/* * Copyright (c) 2008 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Implementation of receive path. */ #include "core.h" /* * Setup and link descriptors. * * 11N: we can no longer afford to self link the last descriptor. * MAC acknowledges BA status as long as it copies frames to host * buffer (or rx fifo). This can incorrectly acknowledge packets * to a sender if last desc is self-linked. * * NOTE: Caller should hold the rxbuf lock. */ static void ath_rx_buf_link(struct ath_softc *sc, struct ath_buf *bf) { struct ath_hal *ah = sc->sc_ah; struct ath_desc *ds; struct sk_buff *skb; ATH_RXBUF_RESET(bf); ds = bf->bf_desc; ds->ds_link = 0; /* link to null */ ds->ds_data = bf->bf_buf_addr; /* XXX For RADAR? * virtual addr of the beginning of the buffer. */ skb = bf->bf_mpdu; ASSERT(skb != NULL); ds->ds_vdata = skb->data; /* setup rx descriptors */ ath9k_hw_setuprxdesc(ah, ds, skb_tailroom(skb), /* buffer size */ 0); if (sc->sc_rxlink == NULL) ath9k_hw_putrxbuf(ah, bf->bf_daddr); else *sc->sc_rxlink = bf->bf_daddr; sc->sc_rxlink = &ds->ds_link; ath9k_hw_rxena(ah); } /* Process received BAR frame */ static int ath_bar_rx(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb) { struct ieee80211_bar *bar; struct ath_arx_tid *rxtid; struct sk_buff *tskb; struct ath_recv_status *rx_status; int tidno, index, cindex; u16 seqno; /* look at BAR contents */ bar = (struct ieee80211_bar *)skb->data; tidno = (le16_to_cpu(bar->control) & IEEE80211_BAR_CTL_TID_M) >> IEEE80211_BAR_CTL_TID_S; seqno = le16_to_cpu(bar->start_seq_num) >> IEEE80211_SEQ_SEQ_SHIFT; /* process BAR - indicate all pending RX frames till the BAR seqno */ rxtid = &an->an_aggr.rx.tid[tidno]; spin_lock_bh(&rxtid->tidlock); /* get relative index */ index = ATH_BA_INDEX(rxtid->seq_next, seqno); /* drop BAR if old sequence (index is too large) */ if ((index > rxtid->baw_size) && (index > (IEEE80211_SEQ_MAX - (rxtid->baw_size << 2)))) /* discard frame, ieee layer may not treat frame as a dup */ goto unlock_and_free; /* complete receive processing for all pending frames upto BAR seqno */ cindex = (rxtid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); while ((rxtid->baw_head != rxtid->baw_tail) && (rxtid->baw_head != cindex)) { tskb = rxtid->rxbuf[rxtid->baw_head].rx_wbuf; rx_status = &rxtid->rxbuf[rxtid->baw_head].rx_status; rxtid->rxbuf[rxtid->baw_head].rx_wbuf = NULL; if (tskb != NULL) ath_rx_subframe(an, tskb, rx_status); INCR(rxtid->baw_head, ATH_TID_MAX_BUFS); INCR(rxtid->seq_next, IEEE80211_SEQ_MAX); } /* ... and indicate rest of the frames in-order */ while (rxtid->baw_head != rxtid->baw_tail && rxtid->rxbuf[rxtid->baw_head].rx_wbuf != NULL) { tskb = rxtid->rxbuf[rxtid->baw_head].rx_wbuf; rx_status = &rxtid->rxbuf[rxtid->baw_head].rx_status; rxtid->rxbuf[rxtid->baw_head].rx_wbuf = NULL; ath_rx_subframe(an, tskb, rx_status); INCR(rxtid->baw_head, ATH_TID_MAX_BUFS); INCR(rxtid->seq_next, IEEE80211_SEQ_MAX); } unlock_and_free: spin_unlock_bh(&rxtid->tidlock); /* free bar itself */ dev_kfree_skb(skb); return IEEE80211_FTYPE_CTL; } /* Function to handle a subframe of aggregation when HT is enabled */ static int ath_ampdu_input(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb, struct ath_recv_status *rx_status) { struct ieee80211_hdr *hdr; struct ath_arx_tid *rxtid; struct ath_rxbuf *rxbuf; u8 type, subtype; u16 rxseq; int tid = 0, index, cindex, rxdiff; __le16 fc; u8 *qc; hdr = (struct ieee80211_hdr *)skb->data; fc = hdr->frame_control; /* collect stats of frames with non-zero version */ if ((le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_VERS) != 0) { dev_kfree_skb(skb); return -1; } type = le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_FTYPE; subtype = le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_STYPE; if (ieee80211_is_back_req(fc)) return ath_bar_rx(sc, an, skb); /* special aggregate processing only for qos unicast data frames */ if (!ieee80211_is_data(fc) || !ieee80211_is_data_qos(fc) || is_multicast_ether_addr(hdr->addr1)) return ath_rx_subframe(an, skb, rx_status); /* lookup rx tid state */ if (ieee80211_is_data_qos(fc)) { qc = ieee80211_get_qos_ctl(hdr); tid = qc[0] & 0xf; } if (sc->sc_opmode == ATH9K_M_STA) { /* Drop the frame not belonging to me. */ if (memcmp(hdr->addr1, sc->sc_myaddr, ETH_ALEN)) { dev_kfree_skb(skb); return -1; } } rxtid = &an->an_aggr.rx.tid[tid]; spin_lock(&rxtid->tidlock); rxdiff = (rxtid->baw_tail - rxtid->baw_head) & (ATH_TID_MAX_BUFS - 1); /* * If the ADDBA exchange has not been completed by the source, * process via legacy path (i.e. no reordering buffer is needed) */ if (!rxtid->addba_exchangecomplete) { spin_unlock(&rxtid->tidlock); return ath_rx_subframe(an, skb, rx_status); } /* extract sequence number from recvd frame */ rxseq = le16_to_cpu(hdr->seq_ctrl) >> IEEE80211_SEQ_SEQ_SHIFT; if (rxtid->seq_reset) { rxtid->seq_reset = 0; rxtid->seq_next = rxseq; } index = ATH_BA_INDEX(rxtid->seq_next, rxseq); /* drop frame if old sequence (index is too large) */ if (index > (IEEE80211_SEQ_MAX - (rxtid->baw_size << 2))) { /* discard frame, ieee layer may not treat frame as a dup */ spin_unlock(&rxtid->tidlock); dev_kfree_skb(skb); return IEEE80211_FTYPE_DATA; } /* sequence number is beyond block-ack window */ if (index >= rxtid->baw_size) { /* complete receive processing for all pending frames */ while (index >= rxtid->baw_size) { rxbuf = rxtid->rxbuf + rxtid->baw_head; if (rxbuf->rx_wbuf != NULL) { ath_rx_subframe(an, rxbuf->rx_wbuf, &rxbuf->rx_status); rxbuf->rx_wbuf = NULL; } INCR(rxtid->baw_head, ATH_TID_MAX_BUFS); INCR(rxtid->seq_next, IEEE80211_SEQ_MAX); index--; } } /* add buffer to the recv ba window */ cindex = (rxtid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); rxbuf = rxtid->rxbuf + cindex; if (rxbuf->rx_wbuf != NULL) { spin_unlock(&rxtid->tidlock); /* duplicate frame */ dev_kfree_skb(skb); return IEEE80211_FTYPE_DATA; } rxbuf->rx_wbuf = skb; rxbuf->rx_time = get_timestamp(); rxbuf->rx_status = *rx_status; /* advance tail if sequence received is newer * than any received so far */ if (index >= rxdiff) { rxtid->baw_tail = cindex; INCR(rxtid->baw_tail, ATH_TID_MAX_BUFS); } /* indicate all in-order received frames */ while (rxtid->baw_head != rxtid->baw_tail) { rxbuf = rxtid->rxbuf + rxtid->baw_head; if (!rxbuf->rx_wbuf) break; ath_rx_subframe(an, rxbuf->rx_wbuf, &rxbuf->rx_status); rxbuf->rx_wbuf = NULL; INCR(rxtid->baw_head, ATH_TID_MAX_BUFS); INCR(rxtid->seq_next, IEEE80211_SEQ_MAX); } /* * start a timer to flush all received frames if there are pending * receive frames */ if (rxtid->baw_head != rxtid->baw_tail) mod_timer(&rxtid->timer, ATH_RX_TIMEOUT); else del_timer_sync(&rxtid->timer); spin_unlock(&rxtid->tidlock); return IEEE80211_FTYPE_DATA; } /* Timer to flush all received sub-frames */ static void ath_rx_timer(unsigned long data) { struct ath_arx_tid *rxtid = (struct ath_arx_tid *)data; struct ath_node *an = rxtid->an; struct ath_rxbuf *rxbuf; int nosched; spin_lock_bh(&rxtid->tidlock); while (rxtid->baw_head != rxtid->baw_tail) { rxbuf = rxtid->rxbuf + rxtid->baw_head; if (!rxbuf->rx_wbuf) { INCR(rxtid->baw_head, ATH_TID_MAX_BUFS); INCR(rxtid->seq_next, IEEE80211_SEQ_MAX); continue; } /* * Stop if the next one is a very recent frame. * * Call get_timestamp in every iteration to protect against the * case in which a new frame is received while we are executing * this function. Using a timestamp obtained before entering * the loop could lead to a very large time interval * (a negative value typecast to unsigned), breaking the * function's logic. */ if ((get_timestamp() - rxbuf->rx_time) < (ATH_RX_TIMEOUT * HZ / 1000)) break; ath_rx_subframe(an, rxbuf->rx_wbuf, &rxbuf->rx_status); rxbuf->rx_wbuf = NULL; INCR(rxtid->baw_head, ATH_TID_MAX_BUFS); INCR(rxtid->seq_next, IEEE80211_SEQ_MAX); } /* * start a timer to flush all received frames if there are pending * receive frames */ if (rxtid->baw_head != rxtid->baw_tail) nosched = 0; else nosched = 1; /* no need to re-arm the timer again */ spin_unlock_bh(&rxtid->tidlock); } /* Free all pending sub-frames in the re-ordering buffer */ static void ath_rx_flush_tid(struct ath_softc *sc, struct ath_arx_tid *rxtid, int drop) { struct ath_rxbuf *rxbuf; spin_lock_bh(&rxtid->tidlock); while (rxtid->baw_head != rxtid->baw_tail) { rxbuf = rxtid->rxbuf + rxtid->baw_head; if (!rxbuf->rx_wbuf) { INCR(rxtid->baw_head, ATH_TID_MAX_BUFS); INCR(rxtid->seq_next, IEEE80211_SEQ_MAX); continue; } if (drop) dev_kfree_skb(rxbuf->rx_wbuf); else ath_rx_subframe(rxtid->an, rxbuf->rx_wbuf, &rxbuf->rx_status); rxbuf->rx_wbuf = NULL; INCR(rxtid->baw_head, ATH_TID_MAX_BUFS); INCR(rxtid->seq_next, IEEE80211_SEQ_MAX); } spin_unlock_bh(&rxtid->tidlock); } static struct sk_buff *ath_rxbuf_alloc(struct ath_softc *sc, u32 len) { struct sk_buff *skb; u32 off; /* * Cache-line-align. This is important (for the * 5210 at least) as not doing so causes bogus data * in rx'd frames. */ skb = dev_alloc_skb(len + sc->sc_cachelsz - 1); if (skb != NULL) { off = ((unsigned long) skb->data) % sc->sc_cachelsz; if (off != 0) skb_reserve(skb, sc->sc_cachelsz - off); } else { DPRINTF(sc, ATH_DBG_FATAL, "%s: skbuff alloc of size %u failed\n", __func__, len); return NULL; } return skb; } static void ath_rx_requeue(struct ath_softc *sc, struct sk_buff *skb) { struct ath_buf *bf = ATH_RX_CONTEXT(skb)->ctx_rxbuf; ASSERT(bf != NULL); spin_lock_bh(&sc->sc_rxbuflock); if (bf->bf_status & ATH_BUFSTATUS_STALE) { /* * This buffer is still held for hw acess. * Mark it as free to be re-queued it later. */ bf->bf_status |= ATH_BUFSTATUS_FREE; } else { /* XXX: we probably never enter here, remove after * verification */ list_add_tail(&bf->list, &sc->sc_rxbuf); ath_rx_buf_link(sc, bf); } spin_unlock_bh(&sc->sc_rxbuflock); } /* * The skb indicated to upper stack won't be returned to us. * So we have to allocate a new one and queue it by ourselves. */ static int ath_rx_indicate(struct ath_softc *sc, struct sk_buff *skb, struct ath_recv_status *status, u16 keyix) { struct ath_buf *bf = ATH_RX_CONTEXT(skb)->ctx_rxbuf; struct sk_buff *nskb; int type; /* indicate frame to the stack, which will free the old skb. */ type = ath__rx_indicate(sc, skb, status, keyix); /* allocate a new skb and queue it to for H/W processing */ nskb = ath_rxbuf_alloc(sc, sc->sc_rxbufsize); if (nskb != NULL) { bf->bf_mpdu = nskb; bf->bf_buf_addr = ath_skb_map_single(sc, nskb, PCI_DMA_FROMDEVICE, /* XXX: Remove get_dma_mem_context() */ get_dma_mem_context(bf, bf_dmacontext)); ATH_RX_CONTEXT(nskb)->ctx_rxbuf = bf; /* queue the new wbuf to H/W */ ath_rx_requeue(sc, nskb); } return type; } static void ath_opmode_init(struct ath_softc *sc) { struct ath_hal *ah = sc->sc_ah; u32 rfilt, mfilt[2]; /* configure rx filter */ rfilt = ath_calcrxfilter(sc); ath9k_hw_setrxfilter(ah, rfilt); /* configure bssid mask */ if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) ath9k_hw_setbssidmask(ah, sc->sc_bssidmask); /* configure operational mode */ ath9k_hw_setopmode(ah); /* Handle any link-level address change. */ ath9k_hw_setmac(ah, sc->sc_myaddr); /* calculate and install multicast filter */ mfilt[0] = mfilt[1] = ~0; ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]); DPRINTF(sc, ATH_DBG_CONFIG , "%s: RX filter 0x%x, MC filter %08x:%08x\n", __func__, rfilt, mfilt[0], mfilt[1]); } int ath_rx_init(struct ath_softc *sc, int nbufs) { struct sk_buff *skb; struct ath_buf *bf; int error = 0; do { spin_lock_init(&sc->sc_rxflushlock); sc->sc_rxflush = 0; spin_lock_init(&sc->sc_rxbuflock); /* * Cisco's VPN software requires that drivers be able to * receive encapsulated frames that are larger than the MTU. * Since we can't be sure how large a frame we'll get, setup * to handle the larges on possible. */ sc->sc_rxbufsize = roundup(IEEE80211_MAX_MPDU_LEN, min(sc->sc_cachelsz, (u16)64)); DPRINTF(sc, ATH_DBG_CONFIG, "%s: cachelsz %u rxbufsize %u\n", __func__, sc->sc_cachelsz, sc->sc_rxbufsize); /* Initialize rx descriptors */ error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf, "rx", nbufs, 1); if (error != 0) { DPRINTF(sc, ATH_DBG_FATAL, "%s: failed to allocate rx descriptors: %d\n", __func__, error); break; } /* Pre-allocate a wbuf for each rx buffer */ list_for_each_entry(bf, &sc->sc_rxbuf, list) { skb = ath_rxbuf_alloc(sc, sc->sc_rxbufsize); if (skb == NULL) { error = -ENOMEM; break; } bf->bf_mpdu = skb; bf->bf_buf_addr = ath_skb_map_single(sc, skb, PCI_DMA_FROMDEVICE, get_dma_mem_context(bf, bf_dmacontext)); ATH_RX_CONTEXT(skb)->ctx_rxbuf = bf; } sc->sc_rxlink = NULL; } while (0); if (error) ath_rx_cleanup(sc); return error; } /* Reclaim all rx queue resources */ void ath_rx_cleanup(struct ath_softc *sc) { struct sk_buff *skb; struct ath_buf *bf; list_for_each_entry(bf, &sc->sc_rxbuf, list) { skb = bf->bf_mpdu; if (skb) dev_kfree_skb(skb); } /* cleanup rx descriptors */ if (sc->sc_rxdma.dd_desc_len != 0) ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); } /* * Calculate the receive filter according to the * operating mode and state: * * o always accept unicast, broadcast, and multicast traffic * o maintain current state of phy error reception (the hal * may enable phy error frames for noise immunity work) * o probe request frames are accepted only when operating in * hostap, adhoc, or monitor modes * o enable promiscuous mode according to the interface state * o accept beacons: * - when operating in adhoc mode so the 802.11 layer creates * node table entries for peers, * - when operating in station mode for collecting rssi data when * the station is otherwise quiet, or * - when operating as a repeater so we see repeater-sta beacons * - when scanning */ u32 ath_calcrxfilter(struct ath_softc *sc) { #define RX_FILTER_PRESERVE (ATH9K_RX_FILTER_PHYERR | ATH9K_RX_FILTER_PHYRADAR) u32 rfilt; rfilt = (ath9k_hw_getrxfilter(sc->sc_ah) & RX_FILTER_PRESERVE) | ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST | ATH9K_RX_FILTER_MCAST; /* If not a STA, enable processing of Probe Requests */ if (sc->sc_opmode != ATH9K_M_STA) rfilt |= ATH9K_RX_FILTER_PROBEREQ; /* Can't set HOSTAP into promiscous mode */ if (sc->sc_opmode == ATH9K_M_MONITOR) { rfilt |= ATH9K_RX_FILTER_PROM; /* ??? To prevent from sending ACK */ rfilt &= ~ATH9K_RX_FILTER_UCAST; } if (sc->sc_opmode == ATH9K_M_STA || sc->sc_opmode == ATH9K_M_IBSS || sc->sc_scanning) rfilt |= ATH9K_RX_FILTER_BEACON; /* If in HOSTAP mode, want to enable reception of PSPOLL frames & beacon frames */ if (sc->sc_opmode == ATH9K_M_HOSTAP) rfilt |= (ATH9K_RX_FILTER_BEACON | ATH9K_RX_FILTER_PSPOLL); return rfilt; #undef RX_FILTER_PRESERVE } /* Enable the receive h/w following a reset. */ int ath_startrecv(struct ath_softc *sc) { struct ath_hal *ah = sc->sc_ah; struct ath_buf *bf, *tbf; spin_lock_bh(&sc->sc_rxbuflock); if (list_empty(&sc->sc_rxbuf)) goto start_recv; sc->sc_rxlink = NULL; list_for_each_entry_safe(bf, tbf, &sc->sc_rxbuf, list) { if (bf->bf_status & ATH_BUFSTATUS_STALE) { /* restarting h/w, no need for holding descriptors */ bf->bf_status &= ~ATH_BUFSTATUS_STALE; /* * Upper layer may not be done with the frame yet so * we can't just re-queue it to hardware. Remove it * from h/w queue. It'll be re-queued when upper layer * returns the frame and ath_rx_requeue_mpdu is called. */ if (!(bf->bf_status & ATH_BUFSTATUS_FREE)) { list_del(&bf->list); continue; } } /* chain descriptors */ ath_rx_buf_link(sc, bf); } /* We could have deleted elements so the list may be empty now */ if (list_empty(&sc->sc_rxbuf)) goto start_recv; bf = list_first_entry(&sc->sc_rxbuf, struct ath_buf, list); ath9k_hw_putrxbuf(ah, bf->bf_daddr); ath9k_hw_rxena(ah); /* enable recv descriptors */ start_recv: spin_unlock_bh(&sc->sc_rxbuflock); ath_opmode_init(sc); /* set filters, etc. */ ath9k_hw_startpcureceive(ah); /* re-enable PCU/DMA engine */ return 0; } /* Disable the receive h/w in preparation for a reset. */ bool ath_stoprecv(struct ath_softc *sc) { struct ath_hal *ah = sc->sc_ah; u64 tsf; bool stopped; ath9k_hw_stoppcurecv(ah); /* disable PCU */ ath9k_hw_setrxfilter(ah, 0); /* clear recv filter */ stopped = ath9k_hw_stopdmarecv(ah); /* disable DMA engine */ mdelay(3); /* 3ms is long enough for 1 frame */ tsf = ath9k_hw_gettsf64(ah); sc->sc_rxlink = NULL; /* just in case */ return stopped; } /* Flush receive queue */ void ath_flushrecv(struct ath_softc *sc) { /* * ath_rx_tasklet may be used to handle rx interrupt and flush receive * queue at the same time. Use a lock to serialize the access of rx * queue. * ath_rx_tasklet cannot hold the spinlock while indicating packets. * Instead, do not claim the spinlock but check for a flush in * progress (see references to sc_rxflush) */ spin_lock_bh(&sc->sc_rxflushlock); sc->sc_rxflush = 1; ath_rx_tasklet(sc, 1); sc->sc_rxflush = 0; spin_unlock_bh(&sc->sc_rxflushlock); } /* Process an individual frame */ int ath_rx_input(struct ath_softc *sc, struct ath_node *an, int is_ampdu, struct sk_buff *skb, struct ath_recv_status *rx_status, enum ATH_RX_TYPE *status) { if (is_ampdu && sc->sc_rxaggr) { *status = ATH_RX_CONSUMED; return ath_ampdu_input(sc, an, skb, rx_status); } else { *status = ATH_RX_NON_CONSUMED; return -1; } } /* Process receive queue, as well as LED, etc. */ int ath_rx_tasklet(struct ath_softc *sc, int flush) { #define PA2DESC(_sc, _pa) \ ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) struct ath_buf *bf, *bf_held = NULL; struct ath_desc *ds; struct ieee80211_hdr *hdr; struct sk_buff *skb = NULL; struct ath_recv_status rx_status; struct ath_hal *ah = sc->sc_ah; int type, rx_processed = 0; u32 phyerr; u8 chainreset = 0; int retval; __le16 fc; do { /* If handling rx interrupt and flush is in progress => exit */ if (sc->sc_rxflush && (flush == 0)) break; spin_lock_bh(&sc->sc_rxbuflock); if (list_empty(&sc->sc_rxbuf)) { sc->sc_rxlink = NULL; spin_unlock_bh(&sc->sc_rxbuflock); break; } bf = list_first_entry(&sc->sc_rxbuf, struct ath_buf, list); /* * There is a race condition that BH gets scheduled after sw * writes RxE and before hw re-load the last descriptor to get * the newly chained one. Software must keep the last DONE * descriptor as a holding descriptor - software does so by * marking it with the STALE flag. */ if (bf->bf_status & ATH_BUFSTATUS_STALE) { bf_held = bf; if (list_is_last(&bf_held->list, &sc->sc_rxbuf)) { /* * The holding descriptor is the last * descriptor in queue. It's safe to * remove the last holding descriptor * in BH context. */ list_del(&bf_held->list); bf_held->bf_status &= ~ATH_BUFSTATUS_STALE; sc->sc_rxlink = NULL; if (bf_held->bf_status & ATH_BUFSTATUS_FREE) { list_add_tail(&bf_held->list, &sc->sc_rxbuf); ath_rx_buf_link(sc, bf_held); } spin_unlock_bh(&sc->sc_rxbuflock); break; } bf = list_entry(bf->list.next, struct ath_buf, list); } ds = bf->bf_desc; ++rx_processed; /* * Must provide the virtual address of the current * descriptor, the physical address, and the virtual * address of the next descriptor in the h/w chain. * This allows the HAL to look ahead to see if the * hardware is done with a descriptor by checking the * done bit in the following descriptor and the address * of the current descriptor the DMA engine is working * on. All this is necessary because of our use of * a self-linked list to avoid rx overruns. */ retval = ath9k_hw_rxprocdesc(ah, ds, bf->bf_daddr, PA2DESC(sc, ds->ds_link), 0); if (retval == -EINPROGRESS) { struct ath_buf *tbf; struct ath_desc *tds; if (list_is_last(&bf->list, &sc->sc_rxbuf)) { spin_unlock_bh(&sc->sc_rxbuflock); break; } tbf = list_entry(bf->list.next, struct ath_buf, list); /* * On some hardware the descriptor status words could * get corrupted, including the done bit. Because of * this, check if the next descriptor's done bit is * set or not. * * If the next descriptor's done bit is set, the current * descriptor has been corrupted. Force s/w to discard * this descriptor and continue... */ tds = tbf->bf_desc; retval = ath9k_hw_rxprocdesc(ah, tds, tbf->bf_daddr, PA2DESC(sc, tds->ds_link), 0); if (retval == -EINPROGRESS) { spin_unlock_bh(&sc->sc_rxbuflock); break; } } /* XXX: we do not support frames spanning * multiple descriptors */ bf->bf_status |= ATH_BUFSTATUS_DONE; skb = bf->bf_mpdu; if (skb == NULL) { /* XXX ??? can this happen */ spin_unlock_bh(&sc->sc_rxbuflock); continue; } /* * Now we know it's a completed frame, we can indicate the * frame. Remove the previous holding descriptor and leave * this one in the queue as the new holding descriptor. */ if (bf_held) { list_del(&bf_held->list); bf_held->bf_status &= ~ATH_BUFSTATUS_STALE; if (bf_held->bf_status & ATH_BUFSTATUS_FREE) { list_add_tail(&bf_held->list, &sc->sc_rxbuf); /* try to requeue this descriptor */ ath_rx_buf_link(sc, bf_held); } } bf->bf_status |= ATH_BUFSTATUS_STALE; bf_held = bf; /* * Release the lock here in case ieee80211_input() return * the frame immediately by calling ath_rx_mpdu_requeue(). */ spin_unlock_bh(&sc->sc_rxbuflock); if (flush) { /* * If we're asked to flush receive queue, directly * chain it back at the queue without processing it. */ goto rx_next; } hdr = (struct ieee80211_hdr *)skb->data; fc = hdr->frame_control; memzero(&rx_status, sizeof(struct ath_recv_status)); if (ds->ds_rxstat.rs_more) { /* * Frame spans multiple descriptors; this * cannot happen yet as we don't support * jumbograms. If not in monitor mode, * discard the frame. */ #ifndef ERROR_FRAMES /* * Enable this if you want to see * error frames in Monitor mode. */ if (sc->sc_opmode != ATH9K_M_MONITOR) goto rx_next; #endif /* fall thru for monitor mode handling... */ } else if (ds->ds_rxstat.rs_status != 0) { if (ds->ds_rxstat.rs_status & ATH9K_RXERR_CRC) rx_status.flags |= ATH_RX_FCS_ERROR; if (ds->ds_rxstat.rs_status & ATH9K_RXERR_PHY) { phyerr = ds->ds_rxstat.rs_phyerr & 0x1f; goto rx_next; } if (ds->ds_rxstat.rs_status & ATH9K_RXERR_DECRYPT) { /* * Decrypt error. We only mark packet status * here and always push up the frame up to let * mac80211 handle the actual error case, be * it no decryption key or real decryption * error. This let us keep statistics there. */ rx_status.flags |= ATH_RX_DECRYPT_ERROR; } else if (ds->ds_rxstat.rs_status & ATH9K_RXERR_MIC) { /* * Demic error. We only mark frame status here * and always push up the frame up to let * mac80211 handle the actual error case. This * let us keep statistics there. Hardware may * post a false-positive MIC error. */ if (ieee80211_is_ctl(fc)) /* * Sometimes, we get invalid * MIC failures on valid control frames. * Remove these mic errors. */ ds->ds_rxstat.rs_status &= ~ATH9K_RXERR_MIC; else rx_status.flags |= ATH_RX_MIC_ERROR; } /* * Reject error frames with the exception of * decryption and MIC failures. For monitor mode, * we also ignore the CRC error. */ if (sc->sc_opmode == ATH9K_M_MONITOR) { if (ds->ds_rxstat.rs_status & ~(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC | ATH9K_RXERR_CRC)) goto rx_next; } else { if (ds->ds_rxstat.rs_status & ~(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC)) { goto rx_next; } } } /* * The status portion of the descriptor could get corrupted. */ if (sc->sc_rxbufsize < ds->ds_rxstat.rs_datalen) goto rx_next; /* * Sync and unmap the frame. At this point we're * committed to passing the sk_buff somewhere so * clear buf_skb; this means a new sk_buff must be * allocated when the rx descriptor is setup again * to receive another frame. */ skb_put(skb, ds->ds_rxstat.rs_datalen); skb->protocol = cpu_to_be16(ETH_P_CONTROL); rx_status.tsf = ath_extend_tsf(sc, ds->ds_rxstat.rs_tstamp); rx_status.rateieee = sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate; rx_status.rateKbps = sc->sc_hwmap[ds->ds_rxstat.rs_rate].rateKbps; rx_status.ratecode = ds->ds_rxstat.rs_rate; /* HT rate */ if (rx_status.ratecode & 0x80) { /* TODO - add table to avoid division */ if (ds->ds_rxstat.rs_flags & ATH9K_RX_2040) { rx_status.flags |= ATH_RX_40MHZ; rx_status.rateKbps = (rx_status.rateKbps * 27) / 13; } if (ds->ds_rxstat.rs_flags & ATH9K_RX_GI) rx_status.rateKbps = (rx_status.rateKbps * 10) / 9; else rx_status.flags |= ATH_RX_SHORT_GI; } /* sc->sc_noise_floor is only available when the station attaches to an AP, so we use a default value if we are not yet attached. */ /* XXX we should use either sc->sc_noise_floor or * ath_hal_getChanNoise(ah, &sc->sc_curchan) * to calculate the noise floor. * However, the value returned by ath_hal_getChanNoise * seems to be incorrect (-31dBm on the last test), * so we will use a hard-coded value until we * figure out what is going on. */ rx_status.abs_rssi = ds->ds_rxstat.rs_rssi + ATH_DEFAULT_NOISE_FLOOR; pci_dma_sync_single_for_cpu(sc->pdev, bf->bf_buf_addr, skb_tailroom(skb), PCI_DMA_FROMDEVICE); pci_unmap_single(sc->pdev, bf->bf_buf_addr, sc->sc_rxbufsize, PCI_DMA_FROMDEVICE); /* XXX: Ah! make me more readable, use a helper */ if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) { if (ds->ds_rxstat.rs_moreaggr == 0) { rx_status.rssictl[0] = ds->ds_rxstat.rs_rssi_ctl0; rx_status.rssictl[1] = ds->ds_rxstat.rs_rssi_ctl1; rx_status.rssictl[2] = ds->ds_rxstat.rs_rssi_ctl2; rx_status.rssi = ds->ds_rxstat.rs_rssi; if (ds->ds_rxstat.rs_flags & ATH9K_RX_2040) { rx_status.rssiextn[0] = ds->ds_rxstat.rs_rssi_ext0; rx_status.rssiextn[1] = ds->ds_rxstat.rs_rssi_ext1; rx_status.rssiextn[2] = ds->ds_rxstat.rs_rssi_ext2; rx_status.flags |= ATH_RX_RSSI_EXTN_VALID; } rx_status.flags |= ATH_RX_RSSI_VALID | ATH_RX_CHAIN_RSSI_VALID; } } else { /* * Need to insert the "combined" rssi into the * status structure for upper layer processing */ rx_status.rssi = ds->ds_rxstat.rs_rssi; rx_status.flags |= ATH_RX_RSSI_VALID; } /* Pass frames up to the stack. */ type = ath_rx_indicate(sc, skb, &rx_status, ds->ds_rxstat.rs_keyix); /* * change the default rx antenna if rx diversity chooses the * other antenna 3 times in a row. */ if (sc->sc_defant != ds->ds_rxstat.rs_antenna) { if (++sc->sc_rxotherant >= 3) ath_setdefantenna(sc, ds->ds_rxstat.rs_antenna); } else { sc->sc_rxotherant = 0; } #ifdef CONFIG_SLOW_ANT_DIV if ((rx_status.flags & ATH_RX_RSSI_VALID) && ieee80211_is_beacon(fc)) { ath_slow_ant_div(&sc->sc_antdiv, hdr, &ds->ds_rxstat); } #endif /* * For frames successfully indicated, the buffer will be * returned to us by upper layers by calling * ath_rx_mpdu_requeue, either synchronusly or asynchronously. * So we don't want to do it here in this loop. */ continue; rx_next: bf->bf_status |= ATH_BUFSTATUS_FREE; } while (TRUE); if (chainreset) { DPRINTF(sc, ATH_DBG_CONFIG, "%s: Reset rx chain mask. " "Do internal reset\n", __func__); ASSERT(flush == 0); ath_reset(sc, false); } return 0; #undef PA2DESC } /* Process ADDBA request in per-TID data structure */ int ath_rx_aggr_start(struct ath_softc *sc, const u8 *addr, u16 tid, u16 *ssn) { struct ath_arx_tid *rxtid; struct ath_node *an; struct ieee80211_hw *hw = sc->hw; struct ieee80211_supported_band *sband; u16 buffersize = 0; spin_lock_bh(&sc->node_lock); an = ath_node_find(sc, (u8 *) addr); spin_unlock_bh(&sc->node_lock); if (!an) { DPRINTF(sc, ATH_DBG_AGGR, "%s: Node not found to initialize RX aggregation\n", __func__); return -1; } sband = hw->wiphy->bands[hw->conf.channel->band]; buffersize = IEEE80211_MIN_AMPDU_BUF << sband->ht_info.ampdu_factor; /* FIXME */ rxtid = &an->an_aggr.rx.tid[tid]; spin_lock_bh(&rxtid->tidlock); if (sc->sc_rxaggr) { /* Allow aggregation reception * Adjust rx BA window size. Peer might indicate a * zero buffer size for a _dont_care_ condition. */ if (buffersize) rxtid->baw_size = min(buffersize, rxtid->baw_size); /* set rx sequence number */ rxtid->seq_next = *ssn; /* Allocate the receive buffers for this TID */ DPRINTF(sc, ATH_DBG_AGGR, "%s: Allcating rxbuffer for TID %d\n", __func__, tid); if (rxtid->rxbuf == NULL) { /* * If the rxbuff is not NULL at this point, we *probably* * already allocated the buffer on a previous ADDBA, * and this is a subsequent ADDBA that got through. * Don't allocate, but use the value in the pointer, * we zero it out when we de-allocate. */ rxtid->rxbuf = kmalloc(ATH_TID_MAX_BUFS * sizeof(struct ath_rxbuf), GFP_ATOMIC); } if (rxtid->rxbuf == NULL) { DPRINTF(sc, ATH_DBG_AGGR, "%s: Unable to allocate RX buffer, " "refusing ADDBA\n", __func__); } else { /* Ensure the memory is zeroed out (all internal * pointers are null) */ memzero(rxtid->rxbuf, ATH_TID_MAX_BUFS * sizeof(struct ath_rxbuf)); DPRINTF(sc, ATH_DBG_AGGR, "%s: Allocated @%p\n", __func__, rxtid->rxbuf); /* Allow aggregation reception */ rxtid->addba_exchangecomplete = 1; } } spin_unlock_bh(&rxtid->tidlock); return 0; } /* Process DELBA */ int ath_rx_aggr_stop(struct ath_softc *sc, const u8 *addr, u16 tid) { struct ath_node *an; spin_lock_bh(&sc->node_lock); an = ath_node_find(sc, (u8 *) addr); spin_unlock_bh(&sc->node_lock); if (!an) { DPRINTF(sc, ATH_DBG_AGGR, "%s: RX aggr stop for non-existent node\n", __func__); return -1; } ath_rx_aggr_teardown(sc, an, tid); return 0; } /* Rx aggregation tear down */ void ath_rx_aggr_teardown(struct ath_softc *sc, struct ath_node *an, u8 tid) { struct ath_arx_tid *rxtid = &an->an_aggr.rx.tid[tid]; if (!rxtid->addba_exchangecomplete) return; del_timer_sync(&rxtid->timer); ath_rx_flush_tid(sc, rxtid, 0); rxtid->addba_exchangecomplete = 0; /* De-allocate the receive buffer array allocated when addba started */ if (rxtid->rxbuf) { DPRINTF(sc, ATH_DBG_AGGR, "%s: Deallocating TID %d rxbuff @%p\n", __func__, tid, rxtid->rxbuf); kfree(rxtid->rxbuf); /* Set pointer to null to avoid reuse*/ rxtid->rxbuf = NULL; } } /* Initialize per-node receive state */ void ath_rx_node_init(struct ath_softc *sc, struct ath_node *an) { if (sc->sc_rxaggr) { struct ath_arx_tid *rxtid; int tidno; /* Init per tid rx state */ for (tidno = 0, rxtid = &an->an_aggr.rx.tid[tidno]; tidno < WME_NUM_TID; tidno++, rxtid++) { rxtid->an = an; rxtid->seq_reset = 1; rxtid->seq_next = 0; rxtid->baw_size = WME_MAX_BA; rxtid->baw_head = rxtid->baw_tail = 0; /* * Ensure the buffer pointer is null at this point * (needs to be allocated when addba is received) */ rxtid->rxbuf = NULL; setup_timer(&rxtid->timer, ath_rx_timer, (unsigned long)rxtid); spin_lock_init(&rxtid->tidlock); /* ADDBA state */ rxtid->addba_exchangecomplete = 0; } } } void ath_rx_node_cleanup(struct ath_softc *sc, struct ath_node *an) { if (sc->sc_rxaggr) { struct ath_arx_tid *rxtid; int tidno, i; /* Init per tid rx state */ for (tidno = 0, rxtid = &an->an_aggr.rx.tid[tidno]; tidno < WME_NUM_TID; tidno++, rxtid++) { if (!rxtid->addba_exchangecomplete) continue; /* must cancel timer first */ del_timer_sync(&rxtid->timer); /* drop any pending sub-frames */ ath_rx_flush_tid(sc, rxtid, 1); for (i = 0; i < ATH_TID_MAX_BUFS; i++) ASSERT(rxtid->rxbuf[i].rx_wbuf == NULL); rxtid->addba_exchangecomplete = 0; } } } /* Cleanup per-node receive state */ void ath_rx_node_free(struct ath_softc *sc, struct ath_node *an) { ath_rx_node_cleanup(sc, an); } dma_addr_t ath_skb_map_single(struct ath_softc *sc, struct sk_buff *skb, int direction, dma_addr_t *pa) { /* * NB: do NOT use skb->len, which is 0 on initialization. * Use skb's entire data area instead. */ *pa = pci_map_single(sc->pdev, skb->data, skb_end_pointer(skb) - skb->head, direction); return *pa; } void ath_skb_unmap_single(struct ath_softc *sc, struct sk_buff *skb, int direction, dma_addr_t *pa) { /* Unmap skb's entire data area */ pci_unmap_single(sc->pdev, *pa, skb_end_pointer(skb) - skb->head, direction); }