/* * Per core/cpu state * * Used to coordinate shared registers between HT threads or * among events on a single PMU. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include "../perf_event.h" /* * Intel PerfMon, used on Core and later. */ static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly = { [PERF_COUNT_HW_CPU_CYCLES] = 0x003c, [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0, [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e, [PERF_COUNT_HW_CACHE_MISSES] = 0x412e, [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4, [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5, [PERF_COUNT_HW_BUS_CYCLES] = 0x013c, [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */ }; static struct event_constraint intel_core_event_constraints[] __read_mostly = { INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */ INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */ INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */ INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */ INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */ INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */ EVENT_CONSTRAINT_END }; static struct event_constraint intel_core2_event_constraints[] __read_mostly = { FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */ INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */ INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */ INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */ INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */ INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */ INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */ INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */ INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */ INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */ EVENT_CONSTRAINT_END }; static struct event_constraint intel_nehalem_event_constraints[] __read_mostly = { FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */ INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */ INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */ INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */ INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */ INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */ INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */ INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */ EVENT_CONSTRAINT_END }; static struct extra_reg intel_nehalem_extra_regs[] __read_mostly = { /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0), INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b), EVENT_EXTRA_END }; static struct event_constraint intel_westmere_event_constraints[] __read_mostly = { FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */ INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */ INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */ INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */ EVENT_CONSTRAINT_END }; static struct event_constraint intel_snb_event_constraints[] __read_mostly = { FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */ INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */ INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */ INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */ INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */ INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */ INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */ INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ /* * When HT is off these events can only run on the bottom 4 counters * When HT is on, they are impacted by the HT bug and require EXCL access */ INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */ INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ EVENT_CONSTRAINT_END }; static struct event_constraint intel_ivb_event_constraints[] __read_mostly = { FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */ INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */ INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */ INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */ INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */ INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */ INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */ INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */ INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */ /* * When HT is off these events can only run on the bottom 4 counters * When HT is on, they are impacted by the HT bug and require EXCL access */ INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */ INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ EVENT_CONSTRAINT_END }; static struct extra_reg intel_westmere_extra_regs[] __read_mostly = { /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0), INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1), INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b), EVENT_EXTRA_END }; static struct event_constraint intel_v1_event_constraints[] __read_mostly = { EVENT_CONSTRAINT_END }; static struct event_constraint intel_gen_event_constraints[] __read_mostly = { FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ EVENT_CONSTRAINT_END }; static struct event_constraint intel_slm_event_constraints[] __read_mostly = { FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */ EVENT_CONSTRAINT_END }; static struct event_constraint intel_skl_event_constraints[] = { FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */ /* * when HT is off, these can only run on the bottom 4 counters */ INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */ INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */ INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */ INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */ INTEL_EVENT_CONSTRAINT(0xc6, 0xf), /* FRONTEND_RETIRED.* */ EVENT_CONSTRAINT_END }; static struct extra_reg intel_knl_extra_regs[] __read_mostly = { INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0), INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1), EVENT_EXTRA_END }; static struct extra_reg intel_snb_extra_regs[] __read_mostly = { /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0), INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1), INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), EVENT_EXTRA_END }; static struct extra_reg intel_snbep_extra_regs[] __read_mostly = { /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0), INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1), INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), EVENT_EXTRA_END }; static struct extra_reg intel_skl_extra_regs[] __read_mostly = { INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0), INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1), INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), /* * Note the low 8 bits eventsel code is not a continuous field, containing * some #GPing bits. These are masked out. */ INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE), EVENT_EXTRA_END }; EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3"); EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3"); EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2"); static struct attribute *nhm_events_attrs[] = { EVENT_PTR(mem_ld_nhm), NULL, }; /* * topdown events for Intel Core CPUs. * * The events are all in slots, which is a free slot in a 4 wide * pipeline. Some events are already reported in slots, for cycle * events we multiply by the pipeline width (4). * * With Hyper Threading on, topdown metrics are either summed or averaged * between the threads of a core: (count_t0 + count_t1). * * For the average case the metric is always scaled to pipeline width, * so we use factor 2 ((count_t0 + count_t1) / 2 * 4) */ EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots, "event=0x3c,umask=0x0", /* cpu_clk_unhalted.thread */ "event=0x3c,umask=0x0,any=1"); /* cpu_clk_unhalted.thread_any */ EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2"); EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued, "event=0xe,umask=0x1"); /* uops_issued.any */ EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired, "event=0xc2,umask=0x2"); /* uops_retired.retire_slots */ EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles, "event=0x9c,umask=0x1"); /* idq_uops_not_delivered_core */ EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles, "event=0xd,umask=0x3,cmask=1", /* int_misc.recovery_cycles */ "event=0xd,umask=0x3,cmask=1,any=1"); /* int_misc.recovery_cycles_any */ EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale, "4", "2"); static struct attribute *snb_events_attrs[] = { EVENT_PTR(mem_ld_snb), EVENT_PTR(mem_st_snb), EVENT_PTR(td_slots_issued), EVENT_PTR(td_slots_retired), EVENT_PTR(td_fetch_bubbles), EVENT_PTR(td_total_slots), EVENT_PTR(td_total_slots_scale), EVENT_PTR(td_recovery_bubbles), EVENT_PTR(td_recovery_bubbles_scale), NULL, }; static struct event_constraint intel_hsw_event_constraints[] = { FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */ INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */ INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */ /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */ INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */ INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* * When HT is off these events can only run on the bottom 4 counters * When HT is on, they are impacted by the HT bug and require EXCL access */ INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */ INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ EVENT_CONSTRAINT_END }; static struct event_constraint intel_bdw_event_constraints[] = { FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */ INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */ /* * when HT is off, these can only run on the bottom 4 counters */ INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */ INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */ INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */ INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */ EVENT_CONSTRAINT_END }; static u64 intel_pmu_event_map(int hw_event) { return intel_perfmon_event_map[hw_event]; } /* * Notes on the events: * - data reads do not include code reads (comparable to earlier tables) * - data counts include speculative execution (except L1 write, dtlb, bpu) * - remote node access includes remote memory, remote cache, remote mmio. * - prefetches are not included in the counts. * - icache miss does not include decoded icache */ #define SKL_DEMAND_DATA_RD BIT_ULL(0) #define SKL_DEMAND_RFO BIT_ULL(1) #define SKL_ANY_RESPONSE BIT_ULL(16) #define SKL_SUPPLIER_NONE BIT_ULL(17) #define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26) #define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27) #define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28) #define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29) #define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \ SKL_L3_MISS_REMOTE_HOP0_DRAM| \ SKL_L3_MISS_REMOTE_HOP1_DRAM| \ SKL_L3_MISS_REMOTE_HOP2P_DRAM) #define SKL_SPL_HIT BIT_ULL(30) #define SKL_SNOOP_NONE BIT_ULL(31) #define SKL_SNOOP_NOT_NEEDED BIT_ULL(32) #define SKL_SNOOP_MISS BIT_ULL(33) #define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34) #define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35) #define SKL_SNOOP_HITM BIT_ULL(36) #define SKL_SNOOP_NON_DRAM BIT_ULL(37) #define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \ SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \ SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \ SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM) #define SKL_DEMAND_READ SKL_DEMAND_DATA_RD #define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \ SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \ SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \ SKL_SNOOP_HITM|SKL_SPL_HIT) #define SKL_DEMAND_WRITE SKL_DEMAND_RFO #define SKL_LLC_ACCESS SKL_ANY_RESPONSE #define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \ SKL_L3_MISS_REMOTE_HOP1_DRAM| \ SKL_L3_MISS_REMOTE_HOP2P_DRAM) static __initconst const u64 skl_hw_cache_event_ids [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(L1D ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */ [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */ [ C(RESULT_MISS) ] = 0x0, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(L1I ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x283, /* ICACHE_64B.MISS */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(LL ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(DTLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */ [ C(RESULT_MISS) ] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */ [ C(RESULT_MISS) ] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(ITLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */ [ C(RESULT_MISS) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(BPU ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */ [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(NODE) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, }; static __initconst const u64 skl_hw_cache_extra_regs [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(LL ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ| SKL_LLC_ACCESS|SKL_ANY_SNOOP, [ C(RESULT_MISS) ] = SKL_DEMAND_READ| SKL_L3_MISS|SKL_ANY_SNOOP| SKL_SUPPLIER_NONE, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE| SKL_LLC_ACCESS|SKL_ANY_SNOOP, [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE| SKL_L3_MISS|SKL_ANY_SNOOP| SKL_SUPPLIER_NONE, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(NODE) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ| SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM, [ C(RESULT_MISS) ] = SKL_DEMAND_READ| SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE| SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM, [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE| SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, }; #define SNB_DMND_DATA_RD (1ULL << 0) #define SNB_DMND_RFO (1ULL << 1) #define SNB_DMND_IFETCH (1ULL << 2) #define SNB_DMND_WB (1ULL << 3) #define SNB_PF_DATA_RD (1ULL << 4) #define SNB_PF_RFO (1ULL << 5) #define SNB_PF_IFETCH (1ULL << 6) #define SNB_LLC_DATA_RD (1ULL << 7) #define SNB_LLC_RFO (1ULL << 8) #define SNB_LLC_IFETCH (1ULL << 9) #define SNB_BUS_LOCKS (1ULL << 10) #define SNB_STRM_ST (1ULL << 11) #define SNB_OTHER (1ULL << 15) #define SNB_RESP_ANY (1ULL << 16) #define SNB_NO_SUPP (1ULL << 17) #define SNB_LLC_HITM (1ULL << 18) #define SNB_LLC_HITE (1ULL << 19) #define SNB_LLC_HITS (1ULL << 20) #define SNB_LLC_HITF (1ULL << 21) #define SNB_LOCAL (1ULL << 22) #define SNB_REMOTE (0xffULL << 23) #define SNB_SNP_NONE (1ULL << 31) #define SNB_SNP_NOT_NEEDED (1ULL << 32) #define SNB_SNP_MISS (1ULL << 33) #define SNB_NO_FWD (1ULL << 34) #define SNB_SNP_FWD (1ULL << 35) #define SNB_HITM (1ULL << 36) #define SNB_NON_DRAM (1ULL << 37) #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD) #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO) #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO) #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \ SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \ SNB_HITM) #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY) #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY) #define SNB_L3_ACCESS SNB_RESP_ANY #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM) static __initconst const u64 snb_hw_cache_extra_regs [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(LL ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS, [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS, [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS, [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS, }, }, [ C(NODE) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY, [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY, [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY, [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE, }, }, }; static __initconst const u64 snb_hw_cache_event_ids [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(L1D) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */ [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */ [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */ }, }, [ C(L1I ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(LL ) ] = { [ C(OP_READ) ] = { /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ [ C(RESULT_ACCESS) ] = 0x01b7, /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ [ C(RESULT_MISS) ] = 0x01b7, }, [ C(OP_WRITE) ] = { /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ [ C(RESULT_ACCESS) ] = 0x01b7, /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ [ C(RESULT_MISS) ] = 0x01b7, }, [ C(OP_PREFETCH) ] = { /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ [ C(RESULT_ACCESS) ] = 0x01b7, /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ [ C(RESULT_MISS) ] = 0x01b7, }, }, [ C(DTLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */ [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */ [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(ITLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */ [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(BPU ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(NODE) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x01b7, [ C(RESULT_MISS) ] = 0x01b7, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x01b7, [ C(RESULT_MISS) ] = 0x01b7, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x01b7, [ C(RESULT_MISS) ] = 0x01b7, }, }, }; /* * Notes on the events: * - data reads do not include code reads (comparable to earlier tables) * - data counts include speculative execution (except L1 write, dtlb, bpu) * - remote node access includes remote memory, remote cache, remote mmio. * - prefetches are not included in the counts because they are not * reliably counted. */ #define HSW_DEMAND_DATA_RD BIT_ULL(0) #define HSW_DEMAND_RFO BIT_ULL(1) #define HSW_ANY_RESPONSE BIT_ULL(16) #define HSW_SUPPLIER_NONE BIT_ULL(17) #define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22) #define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27) #define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28) #define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29) #define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \ HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \ HSW_L3_MISS_REMOTE_HOP2P) #define HSW_SNOOP_NONE BIT_ULL(31) #define HSW_SNOOP_NOT_NEEDED BIT_ULL(32) #define HSW_SNOOP_MISS BIT_ULL(33) #define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34) #define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35) #define HSW_SNOOP_HITM BIT_ULL(36) #define HSW_SNOOP_NON_DRAM BIT_ULL(37) #define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \ HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \ HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \ HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM) #define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM) #define HSW_DEMAND_READ HSW_DEMAND_DATA_RD #define HSW_DEMAND_WRITE HSW_DEMAND_RFO #define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\ HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P) #define HSW_LLC_ACCESS HSW_ANY_RESPONSE #define BDW_L3_MISS_LOCAL BIT(26) #define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \ HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \ HSW_L3_MISS_REMOTE_HOP2P) static __initconst const u64 hsw_hw_cache_event_ids [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(L1D ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ [ C(RESULT_MISS) ] = 0x0, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(L1I ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(LL ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(DTLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ [ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ [ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(ITLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */ [ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(BPU ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */ [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(NODE) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, }; static __initconst const u64 hsw_hw_cache_extra_regs [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(LL ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ| HSW_LLC_ACCESS, [ C(RESULT_MISS) ] = HSW_DEMAND_READ| HSW_L3_MISS|HSW_ANY_SNOOP, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE| HSW_LLC_ACCESS, [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE| HSW_L3_MISS|HSW_ANY_SNOOP, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(NODE) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ| HSW_L3_MISS_LOCAL_DRAM| HSW_SNOOP_DRAM, [ C(RESULT_MISS) ] = HSW_DEMAND_READ| HSW_L3_MISS_REMOTE| HSW_SNOOP_DRAM, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE| HSW_L3_MISS_LOCAL_DRAM| HSW_SNOOP_DRAM, [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE| HSW_L3_MISS_REMOTE| HSW_SNOOP_DRAM, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, }; static __initconst const u64 westmere_hw_cache_event_ids [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(L1D) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */ [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */ }, }, [ C(L1I ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(LL ) ] = { [ C(OP_READ) ] = { /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ [ C(RESULT_ACCESS) ] = 0x01b7, /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ [ C(RESULT_MISS) ] = 0x01b7, }, /* * Use RFO, not WRITEBACK, because a write miss would typically occur * on RFO. */ [ C(OP_WRITE) ] = { /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ [ C(RESULT_ACCESS) ] = 0x01b7, /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ [ C(RESULT_MISS) ] = 0x01b7, }, [ C(OP_PREFETCH) ] = { /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ [ C(RESULT_ACCESS) ] = 0x01b7, /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ [ C(RESULT_MISS) ] = 0x01b7, }, }, [ C(DTLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(ITLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */ [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(BPU ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(NODE) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x01b7, [ C(RESULT_MISS) ] = 0x01b7, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x01b7, [ C(RESULT_MISS) ] = 0x01b7, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x01b7, [ C(RESULT_MISS) ] = 0x01b7, }, }, }; /* * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits; * See IA32 SDM Vol 3B 30.6.1.3 */ #define NHM_DMND_DATA_RD (1 << 0) #define NHM_DMND_RFO (1 << 1) #define NHM_DMND_IFETCH (1 << 2) #define NHM_DMND_WB (1 << 3) #define NHM_PF_DATA_RD (1 << 4) #define NHM_PF_DATA_RFO (1 << 5) #define NHM_PF_IFETCH (1 << 6) #define NHM_OFFCORE_OTHER (1 << 7) #define NHM_UNCORE_HIT (1 << 8) #define NHM_OTHER_CORE_HIT_SNP (1 << 9) #define NHM_OTHER_CORE_HITM (1 << 10) /* reserved */ #define NHM_REMOTE_CACHE_FWD (1 << 12) #define NHM_REMOTE_DRAM (1 << 13) #define NHM_LOCAL_DRAM (1 << 14) #define NHM_NON_DRAM (1 << 15) #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD) #define NHM_REMOTE (NHM_REMOTE_DRAM) #define NHM_DMND_READ (NHM_DMND_DATA_RD) #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB) #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO) #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM) #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD) #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS) static __initconst const u64 nehalem_hw_cache_extra_regs [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(LL ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS, [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS, [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS, [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS, }, }, [ C(NODE) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE, [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE, [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE, [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE, }, }, }; static __initconst const u64 nehalem_hw_cache_event_ids [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(L1D) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */ [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */ }, }, [ C(L1I ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(LL ) ] = { [ C(OP_READ) ] = { /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ [ C(RESULT_ACCESS) ] = 0x01b7, /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ [ C(RESULT_MISS) ] = 0x01b7, }, /* * Use RFO, not WRITEBACK, because a write miss would typically occur * on RFO. */ [ C(OP_WRITE) ] = { /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ [ C(RESULT_ACCESS) ] = 0x01b7, /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ [ C(RESULT_MISS) ] = 0x01b7, }, [ C(OP_PREFETCH) ] = { /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ [ C(RESULT_ACCESS) ] = 0x01b7, /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ [ C(RESULT_MISS) ] = 0x01b7, }, }, [ C(DTLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */ [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */ [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(ITLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */ [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(BPU ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(NODE) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x01b7, [ C(RESULT_MISS) ] = 0x01b7, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x01b7, [ C(RESULT_MISS) ] = 0x01b7, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x01b7, [ C(RESULT_MISS) ] = 0x01b7, }, }, }; static __initconst const u64 core2_hw_cache_event_ids [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(L1D) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */ [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */ [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */ [ C(RESULT_MISS) ] = 0, }, }, [ C(L1I ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */ [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(LL ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */ [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */ [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(DTLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */ [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */ [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(ITLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(BPU ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, }; static __initconst const u64 atom_hw_cache_event_ids [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(L1D) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */ [ C(RESULT_MISS) ] = 0, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */ [ C(RESULT_MISS) ] = 0, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0, }, }, [ C(L1I ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(LL ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */ [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */ [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(DTLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */ [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */ [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(ITLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(BPU ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, }; EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c"); EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2"); /* no_alloc_cycles.not_delivered */ EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm, "event=0xca,umask=0x50"); EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2"); /* uops_retired.all */ EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm, "event=0xc2,umask=0x10"); /* uops_retired.all */ EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm, "event=0xc2,umask=0x10"); static struct attribute *slm_events_attrs[] = { EVENT_PTR(td_total_slots_slm), EVENT_PTR(td_total_slots_scale_slm), EVENT_PTR(td_fetch_bubbles_slm), EVENT_PTR(td_fetch_bubbles_scale_slm), EVENT_PTR(td_slots_issued_slm), EVENT_PTR(td_slots_retired_slm), NULL }; static struct extra_reg intel_slm_extra_regs[] __read_mostly = { /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0), INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1), EVENT_EXTRA_END }; #define SLM_DMND_READ SNB_DMND_DATA_RD #define SLM_DMND_WRITE SNB_DMND_RFO #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO) #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM) #define SLM_LLC_ACCESS SNB_RESP_ANY #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM) static __initconst const u64 slm_hw_cache_extra_regs [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(LL ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS, [ C(RESULT_MISS) ] = 0, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS, [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS, [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS, }, }, }; static __initconst const u64 slm_hw_cache_event_ids [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(L1D) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(L1I ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */ [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(LL ) ] = { [ C(OP_READ) ] = { /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ [ C(RESULT_ACCESS) ] = 0x01b7, [ C(RESULT_MISS) ] = 0, }, [ C(OP_WRITE) ] = { /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ [ C(RESULT_ACCESS) ] = 0x01b7, /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ [ C(RESULT_MISS) ] = 0x01b7, }, [ C(OP_PREFETCH) ] = { /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ [ C(RESULT_ACCESS) ] = 0x01b7, /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ [ C(RESULT_MISS) ] = 0x01b7, }, }, [ C(DTLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(ITLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ [ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(BPU ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, }; EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c"); EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3"); /* UOPS_NOT_DELIVERED.ANY */ EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c"); /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */ EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02"); /* UOPS_RETIRED.ANY */ EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2"); /* UOPS_ISSUED.ANY */ EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e"); static struct attribute *glm_events_attrs[] = { EVENT_PTR(td_total_slots_glm), EVENT_PTR(td_total_slots_scale_glm), EVENT_PTR(td_fetch_bubbles_glm), EVENT_PTR(td_recovery_bubbles_glm), EVENT_PTR(td_slots_issued_glm), EVENT_PTR(td_slots_retired_glm), NULL }; static struct extra_reg intel_glm_extra_regs[] __read_mostly = { /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0), INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1), EVENT_EXTRA_END }; #define GLM_DEMAND_DATA_RD BIT_ULL(0) #define GLM_DEMAND_RFO BIT_ULL(1) #define GLM_ANY_RESPONSE BIT_ULL(16) #define GLM_SNP_NONE_OR_MISS BIT_ULL(33) #define GLM_DEMAND_READ GLM_DEMAND_DATA_RD #define GLM_DEMAND_WRITE GLM_DEMAND_RFO #define GLM_DEMAND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO) #define GLM_LLC_ACCESS GLM_ANY_RESPONSE #define GLM_SNP_ANY (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM) #define GLM_LLC_MISS (GLM_SNP_ANY|SNB_NON_DRAM) static __initconst const u64 glm_hw_cache_event_ids [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [C(L1D)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ [C(RESULT_MISS)] = 0x0, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ [C(RESULT_MISS)] = 0x0, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = 0x0, [C(RESULT_MISS)] = 0x0, }, }, [C(L1I)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */ [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */ }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = -1, [C(RESULT_MISS)] = -1, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = 0x0, [C(RESULT_MISS)] = 0x0, }, }, [C(LL)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ }, }, [C(DTLB)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ [C(RESULT_MISS)] = 0x0, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ [C(RESULT_MISS)] = 0x0, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = 0x0, [C(RESULT_MISS)] = 0x0, }, }, [C(ITLB)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */ [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */ }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = -1, [C(RESULT_MISS)] = -1, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = -1, [C(RESULT_MISS)] = -1, }, }, [C(BPU)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */ }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = -1, [C(RESULT_MISS)] = -1, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = -1, [C(RESULT_MISS)] = -1, }, }, }; static __initconst const u64 glm_hw_cache_extra_regs [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [C(LL)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = GLM_DEMAND_READ| GLM_LLC_ACCESS, [C(RESULT_MISS)] = GLM_DEMAND_READ| GLM_LLC_MISS, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE| GLM_LLC_ACCESS, [C(RESULT_MISS)] = GLM_DEMAND_WRITE| GLM_LLC_MISS, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = GLM_DEMAND_PREFETCH| GLM_LLC_ACCESS, [C(RESULT_MISS)] = GLM_DEMAND_PREFETCH| GLM_LLC_MISS, }, }, }; static __initconst const u64 glp_hw_cache_event_ids [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [C(L1D)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ [C(RESULT_MISS)] = 0x0, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ [C(RESULT_MISS)] = 0x0, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = 0x0, [C(RESULT_MISS)] = 0x0, }, }, [C(L1I)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */ [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */ }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = -1, [C(RESULT_MISS)] = -1, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = 0x0, [C(RESULT_MISS)] = 0x0, }, }, [C(LL)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = 0x0, [C(RESULT_MISS)] = 0x0, }, }, [C(DTLB)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ [C(RESULT_MISS)] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */ }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ [C(RESULT_MISS)] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */ }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = 0x0, [C(RESULT_MISS)] = 0x0, }, }, [C(ITLB)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */ [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */ }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = -1, [C(RESULT_MISS)] = -1, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = -1, [C(RESULT_MISS)] = -1, }, }, [C(BPU)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */ }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = -1, [C(RESULT_MISS)] = -1, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = -1, [C(RESULT_MISS)] = -1, }, }, }; static __initconst const u64 glp_hw_cache_extra_regs [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [C(LL)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = GLM_DEMAND_READ| GLM_LLC_ACCESS, [C(RESULT_MISS)] = GLM_DEMAND_READ| GLM_LLC_MISS, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE| GLM_LLC_ACCESS, [C(RESULT_MISS)] = GLM_DEMAND_WRITE| GLM_LLC_MISS, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = 0x0, [C(RESULT_MISS)] = 0x0, }, }, }; #define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */ #define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */ #define KNL_MCDRAM_LOCAL BIT_ULL(21) #define KNL_MCDRAM_FAR BIT_ULL(22) #define KNL_DDR_LOCAL BIT_ULL(23) #define KNL_DDR_FAR BIT_ULL(24) #define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \ KNL_DDR_LOCAL | KNL_DDR_FAR) #define KNL_L2_READ SLM_DMND_READ #define KNL_L2_WRITE SLM_DMND_WRITE #define KNL_L2_PREFETCH SLM_DMND_PREFETCH #define KNL_L2_ACCESS SLM_LLC_ACCESS #define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \ KNL_DRAM_ANY | SNB_SNP_ANY | \ SNB_NON_DRAM) static __initconst const u64 knl_hw_cache_extra_regs [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [C(LL)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS, [C(RESULT_MISS)] = 0, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS, [C(RESULT_MISS)] = KNL_L2_WRITE | KNL_L2_MISS, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS, [C(RESULT_MISS)] = KNL_L2_PREFETCH | KNL_L2_MISS, }, }, }; /* * Used from PMIs where the LBRs are already disabled. * * This function could be called consecutively. It is required to remain in * disabled state if called consecutively. * * During consecutive calls, the same disable value will be written to related * registers, so the PMU state remains unchanged. * * intel_bts events don't coexist with intel PMU's BTS events because of * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them * disabled around intel PMU's event batching etc, only inside the PMI handler. */ static void __intel_pmu_disable_all(void) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0); if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) intel_pmu_disable_bts(); intel_pmu_pebs_disable_all(); } static void intel_pmu_disable_all(void) { __intel_pmu_disable_all(); intel_pmu_lbr_disable_all(); } static void __intel_pmu_enable_all(int added, bool pmi) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); intel_pmu_pebs_enable_all(); intel_pmu_lbr_enable_all(pmi); wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask); if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) { struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS]; if (WARN_ON_ONCE(!event)) return; intel_pmu_enable_bts(event->hw.config); } } static void intel_pmu_enable_all(int added) { __intel_pmu_enable_all(added, false); } /* * Workaround for: * Intel Errata AAK100 (model 26) * Intel Errata AAP53 (model 30) * Intel Errata BD53 (model 44) * * The official story: * These chips need to be 'reset' when adding counters by programming the * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either * in sequence on the same PMC or on different PMCs. * * In practise it appears some of these events do in fact count, and * we need to programm all 4 events. */ static void intel_pmu_nhm_workaround(void) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); static const unsigned long nhm_magic[4] = { 0x4300B5, 0x4300D2, 0x4300B1, 0x4300B1 }; struct perf_event *event; int i; /* * The Errata requires below steps: * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL; * 2) Configure 4 PERFEVTSELx with the magic events and clear * the corresponding PMCx; * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL; * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL; * 5) Clear 4 pairs of ERFEVTSELx and PMCx; */ /* * The real steps we choose are a little different from above. * A) To reduce MSR operations, we don't run step 1) as they * are already cleared before this function is called; * B) Call x86_perf_event_update to save PMCx before configuring * PERFEVTSELx with magic number; * C) With step 5), we do clear only when the PERFEVTSELx is * not used currently. * D) Call x86_perf_event_set_period to restore PMCx; */ /* We always operate 4 pairs of PERF Counters */ for (i = 0; i < 4; i++) { event = cpuc->events[i]; if (event) x86_perf_event_update(event); } for (i = 0; i < 4; i++) { wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]); wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0); } wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf); wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0); for (i = 0; i < 4; i++) { event = cpuc->events[i]; if (event) { x86_perf_event_set_period(event); __x86_pmu_enable_event(&event->hw, ARCH_PERFMON_EVENTSEL_ENABLE); } else wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0); } } static void intel_pmu_nhm_enable_all(int added) { if (added) intel_pmu_nhm_workaround(); intel_pmu_enable_all(added); } static void enable_counter_freeze(void) { update_debugctlmsr(get_debugctlmsr() | DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI); } static void disable_counter_freeze(void) { update_debugctlmsr(get_debugctlmsr() & ~DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI); } static inline u64 intel_pmu_get_status(void) { u64 status; rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); return status; } static inline void intel_pmu_ack_status(u64 ack) { wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack); } static void intel_pmu_disable_fixed(struct hw_perf_event *hwc) { int idx = hwc->idx - INTEL_PMC_IDX_FIXED; u64 ctrl_val, mask; mask = 0xfULL << (idx * 4); rdmsrl(hwc->config_base, ctrl_val); ctrl_val &= ~mask; wrmsrl(hwc->config_base, ctrl_val); } static inline bool event_is_checkpointed(struct perf_event *event) { return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0; } static void intel_pmu_disable_event(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) { intel_pmu_disable_bts(); intel_pmu_drain_bts_buffer(); return; } cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx); cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx); cpuc->intel_cp_status &= ~(1ull << hwc->idx); if (unlikely(event->attr.precise_ip)) intel_pmu_pebs_disable(event); if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) { intel_pmu_disable_fixed(hwc); return; } x86_pmu_disable_event(event); } static void intel_pmu_del_event(struct perf_event *event) { if (needs_branch_stack(event)) intel_pmu_lbr_del(event); if (event->attr.precise_ip) intel_pmu_pebs_del(event); } static void intel_pmu_read_event(struct perf_event *event) { if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD) intel_pmu_auto_reload_read(event); else x86_perf_event_update(event); } static void intel_pmu_enable_fixed(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; int idx = hwc->idx - INTEL_PMC_IDX_FIXED; u64 ctrl_val, mask, bits = 0; /* * Enable IRQ generation (0x8), if not PEBS, * and enable ring-3 counting (0x2) and ring-0 counting (0x1) * if requested: */ if (!event->attr.precise_ip) bits |= 0x8; if (hwc->config & ARCH_PERFMON_EVENTSEL_USR) bits |= 0x2; if (hwc->config & ARCH_PERFMON_EVENTSEL_OS) bits |= 0x1; /* * ANY bit is supported in v3 and up */ if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY) bits |= 0x4; bits <<= (idx * 4); mask = 0xfULL << (idx * 4); rdmsrl(hwc->config_base, ctrl_val); ctrl_val &= ~mask; ctrl_val |= bits; wrmsrl(hwc->config_base, ctrl_val); } static void intel_pmu_enable_event(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) { if (!__this_cpu_read(cpu_hw_events.enabled)) return; intel_pmu_enable_bts(hwc->config); return; } if (event->attr.exclude_host) cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx); if (event->attr.exclude_guest) cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx); if (unlikely(event_is_checkpointed(event))) cpuc->intel_cp_status |= (1ull << hwc->idx); if (unlikely(event->attr.precise_ip)) intel_pmu_pebs_enable(event); if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) { intel_pmu_enable_fixed(event); return; } __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); } static void intel_pmu_add_event(struct perf_event *event) { if (event->attr.precise_ip) intel_pmu_pebs_add(event); if (needs_branch_stack(event)) intel_pmu_lbr_add(event); } /* * Save and restart an expired event. Called by NMI contexts, * so it has to be careful about preempting normal event ops: */ int intel_pmu_save_and_restart(struct perf_event *event) { x86_perf_event_update(event); /* * For a checkpointed counter always reset back to 0. This * avoids a situation where the counter overflows, aborts the * transaction and is then set back to shortly before the * overflow, and overflows and aborts again. */ if (unlikely(event_is_checkpointed(event))) { /* No race with NMIs because the counter should not be armed */ wrmsrl(event->hw.event_base, 0); local64_set(&event->hw.prev_count, 0); } return x86_perf_event_set_period(event); } static void intel_pmu_reset(void) { struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds); unsigned long flags; int idx; if (!x86_pmu.num_counters) return; local_irq_save(flags); pr_info("clearing PMU state on CPU#%d\n", smp_processor_id()); for (idx = 0; idx < x86_pmu.num_counters; idx++) { wrmsrl_safe(x86_pmu_config_addr(idx), 0ull); wrmsrl_safe(x86_pmu_event_addr(idx), 0ull); } for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull); if (ds) ds->bts_index = ds->bts_buffer_base; /* Ack all overflows and disable fixed counters */ if (x86_pmu.version >= 2) { intel_pmu_ack_status(intel_pmu_get_status()); wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0); } /* Reset LBRs and LBR freezing */ if (x86_pmu.lbr_nr) { update_debugctlmsr(get_debugctlmsr() & ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR)); } local_irq_restore(flags); } static int handle_pmi_common(struct pt_regs *regs, u64 status) { struct perf_sample_data data; struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); int bit; int handled = 0; inc_irq_stat(apic_perf_irqs); /* * Ignore a range of extra bits in status that do not indicate * overflow by themselves. */ status &= ~(GLOBAL_STATUS_COND_CHG | GLOBAL_STATUS_ASIF | GLOBAL_STATUS_LBRS_FROZEN); if (!status) return 0; /* * In case multiple PEBS events are sampled at the same time, * it is possible to have GLOBAL_STATUS bit 62 set indicating * PEBS buffer overflow and also seeing at most 3 PEBS counters * having their bits set in the status register. This is a sign * that there was at least one PEBS record pending at the time * of the PMU interrupt. PEBS counters must only be processed * via the drain_pebs() calls and not via the regular sample * processing loop coming after that the function, otherwise * phony regular samples may be generated in the sampling buffer * not marked with the EXACT tag. Another possibility is to have * one PEBS event and at least one non-PEBS event whic hoverflows * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will * not be set, yet the overflow status bit for the PEBS counter will * be on Skylake. * * To avoid this problem, we systematically ignore the PEBS-enabled * counters from the GLOBAL_STATUS mask and we always process PEBS * events via drain_pebs(). */ if (x86_pmu.flags & PMU_FL_PEBS_ALL) status &= ~cpuc->pebs_enabled; else status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK); /* * PEBS overflow sets bit 62 in the global status register */ if (__test_and_clear_bit(62, (unsigned long *)&status)) { handled++; x86_pmu.drain_pebs(regs); status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI; } /* * Intel PT */ if (__test_and_clear_bit(55, (unsigned long *)&status)) { handled++; intel_pt_interrupt(); } /* * Checkpointed counters can lead to 'spurious' PMIs because the * rollback caused by the PMI will have cleared the overflow status * bit. Therefore always force probe these counters. */ status |= cpuc->intel_cp_status; for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) { struct perf_event *event = cpuc->events[bit]; handled++; if (!test_bit(bit, cpuc->active_mask)) continue; if (!intel_pmu_save_and_restart(event)) continue; perf_sample_data_init(&data, 0, event->hw.last_period); if (has_branch_stack(event)) data.br_stack = &cpuc->lbr_stack; if (perf_event_overflow(event, &data, regs)) x86_pmu_stop(event, 0); } return handled; } static bool disable_counter_freezing; static int __init intel_perf_counter_freezing_setup(char *s) { disable_counter_freezing = true; pr_info("Intel PMU Counter freezing feature disabled\n"); return 1; } __setup("disable_counter_freezing", intel_perf_counter_freezing_setup); /* * Simplified handler for Arch Perfmon v4: * - We rely on counter freezing/unfreezing to enable/disable the PMU. * This is done automatically on PMU ack. * - Ack the PMU only after the APIC. */ static int intel_pmu_handle_irq_v4(struct pt_regs *regs) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); int handled = 0; bool bts = false; u64 status; int pmu_enabled = cpuc->enabled; int loops = 0; /* PMU has been disabled because of counter freezing */ cpuc->enabled = 0; if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) { bts = true; intel_bts_disable_local(); handled = intel_pmu_drain_bts_buffer(); handled += intel_bts_interrupt(); } status = intel_pmu_get_status(); if (!status) goto done; again: intel_pmu_lbr_read(); if (++loops > 100) { static bool warned; if (!warned) { WARN(1, "perfevents: irq loop stuck!\n"); perf_event_print_debug(); warned = true; } intel_pmu_reset(); goto done; } handled += handle_pmi_common(regs, status); done: /* Ack the PMI in the APIC */ apic_write(APIC_LVTPC, APIC_DM_NMI); /* * The counters start counting immediately while ack the status. * Make it as close as possible to IRET. This avoids bogus * freezing on Skylake CPUs. */ if (status) { intel_pmu_ack_status(status); } else { /* * CPU may issues two PMIs very close to each other. * When the PMI handler services the first one, the * GLOBAL_STATUS is already updated to reflect both. * When it IRETs, the second PMI is immediately * handled and it sees clear status. At the meantime, * there may be a third PMI, because the freezing bit * isn't set since the ack in first PMI handlers. * Double check if there is more work to be done. */ status = intel_pmu_get_status(); if (status) goto again; } if (bts) intel_bts_enable_local(); cpuc->enabled = pmu_enabled; return handled; } /* * This handler is triggered by the local APIC, so the APIC IRQ handling * rules apply: */ static int intel_pmu_handle_irq(struct pt_regs *regs) { struct cpu_hw_events *cpuc; int loops; u64 status; int handled; int pmu_enabled; cpuc = this_cpu_ptr(&cpu_hw_events); /* * Save the PMU state. * It needs to be restored when leaving the handler. */ pmu_enabled = cpuc->enabled; /* * No known reason to not always do late ACK, * but just in case do it opt-in. */ if (!x86_pmu.late_ack) apic_write(APIC_LVTPC, APIC_DM_NMI); intel_bts_disable_local(); cpuc->enabled = 0; __intel_pmu_disable_all(); handled = intel_pmu_drain_bts_buffer(); handled += intel_bts_interrupt(); status = intel_pmu_get_status(); if (!status) goto done; loops = 0; again: intel_pmu_lbr_read(); intel_pmu_ack_status(status); if (++loops > 100) { static bool warned; if (!warned) { WARN(1, "perfevents: irq loop stuck!\n"); perf_event_print_debug(); warned = true; } intel_pmu_reset(); goto done; } handled += handle_pmi_common(regs, status); /* * Repeat if there is more work to be done: */ status = intel_pmu_get_status(); if (status) goto again; done: /* Only restore PMU state when it's active. See x86_pmu_disable(). */ cpuc->enabled = pmu_enabled; if (pmu_enabled) __intel_pmu_enable_all(0, true); intel_bts_enable_local(); /* * Only unmask the NMI after the overflow counters * have been reset. This avoids spurious NMIs on * Haswell CPUs. */ if (x86_pmu.late_ack) apic_write(APIC_LVTPC, APIC_DM_NMI); return handled; } static struct event_constraint * intel_bts_constraints(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; unsigned int hw_event, bts_event; if (event->attr.freq) return NULL; hw_event = hwc->config & INTEL_ARCH_EVENT_MASK; bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS); if (unlikely(hw_event == bts_event && hwc->sample_period == 1)) return &bts_constraint; return NULL; } static int intel_alt_er(int idx, u64 config) { int alt_idx = idx; if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1)) return idx; if (idx == EXTRA_REG_RSP_0) alt_idx = EXTRA_REG_RSP_1; if (idx == EXTRA_REG_RSP_1) alt_idx = EXTRA_REG_RSP_0; if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask) return idx; return alt_idx; } static void intel_fixup_er(struct perf_event *event, int idx) { event->hw.extra_reg.idx = idx; if (idx == EXTRA_REG_RSP_0) { event->hw.config &= ~INTEL_ARCH_EVENT_MASK; event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event; event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0; } else if (idx == EXTRA_REG_RSP_1) { event->hw.config &= ~INTEL_ARCH_EVENT_MASK; event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event; event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1; } } /* * manage allocation of shared extra msr for certain events * * sharing can be: * per-cpu: to be shared between the various events on a single PMU * per-core: per-cpu + shared by HT threads */ static struct event_constraint * __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc, struct perf_event *event, struct hw_perf_event_extra *reg) { struct event_constraint *c = &emptyconstraint; struct er_account *era; unsigned long flags; int idx = reg->idx; /* * reg->alloc can be set due to existing state, so for fake cpuc we * need to ignore this, otherwise we might fail to allocate proper fake * state for this extra reg constraint. Also see the comment below. */ if (reg->alloc && !cpuc->is_fake) return NULL; /* call x86_get_event_constraint() */ again: era = &cpuc->shared_regs->regs[idx]; /* * we use spin_lock_irqsave() to avoid lockdep issues when * passing a fake cpuc */ raw_spin_lock_irqsave(&era->lock, flags); if (!atomic_read(&era->ref) || era->config == reg->config) { /* * If its a fake cpuc -- as per validate_{group,event}() we * shouldn't touch event state and we can avoid doing so * since both will only call get_event_constraints() once * on each event, this avoids the need for reg->alloc. * * Not doing the ER fixup will only result in era->reg being * wrong, but since we won't actually try and program hardware * this isn't a problem either. */ if (!cpuc->is_fake) { if (idx != reg->idx) intel_fixup_er(event, idx); /* * x86_schedule_events() can call get_event_constraints() * multiple times on events in the case of incremental * scheduling(). reg->alloc ensures we only do the ER * allocation once. */ reg->alloc = 1; } /* lock in msr value */ era->config = reg->config; era->reg = reg->reg; /* one more user */ atomic_inc(&era->ref); /* * need to call x86_get_event_constraint() * to check if associated event has constraints */ c = NULL; } else { idx = intel_alt_er(idx, reg->config); if (idx != reg->idx) { raw_spin_unlock_irqrestore(&era->lock, flags); goto again; } } raw_spin_unlock_irqrestore(&era->lock, flags); return c; } static void __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc, struct hw_perf_event_extra *reg) { struct er_account *era; /* * Only put constraint if extra reg was actually allocated. Also takes * care of event which do not use an extra shared reg. * * Also, if this is a fake cpuc we shouldn't touch any event state * (reg->alloc) and we don't care about leaving inconsistent cpuc state * either since it'll be thrown out. */ if (!reg->alloc || cpuc->is_fake) return; era = &cpuc->shared_regs->regs[reg->idx]; /* one fewer user */ atomic_dec(&era->ref); /* allocate again next time */ reg->alloc = 0; } static struct event_constraint * intel_shared_regs_constraints(struct cpu_hw_events *cpuc, struct perf_event *event) { struct event_constraint *c = NULL, *d; struct hw_perf_event_extra *xreg, *breg; xreg = &event->hw.extra_reg; if (xreg->idx != EXTRA_REG_NONE) { c = __intel_shared_reg_get_constraints(cpuc, event, xreg); if (c == &emptyconstraint) return c; } breg = &event->hw.branch_reg; if (breg->idx != EXTRA_REG_NONE) { d = __intel_shared_reg_get_constraints(cpuc, event, breg); if (d == &emptyconstraint) { __intel_shared_reg_put_constraints(cpuc, xreg); c = d; } } return c; } struct event_constraint * x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx, struct perf_event *event) { struct event_constraint *c; if (x86_pmu.event_constraints) { for_each_event_constraint(c, x86_pmu.event_constraints) { if ((event->hw.config & c->cmask) == c->code) { event->hw.flags |= c->flags; return c; } } } return &unconstrained; } static struct event_constraint * __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx, struct perf_event *event) { struct event_constraint *c; c = intel_bts_constraints(event); if (c) return c; c = intel_shared_regs_constraints(cpuc, event); if (c) return c; c = intel_pebs_constraints(event); if (c) return c; return x86_get_event_constraints(cpuc, idx, event); } static void intel_start_scheduling(struct cpu_hw_events *cpuc) { struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; struct intel_excl_states *xl; int tid = cpuc->excl_thread_id; /* * nothing needed if in group validation mode */ if (cpuc->is_fake || !is_ht_workaround_enabled()) return; /* * no exclusion needed */ if (WARN_ON_ONCE(!excl_cntrs)) return; xl = &excl_cntrs->states[tid]; xl->sched_started = true; /* * lock shared state until we are done scheduling * in stop_event_scheduling() * makes scheduling appear as a transaction */ raw_spin_lock(&excl_cntrs->lock); } static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr) { struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; struct event_constraint *c = cpuc->event_constraint[idx]; struct intel_excl_states *xl; int tid = cpuc->excl_thread_id; if (cpuc->is_fake || !is_ht_workaround_enabled()) return; if (WARN_ON_ONCE(!excl_cntrs)) return; if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) return; xl = &excl_cntrs->states[tid]; lockdep_assert_held(&excl_cntrs->lock); if (c->flags & PERF_X86_EVENT_EXCL) xl->state[cntr] = INTEL_EXCL_EXCLUSIVE; else xl->state[cntr] = INTEL_EXCL_SHARED; } static void intel_stop_scheduling(struct cpu_hw_events *cpuc) { struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; struct intel_excl_states *xl; int tid = cpuc->excl_thread_id; /* * nothing needed if in group validation mode */ if (cpuc->is_fake || !is_ht_workaround_enabled()) return; /* * no exclusion needed */ if (WARN_ON_ONCE(!excl_cntrs)) return; xl = &excl_cntrs->states[tid]; xl->sched_started = false; /* * release shared state lock (acquired in intel_start_scheduling()) */ raw_spin_unlock(&excl_cntrs->lock); } static struct event_constraint * intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event, int idx, struct event_constraint *c) { struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; struct intel_excl_states *xlo; int tid = cpuc->excl_thread_id; int is_excl, i; /* * validating a group does not require * enforcing cross-thread exclusion */ if (cpuc->is_fake || !is_ht_workaround_enabled()) return c; /* * no exclusion needed */ if (WARN_ON_ONCE(!excl_cntrs)) return c; /* * because we modify the constraint, we need * to make a copy. Static constraints come * from static const tables. * * only needed when constraint has not yet * been cloned (marked dynamic) */ if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) { struct event_constraint *cx; /* * grab pre-allocated constraint entry */ cx = &cpuc->constraint_list[idx]; /* * initialize dynamic constraint * with static constraint */ *cx = *c; /* * mark constraint as dynamic, so we * can free it later on */ cx->flags |= PERF_X86_EVENT_DYNAMIC; c = cx; } /* * From here on, the constraint is dynamic. * Either it was just allocated above, or it * was allocated during a earlier invocation * of this function */ /* * state of sibling HT */ xlo = &excl_cntrs->states[tid ^ 1]; /* * event requires exclusive counter access * across HT threads */ is_excl = c->flags & PERF_X86_EVENT_EXCL; if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) { event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT; if (!cpuc->n_excl++) WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1); } /* * Modify static constraint with current dynamic * state of thread * * EXCLUSIVE: sibling counter measuring exclusive event * SHARED : sibling counter measuring non-exclusive event * UNUSED : sibling counter unused */ for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) { /* * exclusive event in sibling counter * our corresponding counter cannot be used * regardless of our event */ if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) __clear_bit(i, c->idxmsk); /* * if measuring an exclusive event, sibling * measuring non-exclusive, then counter cannot * be used */ if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) __clear_bit(i, c->idxmsk); } /* * recompute actual bit weight for scheduling algorithm */ c->weight = hweight64(c->idxmsk64); /* * if we return an empty mask, then switch * back to static empty constraint to avoid * the cost of freeing later on */ if (c->weight == 0) c = &emptyconstraint; return c; } static struct event_constraint * intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx, struct perf_event *event) { struct event_constraint *c1 = NULL; struct event_constraint *c2; if (idx >= 0) /* fake does < 0 */ c1 = cpuc->event_constraint[idx]; /* * first time only * - static constraint: no change across incremental scheduling calls * - dynamic constraint: handled by intel_get_excl_constraints() */ c2 = __intel_get_event_constraints(cpuc, idx, event); if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) { bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX); c1->weight = c2->weight; c2 = c1; } if (cpuc->excl_cntrs) return intel_get_excl_constraints(cpuc, event, idx, c2); return c2; } static void intel_put_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; int tid = cpuc->excl_thread_id; struct intel_excl_states *xl; /* * nothing needed if in group validation mode */ if (cpuc->is_fake) return; if (WARN_ON_ONCE(!excl_cntrs)) return; if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) { hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT; if (!--cpuc->n_excl) WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0); } /* * If event was actually assigned, then mark the counter state as * unused now. */ if (hwc->idx >= 0) { xl = &excl_cntrs->states[tid]; /* * put_constraint may be called from x86_schedule_events() * which already has the lock held so here make locking * conditional. */ if (!xl->sched_started) raw_spin_lock(&excl_cntrs->lock); xl->state[hwc->idx] = INTEL_EXCL_UNUSED; if (!xl->sched_started) raw_spin_unlock(&excl_cntrs->lock); } } static void intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event) { struct hw_perf_event_extra *reg; reg = &event->hw.extra_reg; if (reg->idx != EXTRA_REG_NONE) __intel_shared_reg_put_constraints(cpuc, reg); reg = &event->hw.branch_reg; if (reg->idx != EXTRA_REG_NONE) __intel_shared_reg_put_constraints(cpuc, reg); } static void intel_put_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event) { intel_put_shared_regs_event_constraints(cpuc, event); /* * is PMU has exclusive counter restrictions, then * all events are subject to and must call the * put_excl_constraints() routine */ if (cpuc->excl_cntrs) intel_put_excl_constraints(cpuc, event); } static void intel_pebs_aliases_core2(struct perf_event *event) { if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) { /* * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P * (0x003c) so that we can use it with PEBS. * * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't * PEBS capable. However we can use INST_RETIRED.ANY_P * (0x00c0), which is a PEBS capable event, to get the same * count. * * INST_RETIRED.ANY_P counts the number of cycles that retires * CNTMASK instructions. By setting CNTMASK to a value (16) * larger than the maximum number of instructions that can be * retired per cycle (4) and then inverting the condition, we * count all cycles that retire 16 or less instructions, which * is every cycle. * * Thereby we gain a PEBS capable cycle counter. */ u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16); alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK); event->hw.config = alt_config; } } static void intel_pebs_aliases_snb(struct perf_event *event) { if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) { /* * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P * (0x003c) so that we can use it with PEBS. * * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't * PEBS capable. However we can use UOPS_RETIRED.ALL * (0x01c2), which is a PEBS capable event, to get the same * count. * * UOPS_RETIRED.ALL counts the number of cycles that retires * CNTMASK micro-ops. By setting CNTMASK to a value (16) * larger than the maximum number of micro-ops that can be * retired per cycle (4) and then inverting the condition, we * count all cycles that retire 16 or less micro-ops, which * is every cycle. * * Thereby we gain a PEBS capable cycle counter. */ u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16); alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK); event->hw.config = alt_config; } } static void intel_pebs_aliases_precdist(struct perf_event *event) { if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) { /* * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P * (0x003c) so that we can use it with PEBS. * * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't * PEBS capable. However we can use INST_RETIRED.PREC_DIST * (0x01c0), which is a PEBS capable event, to get the same * count. * * The PREC_DIST event has special support to minimize sample * shadowing effects. One drawback is that it can be * only programmed on counter 1, but that seems like an * acceptable trade off. */ u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16); alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK); event->hw.config = alt_config; } } static void intel_pebs_aliases_ivb(struct perf_event *event) { if (event->attr.precise_ip < 3) return intel_pebs_aliases_snb(event); return intel_pebs_aliases_precdist(event); } static void intel_pebs_aliases_skl(struct perf_event *event) { if (event->attr.precise_ip < 3) return intel_pebs_aliases_core2(event); return intel_pebs_aliases_precdist(event); } static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event) { unsigned long flags = x86_pmu.large_pebs_flags; if (event->attr.use_clockid) flags &= ~PERF_SAMPLE_TIME; if (!event->attr.exclude_kernel) flags &= ~PERF_SAMPLE_REGS_USER; if (event->attr.sample_regs_user & ~PEBS_REGS) flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR); return flags; } static int intel_pmu_hw_config(struct perf_event *event) { int ret = x86_pmu_hw_config(event); if (ret) return ret; if (event->attr.precise_ip) { if (!event->attr.freq) { event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD; if (!(event->attr.sample_type & ~intel_pmu_large_pebs_flags(event))) event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS; } if (x86_pmu.pebs_aliases) x86_pmu.pebs_aliases(event); if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY; } if (needs_branch_stack(event)) { ret = intel_pmu_setup_lbr_filter(event); if (ret) return ret; /* * BTS is set up earlier in this path, so don't account twice */ if (!intel_pmu_has_bts(event)) { /* disallow lbr if conflicting events are present */ if (x86_add_exclusive(x86_lbr_exclusive_lbr)) return -EBUSY; event->destroy = hw_perf_lbr_event_destroy; } } if (event->attr.type != PERF_TYPE_RAW) return 0; if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY)) return 0; if (x86_pmu.version < 3) return -EINVAL; if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) return -EACCES; event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY; return 0; } struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr) { if (x86_pmu.guest_get_msrs) return x86_pmu.guest_get_msrs(nr); *nr = 0; return NULL; } EXPORT_SYMBOL_GPL(perf_guest_get_msrs); static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs; arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL; arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask; arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask; /* * If PMU counter has PEBS enabled it is not enough to disable counter * on a guest entry since PEBS memory write can overshoot guest entry * and corrupt guest memory. Disabling PEBS solves the problem. */ arr[1].msr = MSR_IA32_PEBS_ENABLE; arr[1].host = cpuc->pebs_enabled; arr[1].guest = 0; *nr = 2; return arr; } static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs; int idx; for (idx = 0; idx < x86_pmu.num_counters; idx++) { struct perf_event *event = cpuc->events[idx]; arr[idx].msr = x86_pmu_config_addr(idx); arr[idx].host = arr[idx].guest = 0; if (!test_bit(idx, cpuc->active_mask)) continue; arr[idx].host = arr[idx].guest = event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE; if (event->attr.exclude_host) arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE; else if (event->attr.exclude_guest) arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE; } *nr = x86_pmu.num_counters; return arr; } static void core_pmu_enable_event(struct perf_event *event) { if (!event->attr.exclude_host) x86_pmu_enable_event(event); } static void core_pmu_enable_all(int added) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); int idx; for (idx = 0; idx < x86_pmu.num_counters; idx++) { struct hw_perf_event *hwc = &cpuc->events[idx]->hw; if (!test_bit(idx, cpuc->active_mask) || cpuc->events[idx]->attr.exclude_host) continue; __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); } } static int hsw_hw_config(struct perf_event *event) { int ret = intel_pmu_hw_config(event); if (ret) return ret; if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE)) return 0; event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED); /* * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with * PEBS or in ANY thread mode. Since the results are non-sensical forbid * this combination. */ if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) && ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) || event->attr.precise_ip > 0)) return -EOPNOTSUPP; if (event_is_checkpointed(event)) { /* * Sampling of checkpointed events can cause situations where * the CPU constantly aborts because of a overflow, which is * then checkpointed back and ignored. Forbid checkpointing * for sampling. * * But still allow a long sampling period, so that perf stat * from KVM works. */ if (event->attr.sample_period > 0 && event->attr.sample_period < 0x7fffffff) return -EOPNOTSUPP; } return 0; } static struct event_constraint counter0_constraint = INTEL_ALL_EVENT_CONSTRAINT(0, 0x1); static struct event_constraint counter2_constraint = EVENT_CONSTRAINT(0, 0x4, 0); static struct event_constraint * hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx, struct perf_event *event) { struct event_constraint *c; c = intel_get_event_constraints(cpuc, idx, event); /* Handle special quirk on in_tx_checkpointed only in counter 2 */ if (event->hw.config & HSW_IN_TX_CHECKPOINTED) { if (c->idxmsk64 & (1U << 2)) return &counter2_constraint; return &emptyconstraint; } return c; } static struct event_constraint * glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx, struct perf_event *event) { struct event_constraint *c; /* :ppp means to do reduced skid PEBS which is PMC0 only. */ if (event->attr.precise_ip == 3) return &counter0_constraint; c = intel_get_event_constraints(cpuc, idx, event); return c; } /* * Broadwell: * * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine * the two to enforce a minimum period of 128 (the smallest value that has bits * 0-5 cleared and >= 100). * * Because of how the code in x86_perf_event_set_period() works, the truncation * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period * to make up for the 'lost' events due to carrying the 'error' in period_left. * * Therefore the effective (average) period matches the requested period, * despite coarser hardware granularity. */ static u64 bdw_limit_period(struct perf_event *event, u64 left) { if ((event->hw.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xc0, .umask=0x01)) { if (left < 128) left = 128; left &= ~0x3fULL; } return left; } PMU_FORMAT_ATTR(event, "config:0-7" ); PMU_FORMAT_ATTR(umask, "config:8-15" ); PMU_FORMAT_ATTR(edge, "config:18" ); PMU_FORMAT_ATTR(pc, "config:19" ); PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */ PMU_FORMAT_ATTR(inv, "config:23" ); PMU_FORMAT_ATTR(cmask, "config:24-31" ); PMU_FORMAT_ATTR(in_tx, "config:32"); PMU_FORMAT_ATTR(in_tx_cp, "config:33"); static struct attribute *intel_arch_formats_attr[] = { &format_attr_event.attr, &format_attr_umask.attr, &format_attr_edge.attr, &format_attr_pc.attr, &format_attr_inv.attr, &format_attr_cmask.attr, NULL, }; ssize_t intel_event_sysfs_show(char *page, u64 config) { u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT); return x86_event_sysfs_show(page, config, event); } struct intel_shared_regs *allocate_shared_regs(int cpu) { struct intel_shared_regs *regs; int i; regs = kzalloc_node(sizeof(struct intel_shared_regs), GFP_KERNEL, cpu_to_node(cpu)); if (regs) { /* * initialize the locks to keep lockdep happy */ for (i = 0; i < EXTRA_REG_MAX; i++) raw_spin_lock_init(®s->regs[i].lock); regs->core_id = -1; } return regs; } static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu) { struct intel_excl_cntrs *c; c = kzalloc_node(sizeof(struct intel_excl_cntrs), GFP_KERNEL, cpu_to_node(cpu)); if (c) { raw_spin_lock_init(&c->lock); c->core_id = -1; } return c; } static int intel_pmu_cpu_prepare(int cpu) { struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) { cpuc->shared_regs = allocate_shared_regs(cpu); if (!cpuc->shared_regs) goto err; } if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) { size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint); cpuc->constraint_list = kzalloc(sz, GFP_KERNEL); if (!cpuc->constraint_list) goto err_shared_regs; cpuc->excl_cntrs = allocate_excl_cntrs(cpu); if (!cpuc->excl_cntrs) goto err_constraint_list; cpuc->excl_thread_id = 0; } return 0; err_constraint_list: kfree(cpuc->constraint_list); cpuc->constraint_list = NULL; err_shared_regs: kfree(cpuc->shared_regs); cpuc->shared_regs = NULL; err: return -ENOMEM; } static void flip_smm_bit(void *data) { unsigned long set = *(unsigned long *)data; if (set > 0) { msr_set_bit(MSR_IA32_DEBUGCTLMSR, DEBUGCTLMSR_FREEZE_IN_SMM_BIT); } else { msr_clear_bit(MSR_IA32_DEBUGCTLMSR, DEBUGCTLMSR_FREEZE_IN_SMM_BIT); } } static void intel_pmu_cpu_starting(int cpu) { struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); int core_id = topology_core_id(cpu); int i; init_debug_store_on_cpu(cpu); /* * Deal with CPUs that don't clear their LBRs on power-up. */ intel_pmu_lbr_reset(); cpuc->lbr_sel = NULL; if (x86_pmu.version > 1) flip_smm_bit(&x86_pmu.attr_freeze_on_smi); if (x86_pmu.counter_freezing) enable_counter_freeze(); if (!cpuc->shared_regs) return; if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) { for_each_cpu(i, topology_sibling_cpumask(cpu)) { struct intel_shared_regs *pc; pc = per_cpu(cpu_hw_events, i).shared_regs; if (pc && pc->core_id == core_id) { cpuc->kfree_on_online[0] = cpuc->shared_regs; cpuc->shared_regs = pc; break; } } cpuc->shared_regs->core_id = core_id; cpuc->shared_regs->refcnt++; } if (x86_pmu.lbr_sel_map) cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR]; if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) { for_each_cpu(i, topology_sibling_cpumask(cpu)) { struct cpu_hw_events *sibling; struct intel_excl_cntrs *c; sibling = &per_cpu(cpu_hw_events, i); c = sibling->excl_cntrs; if (c && c->core_id == core_id) { cpuc->kfree_on_online[1] = cpuc->excl_cntrs; cpuc->excl_cntrs = c; if (!sibling->excl_thread_id) cpuc->excl_thread_id = 1; break; } } cpuc->excl_cntrs->core_id = core_id; cpuc->excl_cntrs->refcnt++; } } static void free_excl_cntrs(int cpu) { struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); struct intel_excl_cntrs *c; c = cpuc->excl_cntrs; if (c) { if (c->core_id == -1 || --c->refcnt == 0) kfree(c); cpuc->excl_cntrs = NULL; kfree(cpuc->constraint_list); cpuc->constraint_list = NULL; } } static void intel_pmu_cpu_dying(int cpu) { struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); struct intel_shared_regs *pc; pc = cpuc->shared_regs; if (pc) { if (pc->core_id == -1 || --pc->refcnt == 0) kfree(pc); cpuc->shared_regs = NULL; } free_excl_cntrs(cpu); fini_debug_store_on_cpu(cpu); if (x86_pmu.counter_freezing) disable_counter_freeze(); } static void intel_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) { intel_pmu_pebs_sched_task(ctx, sched_in); intel_pmu_lbr_sched_task(ctx, sched_in); } PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63"); PMU_FORMAT_ATTR(ldlat, "config1:0-15"); PMU_FORMAT_ATTR(frontend, "config1:0-23"); static struct attribute *intel_arch3_formats_attr[] = { &format_attr_event.attr, &format_attr_umask.attr, &format_attr_edge.attr, &format_attr_pc.attr, &format_attr_any.attr, &format_attr_inv.attr, &format_attr_cmask.attr, NULL, }; static struct attribute *hsw_format_attr[] = { &format_attr_in_tx.attr, &format_attr_in_tx_cp.attr, &format_attr_offcore_rsp.attr, &format_attr_ldlat.attr, NULL }; static struct attribute *nhm_format_attr[] = { &format_attr_offcore_rsp.attr, &format_attr_ldlat.attr, NULL }; static struct attribute *slm_format_attr[] = { &format_attr_offcore_rsp.attr, NULL }; static struct attribute *skl_format_attr[] = { &format_attr_frontend.attr, NULL, }; static __initconst const struct x86_pmu core_pmu = { .name = "core", .handle_irq = x86_pmu_handle_irq, .disable_all = x86_pmu_disable_all, .enable_all = core_pmu_enable_all, .enable = core_pmu_enable_event, .disable = x86_pmu_disable_event, .hw_config = x86_pmu_hw_config, .schedule_events = x86_schedule_events, .eventsel = MSR_ARCH_PERFMON_EVENTSEL0, .perfctr = MSR_ARCH_PERFMON_PERFCTR0, .event_map = intel_pmu_event_map, .max_events = ARRAY_SIZE(intel_perfmon_event_map), .apic = 1, .large_pebs_flags = LARGE_PEBS_FLAGS, /* * Intel PMCs cannot be accessed sanely above 32-bit width, * so we install an artificial 1<<31 period regardless of * the generic event period: */ .max_period = (1ULL<<31) - 1, .get_event_constraints = intel_get_event_constraints, .put_event_constraints = intel_put_event_constraints, .event_constraints = intel_core_event_constraints, .guest_get_msrs = core_guest_get_msrs, .format_attrs = intel_arch_formats_attr, .events_sysfs_show = intel_event_sysfs_show, /* * Virtual (or funny metal) CPU can define x86_pmu.extra_regs * together with PMU version 1 and thus be using core_pmu with * shared_regs. We need following callbacks here to allocate * it properly. */ .cpu_prepare = intel_pmu_cpu_prepare, .cpu_starting = intel_pmu_cpu_starting, .cpu_dying = intel_pmu_cpu_dying, }; static struct attribute *intel_pmu_attrs[]; static __initconst const struct x86_pmu intel_pmu = { .name = "Intel", .handle_irq = intel_pmu_handle_irq, .disable_all = intel_pmu_disable_all, .enable_all = intel_pmu_enable_all, .enable = intel_pmu_enable_event, .disable = intel_pmu_disable_event, .add = intel_pmu_add_event, .del = intel_pmu_del_event, .read = intel_pmu_read_event, .hw_config = intel_pmu_hw_config, .schedule_events = x86_schedule_events, .eventsel = MSR_ARCH_PERFMON_EVENTSEL0, .perfctr = MSR_ARCH_PERFMON_PERFCTR0, .event_map = intel_pmu_event_map, .max_events = ARRAY_SIZE(intel_perfmon_event_map), .apic = 1, .large_pebs_flags = LARGE_PEBS_FLAGS, /* * Intel PMCs cannot be accessed sanely above 32 bit width, * so we install an artificial 1<<31 period regardless of * the generic event period: */ .max_period = (1ULL << 31) - 1, .get_event_constraints = intel_get_event_constraints, .put_event_constraints = intel_put_event_constraints, .pebs_aliases = intel_pebs_aliases_core2, .format_attrs = intel_arch3_formats_attr, .events_sysfs_show = intel_event_sysfs_show, .attrs = intel_pmu_attrs, .cpu_prepare = intel_pmu_cpu_prepare, .cpu_starting = intel_pmu_cpu_starting, .cpu_dying = intel_pmu_cpu_dying, .guest_get_msrs = intel_guest_get_msrs, .sched_task = intel_pmu_sched_task, }; static __init void intel_clovertown_quirk(void) { /* * PEBS is unreliable due to: * * AJ67 - PEBS may experience CPL leaks * AJ68 - PEBS PMI may be delayed by one event * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12] * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS * * AJ67 could be worked around by restricting the OS/USR flags. * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI. * * AJ106 could possibly be worked around by not allowing LBR * usage from PEBS, including the fixup. * AJ68 could possibly be worked around by always programming * a pebs_event_reset[0] value and coping with the lost events. * * But taken together it might just make sense to not enable PEBS on * these chips. */ pr_warn("PEBS disabled due to CPU errata\n"); x86_pmu.pebs = 0; x86_pmu.pebs_constraints = NULL; } static int intel_snb_pebs_broken(int cpu) { u32 rev = UINT_MAX; /* default to broken for unknown models */ switch (cpu_data(cpu).x86_model) { case INTEL_FAM6_SANDYBRIDGE: rev = 0x28; break; case INTEL_FAM6_SANDYBRIDGE_X: switch (cpu_data(cpu).x86_stepping) { case 6: rev = 0x618; break; case 7: rev = 0x70c; break; } } return (cpu_data(cpu).microcode < rev); } static void intel_snb_check_microcode(void) { int pebs_broken = 0; int cpu; for_each_online_cpu(cpu) { if ((pebs_broken = intel_snb_pebs_broken(cpu))) break; } if (pebs_broken == x86_pmu.pebs_broken) return; /* * Serialized by the microcode lock.. */ if (x86_pmu.pebs_broken) { pr_info("PEBS enabled due to microcode update\n"); x86_pmu.pebs_broken = 0; } else { pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n"); x86_pmu.pebs_broken = 1; } } static bool is_lbr_from(unsigned long msr) { unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr; return x86_pmu.lbr_from <= msr && msr < lbr_from_nr; } /* * Under certain circumstances, access certain MSR may cause #GP. * The function tests if the input MSR can be safely accessed. */ static bool check_msr(unsigned long msr, u64 mask) { u64 val_old, val_new, val_tmp; /* * Read the current value, change it and read it back to see if it * matches, this is needed to detect certain hardware emulators * (qemu/kvm) that don't trap on the MSR access and always return 0s. */ if (rdmsrl_safe(msr, &val_old)) return false; /* * Only change the bits which can be updated by wrmsrl. */ val_tmp = val_old ^ mask; if (is_lbr_from(msr)) val_tmp = lbr_from_signext_quirk_wr(val_tmp); if (wrmsrl_safe(msr, val_tmp) || rdmsrl_safe(msr, &val_new)) return false; /* * Quirk only affects validation in wrmsr(), so wrmsrl()'s value * should equal rdmsrl()'s even with the quirk. */ if (val_new != val_tmp) return false; if (is_lbr_from(msr)) val_old = lbr_from_signext_quirk_wr(val_old); /* Here it's sure that the MSR can be safely accessed. * Restore the old value and return. */ wrmsrl(msr, val_old); return true; } static __init void intel_sandybridge_quirk(void) { x86_pmu.check_microcode = intel_snb_check_microcode; cpus_read_lock(); intel_snb_check_microcode(); cpus_read_unlock(); } static const struct { int id; char *name; } intel_arch_events_map[] __initconst = { { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" }, { PERF_COUNT_HW_INSTRUCTIONS, "instructions" }, { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" }, { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" }, { PERF_COUNT_HW_CACHE_MISSES, "cache misses" }, { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" }, { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" }, }; static __init void intel_arch_events_quirk(void) { int bit; /* disable event that reported as not presend by cpuid */ for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) { intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0; pr_warn("CPUID marked event: \'%s\' unavailable\n", intel_arch_events_map[bit].name); } } static __init void intel_nehalem_quirk(void) { union cpuid10_ebx ebx; ebx.full = x86_pmu.events_maskl; if (ebx.split.no_branch_misses_retired) { /* * Erratum AAJ80 detected, we work it around by using * the BR_MISP_EXEC.ANY event. This will over-count * branch-misses, but it's still much better than the * architectural event which is often completely bogus: */ intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89; ebx.split.no_branch_misses_retired = 0; x86_pmu.events_maskl = ebx.full; pr_info("CPU erratum AAJ80 worked around\n"); } } /* * enable software workaround for errata: * SNB: BJ122 * IVB: BV98 * HSW: HSD29 * * Only needed when HT is enabled. However detecting * if HT is enabled is difficult (model specific). So instead, * we enable the workaround in the early boot, and verify if * it is needed in a later initcall phase once we have valid * topology information to check if HT is actually enabled */ static __init void intel_ht_bug(void) { x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED; x86_pmu.start_scheduling = intel_start_scheduling; x86_pmu.commit_scheduling = intel_commit_scheduling; x86_pmu.stop_scheduling = intel_stop_scheduling; } EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3"); EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82") /* Haswell special events */ EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1"); EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2"); EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4"); EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2"); EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1"); EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1"); EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2"); EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4"); EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2"); EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1"); EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1"); EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1"); static struct attribute *hsw_events_attrs[] = { EVENT_PTR(mem_ld_hsw), EVENT_PTR(mem_st_hsw), EVENT_PTR(td_slots_issued), EVENT_PTR(td_slots_retired), EVENT_PTR(td_fetch_bubbles), EVENT_PTR(td_total_slots), EVENT_PTR(td_total_slots_scale), EVENT_PTR(td_recovery_bubbles), EVENT_PTR(td_recovery_bubbles_scale), NULL }; static struct attribute *hsw_tsx_events_attrs[] = { EVENT_PTR(tx_start), EVENT_PTR(tx_commit), EVENT_PTR(tx_abort), EVENT_PTR(tx_capacity), EVENT_PTR(tx_conflict), EVENT_PTR(el_start), EVENT_PTR(el_commit), EVENT_PTR(el_abort), EVENT_PTR(el_capacity), EVENT_PTR(el_conflict), EVENT_PTR(cycles_t), EVENT_PTR(cycles_ct), NULL }; static __init struct attribute **get_hsw_events_attrs(void) { return boot_cpu_has(X86_FEATURE_RTM) ? merge_attr(hsw_events_attrs, hsw_tsx_events_attrs) : hsw_events_attrs; } static ssize_t freeze_on_smi_show(struct device *cdev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi); } static DEFINE_MUTEX(freeze_on_smi_mutex); static ssize_t freeze_on_smi_store(struct device *cdev, struct device_attribute *attr, const char *buf, size_t count) { unsigned long val; ssize_t ret; ret = kstrtoul(buf, 0, &val); if (ret) return ret; if (val > 1) return -EINVAL; mutex_lock(&freeze_on_smi_mutex); if (x86_pmu.attr_freeze_on_smi == val) goto done; x86_pmu.attr_freeze_on_smi = val; get_online_cpus(); on_each_cpu(flip_smm_bit, &val, 1); put_online_cpus(); done: mutex_unlock(&freeze_on_smi_mutex); return count; } static DEVICE_ATTR_RW(freeze_on_smi); static ssize_t branches_show(struct device *cdev, struct device_attribute *attr, char *buf) { return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr); } static DEVICE_ATTR_RO(branches); static struct attribute *lbr_attrs[] = { &dev_attr_branches.attr, NULL }; static char pmu_name_str[30]; static ssize_t pmu_name_show(struct device *cdev, struct device_attribute *attr, char *buf) { return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str); } static DEVICE_ATTR_RO(pmu_name); static struct attribute *intel_pmu_caps_attrs[] = { &dev_attr_pmu_name.attr, NULL }; static struct attribute *intel_pmu_attrs[] = { &dev_attr_freeze_on_smi.attr, NULL, }; __init int intel_pmu_init(void) { struct attribute **extra_attr = NULL; struct attribute **to_free = NULL; union cpuid10_edx edx; union cpuid10_eax eax; union cpuid10_ebx ebx; struct event_constraint *c; unsigned int unused; struct extra_reg *er; int version, i; char *name; if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) { switch (boot_cpu_data.x86) { case 0x6: return p6_pmu_init(); case 0xb: return knc_pmu_init(); case 0xf: return p4_pmu_init(); } return -ENODEV; } /* * Check whether the Architectural PerfMon supports * Branch Misses Retired hw_event or not. */ cpuid(10, &eax.full, &ebx.full, &unused, &edx.full); if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT) return -ENODEV; version = eax.split.version_id; if (version < 2) x86_pmu = core_pmu; else x86_pmu = intel_pmu; x86_pmu.version = version; x86_pmu.num_counters = eax.split.num_counters; x86_pmu.cntval_bits = eax.split.bit_width; x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1; x86_pmu.events_maskl = ebx.full; x86_pmu.events_mask_len = eax.split.mask_length; x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters); /* * Quirk: v2 perfmon does not report fixed-purpose events, so * assume at least 3 events, when not running in a hypervisor: */ if (version > 1) { int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR); x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, assume); } if (version >= 4) x86_pmu.counter_freezing = !disable_counter_freezing; if (boot_cpu_has(X86_FEATURE_PDCM)) { u64 capabilities; rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities); x86_pmu.intel_cap.capabilities = capabilities; } intel_ds_init(); x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */ /* * Install the hw-cache-events table: */ switch (boot_cpu_data.x86_model) { case INTEL_FAM6_CORE_YONAH: pr_cont("Core events, "); name = "core"; break; case INTEL_FAM6_CORE2_MEROM: x86_add_quirk(intel_clovertown_quirk); case INTEL_FAM6_CORE2_MEROM_L: case INTEL_FAM6_CORE2_PENRYN: case INTEL_FAM6_CORE2_DUNNINGTON: memcpy(hw_cache_event_ids, core2_hw_cache_event_ids, sizeof(hw_cache_event_ids)); intel_pmu_lbr_init_core(); x86_pmu.event_constraints = intel_core2_event_constraints; x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints; pr_cont("Core2 events, "); name = "core2"; break; case INTEL_FAM6_NEHALEM: case INTEL_FAM6_NEHALEM_EP: case INTEL_FAM6_NEHALEM_EX: memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids, sizeof(hw_cache_event_ids)); memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); intel_pmu_lbr_init_nhm(); x86_pmu.event_constraints = intel_nehalem_event_constraints; x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints; x86_pmu.enable_all = intel_pmu_nhm_enable_all; x86_pmu.extra_regs = intel_nehalem_extra_regs; x86_pmu.cpu_events = nhm_events_attrs; /* UOPS_ISSUED.STALLED_CYCLES */ intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */ intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1); intel_pmu_pebs_data_source_nhm(); x86_add_quirk(intel_nehalem_quirk); x86_pmu.pebs_no_tlb = 1; extra_attr = nhm_format_attr; pr_cont("Nehalem events, "); name = "nehalem"; break; case INTEL_FAM6_ATOM_BONNELL: case INTEL_FAM6_ATOM_BONNELL_MID: case INTEL_FAM6_ATOM_SALTWELL: case INTEL_FAM6_ATOM_SALTWELL_MID: case INTEL_FAM6_ATOM_SALTWELL_TABLET: memcpy(hw_cache_event_ids, atom_hw_cache_event_ids, sizeof(hw_cache_event_ids)); intel_pmu_lbr_init_atom(); x86_pmu.event_constraints = intel_gen_event_constraints; x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints; x86_pmu.pebs_aliases = intel_pebs_aliases_core2; pr_cont("Atom events, "); name = "bonnell"; break; case INTEL_FAM6_ATOM_SILVERMONT: case INTEL_FAM6_ATOM_SILVERMONT_X: case INTEL_FAM6_ATOM_SILVERMONT_MID: case INTEL_FAM6_ATOM_AIRMONT: case INTEL_FAM6_ATOM_AIRMONT_MID: memcpy(hw_cache_event_ids, slm_hw_cache_event_ids, sizeof(hw_cache_event_ids)); memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); intel_pmu_lbr_init_slm(); x86_pmu.event_constraints = intel_slm_event_constraints; x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints; x86_pmu.extra_regs = intel_slm_extra_regs; x86_pmu.flags |= PMU_FL_HAS_RSP_1; x86_pmu.cpu_events = slm_events_attrs; extra_attr = slm_format_attr; pr_cont("Silvermont events, "); name = "silvermont"; break; case INTEL_FAM6_ATOM_GOLDMONT: case INTEL_FAM6_ATOM_GOLDMONT_X: memcpy(hw_cache_event_ids, glm_hw_cache_event_ids, sizeof(hw_cache_event_ids)); memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); intel_pmu_lbr_init_skl(); x86_pmu.event_constraints = intel_slm_event_constraints; x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints; x86_pmu.extra_regs = intel_glm_extra_regs; /* * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS * for precise cycles. * :pp is identical to :ppp */ x86_pmu.pebs_aliases = NULL; x86_pmu.pebs_prec_dist = true; x86_pmu.lbr_pt_coexist = true; x86_pmu.flags |= PMU_FL_HAS_RSP_1; x86_pmu.cpu_events = glm_events_attrs; extra_attr = slm_format_attr; pr_cont("Goldmont events, "); name = "goldmont"; break; case INTEL_FAM6_ATOM_GOLDMONT_PLUS: memcpy(hw_cache_event_ids, glp_hw_cache_event_ids, sizeof(hw_cache_event_ids)); memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); intel_pmu_lbr_init_skl(); x86_pmu.event_constraints = intel_slm_event_constraints; x86_pmu.extra_regs = intel_glm_extra_regs; /* * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS * for precise cycles. */ x86_pmu.pebs_aliases = NULL; x86_pmu.pebs_prec_dist = true; x86_pmu.lbr_pt_coexist = true; x86_pmu.flags |= PMU_FL_HAS_RSP_1; x86_pmu.flags |= PMU_FL_PEBS_ALL; x86_pmu.get_event_constraints = glp_get_event_constraints; x86_pmu.cpu_events = glm_events_attrs; /* Goldmont Plus has 4-wide pipeline */ event_attr_td_total_slots_scale_glm.event_str = "4"; extra_attr = slm_format_attr; pr_cont("Goldmont plus events, "); name = "goldmont_plus"; break; case INTEL_FAM6_WESTMERE: case INTEL_FAM6_WESTMERE_EP: case INTEL_FAM6_WESTMERE_EX: memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids, sizeof(hw_cache_event_ids)); memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); intel_pmu_lbr_init_nhm(); x86_pmu.event_constraints = intel_westmere_event_constraints; x86_pmu.enable_all = intel_pmu_nhm_enable_all; x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints; x86_pmu.extra_regs = intel_westmere_extra_regs; x86_pmu.flags |= PMU_FL_HAS_RSP_1; x86_pmu.cpu_events = nhm_events_attrs; /* UOPS_ISSUED.STALLED_CYCLES */ intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */ intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1); intel_pmu_pebs_data_source_nhm(); extra_attr = nhm_format_attr; pr_cont("Westmere events, "); name = "westmere"; break; case INTEL_FAM6_SANDYBRIDGE: case INTEL_FAM6_SANDYBRIDGE_X: x86_add_quirk(intel_sandybridge_quirk); x86_add_quirk(intel_ht_bug); memcpy(hw_cache_event_ids, snb_hw_cache_event_ids, sizeof(hw_cache_event_ids)); memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); intel_pmu_lbr_init_snb(); x86_pmu.event_constraints = intel_snb_event_constraints; x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints; x86_pmu.pebs_aliases = intel_pebs_aliases_snb; if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X) x86_pmu.extra_regs = intel_snbep_extra_regs; else x86_pmu.extra_regs = intel_snb_extra_regs; /* all extra regs are per-cpu when HT is on */ x86_pmu.flags |= PMU_FL_HAS_RSP_1; x86_pmu.flags |= PMU_FL_NO_HT_SHARING; x86_pmu.cpu_events = snb_events_attrs; /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */ intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/ intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1); extra_attr = nhm_format_attr; pr_cont("SandyBridge events, "); name = "sandybridge"; break; case INTEL_FAM6_IVYBRIDGE: case INTEL_FAM6_IVYBRIDGE_X: x86_add_quirk(intel_ht_bug); memcpy(hw_cache_event_ids, snb_hw_cache_event_ids, sizeof(hw_cache_event_ids)); /* dTLB-load-misses on IVB is different than SNB */ hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */ memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); intel_pmu_lbr_init_snb(); x86_pmu.event_constraints = intel_ivb_event_constraints; x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints; x86_pmu.pebs_aliases = intel_pebs_aliases_ivb; x86_pmu.pebs_prec_dist = true; if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X) x86_pmu.extra_regs = intel_snbep_extra_regs; else x86_pmu.extra_regs = intel_snb_extra_regs; /* all extra regs are per-cpu when HT is on */ x86_pmu.flags |= PMU_FL_HAS_RSP_1; x86_pmu.flags |= PMU_FL_NO_HT_SHARING; x86_pmu.cpu_events = snb_events_attrs; /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */ intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); extra_attr = nhm_format_attr; pr_cont("IvyBridge events, "); name = "ivybridge"; break; case INTEL_FAM6_HASWELL_CORE: case INTEL_FAM6_HASWELL_X: case INTEL_FAM6_HASWELL_ULT: case INTEL_FAM6_HASWELL_GT3E: x86_add_quirk(intel_ht_bug); x86_pmu.late_ack = true; memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids)); memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); intel_pmu_lbr_init_hsw(); x86_pmu.event_constraints = intel_hsw_event_constraints; x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints; x86_pmu.extra_regs = intel_snbep_extra_regs; x86_pmu.pebs_aliases = intel_pebs_aliases_ivb; x86_pmu.pebs_prec_dist = true; /* all extra regs are per-cpu when HT is on */ x86_pmu.flags |= PMU_FL_HAS_RSP_1; x86_pmu.flags |= PMU_FL_NO_HT_SHARING; x86_pmu.hw_config = hsw_hw_config; x86_pmu.get_event_constraints = hsw_get_event_constraints; x86_pmu.cpu_events = get_hsw_events_attrs(); x86_pmu.lbr_double_abort = true; extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? hsw_format_attr : nhm_format_attr; pr_cont("Haswell events, "); name = "haswell"; break; case INTEL_FAM6_BROADWELL_CORE: case INTEL_FAM6_BROADWELL_XEON_D: case INTEL_FAM6_BROADWELL_GT3E: case INTEL_FAM6_BROADWELL_X: x86_pmu.late_ack = true; memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids)); memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */ hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ | BDW_L3_MISS|HSW_SNOOP_DRAM; hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS| HSW_SNOOP_DRAM; hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ| BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM; hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE| BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM; intel_pmu_lbr_init_hsw(); x86_pmu.event_constraints = intel_bdw_event_constraints; x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints; x86_pmu.extra_regs = intel_snbep_extra_regs; x86_pmu.pebs_aliases = intel_pebs_aliases_ivb; x86_pmu.pebs_prec_dist = true; /* all extra regs are per-cpu when HT is on */ x86_pmu.flags |= PMU_FL_HAS_RSP_1; x86_pmu.flags |= PMU_FL_NO_HT_SHARING; x86_pmu.hw_config = hsw_hw_config; x86_pmu.get_event_constraints = hsw_get_event_constraints; x86_pmu.cpu_events = get_hsw_events_attrs(); x86_pmu.limit_period = bdw_limit_period; extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? hsw_format_attr : nhm_format_attr; pr_cont("Broadwell events, "); name = "broadwell"; break; case INTEL_FAM6_XEON_PHI_KNL: case INTEL_FAM6_XEON_PHI_KNM: memcpy(hw_cache_event_ids, slm_hw_cache_event_ids, sizeof(hw_cache_event_ids)); memcpy(hw_cache_extra_regs, knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); intel_pmu_lbr_init_knl(); x86_pmu.event_constraints = intel_slm_event_constraints; x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints; x86_pmu.extra_regs = intel_knl_extra_regs; /* all extra regs are per-cpu when HT is on */ x86_pmu.flags |= PMU_FL_HAS_RSP_1; x86_pmu.flags |= PMU_FL_NO_HT_SHARING; extra_attr = slm_format_attr; pr_cont("Knights Landing/Mill events, "); name = "knights-landing"; break; case INTEL_FAM6_SKYLAKE_MOBILE: case INTEL_FAM6_SKYLAKE_DESKTOP: case INTEL_FAM6_SKYLAKE_X: case INTEL_FAM6_KABYLAKE_MOBILE: case INTEL_FAM6_KABYLAKE_DESKTOP: x86_pmu.late_ack = true; memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids)); memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); intel_pmu_lbr_init_skl(); /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */ event_attr_td_recovery_bubbles.event_str_noht = "event=0xd,umask=0x1,cmask=1"; event_attr_td_recovery_bubbles.event_str_ht = "event=0xd,umask=0x1,cmask=1,any=1"; x86_pmu.event_constraints = intel_skl_event_constraints; x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints; x86_pmu.extra_regs = intel_skl_extra_regs; x86_pmu.pebs_aliases = intel_pebs_aliases_skl; x86_pmu.pebs_prec_dist = true; /* all extra regs are per-cpu when HT is on */ x86_pmu.flags |= PMU_FL_HAS_RSP_1; x86_pmu.flags |= PMU_FL_NO_HT_SHARING; x86_pmu.hw_config = hsw_hw_config; x86_pmu.get_event_constraints = hsw_get_event_constraints; extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? hsw_format_attr : nhm_format_attr; extra_attr = merge_attr(extra_attr, skl_format_attr); to_free = extra_attr; x86_pmu.cpu_events = get_hsw_events_attrs(); intel_pmu_pebs_data_source_skl( boot_cpu_data.x86_model == INTEL_FAM6_SKYLAKE_X); pr_cont("Skylake events, "); name = "skylake"; break; default: switch (x86_pmu.version) { case 1: x86_pmu.event_constraints = intel_v1_event_constraints; pr_cont("generic architected perfmon v1, "); name = "generic_arch_v1"; break; default: /* * default constraints for v2 and up */ x86_pmu.event_constraints = intel_gen_event_constraints; pr_cont("generic architected perfmon, "); name = "generic_arch_v2+"; break; } } snprintf(pmu_name_str, sizeof pmu_name_str, "%s", name); if (version >= 2 && extra_attr) { x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr, extra_attr); WARN_ON(!x86_pmu.format_attrs); } if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) { WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!", x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC); x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC; } x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1; if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) { WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!", x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED); x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED; } x86_pmu.intel_ctrl |= ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED; if (x86_pmu.event_constraints) { /* * event on fixed counter2 (REF_CYCLES) only works on this * counter, so do not extend mask to generic counters */ for_each_event_constraint(c, x86_pmu.event_constraints) { if (c->cmask == FIXED_EVENT_FLAGS && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) { c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1; } c->idxmsk64 &= ~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed)); c->weight = hweight64(c->idxmsk64); } } /* * Access LBR MSR may cause #GP under certain circumstances. * E.g. KVM doesn't support LBR MSR * Check all LBT MSR here. * Disable LBR access if any LBR MSRs can not be accessed. */ if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL)) x86_pmu.lbr_nr = 0; for (i = 0; i < x86_pmu.lbr_nr; i++) { if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) && check_msr(x86_pmu.lbr_to + i, 0xffffUL))) x86_pmu.lbr_nr = 0; } x86_pmu.caps_attrs = intel_pmu_caps_attrs; if (x86_pmu.lbr_nr) { x86_pmu.caps_attrs = merge_attr(x86_pmu.caps_attrs, lbr_attrs); pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr); } /* * Access extra MSR may cause #GP under certain circumstances. * E.g. KVM doesn't support offcore event * Check all extra_regs here. */ if (x86_pmu.extra_regs) { for (er = x86_pmu.extra_regs; er->msr; er++) { er->extra_msr_access = check_msr(er->msr, 0x11UL); /* Disable LBR select mapping */ if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access) x86_pmu.lbr_sel_map = NULL; } } /* Support full width counters using alternative MSR range */ if (x86_pmu.intel_cap.full_width_write) { x86_pmu.max_period = x86_pmu.cntval_mask >> 1; x86_pmu.perfctr = MSR_IA32_PMC0; pr_cont("full-width counters, "); } /* * For arch perfmon 4 use counter freezing to avoid * several MSR accesses in the PMI. */ if (x86_pmu.counter_freezing) x86_pmu.handle_irq = intel_pmu_handle_irq_v4; kfree(to_free); return 0; } /* * HT bug: phase 2 init * Called once we have valid topology information to check * whether or not HT is enabled * If HT is off, then we disable the workaround */ static __init int fixup_ht_bug(void) { int c; /* * problem not present on this CPU model, nothing to do */ if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED)) return 0; if (topology_max_smt_threads() > 1) { pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n"); return 0; } cpus_read_lock(); hardlockup_detector_perf_stop(); x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED); x86_pmu.start_scheduling = NULL; x86_pmu.commit_scheduling = NULL; x86_pmu.stop_scheduling = NULL; hardlockup_detector_perf_restart(); for_each_online_cpu(c) free_excl_cntrs(c); cpus_read_unlock(); pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n"); return 0; } subsys_initcall(fixup_ht_bug)