// SPDX-License-Identifier: MIT /* * Copyright © 2019 Intel Corporation */ #include #include "i915_drv.h" #include "i915_irq.h" #include "intel_breadcrumbs.h" #include "intel_gt.h" #include "intel_gt_irq.h" #include "intel_gt_regs.h" #include "intel_uncore.h" #include "intel_rps.h" #include "pxp/intel_pxp_irq.h" static void guc_irq_handler(struct intel_guc *guc, u16 iir) { if (unlikely(!guc->interrupts.enabled)) return; if (iir & GUC_INTR_GUC2HOST) intel_guc_to_host_event_handler(guc); } static u32 gen11_gt_engine_identity(struct intel_gt *gt, const unsigned int bank, const unsigned int bit) { void __iomem * const regs = gt->uncore->regs; u32 timeout_ts; u32 ident; lockdep_assert_held(gt->irq_lock); raw_reg_write(regs, GEN11_IIR_REG_SELECTOR(bank), BIT(bit)); /* * NB: Specs do not specify how long to spin wait, * so we do ~100us as an educated guess. */ timeout_ts = (local_clock() >> 10) + 100; do { ident = raw_reg_read(regs, GEN11_INTR_IDENTITY_REG(bank)); } while (!(ident & GEN11_INTR_DATA_VALID) && !time_after32(local_clock() >> 10, timeout_ts)); if (unlikely(!(ident & GEN11_INTR_DATA_VALID))) { drm_err(>->i915->drm, "INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n", bank, bit, ident); return 0; } raw_reg_write(regs, GEN11_INTR_IDENTITY_REG(bank), GEN11_INTR_DATA_VALID); return ident; } static void gen11_other_irq_handler(struct intel_gt *gt, const u8 instance, const u16 iir) { struct intel_gt *media_gt = gt->i915->media_gt; if (instance == OTHER_GUC_INSTANCE) return guc_irq_handler(>->uc.guc, iir); if (instance == OTHER_MEDIA_GUC_INSTANCE && media_gt) return guc_irq_handler(&media_gt->uc.guc, iir); if (instance == OTHER_GTPM_INSTANCE) return gen11_rps_irq_handler(>->rps, iir); if (instance == OTHER_MEDIA_GTPM_INSTANCE && media_gt) return gen11_rps_irq_handler(&media_gt->rps, iir); if (instance == OTHER_KCR_INSTANCE) return intel_pxp_irq_handler(gt->i915->pxp, iir); if (instance == OTHER_GSC_INSTANCE) return intel_gsc_irq_handler(gt, iir); WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n", instance, iir); } static struct intel_gt *pick_gt(struct intel_gt *gt, u8 class, u8 instance) { struct intel_gt *media_gt = gt->i915->media_gt; /* we expect the non-media gt to be passed in */ GEM_BUG_ON(gt == media_gt); if (!media_gt) return gt; switch (class) { case VIDEO_DECODE_CLASS: case VIDEO_ENHANCEMENT_CLASS: return media_gt; case OTHER_CLASS: if (instance == OTHER_GSC_INSTANCE && HAS_ENGINE(media_gt, GSC0)) return media_gt; fallthrough; default: return gt; } } static void gen11_gt_identity_handler(struct intel_gt *gt, const u32 identity) { const u8 class = GEN11_INTR_ENGINE_CLASS(identity); const u8 instance = GEN11_INTR_ENGINE_INSTANCE(identity); const u16 intr = GEN11_INTR_ENGINE_INTR(identity); if (unlikely(!intr)) return; /* * Platforms with standalone media have the media and GSC engines in * another GT. */ gt = pick_gt(gt, class, instance); if (class <= MAX_ENGINE_CLASS && instance <= MAX_ENGINE_INSTANCE) { struct intel_engine_cs *engine = gt->engine_class[class][instance]; if (engine) return intel_engine_cs_irq(engine, intr); } if (class == OTHER_CLASS) return gen11_other_irq_handler(gt, instance, intr); WARN_ONCE(1, "unknown interrupt class=0x%x, instance=0x%x, intr=0x%x\n", class, instance, intr); } static void gen11_gt_bank_handler(struct intel_gt *gt, const unsigned int bank) { void __iomem * const regs = gt->uncore->regs; unsigned long intr_dw; unsigned int bit; lockdep_assert_held(gt->irq_lock); intr_dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank)); for_each_set_bit(bit, &intr_dw, 32) { const u32 ident = gen11_gt_engine_identity(gt, bank, bit); gen11_gt_identity_handler(gt, ident); } /* Clear must be after shared has been served for engine */ raw_reg_write(regs, GEN11_GT_INTR_DW(bank), intr_dw); } void gen11_gt_irq_handler(struct intel_gt *gt, const u32 master_ctl) { unsigned int bank; spin_lock(gt->irq_lock); for (bank = 0; bank < 2; bank++) { if (master_ctl & GEN11_GT_DW_IRQ(bank)) gen11_gt_bank_handler(gt, bank); } spin_unlock(gt->irq_lock); } bool gen11_gt_reset_one_iir(struct intel_gt *gt, const unsigned int bank, const unsigned int bit) { void __iomem * const regs = gt->uncore->regs; u32 dw; lockdep_assert_held(gt->irq_lock); dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank)); if (dw & BIT(bit)) { /* * According to the BSpec, DW_IIR bits cannot be cleared without * first servicing the Selector & Shared IIR registers. */ gen11_gt_engine_identity(gt, bank, bit); /* * We locked GT INT DW by reading it. If we want to (try * to) recover from this successfully, we need to clear * our bit, otherwise we are locking the register for * everybody. */ raw_reg_write(regs, GEN11_GT_INTR_DW(bank), BIT(bit)); return true; } return false; } void gen11_gt_irq_reset(struct intel_gt *gt) { struct intel_uncore *uncore = gt->uncore; /* Disable RCS, BCS, VCS and VECS class engines. */ intel_uncore_write(uncore, GEN11_RENDER_COPY_INTR_ENABLE, 0); intel_uncore_write(uncore, GEN11_VCS_VECS_INTR_ENABLE, 0); if (CCS_MASK(gt)) intel_uncore_write(uncore, GEN12_CCS_RSVD_INTR_ENABLE, 0); if (HAS_HECI_GSC(gt->i915) || HAS_ENGINE(gt, GSC0)) intel_uncore_write(uncore, GEN11_GUNIT_CSME_INTR_ENABLE, 0); /* Restore masks irqs on RCS, BCS, VCS and VECS engines. */ intel_uncore_write(uncore, GEN11_RCS0_RSVD_INTR_MASK, ~0); intel_uncore_write(uncore, GEN11_BCS_RSVD_INTR_MASK, ~0); if (HAS_ENGINE(gt, BCS1) || HAS_ENGINE(gt, BCS2)) intel_uncore_write(uncore, XEHPC_BCS1_BCS2_INTR_MASK, ~0); if (HAS_ENGINE(gt, BCS3) || HAS_ENGINE(gt, BCS4)) intel_uncore_write(uncore, XEHPC_BCS3_BCS4_INTR_MASK, ~0); if (HAS_ENGINE(gt, BCS5) || HAS_ENGINE(gt, BCS6)) intel_uncore_write(uncore, XEHPC_BCS5_BCS6_INTR_MASK, ~0); if (HAS_ENGINE(gt, BCS7) || HAS_ENGINE(gt, BCS8)) intel_uncore_write(uncore, XEHPC_BCS7_BCS8_INTR_MASK, ~0); intel_uncore_write(uncore, GEN11_VCS0_VCS1_INTR_MASK, ~0); intel_uncore_write(uncore, GEN11_VCS2_VCS3_INTR_MASK, ~0); if (HAS_ENGINE(gt, VCS4) || HAS_ENGINE(gt, VCS5)) intel_uncore_write(uncore, GEN12_VCS4_VCS5_INTR_MASK, ~0); if (HAS_ENGINE(gt, VCS6) || HAS_ENGINE(gt, VCS7)) intel_uncore_write(uncore, GEN12_VCS6_VCS7_INTR_MASK, ~0); intel_uncore_write(uncore, GEN11_VECS0_VECS1_INTR_MASK, ~0); if (HAS_ENGINE(gt, VECS2) || HAS_ENGINE(gt, VECS3)) intel_uncore_write(uncore, GEN12_VECS2_VECS3_INTR_MASK, ~0); if (HAS_ENGINE(gt, CCS0) || HAS_ENGINE(gt, CCS1)) intel_uncore_write(uncore, GEN12_CCS0_CCS1_INTR_MASK, ~0); if (HAS_ENGINE(gt, CCS2) || HAS_ENGINE(gt, CCS3)) intel_uncore_write(uncore, GEN12_CCS2_CCS3_INTR_MASK, ~0); if (HAS_HECI_GSC(gt->i915) || HAS_ENGINE(gt, GSC0)) intel_uncore_write(uncore, GEN11_GUNIT_CSME_INTR_MASK, ~0); intel_uncore_write(uncore, GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0); intel_uncore_write(uncore, GEN11_GPM_WGBOXPERF_INTR_MASK, ~0); intel_uncore_write(uncore, GEN11_GUC_SG_INTR_ENABLE, 0); intel_uncore_write(uncore, GEN11_GUC_SG_INTR_MASK, ~0); intel_uncore_write(uncore, GEN11_CRYPTO_RSVD_INTR_ENABLE, 0); intel_uncore_write(uncore, GEN11_CRYPTO_RSVD_INTR_MASK, ~0); } void gen11_gt_irq_postinstall(struct intel_gt *gt) { struct intel_uncore *uncore = gt->uncore; u32 irqs = GT_RENDER_USER_INTERRUPT; u32 guc_mask = intel_uc_wants_guc(>->uc) ? GUC_INTR_GUC2HOST : 0; u32 gsc_mask = 0; u32 dmask; u32 smask; if (!intel_uc_wants_guc_submission(>->uc)) irqs |= GT_CS_MASTER_ERROR_INTERRUPT | GT_CONTEXT_SWITCH_INTERRUPT | GT_WAIT_SEMAPHORE_INTERRUPT; dmask = irqs << 16 | irqs; smask = irqs << 16; if (HAS_ENGINE(gt, GSC0)) gsc_mask = irqs; else if (HAS_HECI_GSC(gt->i915)) gsc_mask = GSC_IRQ_INTF(0) | GSC_IRQ_INTF(1); BUILD_BUG_ON(irqs & 0xffff0000); /* Enable RCS, BCS, VCS and VECS class interrupts. */ intel_uncore_write(uncore, GEN11_RENDER_COPY_INTR_ENABLE, dmask); intel_uncore_write(uncore, GEN11_VCS_VECS_INTR_ENABLE, dmask); if (CCS_MASK(gt)) intel_uncore_write(uncore, GEN12_CCS_RSVD_INTR_ENABLE, smask); if (gsc_mask) intel_uncore_write(uncore, GEN11_GUNIT_CSME_INTR_ENABLE, gsc_mask); /* Unmask irqs on RCS, BCS, VCS and VECS engines. */ intel_uncore_write(uncore, GEN11_RCS0_RSVD_INTR_MASK, ~smask); intel_uncore_write(uncore, GEN11_BCS_RSVD_INTR_MASK, ~smask); if (HAS_ENGINE(gt, BCS1) || HAS_ENGINE(gt, BCS2)) intel_uncore_write(uncore, XEHPC_BCS1_BCS2_INTR_MASK, ~dmask); if (HAS_ENGINE(gt, BCS3) || HAS_ENGINE(gt, BCS4)) intel_uncore_write(uncore, XEHPC_BCS3_BCS4_INTR_MASK, ~dmask); if (HAS_ENGINE(gt, BCS5) || HAS_ENGINE(gt, BCS6)) intel_uncore_write(uncore, XEHPC_BCS5_BCS6_INTR_MASK, ~dmask); if (HAS_ENGINE(gt, BCS7) || HAS_ENGINE(gt, BCS8)) intel_uncore_write(uncore, XEHPC_BCS7_BCS8_INTR_MASK, ~dmask); intel_uncore_write(uncore, GEN11_VCS0_VCS1_INTR_MASK, ~dmask); intel_uncore_write(uncore, GEN11_VCS2_VCS3_INTR_MASK, ~dmask); if (HAS_ENGINE(gt, VCS4) || HAS_ENGINE(gt, VCS5)) intel_uncore_write(uncore, GEN12_VCS4_VCS5_INTR_MASK, ~dmask); if (HAS_ENGINE(gt, VCS6) || HAS_ENGINE(gt, VCS7)) intel_uncore_write(uncore, GEN12_VCS6_VCS7_INTR_MASK, ~dmask); intel_uncore_write(uncore, GEN11_VECS0_VECS1_INTR_MASK, ~dmask); if (HAS_ENGINE(gt, VECS2) || HAS_ENGINE(gt, VECS3)) intel_uncore_write(uncore, GEN12_VECS2_VECS3_INTR_MASK, ~dmask); if (HAS_ENGINE(gt, CCS0) || HAS_ENGINE(gt, CCS1)) intel_uncore_write(uncore, GEN12_CCS0_CCS1_INTR_MASK, ~dmask); if (HAS_ENGINE(gt, CCS2) || HAS_ENGINE(gt, CCS3)) intel_uncore_write(uncore, GEN12_CCS2_CCS3_INTR_MASK, ~dmask); if (gsc_mask) intel_uncore_write(uncore, GEN11_GUNIT_CSME_INTR_MASK, ~gsc_mask); if (guc_mask) { /* the enable bit is common for both GTs but the masks are separate */ u32 mask = gt->type == GT_MEDIA ? REG_FIELD_PREP(ENGINE0_MASK, guc_mask) : REG_FIELD_PREP(ENGINE1_MASK, guc_mask); intel_uncore_write(uncore, GEN11_GUC_SG_INTR_ENABLE, REG_FIELD_PREP(ENGINE1_MASK, guc_mask)); /* we might not be the first GT to write this reg */ intel_uncore_rmw(uncore, MTL_GUC_MGUC_INTR_MASK, mask, 0); } /* * RPS interrupts will get enabled/disabled on demand when RPS itself * is enabled/disabled. */ gt->pm_ier = 0x0; gt->pm_imr = ~gt->pm_ier; intel_uncore_write(uncore, GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0); intel_uncore_write(uncore, GEN11_GPM_WGBOXPERF_INTR_MASK, ~0); } void gen5_gt_irq_handler(struct intel_gt *gt, u32 gt_iir) { if (gt_iir & GT_RENDER_USER_INTERRUPT) intel_engine_cs_irq(gt->engine_class[RENDER_CLASS][0], gt_iir); if (gt_iir & ILK_BSD_USER_INTERRUPT) intel_engine_cs_irq(gt->engine_class[VIDEO_DECODE_CLASS][0], gt_iir); } static void gen7_parity_error_irq_handler(struct intel_gt *gt, u32 iir) { if (!HAS_L3_DPF(gt->i915)) return; spin_lock(gt->irq_lock); gen5_gt_disable_irq(gt, GT_PARITY_ERROR(gt->i915)); spin_unlock(gt->irq_lock); if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1) gt->i915->l3_parity.which_slice |= 1 << 1; if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT) gt->i915->l3_parity.which_slice |= 1 << 0; schedule_work(>->i915->l3_parity.error_work); } void gen6_gt_irq_handler(struct intel_gt *gt, u32 gt_iir) { if (gt_iir & GT_RENDER_USER_INTERRUPT) intel_engine_cs_irq(gt->engine_class[RENDER_CLASS][0], gt_iir); if (gt_iir & GT_BSD_USER_INTERRUPT) intel_engine_cs_irq(gt->engine_class[VIDEO_DECODE_CLASS][0], gt_iir >> 12); if (gt_iir & GT_BLT_USER_INTERRUPT) intel_engine_cs_irq(gt->engine_class[COPY_ENGINE_CLASS][0], gt_iir >> 22); if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT | GT_BSD_CS_ERROR_INTERRUPT | GT_CS_MASTER_ERROR_INTERRUPT)) drm_dbg(>->i915->drm, "Command parser error, gt_iir 0x%08x\n", gt_iir); if (gt_iir & GT_PARITY_ERROR(gt->i915)) gen7_parity_error_irq_handler(gt, gt_iir); } void gen8_gt_irq_handler(struct intel_gt *gt, u32 master_ctl) { void __iomem * const regs = gt->uncore->regs; u32 iir; if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) { iir = raw_reg_read(regs, GEN8_GT_IIR(0)); if (likely(iir)) { intel_engine_cs_irq(gt->engine_class[RENDER_CLASS][0], iir >> GEN8_RCS_IRQ_SHIFT); intel_engine_cs_irq(gt->engine_class[COPY_ENGINE_CLASS][0], iir >> GEN8_BCS_IRQ_SHIFT); raw_reg_write(regs, GEN8_GT_IIR(0), iir); } } if (master_ctl & (GEN8_GT_VCS0_IRQ | GEN8_GT_VCS1_IRQ)) { iir = raw_reg_read(regs, GEN8_GT_IIR(1)); if (likely(iir)) { intel_engine_cs_irq(gt->engine_class[VIDEO_DECODE_CLASS][0], iir >> GEN8_VCS0_IRQ_SHIFT); intel_engine_cs_irq(gt->engine_class[VIDEO_DECODE_CLASS][1], iir >> GEN8_VCS1_IRQ_SHIFT); raw_reg_write(regs, GEN8_GT_IIR(1), iir); } } if (master_ctl & GEN8_GT_VECS_IRQ) { iir = raw_reg_read(regs, GEN8_GT_IIR(3)); if (likely(iir)) { intel_engine_cs_irq(gt->engine_class[VIDEO_ENHANCEMENT_CLASS][0], iir >> GEN8_VECS_IRQ_SHIFT); raw_reg_write(regs, GEN8_GT_IIR(3), iir); } } if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) { iir = raw_reg_read(regs, GEN8_GT_IIR(2)); if (likely(iir)) { gen6_rps_irq_handler(>->rps, iir); guc_irq_handler(>->uc.guc, iir >> 16); raw_reg_write(regs, GEN8_GT_IIR(2), iir); } } } void gen8_gt_irq_reset(struct intel_gt *gt) { struct intel_uncore *uncore = gt->uncore; GEN8_IRQ_RESET_NDX(uncore, GT, 0); GEN8_IRQ_RESET_NDX(uncore, GT, 1); GEN8_IRQ_RESET_NDX(uncore, GT, 2); GEN8_IRQ_RESET_NDX(uncore, GT, 3); } void gen8_gt_irq_postinstall(struct intel_gt *gt) { /* These are interrupts we'll toggle with the ring mask register */ const u32 irqs = GT_CS_MASTER_ERROR_INTERRUPT | GT_RENDER_USER_INTERRUPT | GT_CONTEXT_SWITCH_INTERRUPT | GT_WAIT_SEMAPHORE_INTERRUPT; const u32 gt_interrupts[] = { irqs << GEN8_RCS_IRQ_SHIFT | irqs << GEN8_BCS_IRQ_SHIFT, irqs << GEN8_VCS0_IRQ_SHIFT | irqs << GEN8_VCS1_IRQ_SHIFT, 0, irqs << GEN8_VECS_IRQ_SHIFT, }; struct intel_uncore *uncore = gt->uncore; gt->pm_ier = 0x0; gt->pm_imr = ~gt->pm_ier; GEN8_IRQ_INIT_NDX(uncore, GT, 0, ~gt_interrupts[0], gt_interrupts[0]); GEN8_IRQ_INIT_NDX(uncore, GT, 1, ~gt_interrupts[1], gt_interrupts[1]); /* * RPS interrupts will get enabled/disabled on demand when RPS itself * is enabled/disabled. Same wil be the case for GuC interrupts. */ GEN8_IRQ_INIT_NDX(uncore, GT, 2, gt->pm_imr, gt->pm_ier); GEN8_IRQ_INIT_NDX(uncore, GT, 3, ~gt_interrupts[3], gt_interrupts[3]); } static void gen5_gt_update_irq(struct intel_gt *gt, u32 interrupt_mask, u32 enabled_irq_mask) { lockdep_assert_held(gt->irq_lock); GEM_BUG_ON(enabled_irq_mask & ~interrupt_mask); gt->gt_imr &= ~interrupt_mask; gt->gt_imr |= (~enabled_irq_mask & interrupt_mask); intel_uncore_write(gt->uncore, GTIMR, gt->gt_imr); } void gen5_gt_enable_irq(struct intel_gt *gt, u32 mask) { gen5_gt_update_irq(gt, mask, mask); intel_uncore_posting_read_fw(gt->uncore, GTIMR); } void gen5_gt_disable_irq(struct intel_gt *gt, u32 mask) { gen5_gt_update_irq(gt, mask, 0); } void gen5_gt_irq_reset(struct intel_gt *gt) { struct intel_uncore *uncore = gt->uncore; GEN3_IRQ_RESET(uncore, GT); if (GRAPHICS_VER(gt->i915) >= 6) GEN3_IRQ_RESET(uncore, GEN6_PM); } void gen5_gt_irq_postinstall(struct intel_gt *gt) { struct intel_uncore *uncore = gt->uncore; u32 pm_irqs = 0; u32 gt_irqs = 0; gt->gt_imr = ~0; if (HAS_L3_DPF(gt->i915)) { /* L3 parity interrupt is always unmasked. */ gt->gt_imr = ~GT_PARITY_ERROR(gt->i915); gt_irqs |= GT_PARITY_ERROR(gt->i915); } gt_irqs |= GT_RENDER_USER_INTERRUPT; if (GRAPHICS_VER(gt->i915) == 5) gt_irqs |= ILK_BSD_USER_INTERRUPT; else gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT; GEN3_IRQ_INIT(uncore, GT, gt->gt_imr, gt_irqs); if (GRAPHICS_VER(gt->i915) >= 6) { /* * RPS interrupts will get enabled/disabled on demand when RPS * itself is enabled/disabled. */ if (HAS_ENGINE(gt, VECS0)) { pm_irqs |= PM_VEBOX_USER_INTERRUPT; gt->pm_ier |= PM_VEBOX_USER_INTERRUPT; } gt->pm_imr = 0xffffffff; GEN3_IRQ_INIT(uncore, GEN6_PM, gt->pm_imr, pm_irqs); } }