// SPDX-License-Identifier: GPL-2.0 /* * Helper functions used by the EFI stub on multiple * architectures. This should be #included by the EFI stub * implementation files. * * Copyright 2011 Intel Corporation; author Matt Fleming */ #include #include #include #include #include /* For CONSOLE_LOGLEVEL_* */ #include #include #include "efistub.h" bool efi_nochunk; bool efi_nokaslr = !IS_ENABLED(CONFIG_RANDOMIZE_BASE); int efi_loglevel = CONSOLE_LOGLEVEL_DEFAULT; bool efi_novamap; static bool efi_noinitrd; static bool efi_nosoftreserve; static bool efi_disable_pci_dma = IS_ENABLED(CONFIG_EFI_DISABLE_PCI_DMA); bool __pure __efi_soft_reserve_enabled(void) { return !efi_nosoftreserve; } /** * efi_char16_puts() - Write a UCS-2 encoded string to the console * @str: UCS-2 encoded string */ void efi_char16_puts(efi_char16_t *str) { efi_call_proto(efi_table_attr(efi_system_table, con_out), output_string, str); } static u32 utf8_to_utf32(const u8 **s8) { u32 c32; u8 c0, cx; size_t clen, i; c0 = cx = *(*s8)++; /* * The position of the most-significant 0 bit gives us the length of * a multi-octet encoding. */ for (clen = 0; cx & 0x80; ++clen) cx <<= 1; /* * If the 0 bit is in position 8, this is a valid single-octet * encoding. If the 0 bit is in position 7 or positions 1-3, the * encoding is invalid. * In either case, we just return the first octet. */ if (clen < 2 || clen > 4) return c0; /* Get the bits from the first octet. */ c32 = cx >> clen--; for (i = 0; i < clen; ++i) { /* Trailing octets must have 10 in most significant bits. */ cx = (*s8)[i] ^ 0x80; if (cx & 0xc0) return c0; c32 = (c32 << 6) | cx; } /* * Check for validity: * - The character must be in the Unicode range. * - It must not be a surrogate. * - It must be encoded using the correct number of octets. */ if (c32 > 0x10ffff || (c32 & 0xf800) == 0xd800 || clen != (c32 >= 0x80) + (c32 >= 0x800) + (c32 >= 0x10000)) return c0; *s8 += clen; return c32; } /** * efi_puts() - Write a UTF-8 encoded string to the console * @str: UTF-8 encoded string */ void efi_puts(const char *str) { efi_char16_t buf[128]; size_t pos = 0, lim = ARRAY_SIZE(buf); const u8 *s8 = (const u8 *)str; u32 c32; while (*s8) { if (*s8 == '\n') buf[pos++] = L'\r'; c32 = utf8_to_utf32(&s8); if (c32 < 0x10000) { /* Characters in plane 0 use a single word. */ buf[pos++] = c32; } else { /* * Characters in other planes encode into a surrogate * pair. */ buf[pos++] = (0xd800 - (0x10000 >> 10)) + (c32 >> 10); buf[pos++] = 0xdc00 + (c32 & 0x3ff); } if (*s8 == '\0' || pos >= lim - 2) { buf[pos] = L'\0'; efi_char16_puts(buf); pos = 0; } } } /** * efi_printk() - Print a kernel message * @fmt: format string * * The first letter of the format string is used to determine the logging level * of the message. If the level is less then the current EFI logging level, the * message is suppressed. The message will be truncated to 255 bytes. * * Return: number of printed characters */ int efi_printk(const char *fmt, ...) { char printf_buf[256]; va_list args; int printed; int loglevel = printk_get_level(fmt); switch (loglevel) { case '0' ... '9': loglevel -= '0'; break; default: /* * Use loglevel -1 for cases where we just want to print to * the screen. */ loglevel = -1; break; } if (loglevel >= efi_loglevel) return 0; if (loglevel >= 0) efi_puts("EFI stub: "); fmt = printk_skip_level(fmt); va_start(args, fmt); printed = vsnprintf(printf_buf, sizeof(printf_buf), fmt, args); va_end(args); efi_puts(printf_buf); if (printed >= sizeof(printf_buf)) { efi_puts("[Message truncated]\n"); return -1; } return printed; } /** * efi_parse_options() - Parse EFI command line options * @cmdline: kernel command line * * Parse the ASCII string @cmdline for EFI options, denoted by the efi= * option, e.g. efi=nochunk. * * It should be noted that efi= is parsed in two very different * environments, first in the early boot environment of the EFI boot * stub, and subsequently during the kernel boot. * * Return: status code */ efi_status_t efi_parse_options(char const *cmdline) { size_t len; efi_status_t status; char *str, *buf; if (!cmdline) return EFI_SUCCESS; len = strnlen(cmdline, COMMAND_LINE_SIZE - 1) + 1; status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, len, (void **)&buf); if (status != EFI_SUCCESS) return status; memcpy(buf, cmdline, len - 1); buf[len - 1] = '\0'; str = skip_spaces(buf); while (*str) { char *param, *val; str = next_arg(str, ¶m, &val); if (!val && !strcmp(param, "--")) break; if (!strcmp(param, "nokaslr")) { efi_nokaslr = true; } else if (!strcmp(param, "quiet")) { efi_loglevel = CONSOLE_LOGLEVEL_QUIET; } else if (!strcmp(param, "noinitrd")) { efi_noinitrd = true; } else if (!strcmp(param, "efi") && val) { efi_nochunk = parse_option_str(val, "nochunk"); efi_novamap = parse_option_str(val, "novamap"); efi_nosoftreserve = IS_ENABLED(CONFIG_EFI_SOFT_RESERVE) && parse_option_str(val, "nosoftreserve"); if (parse_option_str(val, "disable_early_pci_dma")) efi_disable_pci_dma = true; if (parse_option_str(val, "no_disable_early_pci_dma")) efi_disable_pci_dma = false; if (parse_option_str(val, "debug")) efi_loglevel = CONSOLE_LOGLEVEL_DEBUG; } else if (!strcmp(param, "video") && val && strstarts(val, "efifb:")) { efi_parse_option_graphics(val + strlen("efifb:")); } } efi_bs_call(free_pool, buf); return EFI_SUCCESS; } /* * The EFI_LOAD_OPTION descriptor has the following layout: * u32 Attributes; * u16 FilePathListLength; * u16 Description[]; * efi_device_path_protocol_t FilePathList[]; * u8 OptionalData[]; * * This function validates and unpacks the variable-size data fields. */ static bool efi_load_option_unpack(efi_load_option_unpacked_t *dest, const efi_load_option_t *src, size_t size) { const void *pos; u16 c; efi_device_path_protocol_t header; const efi_char16_t *description; const efi_device_path_protocol_t *file_path_list; if (size < offsetof(efi_load_option_t, variable_data)) return false; pos = src->variable_data; size -= offsetof(efi_load_option_t, variable_data); if ((src->attributes & ~EFI_LOAD_OPTION_MASK) != 0) return false; /* Scan description. */ description = pos; do { if (size < sizeof(c)) return false; c = *(const u16 *)pos; pos += sizeof(c); size -= sizeof(c); } while (c != L'\0'); /* Scan file_path_list. */ file_path_list = pos; do { if (size < sizeof(header)) return false; header = *(const efi_device_path_protocol_t *)pos; if (header.length < sizeof(header)) return false; if (size < header.length) return false; pos += header.length; size -= header.length; } while ((header.type != EFI_DEV_END_PATH && header.type != EFI_DEV_END_PATH2) || (header.sub_type != EFI_DEV_END_ENTIRE)); if (pos != (const void *)file_path_list + src->file_path_list_length) return false; dest->attributes = src->attributes; dest->file_path_list_length = src->file_path_list_length; dest->description = description; dest->file_path_list = file_path_list; dest->optional_data_size = size; dest->optional_data = size ? pos : NULL; return true; } /* * At least some versions of Dell firmware pass the entire contents of the * Boot#### variable, i.e. the EFI_LOAD_OPTION descriptor, rather than just the * OptionalData field. * * Detect this case and extract OptionalData. */ void efi_apply_loadoptions_quirk(const void **load_options, int *load_options_size) { const efi_load_option_t *load_option = *load_options; efi_load_option_unpacked_t load_option_unpacked; if (!IS_ENABLED(CONFIG_X86)) return; if (!load_option) return; if (*load_options_size < sizeof(*load_option)) return; if ((load_option->attributes & ~EFI_LOAD_OPTION_BOOT_MASK) != 0) return; if (!efi_load_option_unpack(&load_option_unpacked, load_option, *load_options_size)) return; efi_warn_once(FW_BUG "LoadOptions is an EFI_LOAD_OPTION descriptor\n"); efi_warn_once(FW_BUG "Using OptionalData as a workaround\n"); *load_options = load_option_unpacked.optional_data; *load_options_size = load_option_unpacked.optional_data_size; } /* * Convert the unicode UEFI command line to ASCII to pass to kernel. * Size of memory allocated return in *cmd_line_len. * Returns NULL on error. */ char *efi_convert_cmdline(efi_loaded_image_t *image, int *cmd_line_len) { const u16 *s2; unsigned long cmdline_addr = 0; int options_chars = efi_table_attr(image, load_options_size); const u16 *options = efi_table_attr(image, load_options); int options_bytes = 0, safe_options_bytes = 0; /* UTF-8 bytes */ bool in_quote = false; efi_status_t status; efi_apply_loadoptions_quirk((const void **)&options, &options_chars); options_chars /= sizeof(*options); if (options) { s2 = options; while (options_bytes < COMMAND_LINE_SIZE && options_chars--) { u16 c = *s2++; if (c < 0x80) { if (c == L'\0' || c == L'\n') break; if (c == L'"') in_quote = !in_quote; else if (!in_quote && isspace((char)c)) safe_options_bytes = options_bytes; options_bytes++; continue; } /* * Get the number of UTF-8 bytes corresponding to a * UTF-16 character. * The first part handles everything in the BMP. */ options_bytes += 2 + (c >= 0x800); /* * Add one more byte for valid surrogate pairs. Invalid * surrogates will be replaced with 0xfffd and take up * only 3 bytes. */ if ((c & 0xfc00) == 0xd800) { /* * If the very last word is a high surrogate, * we must ignore it since we can't access the * low surrogate. */ if (!options_chars) { options_bytes -= 3; } else if ((*s2 & 0xfc00) == 0xdc00) { options_bytes++; options_chars--; s2++; } } } if (options_bytes >= COMMAND_LINE_SIZE) { options_bytes = safe_options_bytes; efi_err("Command line is too long: truncated to %d bytes\n", options_bytes); } } options_bytes++; /* NUL termination */ status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, options_bytes, (void **)&cmdline_addr); if (status != EFI_SUCCESS) return NULL; snprintf((char *)cmdline_addr, options_bytes, "%.*ls", options_bytes - 1, options); *cmd_line_len = options_bytes; return (char *)cmdline_addr; } /** * efi_exit_boot_services() - Exit boot services * @handle: handle of the exiting image * @priv: argument to be passed to @priv_func * @priv_func: function to process the memory map before exiting boot services * * Handle calling ExitBootServices according to the requirements set out by the * spec. Obtains the current memory map, and returns that info after calling * ExitBootServices. The client must specify a function to perform any * processing of the memory map data prior to ExitBootServices. A client * specific structure may be passed to the function via priv. The client * function may be called multiple times. * * Return: status code */ efi_status_t efi_exit_boot_services(void *handle, void *priv, efi_exit_boot_map_processing priv_func) { struct efi_boot_memmap *map; efi_status_t status; status = efi_get_memory_map(&map); if (status != EFI_SUCCESS) return status; status = priv_func(map, priv); if (status != EFI_SUCCESS) { efi_bs_call(free_pool, map); return status; } if (efi_disable_pci_dma) efi_pci_disable_bridge_busmaster(); status = efi_bs_call(exit_boot_services, handle, map->map_key); if (status == EFI_INVALID_PARAMETER) { /* * The memory map changed between efi_get_memory_map() and * exit_boot_services(). Per the UEFI Spec v2.6, Section 6.4: * EFI_BOOT_SERVICES.ExitBootServices we need to get the * updated map, and try again. The spec implies one retry * should be sufficent, which is confirmed against the EDK2 * implementation. Per the spec, we can only invoke * get_memory_map() and exit_boot_services() - we cannot alloc * so efi_get_memory_map() cannot be used, and we must reuse * the buffer. For all practical purposes, the headroom in the * buffer should account for any changes in the map so the call * to get_memory_map() is expected to succeed here. */ map->map_size = map->buff_size; status = efi_bs_call(get_memory_map, &map->map_size, &map->map, &map->map_key, &map->desc_size, &map->desc_ver); /* exit_boot_services() was called, thus cannot free */ if (status != EFI_SUCCESS) return status; status = priv_func(map, priv); /* exit_boot_services() was called, thus cannot free */ if (status != EFI_SUCCESS) return status; status = efi_bs_call(exit_boot_services, handle, map->map_key); } return status; } /** * get_efi_config_table() - retrieve UEFI configuration table * @guid: GUID of the configuration table to be retrieved * Return: pointer to the configuration table or NULL */ void *get_efi_config_table(efi_guid_t guid) { unsigned long tables = efi_table_attr(efi_system_table, tables); int nr_tables = efi_table_attr(efi_system_table, nr_tables); int i; for (i = 0; i < nr_tables; i++) { efi_config_table_t *t = (void *)tables; if (efi_guidcmp(t->guid, guid) == 0) return efi_table_attr(t, table); tables += efi_is_native() ? sizeof(efi_config_table_t) : sizeof(efi_config_table_32_t); } return NULL; } /* * The LINUX_EFI_INITRD_MEDIA_GUID vendor media device path below provides a way * for the firmware or bootloader to expose the initrd data directly to the stub * via the trivial LoadFile2 protocol, which is defined in the UEFI spec, and is * very easy to implement. It is a simple Linux initrd specific conduit between * kernel and firmware, allowing us to put the EFI stub (being part of the * kernel) in charge of where and when to load the initrd, while leaving it up * to the firmware to decide whether it needs to expose its filesystem hierarchy * via EFI protocols. */ static const struct { struct efi_vendor_dev_path vendor; struct efi_generic_dev_path end; } __packed initrd_dev_path = { { { EFI_DEV_MEDIA, EFI_DEV_MEDIA_VENDOR, sizeof(struct efi_vendor_dev_path), }, LINUX_EFI_INITRD_MEDIA_GUID }, { EFI_DEV_END_PATH, EFI_DEV_END_ENTIRE, sizeof(struct efi_generic_dev_path) } }; /** * efi_load_initrd_dev_path() - load the initrd from the Linux initrd device path * @load_addr: pointer to store the address where the initrd was loaded * @load_size: pointer to store the size of the loaded initrd * @max: upper limit for the initrd memory allocation * * Return: * * %EFI_SUCCESS if the initrd was loaded successfully, in which * case @load_addr and @load_size are assigned accordingly * * %EFI_NOT_FOUND if no LoadFile2 protocol exists on the initrd device path * * %EFI_OUT_OF_RESOURCES if memory allocation failed * * %EFI_LOAD_ERROR in all other cases */ static efi_status_t efi_load_initrd_dev_path(struct linux_efi_initrd *initrd, unsigned long max) { efi_guid_t lf2_proto_guid = EFI_LOAD_FILE2_PROTOCOL_GUID; efi_device_path_protocol_t *dp; efi_load_file2_protocol_t *lf2; efi_handle_t handle; efi_status_t status; dp = (efi_device_path_protocol_t *)&initrd_dev_path; status = efi_bs_call(locate_device_path, &lf2_proto_guid, &dp, &handle); if (status != EFI_SUCCESS) return status; status = efi_bs_call(handle_protocol, handle, &lf2_proto_guid, (void **)&lf2); if (status != EFI_SUCCESS) return status; initrd->size = 0; status = efi_call_proto(lf2, load_file, dp, false, &initrd->size, NULL); if (status != EFI_BUFFER_TOO_SMALL) return EFI_LOAD_ERROR; status = efi_allocate_pages(initrd->size, &initrd->base, max); if (status != EFI_SUCCESS) return status; status = efi_call_proto(lf2, load_file, dp, false, &initrd->size, (void *)initrd->base); if (status != EFI_SUCCESS) { efi_free(initrd->size, initrd->base); return EFI_LOAD_ERROR; } return EFI_SUCCESS; } static efi_status_t efi_load_initrd_cmdline(efi_loaded_image_t *image, struct linux_efi_initrd *initrd, unsigned long soft_limit, unsigned long hard_limit) { if (!IS_ENABLED(CONFIG_EFI_GENERIC_STUB_INITRD_CMDLINE_LOADER) || (IS_ENABLED(CONFIG_X86) && (!efi_is_native() || image == NULL))) return EFI_UNSUPPORTED; return handle_cmdline_files(image, L"initrd=", sizeof(L"initrd=") - 2, soft_limit, hard_limit, &initrd->base, &initrd->size); } static const struct { efi_tcg2_event_t event_data; efi_tcg2_tagged_event_t tagged_event; u8 tagged_event_data[]; } initrd_tcg2_event = { { sizeof(initrd_tcg2_event) + sizeof("Linux initrd"), { sizeof(initrd_tcg2_event.event_data.event_header), EFI_TCG2_EVENT_HEADER_VERSION, 9, EV_EVENT_TAG, }, }, { INITRD_EVENT_TAG_ID, sizeof("Linux initrd"), }, { "Linux initrd" }, }; static void efi_measure_initrd(unsigned long load_addr, unsigned long load_size) { efi_guid_t tcg2_guid = EFI_TCG2_PROTOCOL_GUID; efi_tcg2_protocol_t *tcg2 = NULL; efi_status_t status; efi_bs_call(locate_protocol, &tcg2_guid, NULL, (void **)&tcg2); if (tcg2) { status = efi_call_proto(tcg2, hash_log_extend_event, 0, load_addr, load_size, &initrd_tcg2_event.event_data); if (status != EFI_SUCCESS) efi_warn("Failed to measure initrd data: 0x%lx\n", status); else efi_info("Measured initrd data into PCR %d\n", initrd_tcg2_event.event_data.event_header.pcr_index); } } /** * efi_load_initrd() - Load initial RAM disk * @image: EFI loaded image protocol * @soft_limit: preferred address for loading the initrd * @hard_limit: upper limit address for loading the initrd * * Return: status code */ efi_status_t efi_load_initrd(efi_loaded_image_t *image, unsigned long soft_limit, unsigned long hard_limit, const struct linux_efi_initrd **out) { efi_guid_t tbl_guid = LINUX_EFI_INITRD_MEDIA_GUID; efi_status_t status = EFI_SUCCESS; struct linux_efi_initrd initrd, *tbl; if (!IS_ENABLED(CONFIG_BLK_DEV_INITRD) || efi_noinitrd) return EFI_SUCCESS; status = efi_load_initrd_dev_path(&initrd, hard_limit); if (status == EFI_SUCCESS) { efi_info("Loaded initrd from LINUX_EFI_INITRD_MEDIA_GUID device path\n"); if (initrd.size > 0) efi_measure_initrd(initrd.base, initrd.size); } else if (status == EFI_NOT_FOUND) { status = efi_load_initrd_cmdline(image, &initrd, soft_limit, hard_limit); /* command line loader disabled or no initrd= passed? */ if (status == EFI_UNSUPPORTED || status == EFI_NOT_READY) return EFI_SUCCESS; if (status == EFI_SUCCESS) efi_info("Loaded initrd from command line option\n"); } if (status != EFI_SUCCESS) goto failed; status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, sizeof(initrd), (void **)&tbl); if (status != EFI_SUCCESS) goto free_initrd; *tbl = initrd; status = efi_bs_call(install_configuration_table, &tbl_guid, tbl); if (status != EFI_SUCCESS) goto free_tbl; if (out) *out = tbl; return EFI_SUCCESS; free_tbl: efi_bs_call(free_pool, tbl); free_initrd: efi_free(initrd.size, initrd.base); failed: efi_err("Failed to load initrd: 0x%lx\n", status); return status; } /** * efi_wait_for_key() - Wait for key stroke * @usec: number of microseconds to wait for key stroke * @key: key entered * * Wait for up to @usec microseconds for a key stroke. * * Return: status code, EFI_SUCCESS if key received */ efi_status_t efi_wait_for_key(unsigned long usec, efi_input_key_t *key) { efi_event_t events[2], timer; unsigned long index; efi_simple_text_input_protocol_t *con_in; efi_status_t status; con_in = efi_table_attr(efi_system_table, con_in); if (!con_in) return EFI_UNSUPPORTED; efi_set_event_at(events, 0, efi_table_attr(con_in, wait_for_key)); status = efi_bs_call(create_event, EFI_EVT_TIMER, 0, NULL, NULL, &timer); if (status != EFI_SUCCESS) return status; status = efi_bs_call(set_timer, timer, EfiTimerRelative, EFI_100NSEC_PER_USEC * usec); if (status != EFI_SUCCESS) return status; efi_set_event_at(events, 1, timer); status = efi_bs_call(wait_for_event, 2, events, &index); if (status == EFI_SUCCESS) { if (index == 0) status = efi_call_proto(con_in, read_keystroke, key); else status = EFI_TIMEOUT; } efi_bs_call(close_event, timer); return status; }