/* * Copyright 2012 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include "gf100.h" #include "ctxgf100.h" #include "fuc/os.h" #include #include #include #include #include #include #include #include #include #include #include #include /******************************************************************************* * Zero Bandwidth Clear ******************************************************************************/ static void gf100_gr_zbc_clear_color(struct gf100_gr *gr, int zbc) { struct nvkm_device *device = gr->base.engine.subdev.device; if (gr->zbc_color[zbc].format) { nvkm_wr32(device, 0x405804, gr->zbc_color[zbc].ds[0]); nvkm_wr32(device, 0x405808, gr->zbc_color[zbc].ds[1]); nvkm_wr32(device, 0x40580c, gr->zbc_color[zbc].ds[2]); nvkm_wr32(device, 0x405810, gr->zbc_color[zbc].ds[3]); } nvkm_wr32(device, 0x405814, gr->zbc_color[zbc].format); nvkm_wr32(device, 0x405820, zbc); nvkm_wr32(device, 0x405824, 0x00000004); /* TRIGGER | WRITE | COLOR */ } static int gf100_gr_zbc_color_get(struct gf100_gr *gr, int format, const u32 ds[4], const u32 l2[4]) { struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc; int zbc = -ENOSPC, i; for (i = ltc->zbc_min; i <= ltc->zbc_max; i++) { if (gr->zbc_color[i].format) { if (gr->zbc_color[i].format != format) continue; if (memcmp(gr->zbc_color[i].ds, ds, sizeof( gr->zbc_color[i].ds))) continue; if (memcmp(gr->zbc_color[i].l2, l2, sizeof( gr->zbc_color[i].l2))) { WARN_ON(1); return -EINVAL; } return i; } else { zbc = (zbc < 0) ? i : zbc; } } if (zbc < 0) return zbc; memcpy(gr->zbc_color[zbc].ds, ds, sizeof(gr->zbc_color[zbc].ds)); memcpy(gr->zbc_color[zbc].l2, l2, sizeof(gr->zbc_color[zbc].l2)); gr->zbc_color[zbc].format = format; nvkm_ltc_zbc_color_get(ltc, zbc, l2); gf100_gr_zbc_clear_color(gr, zbc); return zbc; } static void gf100_gr_zbc_clear_depth(struct gf100_gr *gr, int zbc) { struct nvkm_device *device = gr->base.engine.subdev.device; if (gr->zbc_depth[zbc].format) nvkm_wr32(device, 0x405818, gr->zbc_depth[zbc].ds); nvkm_wr32(device, 0x40581c, gr->zbc_depth[zbc].format); nvkm_wr32(device, 0x405820, zbc); nvkm_wr32(device, 0x405824, 0x00000005); /* TRIGGER | WRITE | DEPTH */ } static int gf100_gr_zbc_depth_get(struct gf100_gr *gr, int format, const u32 ds, const u32 l2) { struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc; int zbc = -ENOSPC, i; for (i = ltc->zbc_min; i <= ltc->zbc_max; i++) { if (gr->zbc_depth[i].format) { if (gr->zbc_depth[i].format != format) continue; if (gr->zbc_depth[i].ds != ds) continue; if (gr->zbc_depth[i].l2 != l2) { WARN_ON(1); return -EINVAL; } return i; } else { zbc = (zbc < 0) ? i : zbc; } } if (zbc < 0) return zbc; gr->zbc_depth[zbc].format = format; gr->zbc_depth[zbc].ds = ds; gr->zbc_depth[zbc].l2 = l2; nvkm_ltc_zbc_depth_get(ltc, zbc, l2); gf100_gr_zbc_clear_depth(gr, zbc); return zbc; } /******************************************************************************* * Graphics object classes ******************************************************************************/ #define gf100_gr_object(p) container_of((p), struct gf100_gr_object, object) struct gf100_gr_object { struct nvkm_object object; struct gf100_gr_chan *chan; }; static int gf100_fermi_mthd_zbc_color(struct nvkm_object *object, void *data, u32 size) { struct gf100_gr *gr = gf100_gr(nvkm_gr(object->engine)); union { struct fermi_a_zbc_color_v0 v0; } *args = data; int ret = -ENOSYS; if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) { switch (args->v0.format) { case FERMI_A_ZBC_COLOR_V0_FMT_ZERO: case FERMI_A_ZBC_COLOR_V0_FMT_UNORM_ONE: case FERMI_A_ZBC_COLOR_V0_FMT_RF32_GF32_BF32_AF32: case FERMI_A_ZBC_COLOR_V0_FMT_R16_G16_B16_A16: case FERMI_A_ZBC_COLOR_V0_FMT_RN16_GN16_BN16_AN16: case FERMI_A_ZBC_COLOR_V0_FMT_RS16_GS16_BS16_AS16: case FERMI_A_ZBC_COLOR_V0_FMT_RU16_GU16_BU16_AU16: case FERMI_A_ZBC_COLOR_V0_FMT_RF16_GF16_BF16_AF16: case FERMI_A_ZBC_COLOR_V0_FMT_A8R8G8B8: case FERMI_A_ZBC_COLOR_V0_FMT_A8RL8GL8BL8: case FERMI_A_ZBC_COLOR_V0_FMT_A2B10G10R10: case FERMI_A_ZBC_COLOR_V0_FMT_AU2BU10GU10RU10: case FERMI_A_ZBC_COLOR_V0_FMT_A8B8G8R8: case FERMI_A_ZBC_COLOR_V0_FMT_A8BL8GL8RL8: case FERMI_A_ZBC_COLOR_V0_FMT_AN8BN8GN8RN8: case FERMI_A_ZBC_COLOR_V0_FMT_AS8BS8GS8RS8: case FERMI_A_ZBC_COLOR_V0_FMT_AU8BU8GU8RU8: case FERMI_A_ZBC_COLOR_V0_FMT_A2R10G10B10: case FERMI_A_ZBC_COLOR_V0_FMT_BF10GF11RF11: ret = gf100_gr_zbc_color_get(gr, args->v0.format, args->v0.ds, args->v0.l2); if (ret >= 0) { args->v0.index = ret; return 0; } break; default: return -EINVAL; } } return ret; } static int gf100_fermi_mthd_zbc_depth(struct nvkm_object *object, void *data, u32 size) { struct gf100_gr *gr = gf100_gr(nvkm_gr(object->engine)); union { struct fermi_a_zbc_depth_v0 v0; } *args = data; int ret = -ENOSYS; if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) { switch (args->v0.format) { case FERMI_A_ZBC_DEPTH_V0_FMT_FP32: ret = gf100_gr_zbc_depth_get(gr, args->v0.format, args->v0.ds, args->v0.l2); return (ret >= 0) ? 0 : -ENOSPC; default: return -EINVAL; } } return ret; } static int gf100_fermi_mthd(struct nvkm_object *object, u32 mthd, void *data, u32 size) { nvif_ioctl(object, "fermi mthd %08x\n", mthd); switch (mthd) { case FERMI_A_ZBC_COLOR: return gf100_fermi_mthd_zbc_color(object, data, size); case FERMI_A_ZBC_DEPTH: return gf100_fermi_mthd_zbc_depth(object, data, size); default: break; } return -EINVAL; } const struct nvkm_object_func gf100_fermi = { .mthd = gf100_fermi_mthd, }; static void gf100_gr_mthd_set_shader_exceptions(struct nvkm_device *device, u32 data) { nvkm_wr32(device, 0x419e44, data ? 0xffffffff : 0x00000000); nvkm_wr32(device, 0x419e4c, data ? 0xffffffff : 0x00000000); } static bool gf100_gr_mthd_sw(struct nvkm_device *device, u16 class, u32 mthd, u32 data) { switch (class & 0x00ff) { case 0x97: case 0xc0: switch (mthd) { case 0x1528: gf100_gr_mthd_set_shader_exceptions(device, data); return true; default: break; } break; default: break; } return false; } static const struct nvkm_object_func gf100_gr_object_func = { }; static int gf100_gr_object_new(const struct nvkm_oclass *oclass, void *data, u32 size, struct nvkm_object **pobject) { struct gf100_gr_chan *chan = gf100_gr_chan(oclass->parent); struct gf100_gr_object *object; if (!(object = kzalloc(sizeof(*object), GFP_KERNEL))) return -ENOMEM; *pobject = &object->object; nvkm_object_ctor(oclass->base.func ? oclass->base.func : &gf100_gr_object_func, oclass, &object->object); object->chan = chan; return 0; } static int gf100_gr_object_get(struct nvkm_gr *base, int index, struct nvkm_sclass *sclass) { struct gf100_gr *gr = gf100_gr(base); int c = 0; while (gr->func->sclass[c].oclass) { if (c++ == index) { *sclass = gr->func->sclass[index]; sclass->ctor = gf100_gr_object_new; return index; } } return c; } /******************************************************************************* * PGRAPH context ******************************************************************************/ static int gf100_gr_chan_bind(struct nvkm_object *object, struct nvkm_gpuobj *parent, int align, struct nvkm_gpuobj **pgpuobj) { struct gf100_gr_chan *chan = gf100_gr_chan(object); struct gf100_gr *gr = chan->gr; int ret, i; ret = nvkm_gpuobj_new(gr->base.engine.subdev.device, gr->size, align, false, parent, pgpuobj); if (ret) return ret; nvkm_kmap(*pgpuobj); for (i = 0; i < gr->size; i += 4) nvkm_wo32(*pgpuobj, i, gr->data[i / 4]); if (!gr->firmware) { nvkm_wo32(*pgpuobj, 0x00, chan->mmio_nr / 2); nvkm_wo32(*pgpuobj, 0x04, chan->mmio_vma.offset >> 8); } else { nvkm_wo32(*pgpuobj, 0xf4, 0); nvkm_wo32(*pgpuobj, 0xf8, 0); nvkm_wo32(*pgpuobj, 0x10, chan->mmio_nr / 2); nvkm_wo32(*pgpuobj, 0x14, lower_32_bits(chan->mmio_vma.offset)); nvkm_wo32(*pgpuobj, 0x18, upper_32_bits(chan->mmio_vma.offset)); nvkm_wo32(*pgpuobj, 0x1c, 1); nvkm_wo32(*pgpuobj, 0x20, 0); nvkm_wo32(*pgpuobj, 0x28, 0); nvkm_wo32(*pgpuobj, 0x2c, 0); } nvkm_done(*pgpuobj); return 0; } static void * gf100_gr_chan_dtor(struct nvkm_object *object) { struct gf100_gr_chan *chan = gf100_gr_chan(object); int i; for (i = 0; i < ARRAY_SIZE(chan->data); i++) { if (chan->data[i].vma.node) { nvkm_vm_unmap(&chan->data[i].vma); nvkm_vm_put(&chan->data[i].vma); } nvkm_memory_del(&chan->data[i].mem); } if (chan->mmio_vma.node) { nvkm_vm_unmap(&chan->mmio_vma); nvkm_vm_put(&chan->mmio_vma); } nvkm_memory_del(&chan->mmio); return chan; } static const struct nvkm_object_func gf100_gr_chan = { .dtor = gf100_gr_chan_dtor, .bind = gf100_gr_chan_bind, }; static int gf100_gr_chan_new(struct nvkm_gr *base, struct nvkm_fifo_chan *fifoch, const struct nvkm_oclass *oclass, struct nvkm_object **pobject) { struct gf100_gr *gr = gf100_gr(base); struct gf100_gr_data *data = gr->mmio_data; struct gf100_gr_mmio *mmio = gr->mmio_list; struct gf100_gr_chan *chan; struct nvkm_device *device = gr->base.engine.subdev.device; int ret, i; if (!(chan = kzalloc(sizeof(*chan), GFP_KERNEL))) return -ENOMEM; nvkm_object_ctor(&gf100_gr_chan, oclass, &chan->object); chan->gr = gr; *pobject = &chan->object; /* allocate memory for a "mmio list" buffer that's used by the HUB * fuc to modify some per-context register settings on first load * of the context. */ ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST, 0x1000, 0x100, false, &chan->mmio); if (ret) return ret; ret = nvkm_vm_get(fifoch->vm, 0x1000, 12, NV_MEM_ACCESS_RW | NV_MEM_ACCESS_SYS, &chan->mmio_vma); if (ret) return ret; nvkm_memory_map(chan->mmio, &chan->mmio_vma, 0); /* allocate buffers referenced by mmio list */ for (i = 0; data->size && i < ARRAY_SIZE(gr->mmio_data); i++) { ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST, data->size, data->align, false, &chan->data[i].mem); if (ret) return ret; ret = nvkm_vm_get(fifoch->vm, nvkm_memory_size(chan->data[i].mem), 12, data->access, &chan->data[i].vma); if (ret) return ret; nvkm_memory_map(chan->data[i].mem, &chan->data[i].vma, 0); data++; } /* finally, fill in the mmio list and point the context at it */ nvkm_kmap(chan->mmio); for (i = 0; mmio->addr && i < ARRAY_SIZE(gr->mmio_list); i++) { u32 addr = mmio->addr; u32 data = mmio->data; if (mmio->buffer >= 0) { u64 info = chan->data[mmio->buffer].vma.offset; data |= info >> mmio->shift; } nvkm_wo32(chan->mmio, chan->mmio_nr++ * 4, addr); nvkm_wo32(chan->mmio, chan->mmio_nr++ * 4, data); mmio++; } nvkm_done(chan->mmio); return 0; } /******************************************************************************* * PGRAPH register lists ******************************************************************************/ const struct gf100_gr_init gf100_gr_init_main_0[] = { { 0x400080, 1, 0x04, 0x003083c2 }, { 0x400088, 1, 0x04, 0x00006fe7 }, { 0x40008c, 1, 0x04, 0x00000000 }, { 0x400090, 1, 0x04, 0x00000030 }, { 0x40013c, 1, 0x04, 0x013901f7 }, { 0x400140, 1, 0x04, 0x00000100 }, { 0x400144, 1, 0x04, 0x00000000 }, { 0x400148, 1, 0x04, 0x00000110 }, { 0x400138, 1, 0x04, 0x00000000 }, { 0x400130, 2, 0x04, 0x00000000 }, { 0x400124, 1, 0x04, 0x00000002 }, {} }; const struct gf100_gr_init gf100_gr_init_fe_0[] = { { 0x40415c, 1, 0x04, 0x00000000 }, { 0x404170, 1, 0x04, 0x00000000 }, {} }; const struct gf100_gr_init gf100_gr_init_pri_0[] = { { 0x404488, 2, 0x04, 0x00000000 }, {} }; const struct gf100_gr_init gf100_gr_init_rstr2d_0[] = { { 0x407808, 1, 0x04, 0x00000000 }, {} }; const struct gf100_gr_init gf100_gr_init_pd_0[] = { { 0x406024, 1, 0x04, 0x00000000 }, {} }; const struct gf100_gr_init gf100_gr_init_ds_0[] = { { 0x405844, 1, 0x04, 0x00ffffff }, { 0x405850, 1, 0x04, 0x00000000 }, { 0x405908, 1, 0x04, 0x00000000 }, {} }; const struct gf100_gr_init gf100_gr_init_scc_0[] = { { 0x40803c, 1, 0x04, 0x00000000 }, {} }; const struct gf100_gr_init gf100_gr_init_prop_0[] = { { 0x4184a0, 1, 0x04, 0x00000000 }, {} }; const struct gf100_gr_init gf100_gr_init_gpc_unk_0[] = { { 0x418604, 1, 0x04, 0x00000000 }, { 0x418680, 1, 0x04, 0x00000000 }, { 0x418714, 1, 0x04, 0x80000000 }, { 0x418384, 1, 0x04, 0x00000000 }, {} }; const struct gf100_gr_init gf100_gr_init_setup_0[] = { { 0x418814, 3, 0x04, 0x00000000 }, {} }; const struct gf100_gr_init gf100_gr_init_crstr_0[] = { { 0x418b04, 1, 0x04, 0x00000000 }, {} }; const struct gf100_gr_init gf100_gr_init_setup_1[] = { { 0x4188c8, 1, 0x04, 0x80000000 }, { 0x4188cc, 1, 0x04, 0x00000000 }, { 0x4188d0, 1, 0x04, 0x00010000 }, { 0x4188d4, 1, 0x04, 0x00000001 }, {} }; const struct gf100_gr_init gf100_gr_init_zcull_0[] = { { 0x418910, 1, 0x04, 0x00010001 }, { 0x418914, 1, 0x04, 0x00000301 }, { 0x418918, 1, 0x04, 0x00800000 }, { 0x418980, 1, 0x04, 0x77777770 }, { 0x418984, 3, 0x04, 0x77777777 }, {} }; const struct gf100_gr_init gf100_gr_init_gpm_0[] = { { 0x418c04, 1, 0x04, 0x00000000 }, { 0x418c88, 1, 0x04, 0x00000000 }, {} }; const struct gf100_gr_init gf100_gr_init_gpc_unk_1[] = { { 0x418d00, 1, 0x04, 0x00000000 }, { 0x418f08, 1, 0x04, 0x00000000 }, { 0x418e00, 1, 0x04, 0x00000050 }, { 0x418e08, 1, 0x04, 0x00000000 }, {} }; const struct gf100_gr_init gf100_gr_init_gcc_0[] = { { 0x41900c, 1, 0x04, 0x00000000 }, { 0x419018, 1, 0x04, 0x00000000 }, {} }; const struct gf100_gr_init gf100_gr_init_tpccs_0[] = { { 0x419d08, 2, 0x04, 0x00000000 }, { 0x419d10, 1, 0x04, 0x00000014 }, {} }; const struct gf100_gr_init gf100_gr_init_tex_0[] = { { 0x419ab0, 1, 0x04, 0x00000000 }, { 0x419ab8, 1, 0x04, 0x000000e7 }, { 0x419abc, 2, 0x04, 0x00000000 }, {} }; const struct gf100_gr_init gf100_gr_init_pe_0[] = { { 0x41980c, 3, 0x04, 0x00000000 }, { 0x419844, 1, 0x04, 0x00000000 }, { 0x41984c, 1, 0x04, 0x00005bc5 }, { 0x419850, 4, 0x04, 0x00000000 }, {} }; const struct gf100_gr_init gf100_gr_init_l1c_0[] = { { 0x419c98, 1, 0x04, 0x00000000 }, { 0x419ca8, 1, 0x04, 0x80000000 }, { 0x419cb4, 1, 0x04, 0x00000000 }, { 0x419cb8, 1, 0x04, 0x00008bf4 }, { 0x419cbc, 1, 0x04, 0x28137606 }, { 0x419cc0, 2, 0x04, 0x00000000 }, {} }; const struct gf100_gr_init gf100_gr_init_wwdx_0[] = { { 0x419bd4, 1, 0x04, 0x00800000 }, { 0x419bdc, 1, 0x04, 0x00000000 }, {} }; const struct gf100_gr_init gf100_gr_init_tpccs_1[] = { { 0x419d2c, 1, 0x04, 0x00000000 }, {} }; const struct gf100_gr_init gf100_gr_init_mpc_0[] = { { 0x419c0c, 1, 0x04, 0x00000000 }, {} }; static const struct gf100_gr_init gf100_gr_init_sm_0[] = { { 0x419e00, 1, 0x04, 0x00000000 }, { 0x419ea0, 1, 0x04, 0x00000000 }, { 0x419ea4, 1, 0x04, 0x00000100 }, { 0x419ea8, 1, 0x04, 0x00001100 }, { 0x419eac, 1, 0x04, 0x11100702 }, { 0x419eb0, 1, 0x04, 0x00000003 }, { 0x419eb4, 4, 0x04, 0x00000000 }, { 0x419ec8, 1, 0x04, 0x06060618 }, { 0x419ed0, 1, 0x04, 0x0eff0e38 }, { 0x419ed4, 1, 0x04, 0x011104f1 }, { 0x419edc, 1, 0x04, 0x00000000 }, { 0x419f00, 1, 0x04, 0x00000000 }, { 0x419f2c, 1, 0x04, 0x00000000 }, {} }; const struct gf100_gr_init gf100_gr_init_be_0[] = { { 0x40880c, 1, 0x04, 0x00000000 }, { 0x408910, 9, 0x04, 0x00000000 }, { 0x408950, 1, 0x04, 0x00000000 }, { 0x408954, 1, 0x04, 0x0000ffff }, { 0x408984, 1, 0x04, 0x00000000 }, { 0x408988, 1, 0x04, 0x08040201 }, { 0x40898c, 1, 0x04, 0x80402010 }, {} }; const struct gf100_gr_init gf100_gr_init_fe_1[] = { { 0x4040f0, 1, 0x04, 0x00000000 }, {} }; const struct gf100_gr_init gf100_gr_init_pe_1[] = { { 0x419880, 1, 0x04, 0x00000002 }, {} }; static const struct gf100_gr_pack gf100_gr_pack_mmio[] = { { gf100_gr_init_main_0 }, { gf100_gr_init_fe_0 }, { gf100_gr_init_pri_0 }, { gf100_gr_init_rstr2d_0 }, { gf100_gr_init_pd_0 }, { gf100_gr_init_ds_0 }, { gf100_gr_init_scc_0 }, { gf100_gr_init_prop_0 }, { gf100_gr_init_gpc_unk_0 }, { gf100_gr_init_setup_0 }, { gf100_gr_init_crstr_0 }, { gf100_gr_init_setup_1 }, { gf100_gr_init_zcull_0 }, { gf100_gr_init_gpm_0 }, { gf100_gr_init_gpc_unk_1 }, { gf100_gr_init_gcc_0 }, { gf100_gr_init_tpccs_0 }, { gf100_gr_init_tex_0 }, { gf100_gr_init_pe_0 }, { gf100_gr_init_l1c_0 }, { gf100_gr_init_wwdx_0 }, { gf100_gr_init_tpccs_1 }, { gf100_gr_init_mpc_0 }, { gf100_gr_init_sm_0 }, { gf100_gr_init_be_0 }, { gf100_gr_init_fe_1 }, { gf100_gr_init_pe_1 }, {} }; /******************************************************************************* * PGRAPH engine/subdev functions ******************************************************************************/ int gf100_gr_rops(struct gf100_gr *gr) { struct nvkm_device *device = gr->base.engine.subdev.device; return (nvkm_rd32(device, 0x409604) & 0x001f0000) >> 16; } void gf100_gr_zbc_init(struct gf100_gr *gr) { const u32 zero[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }; const u32 one[] = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff }; const u32 f32_0[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }; const u32 f32_1[] = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000 }; struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc; int index; if (!gr->zbc_color[0].format) { gf100_gr_zbc_color_get(gr, 1, & zero[0], &zero[4]); gf100_gr_zbc_color_get(gr, 2, & one[0], &one[4]); gf100_gr_zbc_color_get(gr, 4, &f32_0[0], &f32_0[4]); gf100_gr_zbc_color_get(gr, 4, &f32_1[0], &f32_1[4]); gf100_gr_zbc_depth_get(gr, 1, 0x00000000, 0x00000000); gf100_gr_zbc_depth_get(gr, 1, 0x3f800000, 0x3f800000); } for (index = ltc->zbc_min; index <= ltc->zbc_max; index++) gf100_gr_zbc_clear_color(gr, index); for (index = ltc->zbc_min; index <= ltc->zbc_max; index++) gf100_gr_zbc_clear_depth(gr, index); } /** * Wait until GR goes idle. GR is considered idle if it is disabled by the * MC (0x200) register, or GR is not busy and a context switch is not in * progress. */ int gf100_gr_wait_idle(struct gf100_gr *gr) { struct nvkm_subdev *subdev = &gr->base.engine.subdev; struct nvkm_device *device = subdev->device; unsigned long end_jiffies = jiffies + msecs_to_jiffies(2000); bool gr_enabled, ctxsw_active, gr_busy; do { /* * required to make sure FIFO_ENGINE_STATUS (0x2640) is * up-to-date */ nvkm_rd32(device, 0x400700); gr_enabled = nvkm_rd32(device, 0x200) & 0x1000; ctxsw_active = nvkm_rd32(device, 0x2640) & 0x8000; gr_busy = nvkm_rd32(device, 0x40060c) & 0x1; if (!gr_enabled || (!gr_busy && !ctxsw_active)) return 0; } while (time_before(jiffies, end_jiffies)); nvkm_error(subdev, "wait for idle timeout (en: %d, ctxsw: %d, busy: %d)\n", gr_enabled, ctxsw_active, gr_busy); return -EAGAIN; } void gf100_gr_mmio(struct gf100_gr *gr, const struct gf100_gr_pack *p) { struct nvkm_device *device = gr->base.engine.subdev.device; const struct gf100_gr_pack *pack; const struct gf100_gr_init *init; pack_for_each_init(init, pack, p) { u32 next = init->addr + init->count * init->pitch; u32 addr = init->addr; while (addr < next) { nvkm_wr32(device, addr, init->data); addr += init->pitch; } } } void gf100_gr_icmd(struct gf100_gr *gr, const struct gf100_gr_pack *p) { struct nvkm_device *device = gr->base.engine.subdev.device; const struct gf100_gr_pack *pack; const struct gf100_gr_init *init; u32 data = 0; nvkm_wr32(device, 0x400208, 0x80000000); pack_for_each_init(init, pack, p) { u32 next = init->addr + init->count * init->pitch; u32 addr = init->addr; if ((pack == p && init == p->init) || data != init->data) { nvkm_wr32(device, 0x400204, init->data); data = init->data; } while (addr < next) { nvkm_wr32(device, 0x400200, addr); /** * Wait for GR to go idle after submitting a * GO_IDLE bundle */ if ((addr & 0xffff) == 0xe100) gf100_gr_wait_idle(gr); nvkm_msec(device, 2000, if (!(nvkm_rd32(device, 0x400700) & 0x00000004)) break; ); addr += init->pitch; } } nvkm_wr32(device, 0x400208, 0x00000000); } void gf100_gr_mthd(struct gf100_gr *gr, const struct gf100_gr_pack *p) { struct nvkm_device *device = gr->base.engine.subdev.device; const struct gf100_gr_pack *pack; const struct gf100_gr_init *init; u32 data = 0; pack_for_each_init(init, pack, p) { u32 ctrl = 0x80000000 | pack->type; u32 next = init->addr + init->count * init->pitch; u32 addr = init->addr; if ((pack == p && init == p->init) || data != init->data) { nvkm_wr32(device, 0x40448c, init->data); data = init->data; } while (addr < next) { nvkm_wr32(device, 0x404488, ctrl | (addr << 14)); addr += init->pitch; } } } u64 gf100_gr_units(struct nvkm_gr *base) { struct gf100_gr *gr = gf100_gr(base); u64 cfg; cfg = (u32)gr->gpc_nr; cfg |= (u32)gr->tpc_total << 8; cfg |= (u64)gr->rop_nr << 32; return cfg; } static const struct nvkm_bitfield gf100_dispatch_error[] = { { 0x00000001, "INJECTED_BUNDLE_ERROR" }, { 0x00000002, "CLASS_SUBCH_MISMATCH" }, { 0x00000004, "SUBCHSW_DURING_NOTIFY" }, {} }; static const struct nvkm_bitfield gf100_m2mf_error[] = { { 0x00000001, "PUSH_TOO_MUCH_DATA" }, { 0x00000002, "PUSH_NOT_ENOUGH_DATA" }, {} }; static const struct nvkm_bitfield gf100_unk6_error[] = { { 0x00000001, "TEMP_TOO_SMALL" }, {} }; static const struct nvkm_bitfield gf100_ccache_error[] = { { 0x00000001, "INTR" }, { 0x00000002, "LDCONST_OOB" }, {} }; static const struct nvkm_bitfield gf100_macro_error[] = { { 0x00000001, "TOO_FEW_PARAMS" }, { 0x00000002, "TOO_MANY_PARAMS" }, { 0x00000004, "ILLEGAL_OPCODE" }, { 0x00000008, "DOUBLE_BRANCH" }, { 0x00000010, "WATCHDOG" }, {} }; static const struct nvkm_bitfield gk104_sked_error[] = { { 0x00000040, "CTA_RESUME" }, { 0x00000080, "CONSTANT_BUFFER_SIZE" }, { 0x00000200, "LOCAL_MEMORY_SIZE_POS" }, { 0x00000400, "LOCAL_MEMORY_SIZE_NEG" }, { 0x00000800, "WARP_CSTACK_SIZE" }, { 0x00001000, "TOTAL_TEMP_SIZE" }, { 0x00002000, "REGISTER_COUNT" }, { 0x00040000, "TOTAL_THREADS" }, { 0x00100000, "PROGRAM_OFFSET" }, { 0x00200000, "SHARED_MEMORY_SIZE" }, { 0x00800000, "CTA_THREAD_DIMENSION_ZERO" }, { 0x01000000, "MEMORY_WINDOW_OVERLAP" }, { 0x02000000, "SHARED_CONFIG_TOO_SMALL" }, { 0x04000000, "TOTAL_REGISTER_COUNT" }, {} }; static const struct nvkm_bitfield gf100_gpc_rop_error[] = { { 0x00000002, "RT_PITCH_OVERRUN" }, { 0x00000010, "RT_WIDTH_OVERRUN" }, { 0x00000020, "RT_HEIGHT_OVERRUN" }, { 0x00000080, "ZETA_STORAGE_TYPE_MISMATCH" }, { 0x00000100, "RT_STORAGE_TYPE_MISMATCH" }, { 0x00000400, "RT_LINEAR_MISMATCH" }, {} }; static void gf100_gr_trap_gpc_rop(struct gf100_gr *gr, int gpc) { struct nvkm_subdev *subdev = &gr->base.engine.subdev; struct nvkm_device *device = subdev->device; char error[128]; u32 trap[4]; trap[0] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0420)) & 0x3fffffff; trap[1] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0434)); trap[2] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0438)); trap[3] = nvkm_rd32(device, GPC_UNIT(gpc, 0x043c)); nvkm_snprintbf(error, sizeof(error), gf100_gpc_rop_error, trap[0]); nvkm_error(subdev, "GPC%d/PROP trap: %08x [%s] x = %u, y = %u, " "format = %x, storage type = %x\n", gpc, trap[0], error, trap[1] & 0xffff, trap[1] >> 16, (trap[2] >> 8) & 0x3f, trap[3] & 0xff); nvkm_wr32(device, GPC_UNIT(gpc, 0x0420), 0xc0000000); } static const struct nvkm_enum gf100_mp_warp_error[] = { { 0x01, "STACK_ERROR" }, { 0x02, "API_STACK_ERROR" }, { 0x03, "RET_EMPTY_STACK_ERROR" }, { 0x04, "PC_WRAP" }, { 0x05, "MISALIGNED_PC" }, { 0x06, "PC_OVERFLOW" }, { 0x07, "MISALIGNED_IMMC_ADDR" }, { 0x08, "MISALIGNED_REG" }, { 0x09, "ILLEGAL_INSTR_ENCODING" }, { 0x0a, "ILLEGAL_SPH_INSTR_COMBO" }, { 0x0b, "ILLEGAL_INSTR_PARAM" }, { 0x0c, "INVALID_CONST_ADDR" }, { 0x0d, "OOR_REG" }, { 0x0e, "OOR_ADDR" }, { 0x0f, "MISALIGNED_ADDR" }, { 0x10, "INVALID_ADDR_SPACE" }, { 0x11, "ILLEGAL_INSTR_PARAM2" }, { 0x12, "INVALID_CONST_ADDR_LDC" }, { 0x13, "GEOMETRY_SM_ERROR" }, { 0x14, "DIVERGENT" }, { 0x15, "WARP_EXIT" }, {} }; static const struct nvkm_bitfield gf100_mp_global_error[] = { { 0x00000001, "SM_TO_SM_FAULT" }, { 0x00000002, "L1_ERROR" }, { 0x00000004, "MULTIPLE_WARP_ERRORS" }, { 0x00000008, "PHYSICAL_STACK_OVERFLOW" }, { 0x00000010, "BPT_INT" }, { 0x00000020, "BPT_PAUSE" }, { 0x00000040, "SINGLE_STEP_COMPLETE" }, { 0x20000000, "ECC_SEC_ERROR" }, { 0x40000000, "ECC_DED_ERROR" }, { 0x80000000, "TIMEOUT" }, {} }; static void gf100_gr_trap_mp(struct gf100_gr *gr, int gpc, int tpc) { struct nvkm_subdev *subdev = &gr->base.engine.subdev; struct nvkm_device *device = subdev->device; u32 werr = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x648)); u32 gerr = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x650)); const struct nvkm_enum *warp; char glob[128]; nvkm_snprintbf(glob, sizeof(glob), gf100_mp_global_error, gerr); warp = nvkm_enum_find(gf100_mp_warp_error, werr & 0xffff); nvkm_error(subdev, "GPC%i/TPC%i/MP trap: " "global %08x [%s] warp %04x [%s]\n", gpc, tpc, gerr, glob, werr, warp ? warp->name : ""); nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x648), 0x00000000); nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x650), gerr); } static void gf100_gr_trap_tpc(struct gf100_gr *gr, int gpc, int tpc) { struct nvkm_subdev *subdev = &gr->base.engine.subdev; struct nvkm_device *device = subdev->device; u32 stat = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0508)); if (stat & 0x00000001) { u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0224)); nvkm_error(subdev, "GPC%d/TPC%d/TEX: %08x\n", gpc, tpc, trap); nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0224), 0xc0000000); stat &= ~0x00000001; } if (stat & 0x00000002) { gf100_gr_trap_mp(gr, gpc, tpc); stat &= ~0x00000002; } if (stat & 0x00000004) { u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0084)); nvkm_error(subdev, "GPC%d/TPC%d/POLY: %08x\n", gpc, tpc, trap); nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0084), 0xc0000000); stat &= ~0x00000004; } if (stat & 0x00000008) { u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x048c)); nvkm_error(subdev, "GPC%d/TPC%d/L1C: %08x\n", gpc, tpc, trap); nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x048c), 0xc0000000); stat &= ~0x00000008; } if (stat) { nvkm_error(subdev, "GPC%d/TPC%d/%08x: unknown\n", gpc, tpc, stat); } } static void gf100_gr_trap_gpc(struct gf100_gr *gr, int gpc) { struct nvkm_subdev *subdev = &gr->base.engine.subdev; struct nvkm_device *device = subdev->device; u32 stat = nvkm_rd32(device, GPC_UNIT(gpc, 0x2c90)); int tpc; if (stat & 0x00000001) { gf100_gr_trap_gpc_rop(gr, gpc); stat &= ~0x00000001; } if (stat & 0x00000002) { u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x0900)); nvkm_error(subdev, "GPC%d/ZCULL: %08x\n", gpc, trap); nvkm_wr32(device, GPC_UNIT(gpc, 0x0900), 0xc0000000); stat &= ~0x00000002; } if (stat & 0x00000004) { u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x1028)); nvkm_error(subdev, "GPC%d/CCACHE: %08x\n", gpc, trap); nvkm_wr32(device, GPC_UNIT(gpc, 0x1028), 0xc0000000); stat &= ~0x00000004; } if (stat & 0x00000008) { u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x0824)); nvkm_error(subdev, "GPC%d/ESETUP: %08x\n", gpc, trap); nvkm_wr32(device, GPC_UNIT(gpc, 0x0824), 0xc0000000); stat &= ~0x00000009; } for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++) { u32 mask = 0x00010000 << tpc; if (stat & mask) { gf100_gr_trap_tpc(gr, gpc, tpc); nvkm_wr32(device, GPC_UNIT(gpc, 0x2c90), mask); stat &= ~mask; } } if (stat) { nvkm_error(subdev, "GPC%d/%08x: unknown\n", gpc, stat); } } static void gf100_gr_trap_intr(struct gf100_gr *gr) { struct nvkm_subdev *subdev = &gr->base.engine.subdev; struct nvkm_device *device = subdev->device; char error[128]; u32 trap = nvkm_rd32(device, 0x400108); int rop, gpc; if (trap & 0x00000001) { u32 stat = nvkm_rd32(device, 0x404000); nvkm_snprintbf(error, sizeof(error), gf100_dispatch_error, stat & 0x3fffffff); nvkm_error(subdev, "DISPATCH %08x [%s]\n", stat, error); nvkm_wr32(device, 0x404000, 0xc0000000); nvkm_wr32(device, 0x400108, 0x00000001); trap &= ~0x00000001; } if (trap & 0x00000002) { u32 stat = nvkm_rd32(device, 0x404600); nvkm_snprintbf(error, sizeof(error), gf100_m2mf_error, stat & 0x3fffffff); nvkm_error(subdev, "M2MF %08x [%s]\n", stat, error); nvkm_wr32(device, 0x404600, 0xc0000000); nvkm_wr32(device, 0x400108, 0x00000002); trap &= ~0x00000002; } if (trap & 0x00000008) { u32 stat = nvkm_rd32(device, 0x408030); nvkm_snprintbf(error, sizeof(error), gf100_m2mf_error, stat & 0x3fffffff); nvkm_error(subdev, "CCACHE %08x [%s]\n", stat, error); nvkm_wr32(device, 0x408030, 0xc0000000); nvkm_wr32(device, 0x400108, 0x00000008); trap &= ~0x00000008; } if (trap & 0x00000010) { u32 stat = nvkm_rd32(device, 0x405840); nvkm_error(subdev, "SHADER %08x, sph: 0x%06x, stage: 0x%02x\n", stat, stat & 0xffffff, (stat >> 24) & 0x3f); nvkm_wr32(device, 0x405840, 0xc0000000); nvkm_wr32(device, 0x400108, 0x00000010); trap &= ~0x00000010; } if (trap & 0x00000040) { u32 stat = nvkm_rd32(device, 0x40601c); nvkm_snprintbf(error, sizeof(error), gf100_unk6_error, stat & 0x3fffffff); nvkm_error(subdev, "UNK6 %08x [%s]\n", stat, error); nvkm_wr32(device, 0x40601c, 0xc0000000); nvkm_wr32(device, 0x400108, 0x00000040); trap &= ~0x00000040; } if (trap & 0x00000080) { u32 stat = nvkm_rd32(device, 0x404490); u32 pc = nvkm_rd32(device, 0x404494); u32 op = nvkm_rd32(device, 0x40449c); nvkm_snprintbf(error, sizeof(error), gf100_macro_error, stat & 0x1fffffff); nvkm_error(subdev, "MACRO %08x [%s], pc: 0x%03x%s, op: 0x%08x\n", stat, error, pc & 0x7ff, (pc & 0x10000000) ? "" : " (invalid)", op); nvkm_wr32(device, 0x404490, 0xc0000000); nvkm_wr32(device, 0x400108, 0x00000080); trap &= ~0x00000080; } if (trap & 0x00000100) { u32 stat = nvkm_rd32(device, 0x407020) & 0x3fffffff; nvkm_snprintbf(error, sizeof(error), gk104_sked_error, stat); nvkm_error(subdev, "SKED: %08x [%s]\n", stat, error); if (stat) nvkm_wr32(device, 0x407020, 0x40000000); nvkm_wr32(device, 0x400108, 0x00000100); trap &= ~0x00000100; } if (trap & 0x01000000) { u32 stat = nvkm_rd32(device, 0x400118); for (gpc = 0; stat && gpc < gr->gpc_nr; gpc++) { u32 mask = 0x00000001 << gpc; if (stat & mask) { gf100_gr_trap_gpc(gr, gpc); nvkm_wr32(device, 0x400118, mask); stat &= ~mask; } } nvkm_wr32(device, 0x400108, 0x01000000); trap &= ~0x01000000; } if (trap & 0x02000000) { for (rop = 0; rop < gr->rop_nr; rop++) { u32 statz = nvkm_rd32(device, ROP_UNIT(rop, 0x070)); u32 statc = nvkm_rd32(device, ROP_UNIT(rop, 0x144)); nvkm_error(subdev, "ROP%d %08x %08x\n", rop, statz, statc); nvkm_wr32(device, ROP_UNIT(rop, 0x070), 0xc0000000); nvkm_wr32(device, ROP_UNIT(rop, 0x144), 0xc0000000); } nvkm_wr32(device, 0x400108, 0x02000000); trap &= ~0x02000000; } if (trap) { nvkm_error(subdev, "TRAP UNHANDLED %08x\n", trap); nvkm_wr32(device, 0x400108, trap); } } static void gf100_gr_ctxctl_debug_unit(struct gf100_gr *gr, u32 base) { struct nvkm_subdev *subdev = &gr->base.engine.subdev; struct nvkm_device *device = subdev->device; nvkm_error(subdev, "%06x - done %08x\n", base, nvkm_rd32(device, base + 0x400)); nvkm_error(subdev, "%06x - stat %08x %08x %08x %08x\n", base, nvkm_rd32(device, base + 0x800), nvkm_rd32(device, base + 0x804), nvkm_rd32(device, base + 0x808), nvkm_rd32(device, base + 0x80c)); nvkm_error(subdev, "%06x - stat %08x %08x %08x %08x\n", base, nvkm_rd32(device, base + 0x810), nvkm_rd32(device, base + 0x814), nvkm_rd32(device, base + 0x818), nvkm_rd32(device, base + 0x81c)); } void gf100_gr_ctxctl_debug(struct gf100_gr *gr) { struct nvkm_device *device = gr->base.engine.subdev.device; u32 gpcnr = nvkm_rd32(device, 0x409604) & 0xffff; u32 gpc; gf100_gr_ctxctl_debug_unit(gr, 0x409000); for (gpc = 0; gpc < gpcnr; gpc++) gf100_gr_ctxctl_debug_unit(gr, 0x502000 + (gpc * 0x8000)); } static void gf100_gr_ctxctl_isr(struct gf100_gr *gr) { struct nvkm_subdev *subdev = &gr->base.engine.subdev; struct nvkm_device *device = subdev->device; u32 stat = nvkm_rd32(device, 0x409c18); if (stat & 0x00000001) { u32 code = nvkm_rd32(device, 0x409814); if (code == E_BAD_FWMTHD) { u32 class = nvkm_rd32(device, 0x409808); u32 addr = nvkm_rd32(device, 0x40980c); u32 subc = (addr & 0x00070000) >> 16; u32 mthd = (addr & 0x00003ffc); u32 data = nvkm_rd32(device, 0x409810); nvkm_error(subdev, "FECS MTHD subc %d class %04x " "mthd %04x data %08x\n", subc, class, mthd, data); nvkm_wr32(device, 0x409c20, 0x00000001); stat &= ~0x00000001; } else { nvkm_error(subdev, "FECS ucode error %d\n", code); } } if (stat & 0x00080000) { nvkm_error(subdev, "FECS watchdog timeout\n"); gf100_gr_ctxctl_debug(gr); nvkm_wr32(device, 0x409c20, 0x00080000); stat &= ~0x00080000; } if (stat) { nvkm_error(subdev, "FECS %08x\n", stat); gf100_gr_ctxctl_debug(gr); nvkm_wr32(device, 0x409c20, stat); } } static void gf100_gr_intr(struct nvkm_gr *base) { struct gf100_gr *gr = gf100_gr(base); struct nvkm_subdev *subdev = &gr->base.engine.subdev; struct nvkm_device *device = subdev->device; struct nvkm_fifo_chan *chan; unsigned long flags; u64 inst = nvkm_rd32(device, 0x409b00) & 0x0fffffff; u32 stat = nvkm_rd32(device, 0x400100); u32 addr = nvkm_rd32(device, 0x400704); u32 mthd = (addr & 0x00003ffc); u32 subc = (addr & 0x00070000) >> 16; u32 data = nvkm_rd32(device, 0x400708); u32 code = nvkm_rd32(device, 0x400110); u32 class; const char *name = "unknown"; int chid = -1; chan = nvkm_fifo_chan_inst(device->fifo, (u64)inst << 12, &flags); if (chan) { name = chan->object.client->name; chid = chan->chid; } if (device->card_type < NV_E0 || subc < 4) class = nvkm_rd32(device, 0x404200 + (subc * 4)); else class = 0x0000; if (stat & 0x00000001) { /* * notifier interrupt, only needed for cyclestats * can be safely ignored */ nvkm_wr32(device, 0x400100, 0x00000001); stat &= ~0x00000001; } if (stat & 0x00000010) { if (!gf100_gr_mthd_sw(device, class, mthd, data)) { nvkm_error(subdev, "ILLEGAL_MTHD ch %d [%010llx %s] " "subc %d class %04x mthd %04x data %08x\n", chid, inst << 12, name, subc, class, mthd, data); } nvkm_wr32(device, 0x400100, 0x00000010); stat &= ~0x00000010; } if (stat & 0x00000020) { nvkm_error(subdev, "ILLEGAL_CLASS ch %d [%010llx %s] " "subc %d class %04x mthd %04x data %08x\n", chid, inst << 12, name, subc, class, mthd, data); nvkm_wr32(device, 0x400100, 0x00000020); stat &= ~0x00000020; } if (stat & 0x00100000) { const struct nvkm_enum *en = nvkm_enum_find(nv50_data_error_names, code); nvkm_error(subdev, "DATA_ERROR %08x [%s] ch %d [%010llx %s] " "subc %d class %04x mthd %04x data %08x\n", code, en ? en->name : "", chid, inst << 12, name, subc, class, mthd, data); nvkm_wr32(device, 0x400100, 0x00100000); stat &= ~0x00100000; } if (stat & 0x00200000) { nvkm_error(subdev, "TRAP ch %d [%010llx %s]\n", chid, inst << 12, name); gf100_gr_trap_intr(gr); nvkm_wr32(device, 0x400100, 0x00200000); stat &= ~0x00200000; } if (stat & 0x00080000) { gf100_gr_ctxctl_isr(gr); nvkm_wr32(device, 0x400100, 0x00080000); stat &= ~0x00080000; } if (stat) { nvkm_error(subdev, "intr %08x\n", stat); nvkm_wr32(device, 0x400100, stat); } nvkm_wr32(device, 0x400500, 0x00010001); nvkm_fifo_chan_put(device->fifo, flags, &chan); } static void gf100_gr_init_fw(struct gf100_gr *gr, u32 fuc_base, struct gf100_gr_fuc *code, struct gf100_gr_fuc *data) { struct nvkm_device *device = gr->base.engine.subdev.device; int i; nvkm_wr32(device, fuc_base + 0x01c0, 0x01000000); for (i = 0; i < data->size / 4; i++) nvkm_wr32(device, fuc_base + 0x01c4, data->data[i]); nvkm_wr32(device, fuc_base + 0x0180, 0x01000000); for (i = 0; i < code->size / 4; i++) { if ((i & 0x3f) == 0) nvkm_wr32(device, fuc_base + 0x0188, i >> 6); nvkm_wr32(device, fuc_base + 0x0184, code->data[i]); } /* code must be padded to 0x40 words */ for (; i & 0x3f; i++) nvkm_wr32(device, fuc_base + 0x0184, 0); } static void gf100_gr_init_csdata(struct gf100_gr *gr, const struct gf100_gr_pack *pack, u32 falcon, u32 starstar, u32 base) { struct nvkm_device *device = gr->base.engine.subdev.device; const struct gf100_gr_pack *iter; const struct gf100_gr_init *init; u32 addr = ~0, prev = ~0, xfer = 0; u32 star, temp; nvkm_wr32(device, falcon + 0x01c0, 0x02000000 + starstar); star = nvkm_rd32(device, falcon + 0x01c4); temp = nvkm_rd32(device, falcon + 0x01c4); if (temp > star) star = temp; nvkm_wr32(device, falcon + 0x01c0, 0x01000000 + star); pack_for_each_init(init, iter, pack) { u32 head = init->addr - base; u32 tail = head + init->count * init->pitch; while (head < tail) { if (head != prev + 4 || xfer >= 32) { if (xfer) { u32 data = ((--xfer << 26) | addr); nvkm_wr32(device, falcon + 0x01c4, data); star += 4; } addr = head; xfer = 0; } prev = head; xfer = xfer + 1; head = head + init->pitch; } } nvkm_wr32(device, falcon + 0x01c4, (--xfer << 26) | addr); nvkm_wr32(device, falcon + 0x01c0, 0x01000004 + starstar); nvkm_wr32(device, falcon + 0x01c4, star + 4); } int gf100_gr_init_ctxctl(struct gf100_gr *gr) { const struct gf100_grctx_func *grctx = gr->func->grctx; struct nvkm_subdev *subdev = &gr->base.engine.subdev; struct nvkm_device *device = subdev->device; struct nvkm_secboot *sb = device->secboot; int i; int ret = 0; if (gr->firmware) { /* load fuc microcode */ nvkm_mc_unk260(device, 0); /* securely-managed falcons must be reset using secure boot */ if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_FECS)) ret = nvkm_secboot_reset(sb, NVKM_SECBOOT_FALCON_FECS); else gf100_gr_init_fw(gr, 0x409000, &gr->fuc409c, &gr->fuc409d); if (ret) return ret; if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_GPCCS)) ret = nvkm_secboot_reset(sb, NVKM_SECBOOT_FALCON_GPCCS); else gf100_gr_init_fw(gr, 0x41a000, &gr->fuc41ac, &gr->fuc41ad); if (ret) return ret; nvkm_mc_unk260(device, 1); /* start both of them running */ nvkm_wr32(device, 0x409840, 0xffffffff); nvkm_wr32(device, 0x41a10c, 0x00000000); nvkm_wr32(device, 0x40910c, 0x00000000); if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_GPCCS)) nvkm_secboot_start(sb, NVKM_SECBOOT_FALCON_GPCCS); else nvkm_wr32(device, 0x41a100, 0x00000002); if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_FECS)) nvkm_secboot_start(sb, NVKM_SECBOOT_FALCON_FECS); else nvkm_wr32(device, 0x409100, 0x00000002); if (nvkm_msec(device, 2000, if (nvkm_rd32(device, 0x409800) & 0x00000001) break; ) < 0) return -EBUSY; nvkm_wr32(device, 0x409840, 0xffffffff); nvkm_wr32(device, 0x409500, 0x7fffffff); nvkm_wr32(device, 0x409504, 0x00000021); nvkm_wr32(device, 0x409840, 0xffffffff); nvkm_wr32(device, 0x409500, 0x00000000); nvkm_wr32(device, 0x409504, 0x00000010); if (nvkm_msec(device, 2000, if ((gr->size = nvkm_rd32(device, 0x409800))) break; ) < 0) return -EBUSY; nvkm_wr32(device, 0x409840, 0xffffffff); nvkm_wr32(device, 0x409500, 0x00000000); nvkm_wr32(device, 0x409504, 0x00000016); if (nvkm_msec(device, 2000, if (nvkm_rd32(device, 0x409800)) break; ) < 0) return -EBUSY; nvkm_wr32(device, 0x409840, 0xffffffff); nvkm_wr32(device, 0x409500, 0x00000000); nvkm_wr32(device, 0x409504, 0x00000025); if (nvkm_msec(device, 2000, if (nvkm_rd32(device, 0x409800)) break; ) < 0) return -EBUSY; if (device->chipset >= 0xe0) { nvkm_wr32(device, 0x409800, 0x00000000); nvkm_wr32(device, 0x409500, 0x00000001); nvkm_wr32(device, 0x409504, 0x00000030); if (nvkm_msec(device, 2000, if (nvkm_rd32(device, 0x409800)) break; ) < 0) return -EBUSY; nvkm_wr32(device, 0x409810, 0xb00095c8); nvkm_wr32(device, 0x409800, 0x00000000); nvkm_wr32(device, 0x409500, 0x00000001); nvkm_wr32(device, 0x409504, 0x00000031); if (nvkm_msec(device, 2000, if (nvkm_rd32(device, 0x409800)) break; ) < 0) return -EBUSY; nvkm_wr32(device, 0x409810, 0x00080420); nvkm_wr32(device, 0x409800, 0x00000000); nvkm_wr32(device, 0x409500, 0x00000001); nvkm_wr32(device, 0x409504, 0x00000032); if (nvkm_msec(device, 2000, if (nvkm_rd32(device, 0x409800)) break; ) < 0) return -EBUSY; nvkm_wr32(device, 0x409614, 0x00000070); nvkm_wr32(device, 0x409614, 0x00000770); nvkm_wr32(device, 0x40802c, 0x00000001); } if (gr->data == NULL) { int ret = gf100_grctx_generate(gr); if (ret) { nvkm_error(subdev, "failed to construct context\n"); return ret; } } return 0; } else if (!gr->func->fecs.ucode) { return -ENOSYS; } /* load HUB microcode */ nvkm_mc_unk260(device, 0); nvkm_wr32(device, 0x4091c0, 0x01000000); for (i = 0; i < gr->func->fecs.ucode->data.size / 4; i++) nvkm_wr32(device, 0x4091c4, gr->func->fecs.ucode->data.data[i]); nvkm_wr32(device, 0x409180, 0x01000000); for (i = 0; i < gr->func->fecs.ucode->code.size / 4; i++) { if ((i & 0x3f) == 0) nvkm_wr32(device, 0x409188, i >> 6); nvkm_wr32(device, 0x409184, gr->func->fecs.ucode->code.data[i]); } /* load GPC microcode */ nvkm_wr32(device, 0x41a1c0, 0x01000000); for (i = 0; i < gr->func->gpccs.ucode->data.size / 4; i++) nvkm_wr32(device, 0x41a1c4, gr->func->gpccs.ucode->data.data[i]); nvkm_wr32(device, 0x41a180, 0x01000000); for (i = 0; i < gr->func->gpccs.ucode->code.size / 4; i++) { if ((i & 0x3f) == 0) nvkm_wr32(device, 0x41a188, i >> 6); nvkm_wr32(device, 0x41a184, gr->func->gpccs.ucode->code.data[i]); } nvkm_mc_unk260(device, 1); /* load register lists */ gf100_gr_init_csdata(gr, grctx->hub, 0x409000, 0x000, 0x000000); gf100_gr_init_csdata(gr, grctx->gpc, 0x41a000, 0x000, 0x418000); gf100_gr_init_csdata(gr, grctx->tpc, 0x41a000, 0x004, 0x419800); gf100_gr_init_csdata(gr, grctx->ppc, 0x41a000, 0x008, 0x41be00); /* start HUB ucode running, it'll init the GPCs */ nvkm_wr32(device, 0x40910c, 0x00000000); nvkm_wr32(device, 0x409100, 0x00000002); if (nvkm_msec(device, 2000, if (nvkm_rd32(device, 0x409800) & 0x80000000) break; ) < 0) { gf100_gr_ctxctl_debug(gr); return -EBUSY; } gr->size = nvkm_rd32(device, 0x409804); if (gr->data == NULL) { int ret = gf100_grctx_generate(gr); if (ret) { nvkm_error(subdev, "failed to construct context\n"); return ret; } } return 0; } static int gf100_gr_oneinit(struct nvkm_gr *base) { struct gf100_gr *gr = gf100_gr(base); struct nvkm_device *device = gr->base.engine.subdev.device; int i, j; nvkm_pmu_pgob(device->pmu, false); gr->rop_nr = gr->func->rops(gr); gr->gpc_nr = nvkm_rd32(device, 0x409604) & 0x0000001f; for (i = 0; i < gr->gpc_nr; i++) { gr->tpc_nr[i] = nvkm_rd32(device, GPC_UNIT(i, 0x2608)); gr->tpc_total += gr->tpc_nr[i]; gr->ppc_nr[i] = gr->func->ppc_nr; for (j = 0; j < gr->ppc_nr[i]; j++) { u8 mask = nvkm_rd32(device, GPC_UNIT(i, 0x0c30 + (j * 4))); if (mask) gr->ppc_mask[i] |= (1 << j); gr->ppc_tpc_nr[i][j] = hweight8(mask); } } /*XXX: these need figuring out... though it might not even matter */ switch (device->chipset) { case 0xc0: if (gr->tpc_total == 11) { /* 465, 3/4/4/0, 4 */ gr->screen_tile_row_offset = 0x07; } else if (gr->tpc_total == 14) { /* 470, 3/3/4/4, 5 */ gr->screen_tile_row_offset = 0x05; } else if (gr->tpc_total == 15) { /* 480, 3/4/4/4, 6 */ gr->screen_tile_row_offset = 0x06; } break; case 0xc3: /* 450, 4/0/0/0, 2 */ gr->screen_tile_row_offset = 0x03; break; case 0xc4: /* 460, 3/4/0/0, 4 */ gr->screen_tile_row_offset = 0x01; break; case 0xc1: /* 2/0/0/0, 1 */ gr->screen_tile_row_offset = 0x01; break; case 0xc8: /* 4/4/3/4, 5 */ gr->screen_tile_row_offset = 0x06; break; case 0xce: /* 4/4/0/0, 4 */ gr->screen_tile_row_offset = 0x03; break; case 0xcf: /* 4/0/0/0, 3 */ gr->screen_tile_row_offset = 0x03; break; case 0xd7: case 0xd9: /* 1/0/0/0, 1 */ case 0xea: /* gk20a */ case 0x12b: /* gm20b */ gr->screen_tile_row_offset = 0x01; break; } return 0; } static int gf100_gr_init_(struct nvkm_gr *base) { struct gf100_gr *gr = gf100_gr(base); nvkm_pmu_pgob(gr->base.engine.subdev.device->pmu, false); return gr->func->init(gr); } void gf100_gr_dtor_fw(struct gf100_gr_fuc *fuc) { kfree(fuc->data); fuc->data = NULL; } static void gf100_gr_dtor_init(struct gf100_gr_pack *pack) { vfree(pack); } void * gf100_gr_dtor(struct nvkm_gr *base) { struct gf100_gr *gr = gf100_gr(base); if (gr->func->dtor) gr->func->dtor(gr); kfree(gr->data); gf100_gr_dtor_fw(&gr->fuc409c); gf100_gr_dtor_fw(&gr->fuc409d); gf100_gr_dtor_fw(&gr->fuc41ac); gf100_gr_dtor_fw(&gr->fuc41ad); gf100_gr_dtor_init(gr->fuc_bundle); gf100_gr_dtor_init(gr->fuc_method); gf100_gr_dtor_init(gr->fuc_sw_ctx); gf100_gr_dtor_init(gr->fuc_sw_nonctx); return gr; } static const struct nvkm_gr_func gf100_gr_ = { .dtor = gf100_gr_dtor, .oneinit = gf100_gr_oneinit, .init = gf100_gr_init_, .intr = gf100_gr_intr, .units = gf100_gr_units, .chan_new = gf100_gr_chan_new, .object_get = gf100_gr_object_get, }; int gf100_gr_ctor_fw(struct gf100_gr *gr, const char *fwname, struct gf100_gr_fuc *fuc) { struct nvkm_subdev *subdev = &gr->base.engine.subdev; struct nvkm_device *device = subdev->device; const struct firmware *fw; int ret; ret = nvkm_firmware_get(device, fwname, &fw); if (ret) { nvkm_error(subdev, "failed to load %s\n", fwname); return ret; } fuc->size = fw->size; fuc->data = kmemdup(fw->data, fuc->size, GFP_KERNEL); nvkm_firmware_put(fw); return (fuc->data != NULL) ? 0 : -ENOMEM; } int gf100_gr_ctor(const struct gf100_gr_func *func, struct nvkm_device *device, int index, struct gf100_gr *gr) { int ret; gr->func = func; gr->firmware = nvkm_boolopt(device->cfgopt, "NvGrUseFW", func->fecs.ucode == NULL); ret = nvkm_gr_ctor(&gf100_gr_, device, index, gr->firmware || func->fecs.ucode != NULL, &gr->base); if (ret) return ret; return 0; } int gf100_gr_new_(const struct gf100_gr_func *func, struct nvkm_device *device, int index, struct nvkm_gr **pgr) { struct gf100_gr *gr; int ret; if (!(gr = kzalloc(sizeof(*gr), GFP_KERNEL))) return -ENOMEM; *pgr = &gr->base; ret = gf100_gr_ctor(func, device, index, gr); if (ret) return ret; if (gr->firmware) { if (gf100_gr_ctor_fw(gr, "fecs_inst", &gr->fuc409c) || gf100_gr_ctor_fw(gr, "fecs_data", &gr->fuc409d) || gf100_gr_ctor_fw(gr, "gpccs_inst", &gr->fuc41ac) || gf100_gr_ctor_fw(gr, "gpccs_data", &gr->fuc41ad)) return -ENODEV; } return 0; } int gf100_gr_init(struct gf100_gr *gr) { struct nvkm_device *device = gr->base.engine.subdev.device; struct nvkm_fb *fb = device->fb; const u32 magicgpc918 = DIV_ROUND_UP(0x00800000, gr->tpc_total); u32 data[TPC_MAX / 8] = {}; u8 tpcnr[GPC_MAX]; int gpc, tpc, rop; int i; nvkm_wr32(device, GPC_BCAST(0x0880), 0x00000000); nvkm_wr32(device, GPC_BCAST(0x08a4), 0x00000000); nvkm_wr32(device, GPC_BCAST(0x0888), 0x00000000); nvkm_wr32(device, GPC_BCAST(0x088c), 0x00000000); nvkm_wr32(device, GPC_BCAST(0x0890), 0x00000000); nvkm_wr32(device, GPC_BCAST(0x0894), 0x00000000); nvkm_wr32(device, GPC_BCAST(0x08b4), nvkm_memory_addr(fb->mmu_wr) >> 8); nvkm_wr32(device, GPC_BCAST(0x08b8), nvkm_memory_addr(fb->mmu_rd) >> 8); gf100_gr_mmio(gr, gr->func->mmio); nvkm_mask(device, TPC_UNIT(0, 0, 0x05c), 0x00000001, 0x00000001); memcpy(tpcnr, gr->tpc_nr, sizeof(gr->tpc_nr)); for (i = 0, gpc = -1; i < gr->tpc_total; i++) { do { gpc = (gpc + 1) % gr->gpc_nr; } while (!tpcnr[gpc]); tpc = gr->tpc_nr[gpc] - tpcnr[gpc]--; data[i / 8] |= tpc << ((i % 8) * 4); } nvkm_wr32(device, GPC_BCAST(0x0980), data[0]); nvkm_wr32(device, GPC_BCAST(0x0984), data[1]); nvkm_wr32(device, GPC_BCAST(0x0988), data[2]); nvkm_wr32(device, GPC_BCAST(0x098c), data[3]); for (gpc = 0; gpc < gr->gpc_nr; gpc++) { nvkm_wr32(device, GPC_UNIT(gpc, 0x0914), gr->screen_tile_row_offset << 8 | gr->tpc_nr[gpc]); nvkm_wr32(device, GPC_UNIT(gpc, 0x0910), 0x00040000 | gr->tpc_total); nvkm_wr32(device, GPC_UNIT(gpc, 0x0918), magicgpc918); } if (device->chipset != 0xd7) nvkm_wr32(device, GPC_BCAST(0x1bd4), magicgpc918); else nvkm_wr32(device, GPC_BCAST(0x3fd4), magicgpc918); nvkm_wr32(device, GPC_BCAST(0x08ac), nvkm_rd32(device, 0x100800)); nvkm_wr32(device, 0x400500, 0x00010001); nvkm_wr32(device, 0x400100, 0xffffffff); nvkm_wr32(device, 0x40013c, 0xffffffff); nvkm_wr32(device, 0x409c24, 0x000f0000); nvkm_wr32(device, 0x404000, 0xc0000000); nvkm_wr32(device, 0x404600, 0xc0000000); nvkm_wr32(device, 0x408030, 0xc0000000); nvkm_wr32(device, 0x40601c, 0xc0000000); nvkm_wr32(device, 0x404490, 0xc0000000); nvkm_wr32(device, 0x406018, 0xc0000000); nvkm_wr32(device, 0x405840, 0xc0000000); nvkm_wr32(device, 0x405844, 0x00ffffff); nvkm_mask(device, 0x419cc0, 0x00000008, 0x00000008); nvkm_mask(device, 0x419eb4, 0x00001000, 0x00001000); for (gpc = 0; gpc < gr->gpc_nr; gpc++) { nvkm_wr32(device, GPC_UNIT(gpc, 0x0420), 0xc0000000); nvkm_wr32(device, GPC_UNIT(gpc, 0x0900), 0xc0000000); nvkm_wr32(device, GPC_UNIT(gpc, 0x1028), 0xc0000000); nvkm_wr32(device, GPC_UNIT(gpc, 0x0824), 0xc0000000); for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++) { nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x508), 0xffffffff); nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x50c), 0xffffffff); nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x224), 0xc0000000); nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x48c), 0xc0000000); nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x084), 0xc0000000); nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x644), 0x001ffffe); nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x64c), 0x0000000f); } nvkm_wr32(device, GPC_UNIT(gpc, 0x2c90), 0xffffffff); nvkm_wr32(device, GPC_UNIT(gpc, 0x2c94), 0xffffffff); } for (rop = 0; rop < gr->rop_nr; rop++) { nvkm_wr32(device, ROP_UNIT(rop, 0x144), 0xc0000000); nvkm_wr32(device, ROP_UNIT(rop, 0x070), 0xc0000000); nvkm_wr32(device, ROP_UNIT(rop, 0x204), 0xffffffff); nvkm_wr32(device, ROP_UNIT(rop, 0x208), 0xffffffff); } nvkm_wr32(device, 0x400108, 0xffffffff); nvkm_wr32(device, 0x400138, 0xffffffff); nvkm_wr32(device, 0x400118, 0xffffffff); nvkm_wr32(device, 0x400130, 0xffffffff); nvkm_wr32(device, 0x40011c, 0xffffffff); nvkm_wr32(device, 0x400134, 0xffffffff); nvkm_wr32(device, 0x400054, 0x34ce3464); gf100_gr_zbc_init(gr); return gf100_gr_init_ctxctl(gr); } #include "fuc/hubgf100.fuc3.h" struct gf100_gr_ucode gf100_gr_fecs_ucode = { .code.data = gf100_grhub_code, .code.size = sizeof(gf100_grhub_code), .data.data = gf100_grhub_data, .data.size = sizeof(gf100_grhub_data), }; #include "fuc/gpcgf100.fuc3.h" struct gf100_gr_ucode gf100_gr_gpccs_ucode = { .code.data = gf100_grgpc_code, .code.size = sizeof(gf100_grgpc_code), .data.data = gf100_grgpc_data, .data.size = sizeof(gf100_grgpc_data), }; static const struct gf100_gr_func gf100_gr = { .init = gf100_gr_init, .mmio = gf100_gr_pack_mmio, .fecs.ucode = &gf100_gr_fecs_ucode, .gpccs.ucode = &gf100_gr_gpccs_ucode, .rops = gf100_gr_rops, .grctx = &gf100_grctx, .sclass = { { -1, -1, FERMI_TWOD_A }, { -1, -1, FERMI_MEMORY_TO_MEMORY_FORMAT_A }, { -1, -1, FERMI_A, &gf100_fermi }, { -1, -1, FERMI_COMPUTE_A }, {} } }; int gf100_gr_new(struct nvkm_device *device, int index, struct nvkm_gr **pgr) { return gf100_gr_new_(&gf100_gr, device, index, pgr); }