// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2016 Oracle. All Rights Reserved. * Author: Darrick J. Wong */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_bit.h" #include "xfs_shared.h" #include "xfs_mount.h" #include "xfs_defer.h" #include "xfs_trans.h" #include "xfs_trans_priv.h" #include "xfs_refcount_item.h" #include "xfs_log.h" #include "xfs_refcount.h" #include "xfs_error.h" kmem_zone_t *xfs_cui_zone; kmem_zone_t *xfs_cud_zone; static inline struct xfs_cui_log_item *CUI_ITEM(struct xfs_log_item *lip) { return container_of(lip, struct xfs_cui_log_item, cui_item); } void xfs_cui_item_free( struct xfs_cui_log_item *cuip) { if (cuip->cui_format.cui_nextents > XFS_CUI_MAX_FAST_EXTENTS) kmem_free(cuip); else kmem_cache_free(xfs_cui_zone, cuip); } /* * Freeing the CUI requires that we remove it from the AIL if it has already * been placed there. However, the CUI may not yet have been placed in the AIL * when called by xfs_cui_release() from CUD processing due to the ordering of * committed vs unpin operations in bulk insert operations. Hence the reference * count to ensure only the last caller frees the CUI. */ void xfs_cui_release( struct xfs_cui_log_item *cuip) { ASSERT(atomic_read(&cuip->cui_refcount) > 0); if (atomic_dec_and_test(&cuip->cui_refcount)) { xfs_trans_ail_remove(&cuip->cui_item, SHUTDOWN_LOG_IO_ERROR); xfs_cui_item_free(cuip); } } STATIC void xfs_cui_item_size( struct xfs_log_item *lip, int *nvecs, int *nbytes) { struct xfs_cui_log_item *cuip = CUI_ITEM(lip); *nvecs += 1; *nbytes += xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents); } /* * This is called to fill in the vector of log iovecs for the * given cui log item. We use only 1 iovec, and we point that * at the cui_log_format structure embedded in the cui item. * It is at this point that we assert that all of the extent * slots in the cui item have been filled. */ STATIC void xfs_cui_item_format( struct xfs_log_item *lip, struct xfs_log_vec *lv) { struct xfs_cui_log_item *cuip = CUI_ITEM(lip); struct xfs_log_iovec *vecp = NULL; ASSERT(atomic_read(&cuip->cui_next_extent) == cuip->cui_format.cui_nextents); cuip->cui_format.cui_type = XFS_LI_CUI; cuip->cui_format.cui_size = 1; xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUI_FORMAT, &cuip->cui_format, xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents)); } /* * The unpin operation is the last place an CUI is manipulated in the log. It is * either inserted in the AIL or aborted in the event of a log I/O error. In * either case, the CUI transaction has been successfully committed to make it * this far. Therefore, we expect whoever committed the CUI to either construct * and commit the CUD or drop the CUD's reference in the event of error. Simply * drop the log's CUI reference now that the log is done with it. */ STATIC void xfs_cui_item_unpin( struct xfs_log_item *lip, int remove) { struct xfs_cui_log_item *cuip = CUI_ITEM(lip); xfs_cui_release(cuip); } /* * The CUI has been either committed or aborted if the transaction has been * cancelled. If the transaction was cancelled, an CUD isn't going to be * constructed and thus we free the CUI here directly. */ STATIC void xfs_cui_item_release( struct xfs_log_item *lip) { xfs_cui_release(CUI_ITEM(lip)); } static const struct xfs_item_ops xfs_cui_item_ops = { .iop_size = xfs_cui_item_size, .iop_format = xfs_cui_item_format, .iop_unpin = xfs_cui_item_unpin, .iop_release = xfs_cui_item_release, }; /* * Allocate and initialize an cui item with the given number of extents. */ struct xfs_cui_log_item * xfs_cui_init( struct xfs_mount *mp, uint nextents) { struct xfs_cui_log_item *cuip; ASSERT(nextents > 0); if (nextents > XFS_CUI_MAX_FAST_EXTENTS) cuip = kmem_zalloc(xfs_cui_log_item_sizeof(nextents), 0); else cuip = kmem_zone_zalloc(xfs_cui_zone, 0); xfs_log_item_init(mp, &cuip->cui_item, XFS_LI_CUI, &xfs_cui_item_ops); cuip->cui_format.cui_nextents = nextents; cuip->cui_format.cui_id = (uintptr_t)(void *)cuip; atomic_set(&cuip->cui_next_extent, 0); atomic_set(&cuip->cui_refcount, 2); return cuip; } static inline struct xfs_cud_log_item *CUD_ITEM(struct xfs_log_item *lip) { return container_of(lip, struct xfs_cud_log_item, cud_item); } STATIC void xfs_cud_item_size( struct xfs_log_item *lip, int *nvecs, int *nbytes) { *nvecs += 1; *nbytes += sizeof(struct xfs_cud_log_format); } /* * This is called to fill in the vector of log iovecs for the * given cud log item. We use only 1 iovec, and we point that * at the cud_log_format structure embedded in the cud item. * It is at this point that we assert that all of the extent * slots in the cud item have been filled. */ STATIC void xfs_cud_item_format( struct xfs_log_item *lip, struct xfs_log_vec *lv) { struct xfs_cud_log_item *cudp = CUD_ITEM(lip); struct xfs_log_iovec *vecp = NULL; cudp->cud_format.cud_type = XFS_LI_CUD; cudp->cud_format.cud_size = 1; xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUD_FORMAT, &cudp->cud_format, sizeof(struct xfs_cud_log_format)); } /* * The CUD is either committed or aborted if the transaction is cancelled. If * the transaction is cancelled, drop our reference to the CUI and free the * CUD. */ STATIC void xfs_cud_item_release( struct xfs_log_item *lip) { struct xfs_cud_log_item *cudp = CUD_ITEM(lip); xfs_cui_release(cudp->cud_cuip); kmem_cache_free(xfs_cud_zone, cudp); } static const struct xfs_item_ops xfs_cud_item_ops = { .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED, .iop_size = xfs_cud_item_size, .iop_format = xfs_cud_item_format, .iop_release = xfs_cud_item_release, }; static struct xfs_cud_log_item * xfs_trans_get_cud( struct xfs_trans *tp, struct xfs_cui_log_item *cuip) { struct xfs_cud_log_item *cudp; cudp = kmem_zone_zalloc(xfs_cud_zone, 0); xfs_log_item_init(tp->t_mountp, &cudp->cud_item, XFS_LI_CUD, &xfs_cud_item_ops); cudp->cud_cuip = cuip; cudp->cud_format.cud_cui_id = cuip->cui_format.cui_id; xfs_trans_add_item(tp, &cudp->cud_item); return cudp; } /* * Finish an refcount update and log it to the CUD. Note that the * transaction is marked dirty regardless of whether the refcount * update succeeds or fails to support the CUI/CUD lifecycle rules. */ static int xfs_trans_log_finish_refcount_update( struct xfs_trans *tp, struct xfs_cud_log_item *cudp, enum xfs_refcount_intent_type type, xfs_fsblock_t startblock, xfs_extlen_t blockcount, xfs_fsblock_t *new_fsb, xfs_extlen_t *new_len, struct xfs_btree_cur **pcur) { int error; error = xfs_refcount_finish_one(tp, type, startblock, blockcount, new_fsb, new_len, pcur); /* * Mark the transaction dirty, even on error. This ensures the * transaction is aborted, which: * * 1.) releases the CUI and frees the CUD * 2.) shuts down the filesystem */ tp->t_flags |= XFS_TRANS_DIRTY; set_bit(XFS_LI_DIRTY, &cudp->cud_item.li_flags); return error; } /* Sort refcount intents by AG. */ static int xfs_refcount_update_diff_items( void *priv, struct list_head *a, struct list_head *b) { struct xfs_mount *mp = priv; struct xfs_refcount_intent *ra; struct xfs_refcount_intent *rb; ra = container_of(a, struct xfs_refcount_intent, ri_list); rb = container_of(b, struct xfs_refcount_intent, ri_list); return XFS_FSB_TO_AGNO(mp, ra->ri_startblock) - XFS_FSB_TO_AGNO(mp, rb->ri_startblock); } /* Set the phys extent flags for this reverse mapping. */ static void xfs_trans_set_refcount_flags( struct xfs_phys_extent *refc, enum xfs_refcount_intent_type type) { refc->pe_flags = 0; switch (type) { case XFS_REFCOUNT_INCREASE: case XFS_REFCOUNT_DECREASE: case XFS_REFCOUNT_ALLOC_COW: case XFS_REFCOUNT_FREE_COW: refc->pe_flags |= type; break; default: ASSERT(0); } } /* Log refcount updates in the intent item. */ STATIC void xfs_refcount_update_log_item( struct xfs_trans *tp, struct xfs_cui_log_item *cuip, struct xfs_refcount_intent *refc) { uint next_extent; struct xfs_phys_extent *ext; tp->t_flags |= XFS_TRANS_DIRTY; set_bit(XFS_LI_DIRTY, &cuip->cui_item.li_flags); /* * atomic_inc_return gives us the value after the increment; * we want to use it as an array index so we need to subtract 1 from * it. */ next_extent = atomic_inc_return(&cuip->cui_next_extent) - 1; ASSERT(next_extent < cuip->cui_format.cui_nextents); ext = &cuip->cui_format.cui_extents[next_extent]; ext->pe_startblock = refc->ri_startblock; ext->pe_len = refc->ri_blockcount; xfs_trans_set_refcount_flags(ext, refc->ri_type); } static struct xfs_log_item * xfs_refcount_update_create_intent( struct xfs_trans *tp, struct list_head *items, unsigned int count, bool sort) { struct xfs_mount *mp = tp->t_mountp; struct xfs_cui_log_item *cuip = xfs_cui_init(mp, count); struct xfs_refcount_intent *refc; ASSERT(count > 0); xfs_trans_add_item(tp, &cuip->cui_item); if (sort) list_sort(mp, items, xfs_refcount_update_diff_items); list_for_each_entry(refc, items, ri_list) xfs_refcount_update_log_item(tp, cuip, refc); return &cuip->cui_item; } /* Get an CUD so we can process all the deferred refcount updates. */ static struct xfs_log_item * xfs_refcount_update_create_done( struct xfs_trans *tp, struct xfs_log_item *intent, unsigned int count) { return &xfs_trans_get_cud(tp, CUI_ITEM(intent))->cud_item; } /* Process a deferred refcount update. */ STATIC int xfs_refcount_update_finish_item( struct xfs_trans *tp, struct xfs_log_item *done, struct list_head *item, void **state) { struct xfs_refcount_intent *refc; xfs_fsblock_t new_fsb; xfs_extlen_t new_aglen; int error; refc = container_of(item, struct xfs_refcount_intent, ri_list); error = xfs_trans_log_finish_refcount_update(tp, CUD_ITEM(done), refc->ri_type, refc->ri_startblock, refc->ri_blockcount, &new_fsb, &new_aglen, (struct xfs_btree_cur **)state); /* Did we run out of reservation? Requeue what we didn't finish. */ if (!error && new_aglen > 0) { ASSERT(refc->ri_type == XFS_REFCOUNT_INCREASE || refc->ri_type == XFS_REFCOUNT_DECREASE); refc->ri_startblock = new_fsb; refc->ri_blockcount = new_aglen; return -EAGAIN; } kmem_free(refc); return error; } /* Clean up after processing deferred refcounts. */ STATIC void xfs_refcount_update_finish_cleanup( struct xfs_trans *tp, void *state, int error) { struct xfs_btree_cur *rcur = state; xfs_refcount_finish_one_cleanup(tp, rcur, error); } /* Abort all pending CUIs. */ STATIC void xfs_refcount_update_abort_intent( struct xfs_log_item *intent) { xfs_cui_release(CUI_ITEM(intent)); } /* Cancel a deferred refcount update. */ STATIC void xfs_refcount_update_cancel_item( struct list_head *item) { struct xfs_refcount_intent *refc; refc = container_of(item, struct xfs_refcount_intent, ri_list); kmem_free(refc); } const struct xfs_defer_op_type xfs_refcount_update_defer_type = { .max_items = XFS_CUI_MAX_FAST_EXTENTS, .create_intent = xfs_refcount_update_create_intent, .abort_intent = xfs_refcount_update_abort_intent, .create_done = xfs_refcount_update_create_done, .finish_item = xfs_refcount_update_finish_item, .finish_cleanup = xfs_refcount_update_finish_cleanup, .cancel_item = xfs_refcount_update_cancel_item, }; /* * Process a refcount update intent item that was recovered from the log. * We need to update the refcountbt. */ int xfs_cui_recover( struct xfs_trans *parent_tp, struct xfs_cui_log_item *cuip) { int i; int error = 0; unsigned int refc_type; struct xfs_phys_extent *refc; xfs_fsblock_t startblock_fsb; bool op_ok; struct xfs_cud_log_item *cudp; struct xfs_trans *tp; struct xfs_btree_cur *rcur = NULL; enum xfs_refcount_intent_type type; xfs_fsblock_t new_fsb; xfs_extlen_t new_len; struct xfs_bmbt_irec irec; bool requeue_only = false; struct xfs_mount *mp = parent_tp->t_mountp; ASSERT(!test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags)); /* * First check the validity of the extents described by the * CUI. If any are bad, then assume that all are bad and * just toss the CUI. */ for (i = 0; i < cuip->cui_format.cui_nextents; i++) { refc = &cuip->cui_format.cui_extents[i]; startblock_fsb = XFS_BB_TO_FSB(mp, XFS_FSB_TO_DADDR(mp, refc->pe_startblock)); switch (refc->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK) { case XFS_REFCOUNT_INCREASE: case XFS_REFCOUNT_DECREASE: case XFS_REFCOUNT_ALLOC_COW: case XFS_REFCOUNT_FREE_COW: op_ok = true; break; default: op_ok = false; break; } if (!op_ok || startblock_fsb == 0 || refc->pe_len == 0 || startblock_fsb >= mp->m_sb.sb_dblocks || refc->pe_len >= mp->m_sb.sb_agblocks || (refc->pe_flags & ~XFS_REFCOUNT_EXTENT_FLAGS)) { /* * This will pull the CUI from the AIL and * free the memory associated with it. */ set_bit(XFS_CUI_RECOVERED, &cuip->cui_flags); xfs_cui_release(cuip); return -EFSCORRUPTED; } } /* * Under normal operation, refcount updates are deferred, so we * wouldn't be adding them directly to a transaction. All * refcount updates manage reservation usage internally and * dynamically by deferring work that won't fit in the * transaction. Normally, any work that needs to be deferred * gets attached to the same defer_ops that scheduled the * refcount update. However, we're in log recovery here, so we * we use the passed in defer_ops and to finish up any work that * doesn't fit. We need to reserve enough blocks to handle a * full btree split on either end of the refcount range. */ error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, mp->m_refc_maxlevels * 2, 0, XFS_TRANS_RESERVE, &tp); if (error) return error; /* * Recovery stashes all deferred ops during intent processing and * finishes them on completion. Transfer current dfops state to this * transaction and transfer the result back before we return. */ xfs_defer_move(tp, parent_tp); cudp = xfs_trans_get_cud(tp, cuip); for (i = 0; i < cuip->cui_format.cui_nextents; i++) { refc = &cuip->cui_format.cui_extents[i]; refc_type = refc->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK; switch (refc_type) { case XFS_REFCOUNT_INCREASE: case XFS_REFCOUNT_DECREASE: case XFS_REFCOUNT_ALLOC_COW: case XFS_REFCOUNT_FREE_COW: type = refc_type; break; default: XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp); error = -EFSCORRUPTED; goto abort_error; } if (requeue_only) { new_fsb = refc->pe_startblock; new_len = refc->pe_len; } else error = xfs_trans_log_finish_refcount_update(tp, cudp, type, refc->pe_startblock, refc->pe_len, &new_fsb, &new_len, &rcur); if (error) goto abort_error; /* Requeue what we didn't finish. */ if (new_len > 0) { irec.br_startblock = new_fsb; irec.br_blockcount = new_len; switch (type) { case XFS_REFCOUNT_INCREASE: xfs_refcount_increase_extent(tp, &irec); break; case XFS_REFCOUNT_DECREASE: xfs_refcount_decrease_extent(tp, &irec); break; case XFS_REFCOUNT_ALLOC_COW: xfs_refcount_alloc_cow_extent(tp, irec.br_startblock, irec.br_blockcount); break; case XFS_REFCOUNT_FREE_COW: xfs_refcount_free_cow_extent(tp, irec.br_startblock, irec.br_blockcount); break; default: ASSERT(0); } requeue_only = true; } } xfs_refcount_finish_one_cleanup(tp, rcur, error); set_bit(XFS_CUI_RECOVERED, &cuip->cui_flags); xfs_defer_move(parent_tp, tp); error = xfs_trans_commit(tp); return error; abort_error: xfs_refcount_finish_one_cleanup(tp, rcur, error); xfs_defer_move(parent_tp, tp); xfs_trans_cancel(tp); return error; }