offset > end - size) { ret = -EINVAL; goto err_unpin; } vma->node.start = offset; vma->node.size = size; vma->node.color = obj->cache_level; ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node); if (ret) { ret = i915_gem_evict_for_vma(vma); if (ret == 0) ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node); if (ret) goto err_unpin; } } else { u32 search_flag, alloc_flag; if (flags & PIN_HIGH) { search_flag = DRM_MM_SEARCH_BELOW; alloc_flag = DRM_MM_CREATE_TOP; } else { search_flag = DRM_MM_SEARCH_DEFAULT; alloc_flag = DRM_MM_CREATE_DEFAULT; } /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks, * so we know that we always have a minimum alignment of 4096. * The drm_mm range manager is optimised to return results * with zero alignment, so where possible use the optimal * path. */ if (alignment <= 4096) alignment = 0; search_free: ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm, &vma->node, size, alignment, obj->cache_level, start, end, search_flag, alloc_flag); if (ret) { ret = i915_gem_evict_something(vma->vm, size, alignment, obj->cache_level, start, end, flags); if (ret == 0) goto search_free; goto err_unpin; } } GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level)); list_move_tail(&obj->global_list, &dev_priv->mm.bound_list); list_move_tail(&vma->vm_link, &vma->vm->inactive_list); obj->bind_count++; return 0; err_unpin: i915_gem_object_unpin_pages(obj); return ret; } bool i915_gem_clflush_object(struct drm_i915_gem_object *obj, bool force) { /* If we don't have a page list set up, then we're not pinned * to GPU, and we can ignore the cache flush because it'll happen * again at bind time. */ if (obj->pages == NULL) return false; /* * Stolen memory is always coherent with the GPU as it is explicitly * marked as wc by the system, or the system is cache-coherent. */ if (obj->stolen || obj->phys_handle) return false; /* If the GPU is snooping the contents of the CPU cache, * we do not need to manually clear the CPU cache lines. However, * the caches are only snooped when the render cache is * flushed/invalidated. As we always have to emit invalidations * and flushes when moving into and out of the RENDER domain, correct * snooping behaviour occurs naturally as the result of our domain * tracking. */ if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) { obj->cache_dirty = true; return false; } trace_i915_gem_object_clflush(obj); drm_clflush_sg(obj->pages); obj->cache_dirty = false; return true; } /** Flushes the GTT write domain for the object if it's dirty. */ static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj) { struct drm_i915_private *dev_priv = to_i915(obj->base.dev); if (obj->base.write_domain != I915_GEM_DOMAIN_GTT) return; /* No actual flushing is required for the GTT write domain. Writes * to it "immediately" go to main memory as far as we know, so there's * no chipset flush. It also doesn't land in render cache. * * However, we do have to enforce the order so that all writes through * the GTT land before any writes to the device, such as updates to * the GATT itself. * * We also have to wait a bit for the writes to land from the GTT. * An uncached read (i.e. mmio) seems to be ideal for the round-trip * timing. This issue has only been observed when switching quickly * between GTT writes and CPU reads from inside the kernel on recent hw, * and it appears to only affect discrete GTT blocks (i.e. on LLC * system agents we cannot reproduce this behaviour). */ wmb(); if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) POSTING_READ(RING_ACTHD(dev_priv->engine[RCS].mmio_base)); intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT)); obj->base.write_domain = 0; trace_i915_gem_object_change_domain(obj, obj->base.read_domains, I915_GEM_DOMAIN_GTT); } /** Flushes the CPU write domain for the object if it's dirty. */ static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj) { if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) return; if (i915_gem_clflush_object(obj, obj->pin_display)) i915_gem_chipset_flush(to_i915(obj->base.dev)); intel_fb_obj_flush(obj, false, ORIGIN_CPU); obj->base.write_domain = 0; trace_i915_gem_object_change_domain(obj, obj->base.read_domains, I915_GEM_DOMAIN_CPU); } static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj) { struct i915_vma *vma; list_for_each_entry(vma, &obj->vma_list, obj_link) { if (!i915_vma_is_ggtt(vma)) continue; if (i915_vma_is_active(vma)) continue; if (!drm_mm_node_allocated(&vma->node)) continue; list_move_tail(&vma->vm_link, &vma->vm->inactive_list); } } /** * Moves a single object to the GTT read, and possibly write domain. * @obj: object to act on * @write: ask for write access or read only * * This function returns when the move is complete, including waiting on * flushes to occur. */ int i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write) { uint32_t old_write_domain, old_read_domains; int ret; ret = i915_gem_object_wait_rendering(obj, !write); if (ret) return ret; if (obj->base.write_domain == I915_GEM_DOMAIN_GTT) return 0; /* Flush and acquire obj->pages so that we are coherent through * direct access in memory with previous cached writes through * shmemfs and that our cache domain tracking remains valid. * For example, if the obj->filp was moved to swap without us * being notified and releasing the pages, we would mistakenly * continue to assume that the obj remained out of the CPU cached * domain. */ ret = i915_gem_object_get_pages(obj); if (ret) return ret; i915_gem_object_flush_cpu_write_domain(obj); /* Serialise direct access to this object with the barriers for * coherent writes from the GPU, by effectively invalidating the * GTT domain upon first access. */ if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) mb(); old_write_domain = obj->base.write_domain; old_read_domains = obj->base.read_domains; /* It should now be out of any other write domains, and we can update * the domain values for our changes. */ BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0); obj->base.read_domains |= I915_GEM_DOMAIN_GTT; if (write) { obj->base.read_domains = I915_GEM_DOMAIN_GTT; obj->base.write_domain = I915_GEM_DOMAIN_GTT; obj->dirty = 1; } trace_i915_gem_object_change_domain(obj, old_read_domains, old_write_domain); /* And bump the LRU for this access */ i915_gem_object_bump_inactive_ggtt(obj); return 0; } /** * Changes the cache-level of an object across all VMA. * @obj: object to act on * @cache_level: new cache level to set for the object * * After this function returns, the object will be in the new cache-level * across all GTT and the contents of the backing storage will be coherent, * with respect to the new cache-level. In order to keep the backing storage * coherent for all users, we only allow a single cache level to be set * globally on the object and prevent it from being changed whilst the * hardware is reading from the object. That is if the object is currently * on the scanout it will be set to uncached (or equivalent display * cache coherency) and all non-MOCS GPU access will also be uncached so * that all direct access to the scanout remains coherent. */ int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, enum i915_cache_level cache_level) { struct i915_vma *vma; int ret = 0; if (obj->cache_level == cache_level) goto out; /* Inspect the list of currently bound VMA and unbind any that would * be invalid given the new cache-level. This is principally to * catch the issue of the CS prefetch crossing page boundaries and * reading an invalid PTE on older architectures. */ restart: list_for_each_entry(vma, &obj->vma_list, obj_link) { if (!drm_mm_node_allocated(&vma->node)) continue; if (i915_vma_is_pinned(vma)) { DRM_DEBUG("can not change the cache level of pinned objects\n"); return -EBUSY; } if (i915_gem_valid_gtt_space(vma, cache_level)) continue; ret = i915_vma_unbind(vma); if (ret) return ret; /* As unbinding may affect other elements in the * obj->vma_list (due to side-effects from retiring * an active vma), play safe and restart the iterator. */ goto restart; } /* We can reuse the existing drm_mm nodes but need to change the * cache-level on the PTE. We could simply unbind them all and * rebind with the correct cache-level on next use. However since * we already have a valid slot, dma mapping, pages etc, we may as * rewrite the PTE in the belief that doing so tramples upon less * state and so involves less work. */ if (obj->bind_count) { /* Before we change the PTE, the GPU must not be accessing it. * If we wait upon the object, we know that all the bound * VMA are no longer active. */ ret = i915_gem_object_wait_rendering(obj, false); if (ret) return ret; if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) { /* Access to snoopable pages through the GTT is * incoherent and on some machines causes a hard * lockup. Relinquish the CPU mmaping to force * userspace to refault in the pages and we can * then double check if the GTT mapping is still * valid for that pointer access. */ i915_gem_release_mmap(obj); /* As we no longer need a fence for GTT access, * we can relinquish it now (and so prevent having * to steal a fence from someone else on the next * fence request). Note GPU activity would have * dropped the fence as all snoopable access is * supposed to be linear. */ list_for_each_entry(vma, &obj->vma_list, obj_link) { ret = i915_vma_put_fence(vma); if (ret) return ret; } } else { /* We either have incoherent backing store and * so no GTT access or the architecture is fully * coherent. In such cases, existing GTT mmaps * ignore the cache bit in the PTE and we can * rewrite it without confusing the GPU or having * to force userspace to fault back in its mmaps. */ } list_for_each_entry(vma, &obj->vma_list, obj_link) { if (!drm_mm_node_allocated(&vma->node)) continue; ret = i915_vma_bind(vma, cache_level, PIN_UPDATE); if (ret) return ret; } } list_for_each_entry(vma, &obj->vma_list, obj_link) vma->node.color = cache_level; obj->cache_level = cache_level; out: /* Flush the dirty CPU caches to the backing storage so that the * object is now coherent at its new cache level (with respect * to the access domain). */ if (obj->cache_dirty && cpu_write_needs_clflush(obj)) { if (i915_gem_clflush_object(obj, true)) i915_gem_chipset_flush(to_i915(obj->base.dev)); } return 0; } int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_caching *args = data; struct drm_i915_gem_object *obj; obj = i915_gem_object_lookup(file, args->handle); if (!obj) return -ENOENT; switch (obj->cache_level) { case I915_CACHE_LLC: case I915_CACHE_L3_LLC: args->caching = I915_CACHING_CACHED; break; case I915_CACHE_WT: args->caching = I915_CACHING_DISPLAY; break; default: args->caching = I915_CACHING_NONE; break; } i915_gem_object_put_unlocked(obj); return 0; } int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_private *dev_priv = to_i915(dev); struct drm_i915_gem_caching *args = data; struct drm_i915_gem_object *obj; enum i915_cache_level level; int ret; switch (args->caching) { case I915_CACHING_NONE: level = I915_CACHE_NONE; break; case I915_CACHING_CACHED: /* * Due to a HW issue on BXT A stepping, GPU stores via a * snooped mapping may leave stale data in a corresponding CPU * cacheline, whereas normally such cachelines would get * invalidated. */ if (!HAS_LLC(dev) && !HAS_SNOOP(dev)) return -ENODEV; level = I915_CACHE_LLC; break; case I915_CACHING_DISPLAY: level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE; break; default: return -EINVAL; } intel_runtime_pm_get(dev_priv); ret = i915_mutex_lock_interruptible(dev); if (ret) goto rpm_put; obj = i915_gem_object_lookup(file, args->handle); if (!obj) { ret = -ENOENT; goto unlock; } ret = i915_gem_object_set_cache_level(obj, level); i915_gem_object_put(obj); unlock: mutex_unlock(&dev->struct_mutex); rpm_put: intel_runtime_pm_put(dev_priv); return ret; } /* * Prepare buffer for display plane (scanout, cursors, etc). * Can be called from an uninterruptible phase (modesetting) and allows * any flushes to be pipelined (for pageflips). */ struct i915_vma * i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, u32 alignment, const struct i915_ggtt_view *view) { struct i915_vma *vma; u32 old_read_domains, old_write_domain; int ret; /* Mark the pin_display early so that we account for the * display coherency whilst setting up the cache domains. */ obj->pin_display++; /* The display engine is not coherent with the LLC cache on gen6. As * a result, we make sure that the pinning that is about to occur is * done with uncached PTEs. This is lowest common denominator for all * chipsets. * * However for gen6+, we could do better by using the GFDT bit instead * of uncaching, which would allow us to flush all the LLC-cached data * with that bit in the PTE to main memory with just one PIPE_CONTROL. */ ret = i915_gem_object_set_cache_level(obj, HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE); if (ret) { vma = ERR_PTR(ret); goto err_unpin_display; } /* As the user may map the buffer once pinned in the display plane * (e.g. libkms for the bootup splash), we have to ensure that we * always use map_and_fenceable for all scanout buffers. However, * it may simply be too big to fit into mappable, in which case * put it anyway and hope that userspace can cope (but always first * try to preserve the existing ABI). */ vma = ERR_PTR(-ENOSPC); if (view->type == I915_GGTT_VIEW_NORMAL) vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, PIN_MAPPABLE | PIN_NONBLOCK); if (IS_ERR(vma)) vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, 0); if (IS_ERR(vma)) goto err_unpin_display; vma->display_alignment = max_t(u64, vma->display_alignment, alignment); WARN_ON(obj->pin_display > i915_vma_pin_count(vma)); i915_gem_object_flush_cpu_write_domain(obj); old_write_domain = obj->base.write_domain; old_read_domains = obj->base.read_domains; /* It should now be out of any other write domains, and we can update * the domain values for our changes. */ obj->base.write_domain = 0; obj->base.read_domains |= I915_GEM_DOMAIN_GTT; trace_i915_gem_object_change_domain(obj, old_read_domains, old_write_domain); return vma; err_unpin_display: obj->pin_display--; return vma; } void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma) { if (WARN_ON(vma->obj->pin_display == 0)) return; if (--vma->obj->pin_display == 0) vma->display_alignment = 0; /* Bump the LRU to try and avoid premature eviction whilst flipping */ if (!i915_vma_is_active(vma)) list_move_tail(&vma->vm_link, &vma->vm->inactive_list); i915_vma_unpin(vma); WARN_ON(vma->obj->pin_display > i915_vma_pin_count(vma)); } /** * Moves a single object to the CPU read, and possibly write domain. * @obj: object to act on * @write: requesting write or read-only access * * This function returns when the move is complete, including waiting on * flushes to occur. */ int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write) { uint32_t old_write_domain, old_read_domains; int ret; ret = i915_gem_object_wait_rendering(obj, !write); if (ret) return ret; if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) return 0; i915_gem_object_flush_gtt_write_domain(obj); old_write_domain = obj->base.write_domain; old_read_domains = obj->base.read_domains; /* Flush the CPU cache if it's still invalid. */ if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) { i915_gem_clflush_object(obj, false); obj->base.read_domains |= I915_GEM_DOMAIN_CPU; } /* It should now be out of any other write domains, and we can update * the domain values for our changes. */ BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0); /* If we're writing through the CPU, then the GPU read domains will * need to be invalidated at next use. */ if (write) { obj->base.read_domains = I915_GEM_DOMAIN_CPU; obj->base.write_domain = I915_GEM_DOMAIN_CPU; } trace_i915_gem_object_change_domain(obj, old_read_domains, old_write_domain); return 0; } /* Throttle our rendering by waiting until the ring has completed our requests * emitted over 20 msec ago. * * Note that if we were to use the current jiffies each time around the loop, * we wouldn't escape the function with any frames outstanding if the time to * render a frame was over 20ms. * * This should get us reasonable parallelism between CPU and GPU but also * relatively low latency when blocking on a particular request to finish. */ static int i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file) { struct drm_i915_private *dev_priv = to_i915(dev); struct drm_i915_file_private *file_priv = file->driver_priv; unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES; struct drm_i915_gem_request *request, *target = NULL; int ret; ret = i915_gem_wait_for_error(&dev_priv->gpu_error); if (ret) return ret; /* ABI: return -EIO if already wedged */ if (i915_terminally_wedged(&dev_priv->gpu_error)) return -EIO; spin_lock(&file_priv->mm.lock); list_for_each_entry(request, &file_priv->mm.request_list, client_list) { if (time_after_eq(request->emitted_jiffies, recent_enough)) break; /* * Note that the request might not have been submitted yet. * In which case emitted_jiffies will be zero. */ if (!request->emitted_jiffies) continue; target = request; } if (target) i915_gem_request_get(target); spin_unlock(&file_priv->mm.lock); if (target == NULL) return 0; ret = i915_wait_request(target, true, NULL, NULL); i915_gem_request_put(target); return ret; } static bool i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags) { if (!drm_mm_node_allocated(&vma->node)) return false; if (vma->node.size < size) return true; if (alignment && vma->node.start & (alignment - 1)) return true; if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma)) return true; if (flags & PIN_OFFSET_BIAS && vma->node.start < (flags & PIN_OFFSET_MASK)) return true; if (flags & PIN_OFFSET_FIXED && vma->node.start != (flags & PIN_OFFSET_MASK)) return true; return false; } void __i915_vma_set_map_and_fenceable(struct i915_vma *vma) { struct drm_i915_gem_object *obj = vma->obj; struct drm_i915_private *dev_priv = to_i915(obj->base.dev); bool mappable, fenceable; u32 fence_size, fence_alignment; fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size, i915_gem_object_get_tiling(obj)); fence_alignment = i915_gem_get_ggtt_alignment(dev_priv, vma->size, i915_gem_object_get_tiling(obj), true); fenceable = (vma->node.size == fence_size && (vma->node.start & (fence_alignment - 1)) == 0); mappable = (vma->node.start + fence_size <= dev_priv->ggtt.mappable_end); if (mappable && fenceable) vma->flags |= I915_VMA_CAN_FENCE; else vma->flags &= ~I915_VMA_CAN_FENCE; } int __i915_vma_do_pin(struct i915_vma *vma, u64 size, u64 alignment, u64 flags) { unsigned int bound = vma->flags; int ret; GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0); GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma)); if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) { ret = -EBUSY; goto err; } if ((bound & I915_VMA_BIND_MASK) == 0) { ret = i915_vma_insert(vma, size, alignment, flags); if (ret) goto err; } ret = i915_vma_bind(vma, vma->obj->cache_level, flags); if (ret) goto err; if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND) __i915_vma_set_map_and_fenceable(vma); GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags)); return 0; err: __i915_vma_unpin(vma); return ret; } struct i915_vma * i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, const struct i915_ggtt_view *view, u64 size, u64 alignment, u64 flags) { struct i915_address_space *vm = &to_i915(obj->base.dev)->ggtt.base; struct i915_vma *vma; int ret; vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view); if (IS_ERR(vma)) return vma; if (i915_vma_misplaced(vma, size, alignment, flags)) { if (flags & PIN_NONBLOCK && (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))) return ERR_PTR(-ENOSPC); WARN(i915_vma_is_pinned(vma), "bo is already pinned in ggtt with incorrect alignment:" " offset=%08x, req.alignment=%llx," " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n", i915_ggtt_offset(vma), alignment, !!(flags & PIN_MAPPABLE), i915_vma_is_map_and_fenceable(vma)); ret = i915_vma_unbind(vma); if (ret) return ERR_PTR(ret); } ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL); if (ret) return ERR_PTR(ret); return vma; } static __always_inline unsigned int __busy_read_flag(unsigned int id) { /* Note that we could alias engines in the execbuf API, but * that would be very unwise as it prevents userspace from * fine control over engine selection. Ahem. * * This should be something like EXEC_MAX_ENGINE instead of * I915_NUM_ENGINES. */ BUILD_BUG_ON(I915_NUM_ENGINES > 16); return 0x10000 << id; } static __always_inline unsigned int __busy_write_id(unsigned int id) { /* The uABI guarantees an active writer is also amongst the read * engines. This would be true if we accessed the activity tracking * under the lock, but as we perform the lookup of the object and * its activity locklessly we can not guarantee that the last_write * being active implies that we have set the same engine flag from * last_read - hence we always set both read and write busy for * last_write. */ return id | __busy_read_flag(id); } static __always_inline unsigned int __busy_set_if_active(const struct i915_gem_active *active, unsigned int (*flag)(unsigned int id)) { struct drm_i915_gem_request *request; request = rcu_dereference(active->request); if (!request || i915_gem_request_completed(request)) return 0; /* This is racy. See __i915_gem_active_get_rcu() for an in detail * discussion of how to handle the race correctly, but for reporting * the busy state we err on the side of potentially reporting the * wrong engine as being busy (but we guarantee that the result * is at least self-consistent). * * As we use SLAB_DESTROY_BY_RCU, the request may be reallocated * whilst we are inspecting it, even under the RCU read lock as we are. * This means that there is a small window for the engine and/or the * seqno to have been overwritten. The seqno will always be in the * future compared to the intended, and so we know that if that * seqno is idle (on whatever engine) our request is idle and the * return 0 above is correct. * * The issue is that if the engine is switched, it is just as likely * to report that it is busy (but since the switch happened, we know * the request should be idle). So there is a small chance that a busy * result is actually the wrong engine. * * So why don't we care? * * For starters, the busy ioctl is a heuristic that is by definition * racy. Even with perfect serialisation in the driver, the hardware * state is constantly advancing - the state we report to the user * is stale. * * The critical information for the busy-ioctl is whether the object * is idle as userspace relies on that to detect whether its next * access will stall, or if it has missed submitting commands to * the hardware allowing the GPU to stall. We never generate a * false-positive for idleness, thus busy-ioctl is reliable at the * most fundamental level, and we maintain the guarantee that a * busy object left to itself will eventually become idle (and stay * idle!). * * We allow ourselves the leeway of potentially misreporting the busy * state because that is an optimisation heuristic that is constantly * in flux. Being quickly able to detect the busy/idle state is much * more important than accurate logging of exactly which engines were * busy. * * For accuracy in reporting the engine, we could use * * result = 0; * request = __i915_gem_active_get_rcu(active); * if (request) { * if (!i915_gem_request_completed(request)) * result = flag(request->engine->exec_id); * i915_gem_request_put(request); * } * * but that still remains susceptible to both hardware and userspace * races. So we accept making the result of that race slightly worse, * given the rarity of the race and its low impact on the result. */ return flag(READ_ONCE(request->engine->exec_id)); } static __always_inline unsigned int busy_check_reader(const struct i915_gem_active *active) { return __busy_set_if_active(active, __busy_read_flag); } static __always_inline unsigned int busy_check_writer(const struct i915_gem_active *active) { return __busy_set_if_active(active, __busy_write_id); } int i915_gem_busy_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_busy *args = data; struct drm_i915_gem_object *obj; unsigned long active; obj = i915_gem_object_lookup(file, args->handle); if (!obj) return -ENOENT; args->busy = 0; active = __I915_BO_ACTIVE(obj); if (active) { int idx; /* Yes, the lookups are intentionally racy. * * First, we cannot simply rely on __I915_BO_ACTIVE. We have * to regard the value as stale and as our ABI guarantees * forward progress, we confirm the status of each active * request with the hardware. * * Even though we guard the pointer lookup by RCU, that only * guarantees that the pointer and its contents remain * dereferencable and does *not* mean that the request we * have is the same as the one being tracked by the object. * * Consider that we lookup the request just as it is being * retired and freed. We take a local copy of the pointer, * but before we add its engine into the busy set, the other * thread reallocates it and assigns it to a task on another * engine with a fresh and incomplete seqno. Guarding against * that requires careful serialisation and reference counting, * i.e. using __i915_gem_active_get_request_rcu(). We don't, * instead we expect that if the result is busy, which engines * are busy is not completely reliable - we only guarantee * that the object was busy. */ rcu_read_lock(); for_each_active(active, idx) args->busy |= busy_check_reader(&obj->last_read[idx]); /* For ABI sanity, we only care that the write engine is in * the set of read engines. This should be ensured by the * ordering of setting last_read/last_write in * i915_vma_move_to_active(), and then in reverse in retire. * However, for good measure, we always report the last_write * request as a busy read as well as being a busy write. * * We don't care that the set of active read/write engines * may change during construction of the result, as it is * equally liable to change before userspace can inspect * the result. */ args->busy |= busy_check_writer(&obj->last_write); rcu_read_unlock(); } i915_gem_object_put_unlocked(obj); return 0; } int i915_gem_throttle_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { return i915_gem_ring_throttle(dev, file_priv); } int i915_gem_madvise_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_i915_private *dev_priv = to_i915(dev); struct drm_i915_gem_madvise *args = data; struct drm_i915_gem_object *obj; int ret; switch (args->madv) { case I915_MADV_DONTNEED: case I915_MADV_WILLNEED: break; default: return -EINVAL; } ret = i915_mutex_lock_interruptible(dev); if (ret) return ret; obj = i915_gem_object_lookup(file_priv, args->handle); if (!obj) { ret = -ENOENT; goto unlock; } if (obj->pages && i915_gem_object_is_tiled(obj) && dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) { if (obj->madv == I915_MADV_WILLNEED) i915_gem_object_unpin_pages(obj); if (args->madv == I915_MADV_WILLNEED) i915_gem_object_pin_pages(obj); } if (obj->madv != __I915_MADV_PURGED) obj->madv = args->madv; /* if the object is no longer attached, discard its backing storage */ if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL) i915_gem_object_truncate(obj); args->retained = obj->madv != __I915_MADV_PURGED; i915_gem_object_put(obj); unlock: mutex_unlock(&dev->struct_mutex); return ret; } void i915_gem_object_init(struct drm_i915_gem_object *obj, const struct drm_i915_gem_object_ops *ops) { int i; INIT_LIST_HEAD(&obj->global_list); for (i = 0; i < I915_NUM_ENGINES; i++) init_request_active(&obj->last_read[i], i915_gem_object_retire__read); init_request_active(&obj->last_write, i915_gem_object_retire__write); INIT_LIST_HEAD(&obj->obj_exec_link); INIT_LIST_HEAD(&obj->vma_list); INIT_LIST_HEAD(&obj->batch_pool_link); obj->ops = ops; obj->frontbuffer_ggtt_origin = ORIGIN_GTT; obj->madv = I915_MADV_WILLNEED; i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size); } static const struct drm_i915_gem_object_ops i915_gem_object_ops = { .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE, .get_pages = i915_gem_object_get_pages_gtt, .put_pages = i915_gem_object_put_pages_gtt, }; struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev, size_t size) { struct drm_i915_gem_object *obj; struct address_space *mapping; gfp_t mask; int ret; obj = i915_gem_object_alloc(dev); if (obj == NULL) return ERR_PTR(-ENOMEM); ret = drm_gem_object_init(dev, &obj->base, size); if (ret) goto fail; mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) { /* 965gm cannot relocate objects above 4GiB. */ mask &= ~__GFP_HIGHMEM; mask |= __GFP_DMA32; } mapping = obj->base.filp->f_mapping; mapping_set_gfp_mask(mapping, mask); i915_gem_object_init(obj, &i915_gem_object_ops); obj->base.write_domain = I915_GEM_DOMAIN_CPU; obj->base.read_domains = I915_GEM_DOMAIN_CPU; if (HAS_LLC(dev)) { /* On some devices, we can have the GPU use the LLC (the CPU * cache) for about a 10% performance improvement * compared to uncached. Graphics requests other than * display scanout are coherent with the CPU in * accessing this cache. This means in this mode we * don't need to clflush on the CPU side, and on the * GPU side we only need to flush internal caches to * get data visible to the CPU. * * However, we maintain the display planes as UC, and so * need to rebind when first used as such. */ obj->cache_level = I915_CACHE_LLC; } else obj->cache_level = I915_CACHE_NONE; trace_i915_gem_object_create(obj); return obj; fail: i915_gem_object_free(obj); return ERR_PTR(ret); } static bool discard_backing_storage(struct drm_i915_gem_object *obj) { /* If we are the last user of the backing storage (be it shmemfs * pages or stolen etc), we know that the pages are going to be * immediately released. In this case, we can then skip copying * back the contents from the GPU. */ if (obj->madv != I915_MADV_WILLNEED) return false; if (obj->base.filp == NULL) return true; /* At first glance, this looks racy, but then again so would be * userspace racing mmap against close. However, the first external * reference to the filp can only be obtained through the * i915_gem_mmap_ioctl() which safeguards us against the user * acquiring such a reference whilst we are in the middle of * freeing the object. */ return atomic_long_read(&obj->base.filp->f_count) == 1; } void i915_gem_free_object(struct drm_gem_object *gem_obj) { struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); struct drm_device *dev = obj->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct i915_vma *vma, *next; intel_runtime_pm_get(dev_priv); trace_i915_gem_object_destroy(obj); /* All file-owned VMA should have been released by this point through * i915_gem_close_object(), or earlier by i915_gem_context_close(). * However, the object may also be bound into the global GTT (e.g. * older GPUs without per-process support, or for direct access through * the GTT either for the user or for scanout). Those VMA still need to * unbound now. */ list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) { GEM_BUG_ON(!i915_vma_is_ggtt(vma)); GEM_BUG_ON(i915_vma_is_active(vma)); vma->flags &= ~I915_VMA_PIN_MASK; i915_vma_close(vma); } GEM_BUG_ON(obj->bind_count); /* Stolen objects don't hold a ref, but do hold pin count. Fix that up * before progressing. */ if (obj->stolen) i915_gem_object_unpin_pages(obj); WARN_ON(atomic_read(&obj->frontbuffer_bits)); if (obj->pages && obj->madv == I915_MADV_WILLNEED && dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES && i915_gem_object_is_tiled(obj)) i915_gem_object_unpin_pages(obj); if (WARN_ON(obj->pages_pin_count)) obj->pages_pin_count = 0; if (discard_backing_storage(obj)) obj->madv = I915_MADV_DONTNEED; i915_gem_object_put_pages(obj); BUG_ON(obj->pages); if (obj->base.import_attach) drm_prime_gem_destroy(&obj->base, NULL); if (obj->ops->release) obj->ops->release(obj); drm_gem_object_release(&obj->base); i915_gem_info_remove_obj(dev_priv, obj->base.size); kfree(obj->bit_17); i915_gem_object_free(obj); intel_runtime_pm_put(dev_priv); } int i915_gem_suspend(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); int ret; intel_suspend_gt_powersave(dev_priv); mutex_lock(&dev->struct_mutex); /* We have to flush all the executing contexts to main memory so * that they can saved in the hibernation image. To ensure the last * context image is coherent, we have to switch away from it. That * leaves the dev_priv->kernel_context still active when * we actually suspend, and its image in memory may not match the GPU * state. Fortunately, the kernel_context is disposable and we do * not rely on its state. */ ret = i915_gem_switch_to_kernel_context(dev_priv); if (ret) goto err; ret = i915_gem_wait_for_idle(dev_priv, true); if (ret) goto err; i915_gem_retire_requests(dev_priv); i915_gem_context_lost(dev_priv); mutex_unlock(&dev->struct_mutex); cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work); cancel_delayed_work_sync(&dev_priv->gt.retire_work); flush_delayed_work(&dev_priv->gt.idle_work); /* Assert that we sucessfully flushed all the work and * reset the GPU back to its idle, low power state. */ WARN_ON(dev_priv->gt.awake); return 0; err: mutex_unlock(&dev->struct_mutex); return ret; } void i915_gem_resume(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); mutex_lock(&dev->struct_mutex); i915_gem_restore_gtt_mappings(dev); /* As we didn't flush the kernel context before suspend, we cannot * guarantee that the context image is complete. So let's just reset * it and start again. */ if (i915.enable_execlists) intel_lr_context_reset(dev_priv, dev_priv->kernel_context); mutex_unlock(&dev->struct_mutex); } void i915_gem_init_swizzling(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); if (INTEL_INFO(dev)->gen < 5 || dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) return; I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | DISP_TILE_SURFACE_SWIZZLING); if (IS_GEN5(dev)) return; I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL); if (IS_GEN6(dev)) I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); else if (IS_GEN7(dev)) I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); else if (IS_GEN8(dev)) I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW)); else BUG(); } static void init_unused_ring(struct drm_device *dev, u32 base) { struct drm_i915_private *dev_priv = to_i915(dev); I915_WRITE(RING_CTL(base), 0); I915_WRITE(RING_HEAD(base), 0); I915_WRITE(RING_TAIL(base), 0); I915_WRITE(RING_START(base), 0); } static void init_unused_rings(struct drm_device *dev) { if (IS_I830(dev)) { init_unused_ring(dev, PRB1_BASE); init_unused_ring(dev, SRB0_BASE); init_unused_ring(dev, SRB1_BASE); init_unused_ring(dev, SRB2_BASE); init_unused_ring(dev, SRB3_BASE); } else if (IS_GEN2(dev)) { init_unused_ring(dev, SRB0_BASE); init_unused_ring(dev, SRB1_BASE); } else if (IS_GEN3(dev)) { init_unused_ring(dev, PRB1_BASE); init_unused_ring(dev, PRB2_BASE); } } int i915_gem_init_hw(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); struct intel_engine_cs *engine; int ret; /* Double layer security blanket, see i915_gem_init() */ intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9) I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf)); if (IS_HASWELL(dev)) I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ? LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); if (HAS_PCH_NOP(dev)) { if (IS_IVYBRIDGE(dev)) { u32 temp = I915_READ(GEN7_MSG_CTL); temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK); I915_WRITE(GEN7_MSG_CTL, temp); } else if (INTEL_INFO(dev)->gen >= 7) { u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT); temp &= ~RESET_PCH_HANDSHAKE_ENABLE; I915_WRITE(HSW_NDE_RSTWRN_OPT, temp); } } i915_gem_init_swizzling(dev); /* * At least 830 can leave some of the unused rings * "active" (ie. head != tail) after resume which * will prevent c3 entry. Makes sure all unused rings * are totally idle. */ init_unused_rings(dev); BUG_ON(!dev_priv->kernel_context); ret = i915_ppgtt_init_hw(dev); if (ret) { DRM_ERROR("PPGTT enable HW failed %d\n", ret); goto out; } /* Need to do basic initialisation of all rings first: */ for_each_engine(engine, dev_priv) { ret = engine->init_hw(engine); if (ret) goto out; } intel_mocs_init_l3cc_table(dev); /* We can't enable contexts until all firmware is loaded */ ret = intel_guc_setup(dev); if (ret) goto out; out: intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); return ret; } bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value) { if (INTEL_INFO(dev_priv)->gen < 6) return false; /* TODO: make semaphores and Execlists play nicely together */ if (i915.enable_execlists) return false; if (value >= 0) return value; #ifdef CONFIG_INTEL_IOMMU /* Enable semaphores on SNB when IO remapping is off */ if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped) return false; #endif return true; } int i915_gem_init(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); int ret; mutex_lock(&dev->struct_mutex); if (!i915.enable_execlists) { dev_priv->gt.cleanup_engine = intel_engine_cleanup; } else { dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup; } /* This is just a security blanket to placate dragons. * On some systems, we very sporadically observe that the first TLBs * used by the CS may be stale, despite us poking the TLB reset. If * we hold the forcewake during initialisation these problems * just magically go away. */ intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); i915_gem_init_userptr(dev_priv); ret = i915_gem_init_ggtt(dev_priv); if (ret) goto out_unlock; ret = i915_gem_context_init(dev); if (ret) goto out_unlock; ret = intel_engines_init(dev); if (ret) goto out_unlock; ret = i915_gem_init_hw(dev); if (ret == -EIO) { /* Allow engine initialisation to fail by marking the GPU as * wedged. But we only want to do this where the GPU is angry, * for all other failure, such as an allocation failure, bail. */ DRM_ERROR("Failed to initialize GPU, declaring it wedged\n"); atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter); ret = 0; } out_unlock: intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); mutex_unlock(&dev->struct_mutex); return ret; } void i915_gem_cleanup_engines(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); struct intel_engine_cs *engine; for_each_engine(engine, dev_priv) dev_priv->gt.cleanup_engine(engine); } static void init_engine_lists(struct intel_engine_cs *engine) { INIT_LIST_HEAD(&engine->request_list); } void i915_gem_load_init_fences(struct drm_i915_private *dev_priv) { struct drm_device *dev = &dev_priv->drm; int i; if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) dev_priv->num_fence_regs = 32; else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) || IS_I945GM(dev_priv) || IS_G33(dev_priv)) dev_priv->num_fence_regs = 16; else dev_priv->num_fence_regs = 8; if (intel_vgpu_active(dev_priv)) dev_priv->num_fence_regs = I915_READ(vgtif_reg(avail_rs.fence_num)); /* Initialize fence registers to zero */ for (i = 0; i < dev_priv->num_fence_regs; i++) { struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i]; fence->i915 = dev_priv; fence->id = i; list_add_tail(&fence->link, &dev_priv->mm.fence_list); } i915_gem_restore_fences(dev); i915_gem_detect_bit_6_swizzle(dev); } void i915_gem_load_init(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); int i; dev_priv->objects = kmem_cache_create("i915_gem_object", sizeof(struct drm_i915_gem_object), 0, SLAB_HWCACHE_ALIGN, NULL); dev_priv->vmas = kmem_cache_create("i915_gem_vma", sizeof(struct i915_vma), 0, SLAB_HWCACHE_ALIGN, NULL); dev_priv->requests = kmem_cache_create("i915_gem_request", sizeof(struct drm_i915_gem_request), 0, SLAB_HWCACHE_ALIGN | SLAB_RECLAIM_ACCOUNT | SLAB_DESTROY_BY_RCU, NULL); INIT_LIST_HEAD(&dev_priv->context_list); INIT_LIST_HEAD(&dev_priv->mm.unbound_list); INIT_LIST_HEAD(&dev_priv->mm.bound_list); INIT_LIST_HEAD(&dev_priv->mm.fence_list); for (i = 0; i < I915_NUM_ENGINES; i++) init_engine_lists(&dev_priv->engine[i]); INIT_DELAYED_WORK(&dev_priv->gt.retire_work, i915_gem_retire_work_handler); INIT_DELAYED_WORK(&dev_priv->gt.idle_work, i915_gem_idle_work_handler); init_waitqueue_head(&dev_priv->gpu_error.wait_queue); init_waitqueue_head(&dev_priv->gpu_error.reset_queue); dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL; init_waitqueue_head(&dev_priv->pending_flip_queue); dev_priv->mm.interruptible = true; spin_lock_init(&dev_priv->fb_tracking.lock); } void i915_gem_load_cleanup(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); kmem_cache_destroy(dev_priv->requests); kmem_cache_destroy(dev_priv->vmas); kmem_cache_destroy(dev_priv->objects); /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */ rcu_barrier(); } int i915_gem_freeze_late(struct drm_i915_private *dev_priv) { struct drm_i915_gem_object *obj; /* Called just before we write the hibernation image. * * We need to update the domain tracking to reflect that the CPU * will be accessing all the pages to create and restore from the * hibernation, and so upon restoration those pages will be in the * CPU domain. * * To make sure the hibernation image contains the latest state, * we update that state just before writing out the image. */ list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) { obj->base.read_domains = I915_GEM_DOMAIN_CPU; obj->base.write_domain = I915_GEM_DOMAIN_CPU; } list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { obj->base.read_domains = I915_GEM_DOMAIN_CPU; obj->base.write_domain = I915_GEM_DOMAIN_CPU; } return 0; } void i915_gem_release(struct drm_device *dev, struct drm_file *file) { struct drm_i915_file_private *file_priv = file->driver_priv; struct drm_i915_gem_request *request; /* Clean up our request list when the client is going away, so that * later retire_requests won't dereference our soon-to-be-gone * file_priv. */ spin_lock(&file_priv->mm.lock); list_for_each_entry(request, &file_priv->mm.request_list, client_list) request->file_priv = NULL; spin_unlock(&file_priv->mm.lock); if (!list_empty(&file_priv->rps.link)) { spin_lock(&to_i915(dev)->rps.client_lock); list_del(&file_priv->rps.link); spin_unlock(&to_i915(dev)->rps.client_lock); } } int i915_gem_open(struct drm_device *dev, struct drm_file *file) { struct drm_i915_file_private *file_priv; int ret; DRM_DEBUG_DRIVER("\n"); file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL); if (!file_priv) return -ENOMEM; file->driver_priv = file_priv; file_priv->dev_priv = to_i915(dev); file_priv->file = file; INIT_LIST_HEAD(&file_priv->rps.link); spin_lock_init(&file_priv->mm.lock); INIT_LIST_HEAD(&file_priv->mm.request_list); file_priv->bsd_engine = -1; ret = i915_gem_context_open(dev, file); if (ret) kfree(file_priv); return ret; } /** * i915_gem_track_fb - update frontbuffer tracking * @old: current GEM buffer for the frontbuffer slots * @new: new GEM buffer for the frontbuffer slots * @frontbuffer_bits: bitmask of frontbuffer slots * * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them * from @old and setting them in @new. Both @old and @new can be NULL. */ void i915_gem_track_fb(struct drm_i915_gem_object *old, struct drm_i915_gem_object *new, unsigned frontbuffer_bits) { /* Control of individual bits within the mask are guarded by * the owning plane->mutex, i.e. we can never see concurrent * manipulation of individual bits. But since the bitfield as a whole * is updated using RMW, we need to use atomics in order to update * the bits. */ BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > sizeof(atomic_t) * BITS_PER_BYTE); if (old) { WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits)); atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits); } if (new) { WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits); atomic_or(frontbuffer_bits, &new->frontbuffer_bits); } } /* Like i915_gem_object_get_page(), but mark the returned page dirty */ struct page * i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n) { struct page *page; /* Only default objects have per-page dirty tracking */ if (WARN_ON(!i915_gem_object_has_struct_page(obj))) return NULL; page = i915_gem_object_get_page(obj, n); set_page_dirty(page); return page; } /* Allocate a new GEM object and fill it with the supplied data */ struct drm_i915_gem_object * i915_gem_object_create_from_data(struct drm_device *dev, const void *data, size_t size) { struct drm_i915_gem_object *obj; struct sg_table *sg; size_t bytes; int ret; obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE)); if (IS_ERR(obj)) return obj; ret = i915_gem_object_set_to_cpu_domain(obj, true); if (ret) goto fail; ret = i915_gem_object_get_pages(obj); if (ret) goto fail; i915_gem_object_pin_pages(obj); sg = obj->pages; bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size); obj->dirty = 1; /* Backing store is now out of date */ i915_gem_object_unpin_pages(obj); if (WARN_ON(bytes != size)) { DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size); ret = -EFAULT; goto fail; } return obj; fail: i915_gem_object_put(obj); return ERR_PTR(ret); }