/* * Copyright (c) 2006, Intel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 59 Temple * Place - Suite 330, Boston, MA 02111-1307 USA. * * Copyright (C) 2006-2008 Intel Corporation * Author: Ashok Raj <ashok.raj@intel.com> * Author: Shaohua Li <shaohua.li@intel.com> * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> * * This file implements early detection/parsing of Remapping Devices * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI * tables. * * These routines are used by both DMA-remapping and Interrupt-remapping */ #include <linux/pci.h> #include <linux/dmar.h> #include <linux/iova.h> #include <linux/intel-iommu.h> #include <linux/timer.h> #undef PREFIX #define PREFIX "DMAR:" /* No locks are needed as DMA remapping hardware unit * list is constructed at boot time and hotplug of * these units are not supported by the architecture. */ LIST_HEAD(dmar_drhd_units); static struct acpi_table_header * __initdata dmar_tbl; static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd) { /* * add INCLUDE_ALL at the tail, so scan the list will find it at * the very end. */ if (drhd->include_all) list_add_tail(&drhd->list, &dmar_drhd_units); else list_add(&drhd->list, &dmar_drhd_units); } static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope, struct pci_dev **dev, u16 segment) { struct pci_bus *bus; struct pci_dev *pdev = NULL; struct acpi_dmar_pci_path *path; int count; bus = pci_find_bus(segment, scope->bus); path = (struct acpi_dmar_pci_path *)(scope + 1); count = (scope->length - sizeof(struct acpi_dmar_device_scope)) / sizeof(struct acpi_dmar_pci_path); while (count) { if (pdev) pci_dev_put(pdev); /* * Some BIOSes list non-exist devices in DMAR table, just * ignore it */ if (!bus) { printk(KERN_WARNING PREFIX "Device scope bus [%d] not found\n", scope->bus); break; } pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn)); if (!pdev) { printk(KERN_WARNING PREFIX "Device scope device [%04x:%02x:%02x.%02x] not found\n", segment, bus->number, path->dev, path->fn); break; } path ++; count --; bus = pdev->subordinate; } if (!pdev) { printk(KERN_WARNING PREFIX "Device scope device [%04x:%02x:%02x.%02x] not found\n", segment, scope->bus, path->dev, path->fn); *dev = NULL; return 0; } if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \ pdev->subordinate) || (scope->entry_type == \ ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) { pci_dev_put(pdev); printk(KERN_WARNING PREFIX "Device scope type does not match for %s\n", pci_name(pdev)); return -EINVAL; } *dev = pdev; return 0; } static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt, struct pci_dev ***devices, u16 segment) { struct acpi_dmar_device_scope *scope; void * tmp = start; int index; int ret; *cnt = 0; while (start < end) { scope = start; if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT || scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) (*cnt)++; else printk(KERN_WARNING PREFIX "Unsupported device scope\n"); start += scope->length; } if (*cnt == 0) return 0; *devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL); if (!*devices) return -ENOMEM; start = tmp; index = 0; while (start < end) { scope = start; if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT || scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) { ret = dmar_parse_one_dev_scope(scope, &(*devices)[index], segment); if (ret) { kfree(*devices); return ret; } index ++; } start += scope->length; } return 0; } /** * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition * structure which uniquely represent one DMA remapping hardware unit * present in the platform */ static int __init dmar_parse_one_drhd(struct acpi_dmar_header *header) { struct acpi_dmar_hardware_unit *drhd; struct dmar_drhd_unit *dmaru; int ret = 0; dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL); if (!dmaru) return -ENOMEM; dmaru->hdr = header; drhd = (struct acpi_dmar_hardware_unit *)header; dmaru->reg_base_addr = drhd->address; dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */ ret = alloc_iommu(dmaru); if (ret) { kfree(dmaru); return ret; } dmar_register_drhd_unit(dmaru); return 0; } static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru) { struct acpi_dmar_hardware_unit *drhd; static int include_all; int ret; drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr; if (!dmaru->include_all) ret = dmar_parse_dev_scope((void *)(drhd + 1), ((void *)drhd) + drhd->header.length, &dmaru->devices_cnt, &dmaru->devices, drhd->segment); else { /* Only allow one INCLUDE_ALL */ if (include_all) { printk(KERN_WARNING PREFIX "Only one INCLUDE_ALL " "device scope is allowed\n"); ret = -EINVAL; } include_all = 1; } if (ret || (dmaru->devices_cnt == 0 && !dmaru->include_all)) { list_del(&dmaru->list); kfree(dmaru); } return ret; } #ifdef CONFIG_DMAR LIST_HEAD(dmar_rmrr_units); static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr) { list_add(&rmrr->list, &dmar_rmrr_units); } static int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header) { struct acpi_dmar_reserved_memory *rmrr; struct dmar_rmrr_unit *rmrru; rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL); if (!rmrru) return -ENOMEM; rmrru->hdr = header; rmrr = (struct acpi_dmar_reserved_memory *)header; rmrru->base_address = rmrr->base_address; rmrru->end_address = rmrr->end_address; dmar_register_rmrr_unit(rmrru); return 0; } static int __init rmrr_parse_dev(struct dmar_rmrr_unit *rmrru) { struct acpi_dmar_reserved_memory *rmrr; int ret; rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr; ret = dmar_parse_dev_scope((void *)(rmrr + 1), ((void *)rmrr) + rmrr->header.length, &rmrru->devices_cnt, &rmrru->devices, rmrr->segment); if (ret || (rmrru->devices_cnt == 0)) { list_del(&rmrru->list); kfree(rmrru); } return ret; } #endif static void __init dmar_table_print_dmar_entry(struct acpi_dmar_header *header) { struct acpi_dmar_hardware_unit *drhd; struct acpi_dmar_reserved_memory *rmrr; switch (header->type) { case ACPI_DMAR_TYPE_HARDWARE_UNIT: drhd = (struct acpi_dmar_hardware_unit *)header; printk (KERN_INFO PREFIX "DRHD (flags: 0x%08x)base: 0x%016Lx\n", drhd->flags, drhd->address); break; case ACPI_DMAR_TYPE_RESERVED_MEMORY: rmrr = (struct acpi_dmar_reserved_memory *)header; printk (KERN_INFO PREFIX "RMRR base: 0x%016Lx end: 0x%016Lx\n", rmrr->base_address, rmrr->end_address); break; } } /** * parse_dmar_table - parses the DMA reporting table */ static int __init parse_dmar_table(void) { struct acpi_table_dmar *dmar; struct acpi_dmar_header *entry_header; int ret = 0; dmar = (struct acpi_table_dmar *)dmar_tbl; if (!dmar) return -ENODEV; if (dmar->width < PAGE_SHIFT_4K - 1) { printk(KERN_WARNING PREFIX "Invalid DMAR haw\n"); return -EINVAL; } printk (KERN_INFO PREFIX "Host address width %d\n", dmar->width + 1); entry_header = (struct acpi_dmar_header *)(dmar + 1); while (((unsigned long)entry_header) < (((unsigned long)dmar) + dmar_tbl->length)) { dmar_table_print_dmar_entry(entry_header); switch (entry_header->type) { case ACPI_DMAR_TYPE_HARDWARE_UNIT: ret = dmar_parse_one_drhd(entry_header); break; case ACPI_DMAR_TYPE_RESERVED_MEMORY: #ifdef CONFIG_DMAR ret = dmar_parse_one_rmrr(entry_header); #endif break; default: printk(KERN_WARNING PREFIX "Unknown DMAR structure type\n"); ret = 0; /* for forward compatibility */ break; } if (ret) break; entry_header = ((void *)entry_header + entry_header->length); } return ret; } int dmar_pci_device_match(struct pci_dev *devices[], int cnt, struct pci_dev *dev) { int index; while (dev) { for (index = 0; index < cnt; index++) if (dev == devices[index]) return 1; /* Check our parent */ dev = dev->bus->self; } return 0; } struct dmar_drhd_unit * dmar_find_matched_drhd_unit(struct pci_dev *dev) { struct dmar_drhd_unit *drhd = NULL; list_for_each_entry(drhd, &dmar_drhd_units, list) { if (drhd->include_all || dmar_pci_device_match(drhd->devices, drhd->devices_cnt, dev)) return drhd; } return NULL; } int __init dmar_dev_scope_init(void) { struct dmar_drhd_unit *drhd; int ret = -ENODEV; for_each_drhd_unit(drhd) { ret = dmar_parse_dev(drhd); if (ret) return ret; } #ifdef CONFIG_DMAR { struct dmar_rmrr_unit *rmrr; for_each_rmrr_units(rmrr) { ret = rmrr_parse_dev(rmrr); if (ret) return ret; } } #endif return ret; } int __init dmar_table_init(void) { static int dmar_table_initialized; int ret; if (dmar_table_initialized) return 0; dmar_table_initialized = 1; ret = parse_dmar_table(); if (ret) { if (ret != -ENODEV) printk(KERN_INFO PREFIX "parse DMAR table failure.\n"); return ret; } if (list_empty(&dmar_drhd_units)) { printk(KERN_INFO PREFIX "No DMAR devices found\n"); return -ENODEV; } #ifdef CONFIG_DMAR if (list_empty(&dmar_rmrr_units)) printk(KERN_INFO PREFIX "No RMRR found\n"); #endif #ifdef CONFIG_INTR_REMAP parse_ioapics_under_ir(); #endif return 0; } /** * early_dmar_detect - checks to see if the platform supports DMAR devices */ int __init early_dmar_detect(void) { acpi_status status = AE_OK; /* if we could find DMAR table, then there are DMAR devices */ status = acpi_get_table(ACPI_SIG_DMAR, 0, (struct acpi_table_header **)&dmar_tbl); if (ACPI_SUCCESS(status) && !dmar_tbl) { printk (KERN_WARNING PREFIX "Unable to map DMAR\n"); status = AE_NOT_FOUND; } return (ACPI_SUCCESS(status) ? 1 : 0); } void __init detect_intel_iommu(void) { int ret; ret = early_dmar_detect(); #ifdef CONFIG_DMAR { struct acpi_table_dmar *dmar; /* * for now we will disable dma-remapping when interrupt * remapping is enabled. * When support for queued invalidation for IOTLB invalidation * is added, we will not need this any more. */ dmar = (struct acpi_table_dmar *) dmar_tbl; if (ret && cpu_has_x2apic && dmar->flags & 0x1) { printk(KERN_INFO "Queued invalidation will be enabled to support " "x2apic and Intr-remapping.\n"); printk(KERN_INFO "Disabling IOMMU detection, because of missing " "queued invalidation support for IOTLB " "invalidation\n"); printk(KERN_INFO "Use \"nox2apic\", if you want to use Intel " " IOMMU for DMA-remapping and don't care about " " x2apic support\n"); dmar_disabled = 1; return; } if (ret && !no_iommu && !iommu_detected && !swiotlb && !dmar_disabled) iommu_detected = 1; } #endif } int alloc_iommu(struct dmar_drhd_unit *drhd) { struct intel_iommu *iommu; int map_size; u32 ver; static int iommu_allocated = 0; iommu = kzalloc(sizeof(*iommu), GFP_KERNEL); if (!iommu) return -ENOMEM; iommu->seq_id = iommu_allocated++; iommu->reg = ioremap(drhd->reg_base_addr, PAGE_SIZE_4K); if (!iommu->reg) { printk(KERN_ERR "IOMMU: can't map the region\n"); goto error; } iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG); iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG); /* the registers might be more than one page */ map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap), cap_max_fault_reg_offset(iommu->cap)); map_size = PAGE_ALIGN_4K(map_size); if (map_size > PAGE_SIZE_4K) { iounmap(iommu->reg); iommu->reg = ioremap(drhd->reg_base_addr, map_size); if (!iommu->reg) { printk(KERN_ERR "IOMMU: can't map the region\n"); goto error; } } ver = readl(iommu->reg + DMAR_VER_REG); pr_debug("IOMMU %llx: ver %d:%d cap %llx ecap %llx\n", drhd->reg_base_addr, DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver), iommu->cap, iommu->ecap); spin_lock_init(&iommu->register_lock); drhd->iommu = iommu; return 0; error: kfree(iommu); return -1; } void free_iommu(struct intel_iommu *iommu) { if (!iommu) return; #ifdef CONFIG_DMAR free_dmar_iommu(iommu); #endif if (iommu->reg) iounmap(iommu->reg); kfree(iommu); } /* * Reclaim all the submitted descriptors which have completed its work. */ static inline void reclaim_free_desc(struct q_inval *qi) { while (qi->desc_status[qi->free_tail] == QI_DONE) { qi->desc_status[qi->free_tail] = QI_FREE; qi->free_tail = (qi->free_tail + 1) % QI_LENGTH; qi->free_cnt++; } } /* * Submit the queued invalidation descriptor to the remapping * hardware unit and wait for its completion. */ void qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu) { struct q_inval *qi = iommu->qi; struct qi_desc *hw, wait_desc; int wait_index, index; unsigned long flags; if (!qi) return; hw = qi->desc; spin_lock_irqsave(&qi->q_lock, flags); while (qi->free_cnt < 3) { spin_unlock_irqrestore(&qi->q_lock, flags); cpu_relax(); spin_lock_irqsave(&qi->q_lock, flags); } index = qi->free_head; wait_index = (index + 1) % QI_LENGTH; qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE; hw[index] = *desc; wait_desc.low = QI_IWD_STATUS_DATA(2) | QI_IWD_STATUS_WRITE | QI_IWD_TYPE; wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]); hw[wait_index] = wait_desc; __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc)); __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc)); qi->free_head = (qi->free_head + 2) % QI_LENGTH; qi->free_cnt -= 2; spin_lock(&iommu->register_lock); /* * update the HW tail register indicating the presence of * new descriptors. */ writel(qi->free_head << 4, iommu->reg + DMAR_IQT_REG); spin_unlock(&iommu->register_lock); while (qi->desc_status[wait_index] != QI_DONE) { /* * We will leave the interrupts disabled, to prevent interrupt * context to queue another cmd while a cmd is already submitted * and waiting for completion on this cpu. This is to avoid * a deadlock where the interrupt context can wait indefinitely * for free slots in the queue. */ spin_unlock(&qi->q_lock); cpu_relax(); spin_lock(&qi->q_lock); } qi->desc_status[index] = QI_DONE; reclaim_free_desc(qi); spin_unlock_irqrestore(&qi->q_lock, flags); } /* * Flush the global interrupt entry cache. */ void qi_global_iec(struct intel_iommu *iommu) { struct qi_desc desc; desc.low = QI_IEC_TYPE; desc.high = 0; qi_submit_sync(&desc, iommu); } /* * Enable Queued Invalidation interface. This is a must to support * interrupt-remapping. Also used by DMA-remapping, which replaces * register based IOTLB invalidation. */ int dmar_enable_qi(struct intel_iommu *iommu) { u32 cmd, sts; unsigned long flags; struct q_inval *qi; if (!ecap_qis(iommu->ecap)) return -ENOENT; /* * queued invalidation is already setup and enabled. */ if (iommu->qi) return 0; iommu->qi = kmalloc(sizeof(*qi), GFP_KERNEL); if (!iommu->qi) return -ENOMEM; qi = iommu->qi; qi->desc = (void *)(get_zeroed_page(GFP_KERNEL)); if (!qi->desc) { kfree(qi); iommu->qi = 0; return -ENOMEM; } qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_KERNEL); if (!qi->desc_status) { free_page((unsigned long) qi->desc); kfree(qi); iommu->qi = 0; return -ENOMEM; } qi->free_head = qi->free_tail = 0; qi->free_cnt = QI_LENGTH; spin_lock_init(&qi->q_lock); spin_lock_irqsave(&iommu->register_lock, flags); /* write zero to the tail reg */ writel(0, iommu->reg + DMAR_IQT_REG); dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc)); cmd = iommu->gcmd | DMA_GCMD_QIE; iommu->gcmd |= DMA_GCMD_QIE; writel(cmd, iommu->reg + DMAR_GCMD_REG); /* Make sure hardware complete it */ IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts); spin_unlock_irqrestore(&iommu->register_lock, flags); return 0; }