/* * Copyright(c) 2015, 2016 Intel Corporation. * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #include #include #include #include #include #include #include #include "hfi.h" #include "common.h" #include "device.h" #include "trace.h" #include "qp.h" #include "verbs_txreq.h" static unsigned int hfi1_lkey_table_size = 16; module_param_named(lkey_table_size, hfi1_lkey_table_size, uint, S_IRUGO); MODULE_PARM_DESC(lkey_table_size, "LKEY table size in bits (2^n, 1 <= n <= 23)"); static unsigned int hfi1_max_pds = 0xFFFF; module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO); MODULE_PARM_DESC(max_pds, "Maximum number of protection domains to support"); static unsigned int hfi1_max_ahs = 0xFFFF; module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO); MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support"); unsigned int hfi1_max_cqes = 0x2FFFFF; module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO); MODULE_PARM_DESC(max_cqes, "Maximum number of completion queue entries to support"); unsigned int hfi1_max_cqs = 0x1FFFF; module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO); MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support"); unsigned int hfi1_max_qp_wrs = 0x3FFF; module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO); MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support"); unsigned int hfi1_max_qps = 32768; module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO); MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support"); unsigned int hfi1_max_sges = 0x60; module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO); MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support"); unsigned int hfi1_max_mcast_grps = 16384; module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO); MODULE_PARM_DESC(max_mcast_grps, "Maximum number of multicast groups to support"); unsigned int hfi1_max_mcast_qp_attached = 16; module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached, uint, S_IRUGO); MODULE_PARM_DESC(max_mcast_qp_attached, "Maximum number of attached QPs to support"); unsigned int hfi1_max_srqs = 1024; module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO); MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support"); unsigned int hfi1_max_srq_sges = 128; module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO); MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support"); unsigned int hfi1_max_srq_wrs = 0x1FFFF; module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO); MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support"); unsigned short piothreshold = 256; module_param(piothreshold, ushort, S_IRUGO); MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio"); #define COPY_CACHELESS 1 #define COPY_ADAPTIVE 2 static unsigned int sge_copy_mode; module_param(sge_copy_mode, uint, S_IRUGO); MODULE_PARM_DESC(sge_copy_mode, "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS"); static void verbs_sdma_complete( struct sdma_txreq *cookie, int status); static int pio_wait(struct rvt_qp *qp, struct send_context *sc, struct hfi1_pkt_state *ps, u32 flag); /* Length of buffer to create verbs txreq cache name */ #define TXREQ_NAME_LEN 24 static uint wss_threshold; module_param(wss_threshold, uint, S_IRUGO); MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy"); static uint wss_clean_period = 256; module_param(wss_clean_period, uint, S_IRUGO); MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned"); /* memory working set size */ struct hfi1_wss { unsigned long *entries; atomic_t total_count; atomic_t clean_counter; atomic_t clean_entry; int threshold; int num_entries; long pages_mask; }; static struct hfi1_wss wss; int hfi1_wss_init(void) { long llc_size; long llc_bits; long table_size; long table_bits; /* check for a valid percent range - default to 80 if none or invalid */ if (wss_threshold < 1 || wss_threshold > 100) wss_threshold = 80; /* reject a wildly large period */ if (wss_clean_period > 1000000) wss_clean_period = 256; /* reject a zero period */ if (wss_clean_period == 0) wss_clean_period = 1; /* * Calculate the table size - the next power of 2 larger than the * LLC size. LLC size is in KiB. */ llc_size = wss_llc_size() * 1024; table_size = roundup_pow_of_two(llc_size); /* one bit per page in rounded up table */ llc_bits = llc_size / PAGE_SIZE; table_bits = table_size / PAGE_SIZE; wss.pages_mask = table_bits - 1; wss.num_entries = table_bits / BITS_PER_LONG; wss.threshold = (llc_bits * wss_threshold) / 100; if (wss.threshold == 0) wss.threshold = 1; atomic_set(&wss.clean_counter, wss_clean_period); wss.entries = kcalloc(wss.num_entries, sizeof(*wss.entries), GFP_KERNEL); if (!wss.entries) { hfi1_wss_exit(); return -ENOMEM; } return 0; } void hfi1_wss_exit(void) { /* coded to handle partially initialized and repeat callers */ kfree(wss.entries); wss.entries = NULL; } /* * Advance the clean counter. When the clean period has expired, * clean an entry. * * This is implemented in atomics to avoid locking. Because multiple * variables are involved, it can be racy which can lead to slightly * inaccurate information. Since this is only a heuristic, this is * OK. Any innaccuracies will clean themselves out as the counter * advances. That said, it is unlikely the entry clean operation will * race - the next possible racer will not start until the next clean * period. * * The clean counter is implemented as a decrement to zero. When zero * is reached an entry is cleaned. */ static void wss_advance_clean_counter(void) { int entry; int weight; unsigned long bits; /* become the cleaner if we decrement the counter to zero */ if (atomic_dec_and_test(&wss.clean_counter)) { /* * Set, not add, the clean period. This avoids an issue * where the counter could decrement below the clean period. * Doing a set can result in lost decrements, slowing the * clean advance. Since this a heuristic, this possible * slowdown is OK. * * An alternative is to loop, advancing the counter by a * clean period until the result is > 0. However, this could * lead to several threads keeping another in the clean loop. * This could be mitigated by limiting the number of times * we stay in the loop. */ atomic_set(&wss.clean_counter, wss_clean_period); /* * Uniquely grab the entry to clean and move to next. * The current entry is always the lower bits of * wss.clean_entry. The table size, wss.num_entries, * is always a power-of-2. */ entry = (atomic_inc_return(&wss.clean_entry) - 1) & (wss.num_entries - 1); /* clear the entry and count the bits */ bits = xchg(&wss.entries[entry], 0); weight = hweight64((u64)bits); /* only adjust the contended total count if needed */ if (weight) atomic_sub(weight, &wss.total_count); } } /* * Insert the given address into the working set array. */ static void wss_insert(void *address) { u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss.pages_mask; u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */ u32 nr = page & (BITS_PER_LONG - 1); if (!test_and_set_bit(nr, &wss.entries[entry])) atomic_inc(&wss.total_count); wss_advance_clean_counter(); } /* * Is the working set larger than the threshold? */ static inline int wss_exceeds_threshold(void) { return atomic_read(&wss.total_count) >= wss.threshold; } /* * Translate ib_wr_opcode into ib_wc_opcode. */ const enum ib_wc_opcode ib_hfi1_wc_opcode[] = { [IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE, [IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE, [IB_WR_SEND] = IB_WC_SEND, [IB_WR_SEND_WITH_IMM] = IB_WC_SEND, [IB_WR_RDMA_READ] = IB_WC_RDMA_READ, [IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP, [IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD, [IB_WR_SEND_WITH_INV] = IB_WC_SEND, [IB_WR_LOCAL_INV] = IB_WC_LOCAL_INV, [IB_WR_REG_MR] = IB_WC_REG_MR }; /* * Length of header by opcode, 0 --> not supported */ const u8 hdr_len_by_opcode[256] = { /* RC */ [IB_OPCODE_RC_SEND_FIRST] = 12 + 8, [IB_OPCODE_RC_SEND_MIDDLE] = 12 + 8, [IB_OPCODE_RC_SEND_LAST] = 12 + 8, [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4, [IB_OPCODE_RC_SEND_ONLY] = 12 + 8, [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4, [IB_OPCODE_RC_RDMA_WRITE_FIRST] = 12 + 8 + 16, [IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = 12 + 8, [IB_OPCODE_RC_RDMA_WRITE_LAST] = 12 + 8, [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4, [IB_OPCODE_RC_RDMA_WRITE_ONLY] = 12 + 8 + 16, [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20, [IB_OPCODE_RC_RDMA_READ_REQUEST] = 12 + 8 + 16, [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = 12 + 8 + 4, [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = 12 + 8, [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = 12 + 8 + 4, [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = 12 + 8 + 4, [IB_OPCODE_RC_ACKNOWLEDGE] = 12 + 8 + 4, [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = 12 + 8 + 4, [IB_OPCODE_RC_COMPARE_SWAP] = 12 + 8 + 28, [IB_OPCODE_RC_FETCH_ADD] = 12 + 8 + 28, [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE] = 12 + 8 + 4, [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE] = 12 + 8 + 4, /* UC */ [IB_OPCODE_UC_SEND_FIRST] = 12 + 8, [IB_OPCODE_UC_SEND_MIDDLE] = 12 + 8, [IB_OPCODE_UC_SEND_LAST] = 12 + 8, [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4, [IB_OPCODE_UC_SEND_ONLY] = 12 + 8, [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4, [IB_OPCODE_UC_RDMA_WRITE_FIRST] = 12 + 8 + 16, [IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = 12 + 8, [IB_OPCODE_UC_RDMA_WRITE_LAST] = 12 + 8, [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4, [IB_OPCODE_UC_RDMA_WRITE_ONLY] = 12 + 8 + 16, [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20, /* UD */ [IB_OPCODE_UD_SEND_ONLY] = 12 + 8 + 8, [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 12 }; static const opcode_handler opcode_handler_tbl[256] = { /* RC */ [IB_OPCODE_RC_SEND_FIRST] = &hfi1_rc_rcv, [IB_OPCODE_RC_SEND_MIDDLE] = &hfi1_rc_rcv, [IB_OPCODE_RC_SEND_LAST] = &hfi1_rc_rcv, [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv, [IB_OPCODE_RC_SEND_ONLY] = &hfi1_rc_rcv, [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv, [IB_OPCODE_RC_RDMA_WRITE_FIRST] = &hfi1_rc_rcv, [IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = &hfi1_rc_rcv, [IB_OPCODE_RC_RDMA_WRITE_LAST] = &hfi1_rc_rcv, [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv, [IB_OPCODE_RC_RDMA_WRITE_ONLY] = &hfi1_rc_rcv, [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv, [IB_OPCODE_RC_RDMA_READ_REQUEST] = &hfi1_rc_rcv, [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = &hfi1_rc_rcv, [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = &hfi1_rc_rcv, [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = &hfi1_rc_rcv, [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = &hfi1_rc_rcv, [IB_OPCODE_RC_ACKNOWLEDGE] = &hfi1_rc_rcv, [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = &hfi1_rc_rcv, [IB_OPCODE_RC_COMPARE_SWAP] = &hfi1_rc_rcv, [IB_OPCODE_RC_FETCH_ADD] = &hfi1_rc_rcv, [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE] = &hfi1_rc_rcv, [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE] = &hfi1_rc_rcv, /* UC */ [IB_OPCODE_UC_SEND_FIRST] = &hfi1_uc_rcv, [IB_OPCODE_UC_SEND_MIDDLE] = &hfi1_uc_rcv, [IB_OPCODE_UC_SEND_LAST] = &hfi1_uc_rcv, [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv, [IB_OPCODE_UC_SEND_ONLY] = &hfi1_uc_rcv, [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv, [IB_OPCODE_UC_RDMA_WRITE_FIRST] = &hfi1_uc_rcv, [IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = &hfi1_uc_rcv, [IB_OPCODE_UC_RDMA_WRITE_LAST] = &hfi1_uc_rcv, [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv, [IB_OPCODE_UC_RDMA_WRITE_ONLY] = &hfi1_uc_rcv, [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv, /* UD */ [IB_OPCODE_UD_SEND_ONLY] = &hfi1_ud_rcv, [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_ud_rcv, /* CNP */ [IB_OPCODE_CNP] = &hfi1_cnp_rcv }; #define OPMASK 0x1f static const u32 pio_opmask[BIT(3)] = { /* RC */ [IB_OPCODE_RC >> 5] = BIT(RC_OP(SEND_ONLY) & OPMASK) | BIT(RC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) | BIT(RC_OP(RDMA_WRITE_ONLY) & OPMASK) | BIT(RC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK) | BIT(RC_OP(RDMA_READ_REQUEST) & OPMASK) | BIT(RC_OP(ACKNOWLEDGE) & OPMASK) | BIT(RC_OP(ATOMIC_ACKNOWLEDGE) & OPMASK) | BIT(RC_OP(COMPARE_SWAP) & OPMASK) | BIT(RC_OP(FETCH_ADD) & OPMASK), /* UC */ [IB_OPCODE_UC >> 5] = BIT(UC_OP(SEND_ONLY) & OPMASK) | BIT(UC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) | BIT(UC_OP(RDMA_WRITE_ONLY) & OPMASK) | BIT(UC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK), }; /* * System image GUID. */ __be64 ib_hfi1_sys_image_guid; /** * hfi1_copy_sge - copy data to SGE memory * @ss: the SGE state * @data: the data to copy * @length: the length of the data * @copy_last: do a separate copy of the last 8 bytes */ void hfi1_copy_sge( struct rvt_sge_state *ss, void *data, u32 length, int release, int copy_last) { struct rvt_sge *sge = &ss->sge; int in_last = 0; int i; int cacheless_copy = 0; if (sge_copy_mode == COPY_CACHELESS) { cacheless_copy = length >= PAGE_SIZE; } else if (sge_copy_mode == COPY_ADAPTIVE) { if (length >= PAGE_SIZE) { /* * NOTE: this *assumes*: * o The first vaddr is the dest. * o If multiple pages, then vaddr is sequential. */ wss_insert(sge->vaddr); if (length >= (2 * PAGE_SIZE)) wss_insert(sge->vaddr + PAGE_SIZE); cacheless_copy = wss_exceeds_threshold(); } else { wss_advance_clean_counter(); } } if (copy_last) { if (length > 8) { length -= 8; } else { copy_last = 0; in_last = 1; } } again: while (length) { u32 len = sge->length; if (len > length) len = length; if (len > sge->sge_length) len = sge->sge_length; WARN_ON_ONCE(len == 0); if (unlikely(in_last)) { /* enforce byte transfer ordering */ for (i = 0; i < len; i++) ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i]; } else if (cacheless_copy) { cacheless_memcpy(sge->vaddr, data, len); } else { memcpy(sge->vaddr, data, len); } sge->vaddr += len; sge->length -= len; sge->sge_length -= len; if (sge->sge_length == 0) { if (release) rvt_put_mr(sge->mr); if (--ss->num_sge) *sge = *ss->sg_list++; } else if (sge->length == 0 && sge->mr->lkey) { if (++sge->n >= RVT_SEGSZ) { if (++sge->m >= sge->mr->mapsz) break; sge->n = 0; } sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr; sge->length = sge->mr->map[sge->m]->segs[sge->n].length; } data += len; length -= len; } if (copy_last) { copy_last = 0; in_last = 1; length = 8; goto again; } } /** * hfi1_skip_sge - skip over SGE memory * @ss: the SGE state * @length: the number of bytes to skip */ void hfi1_skip_sge(struct rvt_sge_state *ss, u32 length, int release) { struct rvt_sge *sge = &ss->sge; while (length) { u32 len = sge->length; if (len > length) len = length; if (len > sge->sge_length) len = sge->sge_length; WARN_ON_ONCE(len == 0); sge->vaddr += len; sge->length -= len; sge->sge_length -= len; if (sge->sge_length == 0) { if (release) rvt_put_mr(sge->mr); if (--ss->num_sge) *sge = *ss->sg_list++; } else if (sge->length == 0 && sge->mr->lkey) { if (++sge->n >= RVT_SEGSZ) { if (++sge->m >= sge->mr->mapsz) break; sge->n = 0; } sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr; sge->length = sge->mr->map[sge->m]->segs[sge->n].length; } length -= len; } } /* * Make sure the QP is ready and able to accept the given opcode. */ static inline opcode_handler qp_ok(int opcode, struct hfi1_packet *packet) { if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK)) return NULL; if (((opcode & RVT_OPCODE_QP_MASK) == packet->qp->allowed_ops) || (opcode == IB_OPCODE_CNP)) return opcode_handler_tbl[opcode]; return NULL; } /** * hfi1_ib_rcv - process an incoming packet * @packet: data packet information * * This is called to process an incoming packet at interrupt level. * * Tlen is the length of the header + data + CRC in bytes. */ void hfi1_ib_rcv(struct hfi1_packet *packet) { struct hfi1_ctxtdata *rcd = packet->rcd; struct ib_header *hdr = packet->hdr; u32 tlen = packet->tlen; struct hfi1_pportdata *ppd = rcd->ppd; struct hfi1_ibport *ibp = &ppd->ibport_data; struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi; opcode_handler packet_handler; unsigned long flags; u32 qp_num; int lnh; u8 opcode; u16 lid; /* Check for GRH */ lnh = be16_to_cpu(hdr->lrh[0]) & 3; if (lnh == HFI1_LRH_BTH) { packet->ohdr = &hdr->u.oth; } else if (lnh == HFI1_LRH_GRH) { u32 vtf; packet->ohdr = &hdr->u.l.oth; if (hdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR) goto drop; vtf = be32_to_cpu(hdr->u.l.grh.version_tclass_flow); if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION) goto drop; packet->rcv_flags |= HFI1_HAS_GRH; } else { goto drop; } trace_input_ibhdr(rcd->dd, hdr); opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24); inc_opstats(tlen, &rcd->opstats->stats[opcode]); /* Get the destination QP number. */ qp_num = be32_to_cpu(packet->ohdr->bth[1]) & RVT_QPN_MASK; lid = be16_to_cpu(hdr->lrh[1]); if (unlikely((lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) && (lid != be16_to_cpu(IB_LID_PERMISSIVE)))) { struct rvt_mcast *mcast; struct rvt_mcast_qp *p; if (lnh != HFI1_LRH_GRH) goto drop; mcast = rvt_mcast_find(&ibp->rvp, &hdr->u.l.grh.dgid); if (!mcast) goto drop; list_for_each_entry_rcu(p, &mcast->qp_list, list) { packet->qp = p->qp; spin_lock_irqsave(&packet->qp->r_lock, flags); packet_handler = qp_ok(opcode, packet); if (likely(packet_handler)) packet_handler(packet); else ibp->rvp.n_pkt_drops++; spin_unlock_irqrestore(&packet->qp->r_lock, flags); } /* * Notify rvt_multicast_detach() if it is waiting for us * to finish. */ if (atomic_dec_return(&mcast->refcount) <= 1) wake_up(&mcast->wait); } else { rcu_read_lock(); packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num); if (!packet->qp) { rcu_read_unlock(); goto drop; } spin_lock_irqsave(&packet->qp->r_lock, flags); packet_handler = qp_ok(opcode, packet); if (likely(packet_handler)) packet_handler(packet); else ibp->rvp.n_pkt_drops++; spin_unlock_irqrestore(&packet->qp->r_lock, flags); rcu_read_unlock(); } return; drop: ibp->rvp.n_pkt_drops++; } /* * This is called from a timer to check for QPs * which need kernel memory in order to send a packet. */ static void mem_timer(unsigned long data) { struct hfi1_ibdev *dev = (struct hfi1_ibdev *)data; struct list_head *list = &dev->memwait; struct rvt_qp *qp = NULL; struct iowait *wait; unsigned long flags; struct hfi1_qp_priv *priv; write_seqlock_irqsave(&dev->iowait_lock, flags); if (!list_empty(list)) { wait = list_first_entry(list, struct iowait, list); qp = iowait_to_qp(wait); priv = qp->priv; list_del_init(&priv->s_iowait.list); /* refcount held until actual wake up */ if (!list_empty(list)) mod_timer(&dev->mem_timer, jiffies + 1); } write_sequnlock_irqrestore(&dev->iowait_lock, flags); if (qp) hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM); } void update_sge(struct rvt_sge_state *ss, u32 length) { struct rvt_sge *sge = &ss->sge; sge->vaddr += length; sge->length -= length; sge->sge_length -= length; if (sge->sge_length == 0) { if (--ss->num_sge) *sge = *ss->sg_list++; } else if (sge->length == 0 && sge->mr->lkey) { if (++sge->n >= RVT_SEGSZ) { if (++sge->m >= sge->mr->mapsz) return; sge->n = 0; } sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr; sge->length = sge->mr->map[sge->m]->segs[sge->n].length; } } /* * This is called with progress side lock held. */ /* New API */ static void verbs_sdma_complete( struct sdma_txreq *cookie, int status) { struct verbs_txreq *tx = container_of(cookie, struct verbs_txreq, txreq); struct rvt_qp *qp = tx->qp; spin_lock(&qp->s_lock); if (tx->wqe) { hfi1_send_complete(qp, tx->wqe, IB_WC_SUCCESS); } else if (qp->ibqp.qp_type == IB_QPT_RC) { struct ib_header *hdr; hdr = &tx->phdr.hdr; hfi1_rc_send_complete(qp, hdr); } spin_unlock(&qp->s_lock); hfi1_put_txreq(tx); } static int wait_kmem(struct hfi1_ibdev *dev, struct rvt_qp *qp, struct hfi1_pkt_state *ps) { struct hfi1_qp_priv *priv = qp->priv; unsigned long flags; int ret = 0; spin_lock_irqsave(&qp->s_lock, flags); if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) { write_seqlock(&dev->iowait_lock); list_add_tail(&ps->s_txreq->txreq.list, &priv->s_iowait.tx_head); if (list_empty(&priv->s_iowait.list)) { if (list_empty(&dev->memwait)) mod_timer(&dev->mem_timer, jiffies + 1); qp->s_flags |= RVT_S_WAIT_KMEM; list_add_tail(&priv->s_iowait.list, &dev->memwait); trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM); rvt_get_qp(qp); } write_sequnlock(&dev->iowait_lock); qp->s_flags &= ~RVT_S_BUSY; ret = -EBUSY; } spin_unlock_irqrestore(&qp->s_lock, flags); return ret; } /* * This routine calls txadds for each sg entry. * * Add failures will revert the sge cursor */ static noinline int build_verbs_ulp_payload( struct sdma_engine *sde, struct rvt_sge_state *ss, u32 length, struct verbs_txreq *tx) { struct rvt_sge *sg_list = ss->sg_list; struct rvt_sge sge = ss->sge; u8 num_sge = ss->num_sge; u32 len; int ret = 0; while (length) { len = ss->sge.length; if (len > length) len = length; if (len > ss->sge.sge_length) len = ss->sge.sge_length; WARN_ON_ONCE(len == 0); ret = sdma_txadd_kvaddr( sde->dd, &tx->txreq, ss->sge.vaddr, len); if (ret) goto bail_txadd; update_sge(ss, len); length -= len; } return ret; bail_txadd: /* unwind cursor */ ss->sge = sge; ss->num_sge = num_sge; ss->sg_list = sg_list; return ret; } /* * Build the number of DMA descriptors needed to send length bytes of data. * * NOTE: DMA mapping is held in the tx until completed in the ring or * the tx desc is freed without having been submitted to the ring * * This routine ensures all the helper routine calls succeed. */ /* New API */ static int build_verbs_tx_desc( struct sdma_engine *sde, struct rvt_sge_state *ss, u32 length, struct verbs_txreq *tx, struct hfi1_ahg_info *ahg_info, u64 pbc) { int ret = 0; struct hfi1_sdma_header *phdr = &tx->phdr; u16 hdrbytes = tx->hdr_dwords << 2; if (!ahg_info->ahgcount) { ret = sdma_txinit_ahg( &tx->txreq, ahg_info->tx_flags, hdrbytes + length, ahg_info->ahgidx, 0, NULL, 0, verbs_sdma_complete); if (ret) goto bail_txadd; phdr->pbc = cpu_to_le64(pbc); ret = sdma_txadd_kvaddr( sde->dd, &tx->txreq, phdr, hdrbytes); if (ret) goto bail_txadd; } else { ret = sdma_txinit_ahg( &tx->txreq, ahg_info->tx_flags, length, ahg_info->ahgidx, ahg_info->ahgcount, ahg_info->ahgdesc, hdrbytes, verbs_sdma_complete); if (ret) goto bail_txadd; } /* add the ulp payload - if any. ss can be NULL for acks */ if (ss) ret = build_verbs_ulp_payload(sde, ss, length, tx); bail_txadd: return ret; } int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps, u64 pbc) { struct hfi1_qp_priv *priv = qp->priv; struct hfi1_ahg_info *ahg_info = priv->s_ahg; u32 hdrwords = qp->s_hdrwords; struct rvt_sge_state *ss = qp->s_cur_sge; u32 len = qp->s_cur_size; u32 plen = hdrwords + ((len + 3) >> 2) + 2; /* includes pbc */ struct hfi1_ibdev *dev = ps->dev; struct hfi1_pportdata *ppd = ps->ppd; struct verbs_txreq *tx; u64 pbc_flags = 0; u8 sc5 = priv->s_sc; int ret; tx = ps->s_txreq; if (!sdma_txreq_built(&tx->txreq)) { if (likely(pbc == 0)) { u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5); /* No vl15 here */ /* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */ pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT; pbc = create_pbc(ppd, pbc_flags, qp->srate_mbps, vl, plen); } tx->wqe = qp->s_wqe; ret = build_verbs_tx_desc(tx->sde, ss, len, tx, ahg_info, pbc); if (unlikely(ret)) goto bail_build; } ret = sdma_send_txreq(tx->sde, &priv->s_iowait, &tx->txreq); if (unlikely(ret < 0)) { if (ret == -ECOMM) goto bail_ecomm; return ret; } trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device), &ps->s_txreq->phdr.hdr); return ret; bail_ecomm: /* The current one got "sent" */ return 0; bail_build: ret = wait_kmem(dev, qp, ps); if (!ret) { /* free txreq - bad state */ hfi1_put_txreq(ps->s_txreq); ps->s_txreq = NULL; } return ret; } /* * If we are now in the error state, return zero to flush the * send work request. */ static int pio_wait(struct rvt_qp *qp, struct send_context *sc, struct hfi1_pkt_state *ps, u32 flag) { struct hfi1_qp_priv *priv = qp->priv; struct hfi1_devdata *dd = sc->dd; struct hfi1_ibdev *dev = &dd->verbs_dev; unsigned long flags; int ret = 0; /* * Note that as soon as want_buffer() is called and * possibly before it returns, sc_piobufavail() * could be called. Therefore, put QP on the I/O wait list before * enabling the PIO avail interrupt. */ spin_lock_irqsave(&qp->s_lock, flags); if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) { write_seqlock(&dev->iowait_lock); list_add_tail(&ps->s_txreq->txreq.list, &priv->s_iowait.tx_head); if (list_empty(&priv->s_iowait.list)) { struct hfi1_ibdev *dev = &dd->verbs_dev; int was_empty; dev->n_piowait += !!(flag & RVT_S_WAIT_PIO); dev->n_piodrain += !!(flag & RVT_S_WAIT_PIO_DRAIN); qp->s_flags |= flag; was_empty = list_empty(&sc->piowait); list_add_tail(&priv->s_iowait.list, &sc->piowait); trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO); rvt_get_qp(qp); /* counting: only call wantpiobuf_intr if first user */ if (was_empty) hfi1_sc_wantpiobuf_intr(sc, 1); } write_sequnlock(&dev->iowait_lock); qp->s_flags &= ~RVT_S_BUSY; ret = -EBUSY; } spin_unlock_irqrestore(&qp->s_lock, flags); return ret; } static void verbs_pio_complete(void *arg, int code) { struct rvt_qp *qp = (struct rvt_qp *)arg; struct hfi1_qp_priv *priv = qp->priv; if (iowait_pio_dec(&priv->s_iowait)) iowait_drain_wakeup(&priv->s_iowait); } int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps, u64 pbc) { struct hfi1_qp_priv *priv = qp->priv; u32 hdrwords = qp->s_hdrwords; struct rvt_sge_state *ss = qp->s_cur_sge; u32 len = qp->s_cur_size; u32 dwords = (len + 3) >> 2; u32 plen = hdrwords + dwords + 2; /* includes pbc */ struct hfi1_pportdata *ppd = ps->ppd; u32 *hdr = (u32 *)&ps->s_txreq->phdr.hdr; u64 pbc_flags = 0; u8 sc5; unsigned long flags = 0; struct send_context *sc; struct pio_buf *pbuf; int wc_status = IB_WC_SUCCESS; int ret = 0; pio_release_cb cb = NULL; /* only RC/UC use complete */ switch (qp->ibqp.qp_type) { case IB_QPT_RC: case IB_QPT_UC: cb = verbs_pio_complete; break; default: break; } /* vl15 special case taken care of in ud.c */ sc5 = priv->s_sc; sc = ps->s_txreq->psc; if (likely(pbc == 0)) { u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5); /* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */ pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT; pbc = create_pbc(ppd, pbc_flags, qp->srate_mbps, vl, plen); } if (cb) iowait_pio_inc(&priv->s_iowait); pbuf = sc_buffer_alloc(sc, plen, cb, qp); if (unlikely(!pbuf)) { if (cb) verbs_pio_complete(qp, 0); if (ppd->host_link_state != HLS_UP_ACTIVE) { /* * If we have filled the PIO buffers to capacity and are * not in an active state this request is not going to * go out to so just complete it with an error or else a * ULP or the core may be stuck waiting. */ hfi1_cdbg( PIO, "alloc failed. state not active, completing"); wc_status = IB_WC_GENERAL_ERR; goto pio_bail; } else { /* * This is a normal occurrence. The PIO buffs are full * up but we are still happily sending, well we could be * so lets continue to queue the request. */ hfi1_cdbg(PIO, "alloc failed. state active, queuing"); ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO); if (!ret) /* txreq not queued - free */ goto bail; /* tx consumed in wait */ return ret; } } if (len == 0) { pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords); } else { if (ss) { seg_pio_copy_start(pbuf, pbc, hdr, hdrwords * 4); while (len) { void *addr = ss->sge.vaddr; u32 slen = ss->sge.length; if (slen > len) slen = len; update_sge(ss, slen); seg_pio_copy_mid(pbuf, addr, slen); len -= slen; } seg_pio_copy_end(pbuf); } } trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device), &ps->s_txreq->phdr.hdr); pio_bail: if (qp->s_wqe) { spin_lock_irqsave(&qp->s_lock, flags); hfi1_send_complete(qp, qp->s_wqe, wc_status); spin_unlock_irqrestore(&qp->s_lock, flags); } else if (qp->ibqp.qp_type == IB_QPT_RC) { spin_lock_irqsave(&qp->s_lock, flags); hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr); spin_unlock_irqrestore(&qp->s_lock, flags); } ret = 0; bail: hfi1_put_txreq(ps->s_txreq); return ret; } /* * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent * being an entry from the partition key table), return 0 * otherwise. Use the matching criteria for egress partition keys * specified in the OPAv1 spec., section 9.1l.7. */ static inline int egress_pkey_matches_entry(u16 pkey, u16 ent) { u16 mkey = pkey & PKEY_LOW_15_MASK; u16 mentry = ent & PKEY_LOW_15_MASK; if (mkey == mentry) { /* * If pkey[15] is set (full partition member), * is bit 15 in the corresponding table element * clear (limited member)? */ if (pkey & PKEY_MEMBER_MASK) return !!(ent & PKEY_MEMBER_MASK); return 1; } return 0; } /** * egress_pkey_check - check P_KEY of a packet * @ppd: Physical IB port data * @lrh: Local route header * @bth: Base transport header * @sc5: SC for packet * @s_pkey_index: It will be used for look up optimization for kernel contexts * only. If it is negative value, then it means user contexts is calling this * function. * * It checks if hdr's pkey is valid. * * Return: 0 on success, otherwise, 1 */ int egress_pkey_check(struct hfi1_pportdata *ppd, __be16 *lrh, __be32 *bth, u8 sc5, int8_t s_pkey_index) { struct hfi1_devdata *dd; int i; u16 pkey; int is_user_ctxt_mechanism = (s_pkey_index < 0); if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT)) return 0; pkey = (u16)be32_to_cpu(bth[0]); /* If SC15, pkey[0:14] must be 0x7fff */ if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK)) goto bad; /* Is the pkey = 0x0, or 0x8000? */ if ((pkey & PKEY_LOW_15_MASK) == 0) goto bad; /* * For the kernel contexts only, if a qp is passed into the function, * the most likely matching pkey has index qp->s_pkey_index */ if (!is_user_ctxt_mechanism && egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) { return 0; } for (i = 0; i < MAX_PKEY_VALUES; i++) { if (egress_pkey_matches_entry(pkey, ppd->pkeys[i])) return 0; } bad: /* * For the user-context mechanism, the P_KEY check would only happen * once per SDMA request, not once per packet. Therefore, there's no * need to increment the counter for the user-context mechanism. */ if (!is_user_ctxt_mechanism) { incr_cntr64(&ppd->port_xmit_constraint_errors); dd = ppd->dd; if (!(dd->err_info_xmit_constraint.status & OPA_EI_STATUS_SMASK)) { u16 slid = be16_to_cpu(lrh[3]); dd->err_info_xmit_constraint.status |= OPA_EI_STATUS_SMASK; dd->err_info_xmit_constraint.slid = slid; dd->err_info_xmit_constraint.pkey = pkey; } } return 1; } /** * get_send_routine - choose an egress routine * * Choose an egress routine based on QP type * and size */ static inline send_routine get_send_routine(struct rvt_qp *qp, struct verbs_txreq *tx) { struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device); struct hfi1_qp_priv *priv = qp->priv; struct ib_header *h = &tx->phdr.hdr; if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA))) return dd->process_pio_send; switch (qp->ibqp.qp_type) { case IB_QPT_SMI: return dd->process_pio_send; case IB_QPT_GSI: case IB_QPT_UD: break; case IB_QPT_UC: case IB_QPT_RC: { u8 op = get_opcode(h); if (piothreshold && qp->s_cur_size <= min(piothreshold, qp->pmtu) && (BIT(op & OPMASK) & pio_opmask[op >> 5]) && iowait_sdma_pending(&priv->s_iowait) == 0 && !sdma_txreq_built(&tx->txreq)) return dd->process_pio_send; break; } default: break; } return dd->process_dma_send; } /** * hfi1_verbs_send - send a packet * @qp: the QP to send on * @ps: the state of the packet to send * * Return zero if packet is sent or queued OK. * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise. */ int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps) { struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device); struct hfi1_qp_priv *priv = qp->priv; struct ib_other_headers *ohdr; struct ib_header *hdr; send_routine sr; int ret; u8 lnh; hdr = &ps->s_txreq->phdr.hdr; /* locate the pkey within the headers */ lnh = be16_to_cpu(hdr->lrh[0]) & 3; if (lnh == HFI1_LRH_GRH) ohdr = &hdr->u.l.oth; else ohdr = &hdr->u.oth; sr = get_send_routine(qp, ps->s_txreq); ret = egress_pkey_check(dd->pport, hdr->lrh, ohdr->bth, priv->s_sc, qp->s_pkey_index); if (unlikely(ret)) { /* * The value we are returning here does not get propagated to * the verbs caller. Thus we need to complete the request with * error otherwise the caller could be sitting waiting on the * completion event. Only do this for PIO. SDMA has its own * mechanism for handling the errors. So for SDMA we can just * return. */ if (sr == dd->process_pio_send) { unsigned long flags; hfi1_cdbg(PIO, "%s() Failed. Completing with err", __func__); spin_lock_irqsave(&qp->s_lock, flags); hfi1_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR); spin_unlock_irqrestore(&qp->s_lock, flags); } return -EINVAL; } if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait)) return pio_wait(qp, ps->s_txreq->psc, ps, RVT_S_WAIT_PIO_DRAIN); return sr(qp, ps, 0); } /** * hfi1_fill_device_attr - Fill in rvt dev info device attributes. * @dd: the device data structure */ static void hfi1_fill_device_attr(struct hfi1_devdata *dd) { struct rvt_dev_info *rdi = &dd->verbs_dev.rdi; u16 ver = dd->dc8051_ver; memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props)); rdi->dparms.props.fw_ver = ((u64)(dc8051_ver_maj(ver)) << 16) | (u64)dc8051_ver_min(ver); rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR | IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT | IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN | IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE | IB_DEVICE_MEM_MGT_EXTENSIONS; rdi->dparms.props.page_size_cap = PAGE_SIZE; rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3; rdi->dparms.props.vendor_part_id = dd->pcidev->device; rdi->dparms.props.hw_ver = dd->minrev; rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid; rdi->dparms.props.max_mr_size = U64_MAX; rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX; rdi->dparms.props.max_qp = hfi1_max_qps; rdi->dparms.props.max_qp_wr = hfi1_max_qp_wrs; rdi->dparms.props.max_sge = hfi1_max_sges; rdi->dparms.props.max_sge_rd = hfi1_max_sges; rdi->dparms.props.max_cq = hfi1_max_cqs; rdi->dparms.props.max_ah = hfi1_max_ahs; rdi->dparms.props.max_cqe = hfi1_max_cqes; rdi->dparms.props.max_mr = rdi->lkey_table.max; rdi->dparms.props.max_fmr = rdi->lkey_table.max; rdi->dparms.props.max_map_per_fmr = 32767; rdi->dparms.props.max_pd = hfi1_max_pds; rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC; rdi->dparms.props.max_qp_init_rd_atom = 255; rdi->dparms.props.max_srq = hfi1_max_srqs; rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs; rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges; rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB; rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd); rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps; rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached; rdi->dparms.props.max_total_mcast_qp_attach = rdi->dparms.props.max_mcast_qp_attach * rdi->dparms.props.max_mcast_grp; } static inline u16 opa_speed_to_ib(u16 in) { u16 out = 0; if (in & OPA_LINK_SPEED_25G) out |= IB_SPEED_EDR; if (in & OPA_LINK_SPEED_12_5G) out |= IB_SPEED_FDR; return out; } /* * Convert a single OPA link width (no multiple flags) to an IB value. * A zero OPA link width means link down, which means the IB width value * is a don't care. */ static inline u16 opa_width_to_ib(u16 in) { switch (in) { case OPA_LINK_WIDTH_1X: /* map 2x and 3x to 1x as they don't exist in IB */ case OPA_LINK_WIDTH_2X: case OPA_LINK_WIDTH_3X: return IB_WIDTH_1X; default: /* link down or unknown, return our largest width */ case OPA_LINK_WIDTH_4X: return IB_WIDTH_4X; } } static int query_port(struct rvt_dev_info *rdi, u8 port_num, struct ib_port_attr *props) { struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi); struct hfi1_devdata *dd = dd_from_dev(verbs_dev); struct hfi1_pportdata *ppd = &dd->pport[port_num - 1]; u16 lid = ppd->lid; props->lid = lid ? lid : 0; props->lmc = ppd->lmc; /* OPA logical states match IB logical states */ props->state = driver_lstate(ppd); props->phys_state = hfi1_ibphys_portstate(ppd); props->gid_tbl_len = HFI1_GUIDS_PER_PORT; props->active_width = (u8)opa_width_to_ib(ppd->link_width_active); /* see rate_show() in ib core/sysfs.c */ props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active); props->max_vl_num = ppd->vls_supported; /* Once we are a "first class" citizen and have added the OPA MTUs to * the core we can advertise the larger MTU enum to the ULPs, for now * advertise only 4K. * * Those applications which are either OPA aware or pass the MTU enum * from the Path Records to us will get the new 8k MTU. Those that * attempt to process the MTU enum may fail in various ways. */ props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ? 4096 : hfi1_max_mtu), IB_MTU_4096); props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu : mtu_to_enum(ppd->ibmtu, IB_MTU_2048); return 0; } static int modify_device(struct ib_device *device, int device_modify_mask, struct ib_device_modify *device_modify) { struct hfi1_devdata *dd = dd_from_ibdev(device); unsigned i; int ret; if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID | IB_DEVICE_MODIFY_NODE_DESC)) { ret = -EOPNOTSUPP; goto bail; } if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) { memcpy(device->node_desc, device_modify->node_desc, 64); for (i = 0; i < dd->num_pports; i++) { struct hfi1_ibport *ibp = &dd->pport[i].ibport_data; hfi1_node_desc_chg(ibp); } } if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) { ib_hfi1_sys_image_guid = cpu_to_be64(device_modify->sys_image_guid); for (i = 0; i < dd->num_pports; i++) { struct hfi1_ibport *ibp = &dd->pport[i].ibport_data; hfi1_sys_guid_chg(ibp); } } ret = 0; bail: return ret; } static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num) { struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi); struct hfi1_devdata *dd = dd_from_dev(verbs_dev); struct hfi1_pportdata *ppd = &dd->pport[port_num - 1]; int ret; set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0, OPA_LINKDOWN_REASON_UNKNOWN); ret = set_link_state(ppd, HLS_DN_DOWNDEF); return ret; } static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp, int guid_index, __be64 *guid) { struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp); struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); if (guid_index == 0) *guid = cpu_to_be64(ppd->guid); else if (guid_index < HFI1_GUIDS_PER_PORT) *guid = ibp->guids[guid_index - 1]; else return -EINVAL; return 0; } /* * convert ah port,sl to sc */ u8 ah_to_sc(struct ib_device *ibdev, struct ib_ah_attr *ah) { struct hfi1_ibport *ibp = to_iport(ibdev, ah->port_num); return ibp->sl_to_sc[ah->sl]; } static int hfi1_check_ah(struct ib_device *ibdev, struct ib_ah_attr *ah_attr) { struct hfi1_ibport *ibp; struct hfi1_pportdata *ppd; struct hfi1_devdata *dd; u8 sc5; /* test the mapping for validity */ ibp = to_iport(ibdev, ah_attr->port_num); ppd = ppd_from_ibp(ibp); sc5 = ibp->sl_to_sc[ah_attr->sl]; dd = dd_from_ppd(ppd); if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf) return -EINVAL; return 0; } static void hfi1_notify_new_ah(struct ib_device *ibdev, struct ib_ah_attr *ah_attr, struct rvt_ah *ah) { struct hfi1_ibport *ibp; struct hfi1_pportdata *ppd; struct hfi1_devdata *dd; u8 sc5; /* * Do not trust reading anything from rvt_ah at this point as it is not * done being setup. We can however modify things which we need to set. */ ibp = to_iport(ibdev, ah_attr->port_num); ppd = ppd_from_ibp(ibp); sc5 = ibp->sl_to_sc[ah->attr.sl]; dd = dd_from_ppd(ppd); ah->vl = sc_to_vlt(dd, sc5); if (ah->vl < num_vls || ah->vl == 15) ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu); } struct ib_ah *hfi1_create_qp0_ah(struct hfi1_ibport *ibp, u16 dlid) { struct ib_ah_attr attr; struct ib_ah *ah = ERR_PTR(-EINVAL); struct rvt_qp *qp0; memset(&attr, 0, sizeof(attr)); attr.dlid = dlid; attr.port_num = ppd_from_ibp(ibp)->port; rcu_read_lock(); qp0 = rcu_dereference(ibp->rvp.qp[0]); if (qp0) ah = ib_create_ah(qp0->ibqp.pd, &attr); rcu_read_unlock(); return ah; } /** * hfi1_get_npkeys - return the size of the PKEY table for context 0 * @dd: the hfi1_ib device */ unsigned hfi1_get_npkeys(struct hfi1_devdata *dd) { return ARRAY_SIZE(dd->pport[0].pkeys); } static void init_ibport(struct hfi1_pportdata *ppd) { struct hfi1_ibport *ibp = &ppd->ibport_data; size_t sz = ARRAY_SIZE(ibp->sl_to_sc); int i; for (i = 0; i < sz; i++) { ibp->sl_to_sc[i] = i; ibp->sc_to_sl[i] = i; } spin_lock_init(&ibp->rvp.lock); /* Set the prefix to the default value (see ch. 4.1.1) */ ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX; ibp->rvp.sm_lid = 0; /* Below should only set bits defined in OPA PortInfo.CapabilityMask */ ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP | IB_PORT_CAP_MASK_NOTICE_SUP; ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA; ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA; ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS; ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS; ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT; RCU_INIT_POINTER(ibp->rvp.qp[0], NULL); RCU_INIT_POINTER(ibp->rvp.qp[1], NULL); } static void hfi1_get_dev_fw_str(struct ib_device *ibdev, char *str, size_t str_len) { struct rvt_dev_info *rdi = ib_to_rvt(ibdev); struct hfi1_ibdev *dev = dev_from_rdi(rdi); u16 ver = dd_from_dev(dev)->dc8051_ver; snprintf(str, str_len, "%u.%u", dc8051_ver_maj(ver), dc8051_ver_min(ver)); } /** * hfi1_register_ib_device - register our device with the infiniband core * @dd: the device data structure * Return 0 if successful, errno if unsuccessful. */ int hfi1_register_ib_device(struct hfi1_devdata *dd) { struct hfi1_ibdev *dev = &dd->verbs_dev; struct ib_device *ibdev = &dev->rdi.ibdev; struct hfi1_pportdata *ppd = dd->pport; unsigned i; int ret; size_t lcpysz = IB_DEVICE_NAME_MAX; for (i = 0; i < dd->num_pports; i++) init_ibport(ppd + i); /* Only need to initialize non-zero fields. */ setup_timer(&dev->mem_timer, mem_timer, (unsigned long)dev); seqlock_init(&dev->iowait_lock); INIT_LIST_HEAD(&dev->txwait); INIT_LIST_HEAD(&dev->memwait); ret = verbs_txreq_init(dev); if (ret) goto err_verbs_txreq; /* * The system image GUID is supposed to be the same for all * HFIs in a single system but since there can be other * device types in the system, we can't be sure this is unique. */ if (!ib_hfi1_sys_image_guid) ib_hfi1_sys_image_guid = cpu_to_be64(ppd->guid); lcpysz = strlcpy(ibdev->name, class_name(), lcpysz); strlcpy(ibdev->name + lcpysz, "_%d", IB_DEVICE_NAME_MAX - lcpysz); ibdev->owner = THIS_MODULE; ibdev->node_guid = cpu_to_be64(ppd->guid); ibdev->phys_port_cnt = dd->num_pports; ibdev->dma_device = &dd->pcidev->dev; ibdev->modify_device = modify_device; /* keep process mad in the driver */ ibdev->process_mad = hfi1_process_mad; ibdev->get_dev_fw_str = hfi1_get_dev_fw_str; strncpy(ibdev->node_desc, init_utsname()->nodename, sizeof(ibdev->node_desc)); /* * Fill in rvt info object. */ dd->verbs_dev.rdi.driver_f.port_callback = hfi1_create_port_files; dd->verbs_dev.rdi.driver_f.get_card_name = get_card_name; dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev; dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah; dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah; dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be; dd->verbs_dev.rdi.driver_f.query_port_state = query_port; dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port; dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg; /* * Fill in rvt info device attributes. */ hfi1_fill_device_attr(dd); /* queue pair */ dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size; dd->verbs_dev.rdi.dparms.qpn_start = 0; dd->verbs_dev.rdi.dparms.qpn_inc = 1; dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift; dd->verbs_dev.rdi.dparms.qpn_res_start = kdeth_qp << 16; dd->verbs_dev.rdi.dparms.qpn_res_end = dd->verbs_dev.rdi.dparms.qpn_res_start + 65535; dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC; dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK; dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT; dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK; dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA; dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE; dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc; dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free; dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps; dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset; dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send; dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send; dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send; dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr; dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp; dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters; dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue; dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp; dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp; dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp; dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu; dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp; dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp; dd->verbs_dev.rdi.driver_f.check_send_wqe = hfi1_check_send_wqe; /* completeion queue */ snprintf(dd->verbs_dev.rdi.dparms.cq_name, sizeof(dd->verbs_dev.rdi.dparms.cq_name), "hfi1_cq%d", dd->unit); dd->verbs_dev.rdi.dparms.node = dd->node; /* misc settings */ dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */ dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size; dd->verbs_dev.rdi.dparms.nports = dd->num_pports; dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd); /* post send table */ dd->verbs_dev.rdi.post_parms = hfi1_post_parms; ppd = dd->pport; for (i = 0; i < dd->num_pports; i++, ppd++) rvt_init_port(&dd->verbs_dev.rdi, &ppd->ibport_data.rvp, i, ppd->pkeys); ret = rvt_register_device(&dd->verbs_dev.rdi); if (ret) goto err_verbs_txreq; ret = hfi1_verbs_register_sysfs(dd); if (ret) goto err_class; return ret; err_class: rvt_unregister_device(&dd->verbs_dev.rdi); err_verbs_txreq: verbs_txreq_exit(dev); dd_dev_err(dd, "cannot register verbs: %d!\n", -ret); return ret; } void hfi1_unregister_ib_device(struct hfi1_devdata *dd) { struct hfi1_ibdev *dev = &dd->verbs_dev; hfi1_verbs_unregister_sysfs(dd); rvt_unregister_device(&dd->verbs_dev.rdi); if (!list_empty(&dev->txwait)) dd_dev_err(dd, "txwait list not empty!\n"); if (!list_empty(&dev->memwait)) dd_dev_err(dd, "memwait list not empty!\n"); del_timer_sync(&dev->mem_timer); verbs_txreq_exit(dev); } void hfi1_cnp_rcv(struct hfi1_packet *packet) { struct hfi1_ibport *ibp = &packet->rcd->ppd->ibport_data; struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); struct ib_header *hdr = packet->hdr; struct rvt_qp *qp = packet->qp; u32 lqpn, rqpn = 0; u16 rlid = 0; u8 sl, sc5, svc_type; switch (packet->qp->ibqp.qp_type) { case IB_QPT_UC: rlid = qp->remote_ah_attr.dlid; rqpn = qp->remote_qpn; svc_type = IB_CC_SVCTYPE_UC; break; case IB_QPT_RC: rlid = qp->remote_ah_attr.dlid; rqpn = qp->remote_qpn; svc_type = IB_CC_SVCTYPE_RC; break; case IB_QPT_SMI: case IB_QPT_GSI: case IB_QPT_UD: svc_type = IB_CC_SVCTYPE_UD; break; default: ibp->rvp.n_pkt_drops++; return; } sc5 = hdr2sc(hdr, packet->rhf); sl = ibp->sc_to_sl[sc5]; lqpn = qp->ibqp.qp_num; process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type); }