/* * Generic VM initialization for x86-64 NUMA setups. * Copyright 2002,2003 Andi Kleen, SuSE Labs. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct pglist_data *node_data[MAX_NUMNODES] __read_mostly; EXPORT_SYMBOL(node_data); struct memnode memnode; s16 apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = { [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE }; int numa_off __initdata; static unsigned long __initdata nodemap_addr; static unsigned long __initdata nodemap_size; /* * Map cpu index to node index */ DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE); EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map); /* * Given a shift value, try to populate memnodemap[] * Returns : * 1 if OK * 0 if memnodmap[] too small (of shift too small) * -1 if node overlap or lost ram (shift too big) */ static int __init populate_memnodemap(const struct bootnode *nodes, int numnodes, int shift, int *nodeids) { unsigned long addr, end; int i, res = -1; memset(memnodemap, 0xff, sizeof(s16)*memnodemapsize); for (i = 0; i < numnodes; i++) { addr = nodes[i].start; end = nodes[i].end; if (addr >= end) continue; if ((end >> shift) >= memnodemapsize) return 0; do { if (memnodemap[addr >> shift] != NUMA_NO_NODE) return -1; if (!nodeids) memnodemap[addr >> shift] = i; else memnodemap[addr >> shift] = nodeids[i]; addr += (1UL << shift); } while (addr < end); res = 1; } return res; } static int __init allocate_cachealigned_memnodemap(void) { unsigned long addr; memnodemap = memnode.embedded_map; if (memnodemapsize <= ARRAY_SIZE(memnode.embedded_map)) return 0; addr = 0x8000; nodemap_size = roundup(sizeof(s16) * memnodemapsize, L1_CACHE_BYTES); nodemap_addr = memblock_find_in_range(addr, max_pfn<= end) continue; bitfield |= start; nodes_used++; if (end > memtop) memtop = end; } if (nodes_used <= 1) i = 63; else i = find_first_bit(&bitfield, sizeof(unsigned long)*8); memnodemapsize = (memtop >> i)+1; return i; } int __init compute_hash_shift(struct bootnode *nodes, int numnodes, int *nodeids) { int shift; shift = extract_lsb_from_nodes(nodes, numnodes); if (allocate_cachealigned_memnodemap()) return -1; printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n", shift); if (populate_memnodemap(nodes, numnodes, shift, nodeids) != 1) { printk(KERN_INFO "Your memory is not aligned you need to " "rebuild your kernel with a bigger NODEMAPSIZE " "shift=%d\n", shift); return -1; } return shift; } int __meminit __early_pfn_to_nid(unsigned long pfn) { return phys_to_nid(pfn << PAGE_SHIFT); } static void * __init early_node_mem(int nodeid, unsigned long start, unsigned long end, unsigned long size, unsigned long align) { unsigned long mem; /* * put it on high as possible * something will go with NODE_DATA */ if (start < (MAX_DMA_PFN< (MAX_DMA32_PFN<> PAGE_SHIFT; last_pfn = end >> PAGE_SHIFT; node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size, SMP_CACHE_BYTES); if (node_data[nodeid] == NULL) return; nodedata_phys = __pa(node_data[nodeid]); memblock_x86_reserve_range(nodedata_phys, nodedata_phys + pgdat_size, "NODE_DATA"); printk(KERN_INFO " NODE_DATA [%016lx - %016lx]\n", nodedata_phys, nodedata_phys + pgdat_size - 1); nid = phys_to_nid(nodedata_phys); if (nid != nodeid) printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nodeid, nid); memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t)); NODE_DATA(nodeid)->node_id = nodeid; NODE_DATA(nodeid)->node_start_pfn = start_pfn; NODE_DATA(nodeid)->node_spanned_pages = last_pfn - start_pfn; node_set_online(nodeid); } /* * There are unfortunately some poorly designed mainboards around that * only connect memory to a single CPU. This breaks the 1:1 cpu->node * mapping. To avoid this fill in the mapping for all possible CPUs, * as the number of CPUs is not known yet. We round robin the existing * nodes. */ void __init numa_init_array(void) { int rr, i; rr = first_node(node_online_map); for (i = 0; i < nr_cpu_ids; i++) { if (early_cpu_to_node(i) != NUMA_NO_NODE) continue; numa_set_node(i, rr); rr = next_node(rr, node_online_map); if (rr == MAX_NUMNODES) rr = first_node(node_online_map); } } #ifdef CONFIG_NUMA_EMU /* Numa emulation */ static struct bootnode nodes[MAX_NUMNODES] __initdata; static struct bootnode physnodes[MAX_NUMNODES] __initdata; static char *cmdline __initdata; static int __init setup_physnodes(unsigned long start, unsigned long end, int acpi, int amd) { int nr_nodes = 0; int ret = 0; int i; #ifdef CONFIG_ACPI_NUMA if (acpi) nr_nodes = acpi_get_nodes(physnodes); #endif #ifdef CONFIG_AMD_NUMA if (amd) nr_nodes = amd_get_nodes(physnodes); #endif /* * Basic sanity checking on the physical node map: there may be errors * if the SRAT or AMD code incorrectly reported the topology or the mem= * kernel parameter is used. */ for (i = 0; i < nr_nodes; i++) { if (physnodes[i].start == physnodes[i].end) continue; if (physnodes[i].start > end) { physnodes[i].end = physnodes[i].start; continue; } if (physnodes[i].end < start) { physnodes[i].start = physnodes[i].end; continue; } if (physnodes[i].start < start) physnodes[i].start = start; if (physnodes[i].end > end) physnodes[i].end = end; } /* * Remove all nodes that have no memory or were truncated because of the * limited address range. */ for (i = 0; i < nr_nodes; i++) { if (physnodes[i].start == physnodes[i].end) continue; physnodes[ret].start = physnodes[i].start; physnodes[ret].end = physnodes[i].end; ret++; } /* * If no physical topology was detected, a single node is faked to cover * the entire address space. */ if (!ret) { physnodes[ret].start = start; physnodes[ret].end = end; ret = 1; } return ret; } static void __init fake_physnodes(int acpi, int amd, int nr_nodes) { int i; BUG_ON(acpi && amd); #ifdef CONFIG_ACPI_NUMA if (acpi) acpi_fake_nodes(nodes, nr_nodes); #endif #ifdef CONFIG_AMD_NUMA if (amd) amd_fake_nodes(nodes, nr_nodes); #endif if (!acpi && !amd) for (i = 0; i < nr_cpu_ids; i++) numa_set_node(i, 0); } /* * Setups up nid to range from addr to addr + size. If the end * boundary is greater than max_addr, then max_addr is used instead. * The return value is 0 if there is additional memory left for * allocation past addr and -1 otherwise. addr is adjusted to be at * the end of the node. */ static int __init setup_node_range(int nid, u64 *addr, u64 size, u64 max_addr) { int ret = 0; nodes[nid].start = *addr; *addr += size; if (*addr >= max_addr) { *addr = max_addr; ret = -1; } nodes[nid].end = *addr; node_set(nid, node_possible_map); printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid, nodes[nid].start, nodes[nid].end, (nodes[nid].end - nodes[nid].start) >> 20); return ret; } /* * Sets up nr_nodes fake nodes interleaved over physical nodes ranging from addr * to max_addr. The return value is the number of nodes allocated. */ static int __init split_nodes_interleave(u64 addr, u64 max_addr, int nr_phys_nodes, int nr_nodes) { nodemask_t physnode_mask = NODE_MASK_NONE; u64 size; int big; int ret = 0; int i; if (nr_nodes <= 0) return -1; if (nr_nodes > MAX_NUMNODES) { pr_info("numa=fake=%d too large, reducing to %d\n", nr_nodes, MAX_NUMNODES); nr_nodes = MAX_NUMNODES; } size = (max_addr - addr - memblock_x86_hole_size(addr, max_addr)) / nr_nodes; /* * Calculate the number of big nodes that can be allocated as a result * of consolidating the remainder. */ big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * nr_nodes) / FAKE_NODE_MIN_SIZE; size &= FAKE_NODE_MIN_HASH_MASK; if (!size) { pr_err("Not enough memory for each node. " "NUMA emulation disabled.\n"); return -1; } for (i = 0; i < nr_phys_nodes; i++) if (physnodes[i].start != physnodes[i].end) node_set(i, physnode_mask); /* * Continue to fill physical nodes with fake nodes until there is no * memory left on any of them. */ while (nodes_weight(physnode_mask)) { for_each_node_mask(i, physnode_mask) { u64 end = physnodes[i].start + size; u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN); if (ret < big) end += FAKE_NODE_MIN_SIZE; /* * Continue to add memory to this fake node if its * non-reserved memory is less than the per-node size. */ while (end - physnodes[i].start - memblock_x86_hole_size(physnodes[i].start, end) < size) { end += FAKE_NODE_MIN_SIZE; if (end > physnodes[i].end) { end = physnodes[i].end; break; } } /* * If there won't be at least FAKE_NODE_MIN_SIZE of * non-reserved memory in ZONE_DMA32 for the next node, * this one must extend to the boundary. */ if (end < dma32_end && dma32_end - end - memblock_x86_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE) end = dma32_end; /* * If there won't be enough non-reserved memory for the * next node, this one must extend to the end of the * physical node. */ if (physnodes[i].end - end - memblock_x86_hole_size(end, physnodes[i].end) < size) end = physnodes[i].end; /* * Avoid allocating more nodes than requested, which can * happen as a result of rounding down each node's size * to FAKE_NODE_MIN_SIZE. */ if (nodes_weight(physnode_mask) + ret >= nr_nodes) end = physnodes[i].end; if (setup_node_range(ret++, &physnodes[i].start, end - physnodes[i].start, physnodes[i].end) < 0) node_clear(i, physnode_mask); } } return ret; } /* * Returns the end address of a node so that there is at least `size' amount of * non-reserved memory or `max_addr' is reached. */ static u64 __init find_end_of_node(u64 start, u64 max_addr, u64 size) { u64 end = start + size; while (end - start - memblock_x86_hole_size(start, end) < size) { end += FAKE_NODE_MIN_SIZE; if (end > max_addr) { end = max_addr; break; } } return end; } /* * Sets up fake nodes of `size' interleaved over physical nodes ranging from * `addr' to `max_addr'. The return value is the number of nodes allocated. */ static int __init split_nodes_size_interleave(u64 addr, u64 max_addr, u64 size) { nodemask_t physnode_mask = NODE_MASK_NONE; u64 min_size; int ret = 0; int i; if (!size) return -1; /* * The limit on emulated nodes is MAX_NUMNODES, so the size per node is * increased accordingly if the requested size is too small. This * creates a uniform distribution of node sizes across the entire * machine (but not necessarily over physical nodes). */ min_size = (max_addr - addr - memblock_x86_hole_size(addr, max_addr)) / MAX_NUMNODES; min_size = max(min_size, FAKE_NODE_MIN_SIZE); if ((min_size & FAKE_NODE_MIN_HASH_MASK) < min_size) min_size = (min_size + FAKE_NODE_MIN_SIZE) & FAKE_NODE_MIN_HASH_MASK; if (size < min_size) { pr_err("Fake node size %LuMB too small, increasing to %LuMB\n", size >> 20, min_size >> 20); size = min_size; } size &= FAKE_NODE_MIN_HASH_MASK; for (i = 0; i < MAX_NUMNODES; i++) if (physnodes[i].start != physnodes[i].end) node_set(i, physnode_mask); /* * Fill physical nodes with fake nodes of size until there is no memory * left on any of them. */ while (nodes_weight(physnode_mask)) { for_each_node_mask(i, physnode_mask) { u64 dma32_end = MAX_DMA32_PFN << PAGE_SHIFT; u64 end; end = find_end_of_node(physnodes[i].start, physnodes[i].end, size); /* * If there won't be at least FAKE_NODE_MIN_SIZE of * non-reserved memory in ZONE_DMA32 for the next node, * this one must extend to the boundary. */ if (end < dma32_end && dma32_end - end - memblock_x86_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE) end = dma32_end; /* * If there won't be enough non-reserved memory for the * next node, this one must extend to the end of the * physical node. */ if (physnodes[i].end - end - memblock_x86_hole_size(end, physnodes[i].end) < size) end = physnodes[i].end; /* * Setup the fake node that will be allocated as bootmem * later. If setup_node_range() returns non-zero, there * is no more memory available on this physical node. */ if (setup_node_range(ret++, &physnodes[i].start, end - physnodes[i].start, physnodes[i].end) < 0) node_clear(i, physnode_mask); } } return ret; } /* * Sets up the system RAM area from start_pfn to last_pfn according to the * numa=fake command-line option. */ static int __init numa_emulation(unsigned long start_pfn, unsigned long last_pfn, int acpi, int amd) { u64 addr = start_pfn << PAGE_SHIFT; u64 max_addr = last_pfn << PAGE_SHIFT; int num_phys_nodes; int num_nodes; int i; num_phys_nodes = setup_physnodes(addr, max_addr, acpi, amd); /* * If the numa=fake command-line contains a 'M' or 'G', it represents * the fixed node size. Otherwise, if it is just a single number N, * split the system RAM into N fake nodes. */ if (strchr(cmdline, 'M') || strchr(cmdline, 'G')) { u64 size; size = memparse(cmdline, &cmdline); num_nodes = split_nodes_size_interleave(addr, max_addr, size); } else { unsigned long n; n = simple_strtoul(cmdline, NULL, 0); num_nodes = split_nodes_interleave(addr, max_addr, num_phys_nodes, n); } if (num_nodes < 0) return num_nodes; memnode_shift = compute_hash_shift(nodes, num_nodes, NULL); if (memnode_shift < 0) { memnode_shift = 0; printk(KERN_ERR "No NUMA hash function found. NUMA emulation " "disabled.\n"); return -1; } /* * We need to vacate all active ranges that may have been registered for * the e820 memory map. */ remove_all_active_ranges(); for_each_node_mask(i, node_possible_map) { memblock_x86_register_active_regions(i, nodes[i].start >> PAGE_SHIFT, nodes[i].end >> PAGE_SHIFT); setup_node_bootmem(i, nodes[i].start, nodes[i].end); } fake_physnodes(acpi, amd, num_nodes); numa_init_array(); return 0; } #endif /* CONFIG_NUMA_EMU */ void __init initmem_init(unsigned long start_pfn, unsigned long last_pfn, int acpi, int amd) { int i; nodes_clear(node_possible_map); nodes_clear(node_online_map); #ifdef CONFIG_NUMA_EMU if (cmdline && !numa_emulation(start_pfn, last_pfn, acpi, amd)) return; nodes_clear(node_possible_map); nodes_clear(node_online_map); #endif #ifdef CONFIG_ACPI_NUMA if (!numa_off && acpi && !acpi_scan_nodes(start_pfn << PAGE_SHIFT, last_pfn << PAGE_SHIFT)) return; nodes_clear(node_possible_map); nodes_clear(node_online_map); #endif #ifdef CONFIG_AMD_NUMA if (!numa_off && amd && !amd_scan_nodes()) return; nodes_clear(node_possible_map); nodes_clear(node_online_map); #endif printk(KERN_INFO "%s\n", numa_off ? "NUMA turned off" : "No NUMA configuration found"); printk(KERN_INFO "Faking a node at %016lx-%016lx\n", start_pfn << PAGE_SHIFT, last_pfn << PAGE_SHIFT); /* setup dummy node covering all memory */ memnode_shift = 63; memnodemap = memnode.embedded_map; memnodemap[0] = 0; node_set_online(0); node_set(0, node_possible_map); for (i = 0; i < nr_cpu_ids; i++) numa_set_node(i, 0); memblock_x86_register_active_regions(0, start_pfn, last_pfn); setup_node_bootmem(0, start_pfn << PAGE_SHIFT, last_pfn << PAGE_SHIFT); } unsigned long __init numa_free_all_bootmem(void) { unsigned long pages = 0; int i; for_each_online_node(i) pages += free_all_bootmem_node(NODE_DATA(i)); pages += free_all_memory_core_early(MAX_NUMNODES); return pages; } static __init int numa_setup(char *opt) { if (!opt) return -EINVAL; if (!strncmp(opt, "off", 3)) numa_off = 1; #ifdef CONFIG_NUMA_EMU if (!strncmp(opt, "fake=", 5)) cmdline = opt + 5; #endif #ifdef CONFIG_ACPI_NUMA if (!strncmp(opt, "noacpi", 6)) acpi_numa = -1; #endif return 0; } early_param("numa", numa_setup); #ifdef CONFIG_NUMA static __init int find_near_online_node(int node) { int n, val; int min_val = INT_MAX; int best_node = -1; for_each_online_node(n) { val = node_distance(node, n); if (val < min_val) { min_val = val; best_node = n; } } return best_node; } /* * Setup early cpu_to_node. * * Populate cpu_to_node[] only if x86_cpu_to_apicid[], * and apicid_to_node[] tables have valid entries for a CPU. * This means we skip cpu_to_node[] initialisation for NUMA * emulation and faking node case (when running a kernel compiled * for NUMA on a non NUMA box), which is OK as cpu_to_node[] * is already initialized in a round robin manner at numa_init_array, * prior to this call, and this initialization is good enough * for the fake NUMA cases. * * Called before the per_cpu areas are setup. */ void __init init_cpu_to_node(void) { int cpu; u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid); BUG_ON(cpu_to_apicid == NULL); for_each_possible_cpu(cpu) { int node; u16 apicid = cpu_to_apicid[cpu]; if (apicid == BAD_APICID) continue; node = apicid_to_node[apicid]; if (node == NUMA_NO_NODE) continue; if (!node_online(node)) node = find_near_online_node(node); numa_set_node(cpu, node); } } #endif void __cpuinit numa_set_node(int cpu, int node) { int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map); /* early setting, no percpu area yet */ if (cpu_to_node_map) { cpu_to_node_map[cpu] = node; return; } #ifdef CONFIG_DEBUG_PER_CPU_MAPS if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) { printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu); dump_stack(); return; } #endif per_cpu(x86_cpu_to_node_map, cpu) = node; if (node != NUMA_NO_NODE) set_cpu_numa_node(cpu, node); } void __cpuinit numa_clear_node(int cpu) { numa_set_node(cpu, NUMA_NO_NODE); } #ifndef CONFIG_DEBUG_PER_CPU_MAPS void __cpuinit numa_add_cpu(int cpu) { cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); } void __cpuinit numa_remove_cpu(int cpu) { cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); } #else /* CONFIG_DEBUG_PER_CPU_MAPS */ /* * --------- debug versions of the numa functions --------- */ static void __cpuinit numa_set_cpumask(int cpu, int enable) { int node = early_cpu_to_node(cpu); struct cpumask *mask; char buf[64]; mask = node_to_cpumask_map[node]; if (mask == NULL) { printk(KERN_ERR "node_to_cpumask_map[%i] NULL\n", node); dump_stack(); return; } if (enable) cpumask_set_cpu(cpu, mask); else cpumask_clear_cpu(cpu, mask); cpulist_scnprintf(buf, sizeof(buf), mask); printk(KERN_DEBUG "%s cpu %d node %d: mask now %s\n", enable ? "numa_add_cpu" : "numa_remove_cpu", cpu, node, buf); } void __cpuinit numa_add_cpu(int cpu) { numa_set_cpumask(cpu, 1); } void __cpuinit numa_remove_cpu(int cpu) { numa_set_cpumask(cpu, 0); } int __cpu_to_node(int cpu) { if (early_per_cpu_ptr(x86_cpu_to_node_map)) { printk(KERN_WARNING "cpu_to_node(%d): usage too early!\n", cpu); dump_stack(); return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu]; } return per_cpu(x86_cpu_to_node_map, cpu); } EXPORT_SYMBOL(__cpu_to_node); /* * Same function as cpu_to_node() but used if called before the * per_cpu areas are setup. */ int early_cpu_to_node(int cpu) { if (early_per_cpu_ptr(x86_cpu_to_node_map)) return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu]; if (!cpu_possible(cpu)) { printk(KERN_WARNING "early_cpu_to_node(%d): no per_cpu area!\n", cpu); dump_stack(); return NUMA_NO_NODE; } return per_cpu(x86_cpu_to_node_map, cpu); } /* * --------- end of debug versions of the numa functions --------- */ #endif /* CONFIG_DEBUG_PER_CPU_MAPS */