/* * Copyright (C) 1995-1999 Gary Thomas, Paul Mackerras, Cort Dougan. */ #ifndef _ASM_POWERPC_PPC_ASM_H #define _ASM_POWERPC_PPC_ASM_H #include #include #include #include #include #include #ifndef __ASSEMBLY__ #error __FILE__ should only be used in assembler files #else #define SZL (BITS_PER_LONG/8) /* * Stuff for accurate CPU time accounting. * These macros handle transitions between user and system state * in exception entry and exit and accumulate time to the * user_time and system_time fields in the paca. */ #ifndef CONFIG_VIRT_CPU_ACCOUNTING #define ACCOUNT_CPU_USER_ENTRY(ra, rb) #define ACCOUNT_CPU_USER_EXIT(ra, rb) #define ACCOUNT_STOLEN_TIME #else #define ACCOUNT_CPU_USER_ENTRY(ra, rb) \ MFTB(ra); /* get timebase */ \ ld rb,PACA_STARTTIME_USER(r13); \ std ra,PACA_STARTTIME(r13); \ subf rb,rb,ra; /* subtract start value */ \ ld ra,PACA_USER_TIME(r13); \ add ra,ra,rb; /* add on to user time */ \ std ra,PACA_USER_TIME(r13); \ #define ACCOUNT_CPU_USER_EXIT(ra, rb) \ MFTB(ra); /* get timebase */ \ ld rb,PACA_STARTTIME(r13); \ std ra,PACA_STARTTIME_USER(r13); \ subf rb,rb,ra; /* subtract start value */ \ ld ra,PACA_SYSTEM_TIME(r13); \ add ra,ra,rb; /* add on to system time */ \ std ra,PACA_SYSTEM_TIME(r13) #ifdef CONFIG_PPC_SPLPAR #define ACCOUNT_STOLEN_TIME \ BEGIN_FW_FTR_SECTION; \ beq 33f; \ /* from user - see if there are any DTL entries to process */ \ ld r10,PACALPPACAPTR(r13); /* get ptr to VPA */ \ ld r11,PACA_DTL_RIDX(r13); /* get log read index */ \ ld r10,LPPACA_DTLIDX(r10); /* get log write index */ \ cmpd cr1,r11,r10; \ beq+ cr1,33f; \ bl .accumulate_stolen_time; \ ld r12,_MSR(r1); \ andi. r10,r12,MSR_PR; /* Restore cr0 (coming from user) */ \ 33: \ END_FW_FTR_SECTION_IFSET(FW_FEATURE_SPLPAR) #else /* CONFIG_PPC_SPLPAR */ #define ACCOUNT_STOLEN_TIME #endif /* CONFIG_PPC_SPLPAR */ #endif /* CONFIG_VIRT_CPU_ACCOUNTING */ /* * Macros for storing registers into and loading registers from * exception frames. */ #ifdef __powerpc64__ #define SAVE_GPR(n, base) std n,GPR0+8*(n)(base) #define REST_GPR(n, base) ld n,GPR0+8*(n)(base) #define SAVE_NVGPRS(base) SAVE_8GPRS(14, base); SAVE_10GPRS(22, base) #define REST_NVGPRS(base) REST_8GPRS(14, base); REST_10GPRS(22, base) #else #define SAVE_GPR(n, base) stw n,GPR0+4*(n)(base) #define REST_GPR(n, base) lwz n,GPR0+4*(n)(base) #define SAVE_NVGPRS(base) SAVE_GPR(13, base); SAVE_8GPRS(14, base); \ SAVE_10GPRS(22, base) #define REST_NVGPRS(base) REST_GPR(13, base); REST_8GPRS(14, base); \ REST_10GPRS(22, base) #endif #define SAVE_2GPRS(n, base) SAVE_GPR(n, base); SAVE_GPR(n+1, base) #define SAVE_4GPRS(n, base) SAVE_2GPRS(n, base); SAVE_2GPRS(n+2, base) #define SAVE_8GPRS(n, base) SAVE_4GPRS(n, base); SAVE_4GPRS(n+4, base) #define SAVE_10GPRS(n, base) SAVE_8GPRS(n, base); SAVE_2GPRS(n+8, base) #define REST_2GPRS(n, base) REST_GPR(n, base); REST_GPR(n+1, base) #define REST_4GPRS(n, base) REST_2GPRS(n, base); REST_2GPRS(n+2, base) #define REST_8GPRS(n, base) REST_4GPRS(n, base); REST_4GPRS(n+4, base) #define REST_10GPRS(n, base) REST_8GPRS(n, base); REST_2GPRS(n+8, base) #define SAVE_FPR(n, base) stfd n,THREAD_FPR0+8*TS_FPRWIDTH*(n)(base) #define SAVE_2FPRS(n, base) SAVE_FPR(n, base); SAVE_FPR(n+1, base) #define SAVE_4FPRS(n, base) SAVE_2FPRS(n, base); SAVE_2FPRS(n+2, base) #define SAVE_8FPRS(n, base) SAVE_4FPRS(n, base); SAVE_4FPRS(n+4, base) #define SAVE_16FPRS(n, base) SAVE_8FPRS(n, base); SAVE_8FPRS(n+8, base) #define SAVE_32FPRS(n, base) SAVE_16FPRS(n, base); SAVE_16FPRS(n+16, base) #define REST_FPR(n, base) lfd n,THREAD_FPR0+8*TS_FPRWIDTH*(n)(base) #define REST_2FPRS(n, base) REST_FPR(n, base); REST_FPR(n+1, base) #define REST_4FPRS(n, base) REST_2FPRS(n, base); REST_2FPRS(n+2, base) #define REST_8FPRS(n, base) REST_4FPRS(n, base); REST_4FPRS(n+4, base) #define REST_16FPRS(n, base) REST_8FPRS(n, base); REST_8FPRS(n+8, base) #define REST_32FPRS(n, base) REST_16FPRS(n, base); REST_16FPRS(n+16, base) #define SAVE_VR(n,b,base) li b,THREAD_VR0+(16*(n)); stvx n,base,b #define SAVE_2VRS(n,b,base) SAVE_VR(n,b,base); SAVE_VR(n+1,b,base) #define SAVE_4VRS(n,b,base) SAVE_2VRS(n,b,base); SAVE_2VRS(n+2,b,base) #define SAVE_8VRS(n,b,base) SAVE_4VRS(n,b,base); SAVE_4VRS(n+4,b,base) #define SAVE_16VRS(n,b,base) SAVE_8VRS(n,b,base); SAVE_8VRS(n+8,b,base) #define SAVE_32VRS(n,b,base) SAVE_16VRS(n,b,base); SAVE_16VRS(n+16,b,base) #define REST_VR(n,b,base) li b,THREAD_VR0+(16*(n)); lvx n,base,b #define REST_2VRS(n,b,base) REST_VR(n,b,base); REST_VR(n+1,b,base) #define REST_4VRS(n,b,base) REST_2VRS(n,b,base); REST_2VRS(n+2,b,base) #define REST_8VRS(n,b,base) REST_4VRS(n,b,base); REST_4VRS(n+4,b,base) #define REST_16VRS(n,b,base) REST_8VRS(n,b,base); REST_8VRS(n+8,b,base) #define REST_32VRS(n,b,base) REST_16VRS(n,b,base); REST_16VRS(n+16,b,base) /* Save the lower 32 VSRs in the thread VSR region */ #define SAVE_VSR(n,b,base) li b,THREAD_VSR0+(16*(n)); STXVD2X(n,R##base,R##b) #define SAVE_2VSRS(n,b,base) SAVE_VSR(n,b,base); SAVE_VSR(n+1,b,base) #define SAVE_4VSRS(n,b,base) SAVE_2VSRS(n,b,base); SAVE_2VSRS(n+2,b,base) #define SAVE_8VSRS(n,b,base) SAVE_4VSRS(n,b,base); SAVE_4VSRS(n+4,b,base) #define SAVE_16VSRS(n,b,base) SAVE_8VSRS(n,b,base); SAVE_8VSRS(n+8,b,base) #define SAVE_32VSRS(n,b,base) SAVE_16VSRS(n,b,base); SAVE_16VSRS(n+16,b,base) #define REST_VSR(n,b,base) li b,THREAD_VSR0+(16*(n)); LXVD2X(n,R##base,R##b) #define REST_2VSRS(n,b,base) REST_VSR(n,b,base); REST_VSR(n+1,b,base) #define REST_4VSRS(n,b,base) REST_2VSRS(n,b,base); REST_2VSRS(n+2,b,base) #define REST_8VSRS(n,b,base) REST_4VSRS(n,b,base); REST_4VSRS(n+4,b,base) #define REST_16VSRS(n,b,base) REST_8VSRS(n,b,base); REST_8VSRS(n+8,b,base) #define REST_32VSRS(n,b,base) REST_16VSRS(n,b,base); REST_16VSRS(n+16,b,base) /* Save the upper 32 VSRs (32-63) in the thread VSX region (0-31) */ #define SAVE_VSRU(n,b,base) li b,THREAD_VR0+(16*(n)); STXVD2X(n+32,R##base,R##b) #define SAVE_2VSRSU(n,b,base) SAVE_VSRU(n,b,base); SAVE_VSRU(n+1,b,base) #define SAVE_4VSRSU(n,b,base) SAVE_2VSRSU(n,b,base); SAVE_2VSRSU(n+2,b,base) #define SAVE_8VSRSU(n,b,base) SAVE_4VSRSU(n,b,base); SAVE_4VSRSU(n+4,b,base) #define SAVE_16VSRSU(n,b,base) SAVE_8VSRSU(n,b,base); SAVE_8VSRSU(n+8,b,base) #define SAVE_32VSRSU(n,b,base) SAVE_16VSRSU(n,b,base); SAVE_16VSRSU(n+16,b,base) #define REST_VSRU(n,b,base) li b,THREAD_VR0+(16*(n)); LXVD2X(n+32,R##base,R##b) #define REST_2VSRSU(n,b,base) REST_VSRU(n,b,base); REST_VSRU(n+1,b,base) #define REST_4VSRSU(n,b,base) REST_2VSRSU(n,b,base); REST_2VSRSU(n+2,b,base) #define REST_8VSRSU(n,b,base) REST_4VSRSU(n,b,base); REST_4VSRSU(n+4,b,base) #define REST_16VSRSU(n,b,base) REST_8VSRSU(n,b,base); REST_8VSRSU(n+8,b,base) #define REST_32VSRSU(n,b,base) REST_16VSRSU(n,b,base); REST_16VSRSU(n+16,b,base) /* * b = base register for addressing, o = base offset from register of 1st EVR * n = first EVR, s = scratch */ #define SAVE_EVR(n,s,b,o) evmergehi s,s,n; stw s,o+4*(n)(b) #define SAVE_2EVRS(n,s,b,o) SAVE_EVR(n,s,b,o); SAVE_EVR(n+1,s,b,o) #define SAVE_4EVRS(n,s,b,o) SAVE_2EVRS(n,s,b,o); SAVE_2EVRS(n+2,s,b,o) #define SAVE_8EVRS(n,s,b,o) SAVE_4EVRS(n,s,b,o); SAVE_4EVRS(n+4,s,b,o) #define SAVE_16EVRS(n,s,b,o) SAVE_8EVRS(n,s,b,o); SAVE_8EVRS(n+8,s,b,o) #define SAVE_32EVRS(n,s,b,o) SAVE_16EVRS(n,s,b,o); SAVE_16EVRS(n+16,s,b,o) #define REST_EVR(n,s,b,o) lwz s,o+4*(n)(b); evmergelo n,s,n #define REST_2EVRS(n,s,b,o) REST_EVR(n,s,b,o); REST_EVR(n+1,s,b,o) #define REST_4EVRS(n,s,b,o) REST_2EVRS(n,s,b,o); REST_2EVRS(n+2,s,b,o) #define REST_8EVRS(n,s,b,o) REST_4EVRS(n,s,b,o); REST_4EVRS(n+4,s,b,o) #define REST_16EVRS(n,s,b,o) REST_8EVRS(n,s,b,o); REST_8EVRS(n+8,s,b,o) #define REST_32EVRS(n,s,b,o) REST_16EVRS(n,s,b,o); REST_16EVRS(n+16,s,b,o) /* Macros to adjust thread priority for hardware multithreading */ #define HMT_VERY_LOW or 31,31,31 # very low priority #define HMT_LOW or 1,1,1 #define HMT_MEDIUM_LOW or 6,6,6 # medium low priority #define HMT_MEDIUM or 2,2,2 #define HMT_MEDIUM_HIGH or 5,5,5 # medium high priority #define HMT_HIGH or 3,3,3 #define HMT_EXTRA_HIGH or 7,7,7 # power7 only #ifdef CONFIG_PPC64 #define ULONG_SIZE 8 #else #define ULONG_SIZE 4 #endif #define __VCPU_GPR(n) (VCPU_GPRS + (n * ULONG_SIZE)) #define VCPU_GPR(n) __VCPU_GPR(__REG_##n) #ifdef __KERNEL__ #ifdef CONFIG_PPC64 #define STACKFRAMESIZE 256 #define __STK_REG(i) (112 + ((i)-14)*8) #define STK_REG(i) __STK_REG(__REG_##i) #define __STK_PARAM(i) (48 + ((i)-3)*8) #define STK_PARAM(i) __STK_PARAM(__REG_##i) #define XGLUE(a,b) a##b #define GLUE(a,b) XGLUE(a,b) #define _GLOBAL(name) \ .section ".text"; \ .align 2 ; \ .globl name; \ .globl GLUE(.,name); \ .section ".opd","aw"; \ name: \ .quad GLUE(.,name); \ .quad .TOC.@tocbase; \ .quad 0; \ .previous; \ .type GLUE(.,name),@function; \ GLUE(.,name): #define _INIT_GLOBAL(name) \ __REF; \ .align 2 ; \ .globl name; \ .globl GLUE(.,name); \ .section ".opd","aw"; \ name: \ .quad GLUE(.,name); \ .quad .TOC.@tocbase; \ .quad 0; \ .previous; \ .type GLUE(.,name),@function; \ GLUE(.,name): #define _KPROBE(name) \ .section ".kprobes.text","a"; \ .align 2 ; \ .globl name; \ .globl GLUE(.,name); \ .section ".opd","aw"; \ name: \ .quad GLUE(.,name); \ .quad .TOC.@tocbase; \ .quad 0; \ .previous; \ .type GLUE(.,name),@function; \ GLUE(.,name): #define _STATIC(name) \ .section ".text"; \ .align 2 ; \ .section ".opd","aw"; \ name: \ .quad GLUE(.,name); \ .quad .TOC.@tocbase; \ .quad 0; \ .previous; \ .type GLUE(.,name),@function; \ GLUE(.,name): #define _INIT_STATIC(name) \ __REF; \ .align 2 ; \ .section ".opd","aw"; \ name: \ .quad GLUE(.,name); \ .quad .TOC.@tocbase; \ .quad 0; \ .previous; \ .type GLUE(.,name),@function; \ GLUE(.,name): #else /* 32-bit */ #define _ENTRY(n) \ .globl n; \ n: #define _GLOBAL(n) \ .text; \ .stabs __stringify(n:F-1),N_FUN,0,0,n;\ .globl n; \ n: #define _KPROBE(n) \ .section ".kprobes.text","a"; \ .globl n; \ n: #endif /* * LOAD_REG_IMMEDIATE(rn, expr) * Loads the value of the constant expression 'expr' into register 'rn' * using immediate instructions only. Use this when it's important not * to reference other data (i.e. on ppc64 when the TOC pointer is not * valid) and when 'expr' is a constant or absolute address. * * LOAD_REG_ADDR(rn, name) * Loads the address of label 'name' into register 'rn'. Use this when * you don't particularly need immediate instructions only, but you need * the whole address in one register (e.g. it's a structure address and * you want to access various offsets within it). On ppc32 this is * identical to LOAD_REG_IMMEDIATE. * * LOAD_REG_ADDRBASE(rn, name) * ADDROFF(name) * LOAD_REG_ADDRBASE loads part of the address of label 'name' into * register 'rn'. ADDROFF(name) returns the remainder of the address as * a constant expression. ADDROFF(name) is a signed expression < 16 bits * in size, so is suitable for use directly as an offset in load and store * instructions. Use this when loading/storing a single word or less as: * LOAD_REG_ADDRBASE(rX, name) * ld rY,ADDROFF(name)(rX) */ #ifdef __powerpc64__ #define LOAD_REG_IMMEDIATE(reg,expr) \ lis reg,(expr)@highest; \ ori reg,reg,(expr)@higher; \ rldicr reg,reg,32,31; \ oris reg,reg,(expr)@h; \ ori reg,reg,(expr)@l; #define LOAD_REG_ADDR(reg,name) \ ld reg,name@got(r2) #define LOAD_REG_ADDRBASE(reg,name) LOAD_REG_ADDR(reg,name) #define ADDROFF(name) 0 /* offsets for stack frame layout */ #define LRSAVE 16 #else /* 32-bit */ #define LOAD_REG_IMMEDIATE(reg,expr) \ lis reg,(expr)@ha; \ addi reg,reg,(expr)@l; #define LOAD_REG_ADDR(reg,name) LOAD_REG_IMMEDIATE(reg, name) #define LOAD_REG_ADDRBASE(reg, name) lis reg,name@ha #define ADDROFF(name) name@l /* offsets for stack frame layout */ #define LRSAVE 4 #endif /* various errata or part fixups */ #ifdef CONFIG_PPC601_SYNC_FIX #define SYNC \ BEGIN_FTR_SECTION \ sync; \ isync; \ END_FTR_SECTION_IFSET(CPU_FTR_601) #define SYNC_601 \ BEGIN_FTR_SECTION \ sync; \ END_FTR_SECTION_IFSET(CPU_FTR_601) #define ISYNC_601 \ BEGIN_FTR_SECTION \ isync; \ END_FTR_SECTION_IFSET(CPU_FTR_601) #else #define SYNC #define SYNC_601 #define ISYNC_601 #endif #ifdef CONFIG_PPC_CELL #define MFTB(dest) \ 90: mftb dest; \ BEGIN_FTR_SECTION_NESTED(96); \ cmpwi dest,0; \ beq- 90b; \ END_FTR_SECTION_NESTED(CPU_FTR_CELL_TB_BUG, CPU_FTR_CELL_TB_BUG, 96) #else #define MFTB(dest) mftb dest #endif #ifndef CONFIG_SMP #define TLBSYNC #else /* CONFIG_SMP */ /* tlbsync is not implemented on 601 */ #define TLBSYNC \ BEGIN_FTR_SECTION \ tlbsync; \ sync; \ END_FTR_SECTION_IFCLR(CPU_FTR_601) #endif #ifdef CONFIG_PPC64 #define MTOCRF(FXM, RS) \ BEGIN_FTR_SECTION_NESTED(848); \ mtcrf (FXM), RS; \ FTR_SECTION_ELSE_NESTED(848); \ mtocrf (FXM), RS; \ ALT_FTR_SECTION_END_NESTED_IFCLR(CPU_FTR_NOEXECUTE, 848) /* * PPR restore macros used in entry_64.S * Used for P7 or later processors */ #define HMT_MEDIUM_LOW_HAS_PPR \ BEGIN_FTR_SECTION_NESTED(944) \ HMT_MEDIUM_LOW; \ END_FTR_SECTION_NESTED(CPU_FTR_HAS_PPR,CPU_FTR_HAS_PPR,944) #define SET_DEFAULT_THREAD_PPR(ra, rb) \ BEGIN_FTR_SECTION_NESTED(945) \ lis ra,INIT_PPR@highest; /* default ppr=3 */ \ ld rb,PACACURRENT(r13); \ sldi ra,ra,32; /* 11- 13 bits are used for ppr */ \ std ra,TASKTHREADPPR(rb); \ END_FTR_SECTION_NESTED(CPU_FTR_HAS_PPR,CPU_FTR_HAS_PPR,945) #define RESTORE_PPR(ra, rb) \ BEGIN_FTR_SECTION_NESTED(946) \ ld ra,PACACURRENT(r13); \ ld rb,TASKTHREADPPR(ra); \ mtspr SPRN_PPR,rb; /* Restore PPR */ \ END_FTR_SECTION_NESTED(CPU_FTR_HAS_PPR,CPU_FTR_HAS_PPR,946) #endif /* * This instruction is not implemented on the PPC 603 or 601; however, on * the 403GCX and 405GP tlbia IS defined and tlbie is not. * All of these instructions exist in the 8xx, they have magical powers, * and they must be used. */ #if !defined(CONFIG_4xx) && !defined(CONFIG_8xx) #define tlbia \ li r4,1024; \ mtctr r4; \ lis r4,KERNELBASE@h; \ 0: tlbie r4; \ addi r4,r4,0x1000; \ bdnz 0b #endif #ifdef CONFIG_IBM440EP_ERR42 #define PPC440EP_ERR42 isync #else #define PPC440EP_ERR42 #endif /* * toreal/fromreal/tophys/tovirt macros. 32-bit BookE makes them * keep the address intact to be compatible with code shared with * 32-bit classic. * * On the other hand, I find it useful to have them behave as expected * by their name (ie always do the addition) on 64-bit BookE */ #if defined(CONFIG_BOOKE) && !defined(CONFIG_PPC64) #define toreal(rd) #define fromreal(rd) /* * We use addis to ensure compatibility with the "classic" ppc versions of * these macros, which use rs = 0 to get the tophys offset in rd, rather than * converting the address in r0, and so this version has to do that too * (i.e. set register rd to 0 when rs == 0). */ #define tophys(rd,rs) \ addis rd,rs,0 #define tovirt(rd,rs) \ addis rd,rs,0 #elif defined(CONFIG_PPC64) #define toreal(rd) /* we can access c000... in real mode */ #define fromreal(rd) #define tophys(rd,rs) \ clrldi rd,rs,2 #define tovirt(rd,rs) \ rotldi rd,rs,16; \ ori rd,rd,((KERNELBASE>>48)&0xFFFF);\ rotldi rd,rd,48 #else /* * On APUS (Amiga PowerPC cpu upgrade board), we don't know the * physical base address of RAM at compile time. */ #define toreal(rd) tophys(rd,rd) #define fromreal(rd) tovirt(rd,rd) #define tophys(rd,rs) \ 0: addis rd,rs,-PAGE_OFFSET@h; \ .section ".vtop_fixup","aw"; \ .align 1; \ .long 0b; \ .previous #define tovirt(rd,rs) \ 0: addis rd,rs,PAGE_OFFSET@h; \ .section ".ptov_fixup","aw"; \ .align 1; \ .long 0b; \ .previous #endif #ifdef CONFIG_PPC_BOOK3S_64 #define RFI rfid #define MTMSRD(r) mtmsrd r #define MTMSR_EERI(reg) mtmsrd reg,1 #else #define FIX_SRR1(ra, rb) #ifndef CONFIG_40x #define RFI rfi #else #define RFI rfi; b . /* Prevent prefetch past rfi */ #endif #define MTMSRD(r) mtmsr r #define MTMSR_EERI(reg) mtmsr reg #define CLR_TOP32(r) #endif #endif /* __KERNEL__ */ /* The boring bits... */ /* Condition Register Bit Fields */ #define cr0 0 #define cr1 1 #define cr2 2 #define cr3 3 #define cr4 4 #define cr5 5 #define cr6 6 #define cr7 7 /* * General Purpose Registers (GPRs) * * The lower case r0-r31 should be used in preference to the upper * case R0-R31 as they provide more error checking in the assembler. * Use R0-31 only when really nessesary. */ #define r0 %r0 #define r1 %r1 #define r2 %r2 #define r3 %r3 #define r4 %r4 #define r5 %r5 #define r6 %r6 #define r7 %r7 #define r8 %r8 #define r9 %r9 #define r10 %r10 #define r11 %r11 #define r12 %r12 #define r13 %r13 #define r14 %r14 #define r15 %r15 #define r16 %r16 #define r17 %r17 #define r18 %r18 #define r19 %r19 #define r20 %r20 #define r21 %r21 #define r22 %r22 #define r23 %r23 #define r24 %r24 #define r25 %r25 #define r26 %r26 #define r27 %r27 #define r28 %r28 #define r29 %r29 #define r30 %r30 #define r31 %r31 /* Floating Point Registers (FPRs) */ #define fr0 0 #define fr1 1 #define fr2 2 #define fr3 3 #define fr4 4 #define fr5 5 #define fr6 6 #define fr7 7 #define fr8 8 #define fr9 9 #define fr10 10 #define fr11 11 #define fr12 12 #define fr13 13 #define fr14 14 #define fr15 15 #define fr16 16 #define fr17 17 #define fr18 18 #define fr19 19 #define fr20 20 #define fr21 21 #define fr22 22 #define fr23 23 #define fr24 24 #define fr25 25 #define fr26 26 #define fr27 27 #define fr28 28 #define fr29 29 #define fr30 30 #define fr31 31 /* AltiVec Registers (VPRs) */ #define vr0 0 #define vr1 1 #define vr2 2 #define vr3 3 #define vr4 4 #define vr5 5 #define vr6 6 #define vr7 7 #define vr8 8 #define vr9 9 #define vr10 10 #define vr11 11 #define vr12 12 #define vr13 13 #define vr14 14 #define vr15 15 #define vr16 16 #define vr17 17 #define vr18 18 #define vr19 19 #define vr20 20 #define vr21 21 #define vr22 22 #define vr23 23 #define vr24 24 #define vr25 25 #define vr26 26 #define vr27 27 #define vr28 28 #define vr29 29 #define vr30 30 #define vr31 31 /* VSX Registers (VSRs) */ #define vsr0 0 #define vsr1 1 #define vsr2 2 #define vsr3 3 #define vsr4 4 #define vsr5 5 #define vsr6 6 #define vsr7 7 #define vsr8 8 #define vsr9 9 #define vsr10 10 #define vsr11 11 #define vsr12 12 #define vsr13 13 #define vsr14 14 #define vsr15 15 #define vsr16 16 #define vsr17 17 #define vsr18 18 #define vsr19 19 #define vsr20 20 #define vsr21 21 #define vsr22 22 #define vsr23 23 #define vsr24 24 #define vsr25 25 #define vsr26 26 #define vsr27 27 #define vsr28 28 #define vsr29 29 #define vsr30 30 #define vsr31 31 #define vsr32 32 #define vsr33 33 #define vsr34 34 #define vsr35 35 #define vsr36 36 #define vsr37 37 #define vsr38 38 #define vsr39 39 #define vsr40 40 #define vsr41 41 #define vsr42 42 #define vsr43 43 #define vsr44 44 #define vsr45 45 #define vsr46 46 #define vsr47 47 #define vsr48 48 #define vsr49 49 #define vsr50 50 #define vsr51 51 #define vsr52 52 #define vsr53 53 #define vsr54 54 #define vsr55 55 #define vsr56 56 #define vsr57 57 #define vsr58 58 #define vsr59 59 #define vsr60 60 #define vsr61 61 #define vsr62 62 #define vsr63 63 /* SPE Registers (EVPRs) */ #define evr0 0 #define evr1 1 #define evr2 2 #define evr3 3 #define evr4 4 #define evr5 5 #define evr6 6 #define evr7 7 #define evr8 8 #define evr9 9 #define evr10 10 #define evr11 11 #define evr12 12 #define evr13 13 #define evr14 14 #define evr15 15 #define evr16 16 #define evr17 17 #define evr18 18 #define evr19 19 #define evr20 20 #define evr21 21 #define evr22 22 #define evr23 23 #define evr24 24 #define evr25 25 #define evr26 26 #define evr27 27 #define evr28 28 #define evr29 29 #define evr30 30 #define evr31 31 /* some stab codes */ #define N_FUN 36 #define N_RSYM 64 #define N_SLINE 68 #define N_SO 100 #endif /* __ASSEMBLY__ */ #endif /* _ASM_POWERPC_PPC_ASM_H */