// SPDX-License-Identifier: GPL-2.0 /* * Basic worker thread pool for io_uring * * Copyright (C) 2019 Jens Axboe * */ #include #include #include #include #include #include #include #include #include #include #include #include #include "io-wq.h" #define WORKER_IDLE_TIMEOUT (5 * HZ) enum { IO_WORKER_F_UP = 1, /* up and active */ IO_WORKER_F_RUNNING = 2, /* account as running */ IO_WORKER_F_FREE = 4, /* worker on free list */ IO_WORKER_F_EXITING = 8, /* worker exiting */ IO_WORKER_F_FIXED = 16, /* static idle worker */ IO_WORKER_F_BOUND = 32, /* is doing bounded work */ }; enum { IO_WQ_BIT_EXIT = 0, /* wq exiting */ IO_WQ_BIT_CANCEL = 1, /* cancel work on list */ IO_WQ_BIT_ERROR = 2, /* error on setup */ }; enum { IO_WQE_FLAG_STALLED = 1, /* stalled on hash */ }; /* * One for each thread in a wqe pool */ struct io_worker { refcount_t ref; unsigned flags; struct hlist_nulls_node nulls_node; struct list_head all_list; struct task_struct *task; struct io_wqe *wqe; struct io_wq_work *cur_work; spinlock_t lock; struct rcu_head rcu; struct mm_struct *mm; const struct cred *cur_creds; const struct cred *saved_creds; struct files_struct *restore_files; struct fs_struct *restore_fs; }; #if BITS_PER_LONG == 64 #define IO_WQ_HASH_ORDER 6 #else #define IO_WQ_HASH_ORDER 5 #endif #define IO_WQ_NR_HASH_BUCKETS (1u << IO_WQ_HASH_ORDER) struct io_wqe_acct { unsigned nr_workers; unsigned max_workers; atomic_t nr_running; }; enum { IO_WQ_ACCT_BOUND, IO_WQ_ACCT_UNBOUND, }; /* * Per-node worker thread pool */ struct io_wqe { struct { spinlock_t lock; struct io_wq_work_list work_list; unsigned long hash_map; unsigned flags; } ____cacheline_aligned_in_smp; int node; struct io_wqe_acct acct[2]; struct hlist_nulls_head free_list; struct list_head all_list; struct io_wq *wq; struct io_wq_work *hash_tail[IO_WQ_NR_HASH_BUCKETS]; }; /* * Per io_wq state */ struct io_wq { struct io_wqe **wqes; unsigned long state; free_work_fn *free_work; io_wq_work_fn *do_work; struct task_struct *manager; struct user_struct *user; refcount_t refs; struct completion done; refcount_t use_refs; }; static bool io_worker_get(struct io_worker *worker) { return refcount_inc_not_zero(&worker->ref); } static void io_worker_release(struct io_worker *worker) { if (refcount_dec_and_test(&worker->ref)) wake_up_process(worker->task); } /* * Note: drops the wqe->lock if returning true! The caller must re-acquire * the lock in that case. Some callers need to restart handling if this * happens, so we can't just re-acquire the lock on behalf of the caller. */ static bool __io_worker_unuse(struct io_wqe *wqe, struct io_worker *worker) { bool dropped_lock = false; if (worker->saved_creds) { revert_creds(worker->saved_creds); worker->cur_creds = worker->saved_creds = NULL; } if (current->files != worker->restore_files) { __acquire(&wqe->lock); spin_unlock_irq(&wqe->lock); dropped_lock = true; task_lock(current); current->files = worker->restore_files; task_unlock(current); } if (current->fs != worker->restore_fs) current->fs = worker->restore_fs; /* * If we have an active mm, we need to drop the wq lock before unusing * it. If we do, return true and let the caller retry the idle loop. */ if (worker->mm) { if (!dropped_lock) { __acquire(&wqe->lock); spin_unlock_irq(&wqe->lock); dropped_lock = true; } __set_current_state(TASK_RUNNING); kthread_unuse_mm(worker->mm); mmput(worker->mm); worker->mm = NULL; } return dropped_lock; } static inline struct io_wqe_acct *io_work_get_acct(struct io_wqe *wqe, struct io_wq_work *work) { if (work->flags & IO_WQ_WORK_UNBOUND) return &wqe->acct[IO_WQ_ACCT_UNBOUND]; return &wqe->acct[IO_WQ_ACCT_BOUND]; } static inline struct io_wqe_acct *io_wqe_get_acct(struct io_wqe *wqe, struct io_worker *worker) { if (worker->flags & IO_WORKER_F_BOUND) return &wqe->acct[IO_WQ_ACCT_BOUND]; return &wqe->acct[IO_WQ_ACCT_UNBOUND]; } static void io_worker_exit(struct io_worker *worker) { struct io_wqe *wqe = worker->wqe; struct io_wqe_acct *acct = io_wqe_get_acct(wqe, worker); unsigned nr_workers; /* * If we're not at zero, someone else is holding a brief reference * to the worker. Wait for that to go away. */ set_current_state(TASK_INTERRUPTIBLE); if (!refcount_dec_and_test(&worker->ref)) schedule(); __set_current_state(TASK_RUNNING); preempt_disable(); current->flags &= ~PF_IO_WORKER; if (worker->flags & IO_WORKER_F_RUNNING) atomic_dec(&acct->nr_running); if (!(worker->flags & IO_WORKER_F_BOUND)) atomic_dec(&wqe->wq->user->processes); worker->flags = 0; preempt_enable(); spin_lock_irq(&wqe->lock); hlist_nulls_del_rcu(&worker->nulls_node); list_del_rcu(&worker->all_list); if (__io_worker_unuse(wqe, worker)) { __release(&wqe->lock); spin_lock_irq(&wqe->lock); } acct->nr_workers--; nr_workers = wqe->acct[IO_WQ_ACCT_BOUND].nr_workers + wqe->acct[IO_WQ_ACCT_UNBOUND].nr_workers; spin_unlock_irq(&wqe->lock); /* all workers gone, wq exit can proceed */ if (!nr_workers && refcount_dec_and_test(&wqe->wq->refs)) complete(&wqe->wq->done); kfree_rcu(worker, rcu); } static inline bool io_wqe_run_queue(struct io_wqe *wqe) __must_hold(wqe->lock) { if (!wq_list_empty(&wqe->work_list) && !(wqe->flags & IO_WQE_FLAG_STALLED)) return true; return false; } /* * Check head of free list for an available worker. If one isn't available, * caller must wake up the wq manager to create one. */ static bool io_wqe_activate_free_worker(struct io_wqe *wqe) __must_hold(RCU) { struct hlist_nulls_node *n; struct io_worker *worker; n = rcu_dereference(hlist_nulls_first_rcu(&wqe->free_list)); if (is_a_nulls(n)) return false; worker = hlist_nulls_entry(n, struct io_worker, nulls_node); if (io_worker_get(worker)) { wake_up_process(worker->task); io_worker_release(worker); return true; } return false; } /* * We need a worker. If we find a free one, we're good. If not, and we're * below the max number of workers, wake up the manager to create one. */ static void io_wqe_wake_worker(struct io_wqe *wqe, struct io_wqe_acct *acct) { bool ret; /* * Most likely an attempt to queue unbounded work on an io_wq that * wasn't setup with any unbounded workers. */ WARN_ON_ONCE(!acct->max_workers); rcu_read_lock(); ret = io_wqe_activate_free_worker(wqe); rcu_read_unlock(); if (!ret && acct->nr_workers < acct->max_workers) wake_up_process(wqe->wq->manager); } static void io_wqe_inc_running(struct io_wqe *wqe, struct io_worker *worker) { struct io_wqe_acct *acct = io_wqe_get_acct(wqe, worker); atomic_inc(&acct->nr_running); } static void io_wqe_dec_running(struct io_wqe *wqe, struct io_worker *worker) __must_hold(wqe->lock) { struct io_wqe_acct *acct = io_wqe_get_acct(wqe, worker); if (atomic_dec_and_test(&acct->nr_running) && io_wqe_run_queue(wqe)) io_wqe_wake_worker(wqe, acct); } static void io_worker_start(struct io_wqe *wqe, struct io_worker *worker) { allow_kernel_signal(SIGINT); current->flags |= PF_IO_WORKER; worker->flags |= (IO_WORKER_F_UP | IO_WORKER_F_RUNNING); worker->restore_files = current->files; worker->restore_fs = current->fs; io_wqe_inc_running(wqe, worker); } /* * Worker will start processing some work. Move it to the busy list, if * it's currently on the freelist */ static void __io_worker_busy(struct io_wqe *wqe, struct io_worker *worker, struct io_wq_work *work) __must_hold(wqe->lock) { bool worker_bound, work_bound; if (worker->flags & IO_WORKER_F_FREE) { worker->flags &= ~IO_WORKER_F_FREE; hlist_nulls_del_init_rcu(&worker->nulls_node); } /* * If worker is moving from bound to unbound (or vice versa), then * ensure we update the running accounting. */ worker_bound = (worker->flags & IO_WORKER_F_BOUND) != 0; work_bound = (work->flags & IO_WQ_WORK_UNBOUND) == 0; if (worker_bound != work_bound) { io_wqe_dec_running(wqe, worker); if (work_bound) { worker->flags |= IO_WORKER_F_BOUND; wqe->acct[IO_WQ_ACCT_UNBOUND].nr_workers--; wqe->acct[IO_WQ_ACCT_BOUND].nr_workers++; atomic_dec(&wqe->wq->user->processes); } else { worker->flags &= ~IO_WORKER_F_BOUND; wqe->acct[IO_WQ_ACCT_UNBOUND].nr_workers++; wqe->acct[IO_WQ_ACCT_BOUND].nr_workers--; atomic_inc(&wqe->wq->user->processes); } io_wqe_inc_running(wqe, worker); } } /* * No work, worker going to sleep. Move to freelist, and unuse mm if we * have one attached. Dropping the mm may potentially sleep, so we drop * the lock in that case and return success. Since the caller has to * retry the loop in that case (we changed task state), we don't regrab * the lock if we return success. */ static bool __io_worker_idle(struct io_wqe *wqe, struct io_worker *worker) __must_hold(wqe->lock) { if (!(worker->flags & IO_WORKER_F_FREE)) { worker->flags |= IO_WORKER_F_FREE; hlist_nulls_add_head_rcu(&worker->nulls_node, &wqe->free_list); } return __io_worker_unuse(wqe, worker); } static inline unsigned int io_get_work_hash(struct io_wq_work *work) { return work->flags >> IO_WQ_HASH_SHIFT; } static struct io_wq_work *io_get_next_work(struct io_wqe *wqe) __must_hold(wqe->lock) { struct io_wq_work_node *node, *prev; struct io_wq_work *work, *tail; unsigned int hash; wq_list_for_each(node, prev, &wqe->work_list) { work = container_of(node, struct io_wq_work, list); /* not hashed, can run anytime */ if (!io_wq_is_hashed(work)) { wq_list_del(&wqe->work_list, node, prev); return work; } /* hashed, can run if not already running */ hash = io_get_work_hash(work); if (!(wqe->hash_map & BIT(hash))) { wqe->hash_map |= BIT(hash); /* all items with this hash lie in [work, tail] */ tail = wqe->hash_tail[hash]; wqe->hash_tail[hash] = NULL; wq_list_cut(&wqe->work_list, &tail->list, prev); return work; } } return NULL; } static void io_wq_switch_mm(struct io_worker *worker, struct io_wq_work *work) { if (worker->mm) { kthread_unuse_mm(worker->mm); mmput(worker->mm); worker->mm = NULL; } if (!work->mm) return; if (mmget_not_zero(work->mm)) { kthread_use_mm(work->mm); worker->mm = work->mm; /* hang on to this mm */ work->mm = NULL; return; } /* failed grabbing mm, ensure work gets cancelled */ work->flags |= IO_WQ_WORK_CANCEL; } static void io_wq_switch_creds(struct io_worker *worker, struct io_wq_work *work) { const struct cred *old_creds = override_creds(work->creds); worker->cur_creds = work->creds; if (worker->saved_creds) put_cred(old_creds); /* creds set by previous switch */ else worker->saved_creds = old_creds; } static void io_impersonate_work(struct io_worker *worker, struct io_wq_work *work) { if (work->files && current->files != work->files) { task_lock(current); current->files = work->files; task_unlock(current); } if (work->fs && current->fs != work->fs) current->fs = work->fs; if (work->mm != worker->mm) io_wq_switch_mm(worker, work); if (worker->cur_creds != work->creds) io_wq_switch_creds(worker, work); } static void io_assign_current_work(struct io_worker *worker, struct io_wq_work *work) { if (work) { /* flush pending signals before assigning new work */ if (signal_pending(current)) flush_signals(current); cond_resched(); } spin_lock_irq(&worker->lock); worker->cur_work = work; spin_unlock_irq(&worker->lock); } static void io_wqe_enqueue(struct io_wqe *wqe, struct io_wq_work *work); static void io_worker_handle_work(struct io_worker *worker) __releases(wqe->lock) { struct io_wqe *wqe = worker->wqe; struct io_wq *wq = wqe->wq; do { struct io_wq_work *work; unsigned int hash; get_next: /* * If we got some work, mark us as busy. If we didn't, but * the list isn't empty, it means we stalled on hashed work. * Mark us stalled so we don't keep looking for work when we * can't make progress, any work completion or insertion will * clear the stalled flag. */ work = io_get_next_work(wqe); if (work) __io_worker_busy(wqe, worker, work); else if (!wq_list_empty(&wqe->work_list)) wqe->flags |= IO_WQE_FLAG_STALLED; spin_unlock_irq(&wqe->lock); if (!work) break; io_assign_current_work(worker, work); /* handle a whole dependent link */ do { struct io_wq_work *old_work, *next_hashed, *linked; next_hashed = wq_next_work(work); io_impersonate_work(worker, work); /* * OK to set IO_WQ_WORK_CANCEL even for uncancellable * work, the worker function will do the right thing. */ if (test_bit(IO_WQ_BIT_CANCEL, &wq->state)) work->flags |= IO_WQ_WORK_CANCEL; hash = io_get_work_hash(work); linked = old_work = work; wq->do_work(&linked); linked = (old_work == linked) ? NULL : linked; work = next_hashed; if (!work && linked && !io_wq_is_hashed(linked)) { work = linked; linked = NULL; } io_assign_current_work(worker, work); wq->free_work(old_work); if (linked) io_wqe_enqueue(wqe, linked); if (hash != -1U && !next_hashed) { spin_lock_irq(&wqe->lock); wqe->hash_map &= ~BIT_ULL(hash); wqe->flags &= ~IO_WQE_FLAG_STALLED; /* dependent work is not hashed */ hash = -1U; /* skip unnecessary unlock-lock wqe->lock */ if (!work) goto get_next; spin_unlock_irq(&wqe->lock); } } while (work); spin_lock_irq(&wqe->lock); } while (1); } static int io_wqe_worker(void *data) { struct io_worker *worker = data; struct io_wqe *wqe = worker->wqe; struct io_wq *wq = wqe->wq; io_worker_start(wqe, worker); while (!test_bit(IO_WQ_BIT_EXIT, &wq->state)) { set_current_state(TASK_INTERRUPTIBLE); loop: spin_lock_irq(&wqe->lock); if (io_wqe_run_queue(wqe)) { __set_current_state(TASK_RUNNING); io_worker_handle_work(worker); goto loop; } /* drops the lock on success, retry */ if (__io_worker_idle(wqe, worker)) { __release(&wqe->lock); goto loop; } spin_unlock_irq(&wqe->lock); if (signal_pending(current)) flush_signals(current); if (schedule_timeout(WORKER_IDLE_TIMEOUT)) continue; /* timed out, exit unless we're the fixed worker */ if (test_bit(IO_WQ_BIT_EXIT, &wq->state) || !(worker->flags & IO_WORKER_F_FIXED)) break; } if (test_bit(IO_WQ_BIT_EXIT, &wq->state)) { spin_lock_irq(&wqe->lock); if (!wq_list_empty(&wqe->work_list)) io_worker_handle_work(worker); else spin_unlock_irq(&wqe->lock); } io_worker_exit(worker); return 0; } /* * Called when a worker is scheduled in. Mark us as currently running. */ void io_wq_worker_running(struct task_struct *tsk) { struct io_worker *worker = kthread_data(tsk); struct io_wqe *wqe = worker->wqe; if (!(worker->flags & IO_WORKER_F_UP)) return; if (worker->flags & IO_WORKER_F_RUNNING) return; worker->flags |= IO_WORKER_F_RUNNING; io_wqe_inc_running(wqe, worker); } /* * Called when worker is going to sleep. If there are no workers currently * running and we have work pending, wake up a free one or have the manager * set one up. */ void io_wq_worker_sleeping(struct task_struct *tsk) { struct io_worker *worker = kthread_data(tsk); struct io_wqe *wqe = worker->wqe; if (!(worker->flags & IO_WORKER_F_UP)) return; if (!(worker->flags & IO_WORKER_F_RUNNING)) return; worker->flags &= ~IO_WORKER_F_RUNNING; spin_lock_irq(&wqe->lock); io_wqe_dec_running(wqe, worker); spin_unlock_irq(&wqe->lock); } static bool create_io_worker(struct io_wq *wq, struct io_wqe *wqe, int index) { struct io_wqe_acct *acct =&wqe->acct[index]; struct io_worker *worker; worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, wqe->node); if (!worker) return false; refcount_set(&worker->ref, 1); worker->nulls_node.pprev = NULL; worker->wqe = wqe; spin_lock_init(&worker->lock); worker->task = kthread_create_on_node(io_wqe_worker, worker, wqe->node, "io_wqe_worker-%d/%d", index, wqe->node); if (IS_ERR(worker->task)) { kfree(worker); return false; } spin_lock_irq(&wqe->lock); hlist_nulls_add_head_rcu(&worker->nulls_node, &wqe->free_list); list_add_tail_rcu(&worker->all_list, &wqe->all_list); worker->flags |= IO_WORKER_F_FREE; if (index == IO_WQ_ACCT_BOUND) worker->flags |= IO_WORKER_F_BOUND; if (!acct->nr_workers && (worker->flags & IO_WORKER_F_BOUND)) worker->flags |= IO_WORKER_F_FIXED; acct->nr_workers++; spin_unlock_irq(&wqe->lock); if (index == IO_WQ_ACCT_UNBOUND) atomic_inc(&wq->user->processes); wake_up_process(worker->task); return true; } static inline bool io_wqe_need_worker(struct io_wqe *wqe, int index) __must_hold(wqe->lock) { struct io_wqe_acct *acct = &wqe->acct[index]; /* if we have available workers or no work, no need */ if (!hlist_nulls_empty(&wqe->free_list) || !io_wqe_run_queue(wqe)) return false; return acct->nr_workers < acct->max_workers; } /* * Manager thread. Tasked with creating new workers, if we need them. */ static int io_wq_manager(void *data) { struct io_wq *wq = data; int workers_to_create = num_possible_nodes(); int node; /* create fixed workers */ refcount_set(&wq->refs, workers_to_create); for_each_node(node) { if (!node_online(node)) continue; if (!create_io_worker(wq, wq->wqes[node], IO_WQ_ACCT_BOUND)) goto err; workers_to_create--; } while (workers_to_create--) refcount_dec(&wq->refs); complete(&wq->done); while (!kthread_should_stop()) { if (current->task_works) task_work_run(); for_each_node(node) { struct io_wqe *wqe = wq->wqes[node]; bool fork_worker[2] = { false, false }; if (!node_online(node)) continue; spin_lock_irq(&wqe->lock); if (io_wqe_need_worker(wqe, IO_WQ_ACCT_BOUND)) fork_worker[IO_WQ_ACCT_BOUND] = true; if (io_wqe_need_worker(wqe, IO_WQ_ACCT_UNBOUND)) fork_worker[IO_WQ_ACCT_UNBOUND] = true; spin_unlock_irq(&wqe->lock); if (fork_worker[IO_WQ_ACCT_BOUND]) create_io_worker(wq, wqe, IO_WQ_ACCT_BOUND); if (fork_worker[IO_WQ_ACCT_UNBOUND]) create_io_worker(wq, wqe, IO_WQ_ACCT_UNBOUND); } set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(HZ); } if (current->task_works) task_work_run(); return 0; err: set_bit(IO_WQ_BIT_ERROR, &wq->state); set_bit(IO_WQ_BIT_EXIT, &wq->state); if (refcount_sub_and_test(workers_to_create, &wq->refs)) complete(&wq->done); return 0; } static bool io_wq_can_queue(struct io_wqe *wqe, struct io_wqe_acct *acct, struct io_wq_work *work) { bool free_worker; if (!(work->flags & IO_WQ_WORK_UNBOUND)) return true; if (atomic_read(&acct->nr_running)) return true; rcu_read_lock(); free_worker = !hlist_nulls_empty(&wqe->free_list); rcu_read_unlock(); if (free_worker) return true; if (atomic_read(&wqe->wq->user->processes) >= acct->max_workers && !(capable(CAP_SYS_RESOURCE) || capable(CAP_SYS_ADMIN))) return false; return true; } static void io_run_cancel(struct io_wq_work *work, struct io_wqe *wqe) { struct io_wq *wq = wqe->wq; do { struct io_wq_work *old_work = work; work->flags |= IO_WQ_WORK_CANCEL; wq->do_work(&work); work = (work == old_work) ? NULL : work; wq->free_work(old_work); } while (work); } static void io_wqe_insert_work(struct io_wqe *wqe, struct io_wq_work *work) { unsigned int hash; struct io_wq_work *tail; if (!io_wq_is_hashed(work)) { append: wq_list_add_tail(&work->list, &wqe->work_list); return; } hash = io_get_work_hash(work); tail = wqe->hash_tail[hash]; wqe->hash_tail[hash] = work; if (!tail) goto append; wq_list_add_after(&work->list, &tail->list, &wqe->work_list); } static void io_wqe_enqueue(struct io_wqe *wqe, struct io_wq_work *work) { struct io_wqe_acct *acct = io_work_get_acct(wqe, work); int work_flags; unsigned long flags; /* * Do early check to see if we need a new unbound worker, and if we do, * if we're allowed to do so. This isn't 100% accurate as there's a * gap between this check and incrementing the value, but that's OK. * It's close enough to not be an issue, fork() has the same delay. */ if (unlikely(!io_wq_can_queue(wqe, acct, work))) { io_run_cancel(work, wqe); return; } work_flags = work->flags; spin_lock_irqsave(&wqe->lock, flags); io_wqe_insert_work(wqe, work); wqe->flags &= ~IO_WQE_FLAG_STALLED; spin_unlock_irqrestore(&wqe->lock, flags); if ((work_flags & IO_WQ_WORK_CONCURRENT) || !atomic_read(&acct->nr_running)) io_wqe_wake_worker(wqe, acct); } void io_wq_enqueue(struct io_wq *wq, struct io_wq_work *work) { struct io_wqe *wqe = wq->wqes[numa_node_id()]; io_wqe_enqueue(wqe, work); } /* * Work items that hash to the same value will not be done in parallel. * Used to limit concurrent writes, generally hashed by inode. */ void io_wq_hash_work(struct io_wq_work *work, void *val) { unsigned int bit; bit = hash_ptr(val, IO_WQ_HASH_ORDER); work->flags |= (IO_WQ_WORK_HASHED | (bit << IO_WQ_HASH_SHIFT)); } static bool io_wqe_worker_send_sig(struct io_worker *worker, void *data) { send_sig(SIGINT, worker->task, 1); return false; } /* * Iterate the passed in list and call the specific function for each * worker that isn't exiting */ static bool io_wq_for_each_worker(struct io_wqe *wqe, bool (*func)(struct io_worker *, void *), void *data) { struct io_worker *worker; bool ret = false; list_for_each_entry_rcu(worker, &wqe->all_list, all_list) { if (io_worker_get(worker)) { /* no task if node is/was offline */ if (worker->task) ret = func(worker, data); io_worker_release(worker); if (ret) break; } } return ret; } void io_wq_cancel_all(struct io_wq *wq) { int node; set_bit(IO_WQ_BIT_CANCEL, &wq->state); rcu_read_lock(); for_each_node(node) { struct io_wqe *wqe = wq->wqes[node]; io_wq_for_each_worker(wqe, io_wqe_worker_send_sig, NULL); } rcu_read_unlock(); } struct io_cb_cancel_data { work_cancel_fn *fn; void *data; }; static bool io_wq_worker_cancel(struct io_worker *worker, void *data) { struct io_cb_cancel_data *match = data; unsigned long flags; bool ret = false; /* * Hold the lock to avoid ->cur_work going out of scope, caller * may dereference the passed in work. */ spin_lock_irqsave(&worker->lock, flags); if (worker->cur_work && !(worker->cur_work->flags & IO_WQ_WORK_NO_CANCEL) && match->fn(worker->cur_work, match->data)) { send_sig(SIGINT, worker->task, 1); ret = true; } spin_unlock_irqrestore(&worker->lock, flags); return ret; } static bool io_wqe_cancel_pending_work(struct io_wqe *wqe, struct io_cb_cancel_data *match) { struct io_wq_work_node *node, *prev; struct io_wq_work *work; unsigned long flags; bool found = false; spin_lock_irqsave(&wqe->lock, flags); wq_list_for_each(node, prev, &wqe->work_list) { work = container_of(node, struct io_wq_work, list); if (match->fn(work, match->data)) { wq_list_del(&wqe->work_list, node, prev); found = true; break; } } spin_unlock_irqrestore(&wqe->lock, flags); if (found) io_run_cancel(work, wqe); return found; } static bool io_wqe_cancel_running_work(struct io_wqe *wqe, struct io_cb_cancel_data *match) { bool found; rcu_read_lock(); found = io_wq_for_each_worker(wqe, io_wq_worker_cancel, match); rcu_read_unlock(); return found; } enum io_wq_cancel io_wq_cancel_cb(struct io_wq *wq, work_cancel_fn *cancel, void *data) { struct io_cb_cancel_data match = { .fn = cancel, .data = data, }; int node; /* * First check pending list, if we're lucky we can just remove it * from there. CANCEL_OK means that the work is returned as-new, * no completion will be posted for it. */ for_each_node(node) { struct io_wqe *wqe = wq->wqes[node]; if (io_wqe_cancel_pending_work(wqe, &match)) return IO_WQ_CANCEL_OK; } /* * Now check if a free (going busy) or busy worker has the work * currently running. If we find it there, we'll return CANCEL_RUNNING * as an indication that we attempt to signal cancellation. The * completion will run normally in this case. */ for_each_node(node) { struct io_wqe *wqe = wq->wqes[node]; if (io_wqe_cancel_running_work(wqe, &match)) return IO_WQ_CANCEL_RUNNING; } return IO_WQ_CANCEL_NOTFOUND; } static bool io_wq_io_cb_cancel_data(struct io_wq_work *work, void *data) { return work == data; } enum io_wq_cancel io_wq_cancel_work(struct io_wq *wq, struct io_wq_work *cwork) { return io_wq_cancel_cb(wq, io_wq_io_cb_cancel_data, (void *)cwork); } static bool io_wq_pid_match(struct io_wq_work *work, void *data) { pid_t pid = (pid_t) (unsigned long) data; return work->task_pid == pid; } enum io_wq_cancel io_wq_cancel_pid(struct io_wq *wq, pid_t pid) { void *data = (void *) (unsigned long) pid; return io_wq_cancel_cb(wq, io_wq_pid_match, data); } struct io_wq *io_wq_create(unsigned bounded, struct io_wq_data *data) { int ret = -ENOMEM, node; struct io_wq *wq; if (WARN_ON_ONCE(!data->free_work || !data->do_work)) return ERR_PTR(-EINVAL); wq = kzalloc(sizeof(*wq), GFP_KERNEL); if (!wq) return ERR_PTR(-ENOMEM); wq->wqes = kcalloc(nr_node_ids, sizeof(struct io_wqe *), GFP_KERNEL); if (!wq->wqes) { kfree(wq); return ERR_PTR(-ENOMEM); } wq->free_work = data->free_work; wq->do_work = data->do_work; /* caller must already hold a reference to this */ wq->user = data->user; for_each_node(node) { struct io_wqe *wqe; int alloc_node = node; if (!node_online(alloc_node)) alloc_node = NUMA_NO_NODE; wqe = kzalloc_node(sizeof(struct io_wqe), GFP_KERNEL, alloc_node); if (!wqe) goto err; wq->wqes[node] = wqe; wqe->node = alloc_node; wqe->acct[IO_WQ_ACCT_BOUND].max_workers = bounded; atomic_set(&wqe->acct[IO_WQ_ACCT_BOUND].nr_running, 0); if (wq->user) { wqe->acct[IO_WQ_ACCT_UNBOUND].max_workers = task_rlimit(current, RLIMIT_NPROC); } atomic_set(&wqe->acct[IO_WQ_ACCT_UNBOUND].nr_running, 0); wqe->wq = wq; spin_lock_init(&wqe->lock); INIT_WQ_LIST(&wqe->work_list); INIT_HLIST_NULLS_HEAD(&wqe->free_list, 0); INIT_LIST_HEAD(&wqe->all_list); } init_completion(&wq->done); wq->manager = kthread_create(io_wq_manager, wq, "io_wq_manager"); if (!IS_ERR(wq->manager)) { wake_up_process(wq->manager); wait_for_completion(&wq->done); if (test_bit(IO_WQ_BIT_ERROR, &wq->state)) { ret = -ENOMEM; goto err; } refcount_set(&wq->use_refs, 1); reinit_completion(&wq->done); return wq; } ret = PTR_ERR(wq->manager); complete(&wq->done); err: for_each_node(node) kfree(wq->wqes[node]); kfree(wq->wqes); kfree(wq); return ERR_PTR(ret); } bool io_wq_get(struct io_wq *wq, struct io_wq_data *data) { if (data->free_work != wq->free_work || data->do_work != wq->do_work) return false; return refcount_inc_not_zero(&wq->use_refs); } static bool io_wq_worker_wake(struct io_worker *worker, void *data) { wake_up_process(worker->task); return false; } static void __io_wq_destroy(struct io_wq *wq) { int node; set_bit(IO_WQ_BIT_EXIT, &wq->state); if (wq->manager) kthread_stop(wq->manager); rcu_read_lock(); for_each_node(node) io_wq_for_each_worker(wq->wqes[node], io_wq_worker_wake, NULL); rcu_read_unlock(); wait_for_completion(&wq->done); for_each_node(node) kfree(wq->wqes[node]); kfree(wq->wqes); kfree(wq); } void io_wq_destroy(struct io_wq *wq) { if (refcount_dec_and_test(&wq->use_refs)) __io_wq_destroy(wq); } struct task_struct *io_wq_get_task(struct io_wq *wq) { return wq->manager; }