// SPDX-License-Identifier: GPL-2.0 /* * SuperH on-chip serial module support. (SCI with no FIFO / with FIFO) * * Copyright (C) 2002 - 2011 Paul Mundt * Copyright (C) 2015 Glider bvba * Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007). * * based off of the old drivers/char/sh-sci.c by: * * Copyright (C) 1999, 2000 Niibe Yutaka * Copyright (C) 2000 Sugioka Toshinobu * Modified to support multiple serial ports. Stuart Menefy (May 2000). * Modified to support SecureEdge. David McCullough (2002) * Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003). * Removed SH7300 support (Jul 2007). */ #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) #define SUPPORT_SYSRQ #endif #undef DEBUG #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_SUPERH #include #endif #include "serial_mctrl_gpio.h" #include "sh-sci.h" /* Offsets into the sci_port->irqs array */ enum { SCIx_ERI_IRQ, SCIx_RXI_IRQ, SCIx_TXI_IRQ, SCIx_BRI_IRQ, SCIx_DRI_IRQ, SCIx_TEI_IRQ, SCIx_NR_IRQS, SCIx_MUX_IRQ = SCIx_NR_IRQS, /* special case */ }; #define SCIx_IRQ_IS_MUXED(port) \ ((port)->irqs[SCIx_ERI_IRQ] == \ (port)->irqs[SCIx_RXI_IRQ]) || \ ((port)->irqs[SCIx_ERI_IRQ] && \ ((port)->irqs[SCIx_RXI_IRQ] < 0)) enum SCI_CLKS { SCI_FCK, /* Functional Clock */ SCI_SCK, /* Optional External Clock */ SCI_BRG_INT, /* Optional BRG Internal Clock Source */ SCI_SCIF_CLK, /* Optional BRG External Clock Source */ SCI_NUM_CLKS }; /* Bit x set means sampling rate x + 1 is supported */ #define SCI_SR(x) BIT((x) - 1) #define SCI_SR_RANGE(x, y) GENMASK((y) - 1, (x) - 1) #define SCI_SR_SCIFAB SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \ SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \ SCI_SR(19) | SCI_SR(27) #define min_sr(_port) ffs((_port)->sampling_rate_mask) #define max_sr(_port) fls((_port)->sampling_rate_mask) /* Iterate over all supported sampling rates, from high to low */ #define for_each_sr(_sr, _port) \ for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--) \ if ((_port)->sampling_rate_mask & SCI_SR((_sr))) struct plat_sci_reg { u8 offset, size; }; struct sci_port_params { const struct plat_sci_reg regs[SCIx_NR_REGS]; unsigned int fifosize; unsigned int overrun_reg; unsigned int overrun_mask; unsigned int sampling_rate_mask; unsigned int error_mask; unsigned int error_clear; }; struct sci_port { struct uart_port port; /* Platform configuration */ const struct sci_port_params *params; const struct plat_sci_port *cfg; unsigned int sampling_rate_mask; resource_size_t reg_size; struct mctrl_gpios *gpios; /* Clocks */ struct clk *clks[SCI_NUM_CLKS]; unsigned long clk_rates[SCI_NUM_CLKS]; int irqs[SCIx_NR_IRQS]; char *irqstr[SCIx_NR_IRQS]; struct dma_chan *chan_tx; struct dma_chan *chan_rx; #ifdef CONFIG_SERIAL_SH_SCI_DMA struct dma_chan *chan_tx_saved; struct dma_chan *chan_rx_saved; dma_cookie_t cookie_tx; dma_cookie_t cookie_rx[2]; dma_cookie_t active_rx; dma_addr_t tx_dma_addr; unsigned int tx_dma_len; struct scatterlist sg_rx[2]; void *rx_buf[2]; size_t buf_len_rx; struct work_struct work_tx; struct hrtimer rx_timer; unsigned int rx_timeout; /* microseconds */ #endif unsigned int rx_frame; int rx_trigger; struct timer_list rx_fifo_timer; int rx_fifo_timeout; u16 hscif_tot; bool has_rtscts; bool autorts; }; #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS static struct sci_port sci_ports[SCI_NPORTS]; static unsigned long sci_ports_in_use; static struct uart_driver sci_uart_driver; static inline struct sci_port * to_sci_port(struct uart_port *uart) { return container_of(uart, struct sci_port, port); } static const struct sci_port_params sci_port_params[SCIx_NR_REGTYPES] = { /* * Common SCI definitions, dependent on the port's regshift * value. */ [SCIx_SCI_REGTYPE] = { .regs = { [SCSMR] = { 0x00, 8 }, [SCBRR] = { 0x01, 8 }, [SCSCR] = { 0x02, 8 }, [SCxTDR] = { 0x03, 8 }, [SCxSR] = { 0x04, 8 }, [SCxRDR] = { 0x05, 8 }, }, .fifosize = 1, .overrun_reg = SCxSR, .overrun_mask = SCI_ORER, .sampling_rate_mask = SCI_SR(32), .error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER, .error_clear = SCI_ERROR_CLEAR & ~SCI_ORER, }, /* * Common definitions for legacy IrDA ports. */ [SCIx_IRDA_REGTYPE] = { .regs = { [SCSMR] = { 0x00, 8 }, [SCBRR] = { 0x02, 8 }, [SCSCR] = { 0x04, 8 }, [SCxTDR] = { 0x06, 8 }, [SCxSR] = { 0x08, 16 }, [SCxRDR] = { 0x0a, 8 }, [SCFCR] = { 0x0c, 8 }, [SCFDR] = { 0x0e, 16 }, }, .fifosize = 1, .overrun_reg = SCxSR, .overrun_mask = SCI_ORER, .sampling_rate_mask = SCI_SR(32), .error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER, .error_clear = SCI_ERROR_CLEAR & ~SCI_ORER, }, /* * Common SCIFA definitions. */ [SCIx_SCIFA_REGTYPE] = { .regs = { [SCSMR] = { 0x00, 16 }, [SCBRR] = { 0x04, 8 }, [SCSCR] = { 0x08, 16 }, [SCxTDR] = { 0x20, 8 }, [SCxSR] = { 0x14, 16 }, [SCxRDR] = { 0x24, 8 }, [SCFCR] = { 0x18, 16 }, [SCFDR] = { 0x1c, 16 }, [SCPCR] = { 0x30, 16 }, [SCPDR] = { 0x34, 16 }, }, .fifosize = 64, .overrun_reg = SCxSR, .overrun_mask = SCIFA_ORER, .sampling_rate_mask = SCI_SR_SCIFAB, .error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER, .error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER, }, /* * Common SCIFB definitions. */ [SCIx_SCIFB_REGTYPE] = { .regs = { [SCSMR] = { 0x00, 16 }, [SCBRR] = { 0x04, 8 }, [SCSCR] = { 0x08, 16 }, [SCxTDR] = { 0x40, 8 }, [SCxSR] = { 0x14, 16 }, [SCxRDR] = { 0x60, 8 }, [SCFCR] = { 0x18, 16 }, [SCTFDR] = { 0x38, 16 }, [SCRFDR] = { 0x3c, 16 }, [SCPCR] = { 0x30, 16 }, [SCPDR] = { 0x34, 16 }, }, .fifosize = 256, .overrun_reg = SCxSR, .overrun_mask = SCIFA_ORER, .sampling_rate_mask = SCI_SR_SCIFAB, .error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER, .error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER, }, /* * Common SH-2(A) SCIF definitions for ports with FIFO data * count registers. */ [SCIx_SH2_SCIF_FIFODATA_REGTYPE] = { .regs = { [SCSMR] = { 0x00, 16 }, [SCBRR] = { 0x04, 8 }, [SCSCR] = { 0x08, 16 }, [SCxTDR] = { 0x0c, 8 }, [SCxSR] = { 0x10, 16 }, [SCxRDR] = { 0x14, 8 }, [SCFCR] = { 0x18, 16 }, [SCFDR] = { 0x1c, 16 }, [SCSPTR] = { 0x20, 16 }, [SCLSR] = { 0x24, 16 }, }, .fifosize = 16, .overrun_reg = SCLSR, .overrun_mask = SCLSR_ORER, .sampling_rate_mask = SCI_SR(32), .error_mask = SCIF_DEFAULT_ERROR_MASK, .error_clear = SCIF_ERROR_CLEAR, }, /* * The "SCIFA" that is in RZ/T and RZ/A2. * It looks like a normal SCIF with FIFO data, but with a * compressed address space. Also, the break out of interrupts * are different: ERI/BRI, RXI, TXI, TEI, DRI. */ [SCIx_RZ_SCIFA_REGTYPE] = { .regs = { [SCSMR] = { 0x00, 16 }, [SCBRR] = { 0x02, 8 }, [SCSCR] = { 0x04, 16 }, [SCxTDR] = { 0x06, 8 }, [SCxSR] = { 0x08, 16 }, [SCxRDR] = { 0x0A, 8 }, [SCFCR] = { 0x0C, 16 }, [SCFDR] = { 0x0E, 16 }, [SCSPTR] = { 0x10, 16 }, [SCLSR] = { 0x12, 16 }, }, .fifosize = 16, .overrun_reg = SCLSR, .overrun_mask = SCLSR_ORER, .sampling_rate_mask = SCI_SR(32), .error_mask = SCIF_DEFAULT_ERROR_MASK, .error_clear = SCIF_ERROR_CLEAR, }, /* * Common SH-3 SCIF definitions. */ [SCIx_SH3_SCIF_REGTYPE] = { .regs = { [SCSMR] = { 0x00, 8 }, [SCBRR] = { 0x02, 8 }, [SCSCR] = { 0x04, 8 }, [SCxTDR] = { 0x06, 8 }, [SCxSR] = { 0x08, 16 }, [SCxRDR] = { 0x0a, 8 }, [SCFCR] = { 0x0c, 8 }, [SCFDR] = { 0x0e, 16 }, }, .fifosize = 16, .overrun_reg = SCLSR, .overrun_mask = SCLSR_ORER, .sampling_rate_mask = SCI_SR(32), .error_mask = SCIF_DEFAULT_ERROR_MASK, .error_clear = SCIF_ERROR_CLEAR, }, /* * Common SH-4(A) SCIF(B) definitions. */ [SCIx_SH4_SCIF_REGTYPE] = { .regs = { [SCSMR] = { 0x00, 16 }, [SCBRR] = { 0x04, 8 }, [SCSCR] = { 0x08, 16 }, [SCxTDR] = { 0x0c, 8 }, [SCxSR] = { 0x10, 16 }, [SCxRDR] = { 0x14, 8 }, [SCFCR] = { 0x18, 16 }, [SCFDR] = { 0x1c, 16 }, [SCSPTR] = { 0x20, 16 }, [SCLSR] = { 0x24, 16 }, }, .fifosize = 16, .overrun_reg = SCLSR, .overrun_mask = SCLSR_ORER, .sampling_rate_mask = SCI_SR(32), .error_mask = SCIF_DEFAULT_ERROR_MASK, .error_clear = SCIF_ERROR_CLEAR, }, /* * Common SCIF definitions for ports with a Baud Rate Generator for * External Clock (BRG). */ [SCIx_SH4_SCIF_BRG_REGTYPE] = { .regs = { [SCSMR] = { 0x00, 16 }, [SCBRR] = { 0x04, 8 }, [SCSCR] = { 0x08, 16 }, [SCxTDR] = { 0x0c, 8 }, [SCxSR] = { 0x10, 16 }, [SCxRDR] = { 0x14, 8 }, [SCFCR] = { 0x18, 16 }, [SCFDR] = { 0x1c, 16 }, [SCSPTR] = { 0x20, 16 }, [SCLSR] = { 0x24, 16 }, [SCDL] = { 0x30, 16 }, [SCCKS] = { 0x34, 16 }, }, .fifosize = 16, .overrun_reg = SCLSR, .overrun_mask = SCLSR_ORER, .sampling_rate_mask = SCI_SR(32), .error_mask = SCIF_DEFAULT_ERROR_MASK, .error_clear = SCIF_ERROR_CLEAR, }, /* * Common HSCIF definitions. */ [SCIx_HSCIF_REGTYPE] = { .regs = { [SCSMR] = { 0x00, 16 }, [SCBRR] = { 0x04, 8 }, [SCSCR] = { 0x08, 16 }, [SCxTDR] = { 0x0c, 8 }, [SCxSR] = { 0x10, 16 }, [SCxRDR] = { 0x14, 8 }, [SCFCR] = { 0x18, 16 }, [SCFDR] = { 0x1c, 16 }, [SCSPTR] = { 0x20, 16 }, [SCLSR] = { 0x24, 16 }, [HSSRR] = { 0x40, 16 }, [SCDL] = { 0x30, 16 }, [SCCKS] = { 0x34, 16 }, [HSRTRGR] = { 0x54, 16 }, [HSTTRGR] = { 0x58, 16 }, }, .fifosize = 128, .overrun_reg = SCLSR, .overrun_mask = SCLSR_ORER, .sampling_rate_mask = SCI_SR_RANGE(8, 32), .error_mask = SCIF_DEFAULT_ERROR_MASK, .error_clear = SCIF_ERROR_CLEAR, }, /* * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR * register. */ [SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = { .regs = { [SCSMR] = { 0x00, 16 }, [SCBRR] = { 0x04, 8 }, [SCSCR] = { 0x08, 16 }, [SCxTDR] = { 0x0c, 8 }, [SCxSR] = { 0x10, 16 }, [SCxRDR] = { 0x14, 8 }, [SCFCR] = { 0x18, 16 }, [SCFDR] = { 0x1c, 16 }, [SCLSR] = { 0x24, 16 }, }, .fifosize = 16, .overrun_reg = SCLSR, .overrun_mask = SCLSR_ORER, .sampling_rate_mask = SCI_SR(32), .error_mask = SCIF_DEFAULT_ERROR_MASK, .error_clear = SCIF_ERROR_CLEAR, }, /* * Common SH-4(A) SCIF(B) definitions for ports with FIFO data * count registers. */ [SCIx_SH4_SCIF_FIFODATA_REGTYPE] = { .regs = { [SCSMR] = { 0x00, 16 }, [SCBRR] = { 0x04, 8 }, [SCSCR] = { 0x08, 16 }, [SCxTDR] = { 0x0c, 8 }, [SCxSR] = { 0x10, 16 }, [SCxRDR] = { 0x14, 8 }, [SCFCR] = { 0x18, 16 }, [SCFDR] = { 0x1c, 16 }, [SCTFDR] = { 0x1c, 16 }, /* aliased to SCFDR */ [SCRFDR] = { 0x20, 16 }, [SCSPTR] = { 0x24, 16 }, [SCLSR] = { 0x28, 16 }, }, .fifosize = 16, .overrun_reg = SCLSR, .overrun_mask = SCLSR_ORER, .sampling_rate_mask = SCI_SR(32), .error_mask = SCIF_DEFAULT_ERROR_MASK, .error_clear = SCIF_ERROR_CLEAR, }, /* * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR * registers. */ [SCIx_SH7705_SCIF_REGTYPE] = { .regs = { [SCSMR] = { 0x00, 16 }, [SCBRR] = { 0x04, 8 }, [SCSCR] = { 0x08, 16 }, [SCxTDR] = { 0x20, 8 }, [SCxSR] = { 0x14, 16 }, [SCxRDR] = { 0x24, 8 }, [SCFCR] = { 0x18, 16 }, [SCFDR] = { 0x1c, 16 }, }, .fifosize = 64, .overrun_reg = SCxSR, .overrun_mask = SCIFA_ORER, .sampling_rate_mask = SCI_SR(16), .error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER, .error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER, }, }; #define sci_getreg(up, offset) (&to_sci_port(up)->params->regs[offset]) /* * The "offset" here is rather misleading, in that it refers to an enum * value relative to the port mapping rather than the fixed offset * itself, which needs to be manually retrieved from the platform's * register map for the given port. */ static unsigned int sci_serial_in(struct uart_port *p, int offset) { const struct plat_sci_reg *reg = sci_getreg(p, offset); if (reg->size == 8) return ioread8(p->membase + (reg->offset << p->regshift)); else if (reg->size == 16) return ioread16(p->membase + (reg->offset << p->regshift)); else WARN(1, "Invalid register access\n"); return 0; } static void sci_serial_out(struct uart_port *p, int offset, int value) { const struct plat_sci_reg *reg = sci_getreg(p, offset); if (reg->size == 8) iowrite8(value, p->membase + (reg->offset << p->regshift)); else if (reg->size == 16) iowrite16(value, p->membase + (reg->offset << p->regshift)); else WARN(1, "Invalid register access\n"); } static void sci_port_enable(struct sci_port *sci_port) { unsigned int i; if (!sci_port->port.dev) return; pm_runtime_get_sync(sci_port->port.dev); for (i = 0; i < SCI_NUM_CLKS; i++) { clk_prepare_enable(sci_port->clks[i]); sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]); } sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK]; } static void sci_port_disable(struct sci_port *sci_port) { unsigned int i; if (!sci_port->port.dev) return; for (i = SCI_NUM_CLKS; i-- > 0; ) clk_disable_unprepare(sci_port->clks[i]); pm_runtime_put_sync(sci_port->port.dev); } static inline unsigned long port_rx_irq_mask(struct uart_port *port) { /* * Not all ports (such as SCIFA) will support REIE. Rather than * special-casing the port type, we check the port initialization * IRQ enable mask to see whether the IRQ is desired at all. If * it's unset, it's logically inferred that there's no point in * testing for it. */ return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE); } static void sci_start_tx(struct uart_port *port) { struct sci_port *s = to_sci_port(port); unsigned short ctrl; #ifdef CONFIG_SERIAL_SH_SCI_DMA if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { u16 new, scr = serial_port_in(port, SCSCR); if (s->chan_tx) new = scr | SCSCR_TDRQE; else new = scr & ~SCSCR_TDRQE; if (new != scr) serial_port_out(port, SCSCR, new); } if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) && dma_submit_error(s->cookie_tx)) { s->cookie_tx = 0; schedule_work(&s->work_tx); } #endif if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) { /* Set TIE (Transmit Interrupt Enable) bit in SCSCR */ ctrl = serial_port_in(port, SCSCR); serial_port_out(port, SCSCR, ctrl | SCSCR_TIE); } } static void sci_stop_tx(struct uart_port *port) { unsigned short ctrl; /* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */ ctrl = serial_port_in(port, SCSCR); if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) ctrl &= ~SCSCR_TDRQE; ctrl &= ~SCSCR_TIE; serial_port_out(port, SCSCR, ctrl); } static void sci_start_rx(struct uart_port *port) { unsigned short ctrl; ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port); if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) ctrl &= ~SCSCR_RDRQE; serial_port_out(port, SCSCR, ctrl); } static void sci_stop_rx(struct uart_port *port) { unsigned short ctrl; ctrl = serial_port_in(port, SCSCR); if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) ctrl &= ~SCSCR_RDRQE; ctrl &= ~port_rx_irq_mask(port); serial_port_out(port, SCSCR, ctrl); } static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask) { if (port->type == PORT_SCI) { /* Just store the mask */ serial_port_out(port, SCxSR, mask); } else if (to_sci_port(port)->params->overrun_mask == SCIFA_ORER) { /* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */ /* Only clear the status bits we want to clear */ serial_port_out(port, SCxSR, serial_port_in(port, SCxSR) & mask); } else { /* Store the mask, clear parity/framing errors */ serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC)); } } #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \ defined(CONFIG_SERIAL_SH_SCI_EARLYCON) #ifdef CONFIG_CONSOLE_POLL static int sci_poll_get_char(struct uart_port *port) { unsigned short status; int c; do { status = serial_port_in(port, SCxSR); if (status & SCxSR_ERRORS(port)) { sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port)); continue; } break; } while (1); if (!(status & SCxSR_RDxF(port))) return NO_POLL_CHAR; c = serial_port_in(port, SCxRDR); /* Dummy read */ serial_port_in(port, SCxSR); sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port)); return c; } #endif static void sci_poll_put_char(struct uart_port *port, unsigned char c) { unsigned short status; do { status = serial_port_in(port, SCxSR); } while (!(status & SCxSR_TDxE(port))); serial_port_out(port, SCxTDR, c); sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port)); } #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */ static void sci_init_pins(struct uart_port *port, unsigned int cflag) { struct sci_port *s = to_sci_port(port); /* * Use port-specific handler if provided. */ if (s->cfg->ops && s->cfg->ops->init_pins) { s->cfg->ops->init_pins(port, cflag); return; } if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { u16 data = serial_port_in(port, SCPDR); u16 ctrl = serial_port_in(port, SCPCR); /* Enable RXD and TXD pin functions */ ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC); if (to_sci_port(port)->has_rtscts) { /* RTS# is output, active low, unless autorts */ if (!(port->mctrl & TIOCM_RTS)) { ctrl |= SCPCR_RTSC; data |= SCPDR_RTSD; } else if (!s->autorts) { ctrl |= SCPCR_RTSC; data &= ~SCPDR_RTSD; } else { /* Enable RTS# pin function */ ctrl &= ~SCPCR_RTSC; } /* Enable CTS# pin function */ ctrl &= ~SCPCR_CTSC; } serial_port_out(port, SCPDR, data); serial_port_out(port, SCPCR, ctrl); } else if (sci_getreg(port, SCSPTR)->size) { u16 status = serial_port_in(port, SCSPTR); /* RTS# is always output; and active low, unless autorts */ status |= SCSPTR_RTSIO; if (!(port->mctrl & TIOCM_RTS)) status |= SCSPTR_RTSDT; else if (!s->autorts) status &= ~SCSPTR_RTSDT; /* CTS# and SCK are inputs */ status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO); serial_port_out(port, SCSPTR, status); } } static int sci_txfill(struct uart_port *port) { struct sci_port *s = to_sci_port(port); unsigned int fifo_mask = (s->params->fifosize << 1) - 1; const struct plat_sci_reg *reg; reg = sci_getreg(port, SCTFDR); if (reg->size) return serial_port_in(port, SCTFDR) & fifo_mask; reg = sci_getreg(port, SCFDR); if (reg->size) return serial_port_in(port, SCFDR) >> 8; return !(serial_port_in(port, SCxSR) & SCI_TDRE); } static int sci_txroom(struct uart_port *port) { return port->fifosize - sci_txfill(port); } static int sci_rxfill(struct uart_port *port) { struct sci_port *s = to_sci_port(port); unsigned int fifo_mask = (s->params->fifosize << 1) - 1; const struct plat_sci_reg *reg; reg = sci_getreg(port, SCRFDR); if (reg->size) return serial_port_in(port, SCRFDR) & fifo_mask; reg = sci_getreg(port, SCFDR); if (reg->size) return serial_port_in(port, SCFDR) & fifo_mask; return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0; } /* ********************************************************************** * * the interrupt related routines * * ********************************************************************** */ static void sci_transmit_chars(struct uart_port *port) { struct circ_buf *xmit = &port->state->xmit; unsigned int stopped = uart_tx_stopped(port); unsigned short status; unsigned short ctrl; int count; status = serial_port_in(port, SCxSR); if (!(status & SCxSR_TDxE(port))) { ctrl = serial_port_in(port, SCSCR); if (uart_circ_empty(xmit)) ctrl &= ~SCSCR_TIE; else ctrl |= SCSCR_TIE; serial_port_out(port, SCSCR, ctrl); return; } count = sci_txroom(port); do { unsigned char c; if (port->x_char) { c = port->x_char; port->x_char = 0; } else if (!uart_circ_empty(xmit) && !stopped) { c = xmit->buf[xmit->tail]; xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); } else { break; } serial_port_out(port, SCxTDR, c); port->icount.tx++; } while (--count > 0); sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port)); if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) uart_write_wakeup(port); if (uart_circ_empty(xmit)) { sci_stop_tx(port); } else { ctrl = serial_port_in(port, SCSCR); if (port->type != PORT_SCI) { serial_port_in(port, SCxSR); /* Dummy read */ sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port)); } ctrl |= SCSCR_TIE; serial_port_out(port, SCSCR, ctrl); } } /* On SH3, SCIF may read end-of-break as a space->mark char */ #define STEPFN(c) ({int __c = (c); (((__c-1)|(__c)) == -1); }) static void sci_receive_chars(struct uart_port *port) { struct tty_port *tport = &port->state->port; int i, count, copied = 0; unsigned short status; unsigned char flag; status = serial_port_in(port, SCxSR); if (!(status & SCxSR_RDxF(port))) return; while (1) { /* Don't copy more bytes than there is room for in the buffer */ count = tty_buffer_request_room(tport, sci_rxfill(port)); /* If for any reason we can't copy more data, we're done! */ if (count == 0) break; if (port->type == PORT_SCI) { char c = serial_port_in(port, SCxRDR); if (uart_handle_sysrq_char(port, c)) count = 0; else tty_insert_flip_char(tport, c, TTY_NORMAL); } else { for (i = 0; i < count; i++) { char c = serial_port_in(port, SCxRDR); status = serial_port_in(port, SCxSR); if (uart_handle_sysrq_char(port, c)) { count--; i--; continue; } /* Store data and status */ if (status & SCxSR_FER(port)) { flag = TTY_FRAME; port->icount.frame++; dev_notice(port->dev, "frame error\n"); } else if (status & SCxSR_PER(port)) { flag = TTY_PARITY; port->icount.parity++; dev_notice(port->dev, "parity error\n"); } else flag = TTY_NORMAL; tty_insert_flip_char(tport, c, flag); } } serial_port_in(port, SCxSR); /* dummy read */ sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port)); copied += count; port->icount.rx += count; } if (copied) { /* Tell the rest of the system the news. New characters! */ tty_flip_buffer_push(tport); } else { /* TTY buffers full; read from RX reg to prevent lockup */ serial_port_in(port, SCxRDR); serial_port_in(port, SCxSR); /* dummy read */ sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port)); } } static int sci_handle_errors(struct uart_port *port) { int copied = 0; unsigned short status = serial_port_in(port, SCxSR); struct tty_port *tport = &port->state->port; struct sci_port *s = to_sci_port(port); /* Handle overruns */ if (status & s->params->overrun_mask) { port->icount.overrun++; /* overrun error */ if (tty_insert_flip_char(tport, 0, TTY_OVERRUN)) copied++; dev_notice(port->dev, "overrun error\n"); } if (status & SCxSR_FER(port)) { /* frame error */ port->icount.frame++; if (tty_insert_flip_char(tport, 0, TTY_FRAME)) copied++; dev_notice(port->dev, "frame error\n"); } if (status & SCxSR_PER(port)) { /* parity error */ port->icount.parity++; if (tty_insert_flip_char(tport, 0, TTY_PARITY)) copied++; dev_notice(port->dev, "parity error\n"); } if (copied) tty_flip_buffer_push(tport); return copied; } static int sci_handle_fifo_overrun(struct uart_port *port) { struct tty_port *tport = &port->state->port; struct sci_port *s = to_sci_port(port); const struct plat_sci_reg *reg; int copied = 0; u16 status; reg = sci_getreg(port, s->params->overrun_reg); if (!reg->size) return 0; status = serial_port_in(port, s->params->overrun_reg); if (status & s->params->overrun_mask) { status &= ~s->params->overrun_mask; serial_port_out(port, s->params->overrun_reg, status); port->icount.overrun++; tty_insert_flip_char(tport, 0, TTY_OVERRUN); tty_flip_buffer_push(tport); dev_dbg(port->dev, "overrun error\n"); copied++; } return copied; } static int sci_handle_breaks(struct uart_port *port) { int copied = 0; unsigned short status = serial_port_in(port, SCxSR); struct tty_port *tport = &port->state->port; if (uart_handle_break(port)) return 0; if (status & SCxSR_BRK(port)) { port->icount.brk++; /* Notify of BREAK */ if (tty_insert_flip_char(tport, 0, TTY_BREAK)) copied++; dev_dbg(port->dev, "BREAK detected\n"); } if (copied) tty_flip_buffer_push(tport); copied += sci_handle_fifo_overrun(port); return copied; } static int scif_set_rtrg(struct uart_port *port, int rx_trig) { unsigned int bits; if (rx_trig < 1) rx_trig = 1; if (rx_trig >= port->fifosize) rx_trig = port->fifosize; /* HSCIF can be set to an arbitrary level. */ if (sci_getreg(port, HSRTRGR)->size) { serial_port_out(port, HSRTRGR, rx_trig); return rx_trig; } switch (port->type) { case PORT_SCIF: if (rx_trig < 4) { bits = 0; rx_trig = 1; } else if (rx_trig < 8) { bits = SCFCR_RTRG0; rx_trig = 4; } else if (rx_trig < 14) { bits = SCFCR_RTRG1; rx_trig = 8; } else { bits = SCFCR_RTRG0 | SCFCR_RTRG1; rx_trig = 14; } break; case PORT_SCIFA: case PORT_SCIFB: if (rx_trig < 16) { bits = 0; rx_trig = 1; } else if (rx_trig < 32) { bits = SCFCR_RTRG0; rx_trig = 16; } else if (rx_trig < 48) { bits = SCFCR_RTRG1; rx_trig = 32; } else { bits = SCFCR_RTRG0 | SCFCR_RTRG1; rx_trig = 48; } break; default: WARN(1, "unknown FIFO configuration"); return 1; } serial_port_out(port, SCFCR, (serial_port_in(port, SCFCR) & ~(SCFCR_RTRG1 | SCFCR_RTRG0)) | bits); return rx_trig; } static int scif_rtrg_enabled(struct uart_port *port) { if (sci_getreg(port, HSRTRGR)->size) return serial_port_in(port, HSRTRGR) != 0; else return (serial_port_in(port, SCFCR) & (SCFCR_RTRG0 | SCFCR_RTRG1)) != 0; } static void rx_fifo_timer_fn(struct timer_list *t) { struct sci_port *s = from_timer(s, t, rx_fifo_timer); struct uart_port *port = &s->port; dev_dbg(port->dev, "Rx timed out\n"); scif_set_rtrg(port, 1); } static ssize_t rx_trigger_show(struct device *dev, struct device_attribute *attr, char *buf) { struct uart_port *port = dev_get_drvdata(dev); struct sci_port *sci = to_sci_port(port); return sprintf(buf, "%d\n", sci->rx_trigger); } static ssize_t rx_trigger_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct uart_port *port = dev_get_drvdata(dev); struct sci_port *sci = to_sci_port(port); int ret; long r; ret = kstrtol(buf, 0, &r); if (ret) return ret; sci->rx_trigger = scif_set_rtrg(port, r); if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) scif_set_rtrg(port, 1); return count; } static DEVICE_ATTR(rx_fifo_trigger, 0644, rx_trigger_show, rx_trigger_store); static ssize_t rx_fifo_timeout_show(struct device *dev, struct device_attribute *attr, char *buf) { struct uart_port *port = dev_get_drvdata(dev); struct sci_port *sci = to_sci_port(port); int v; if (port->type == PORT_HSCIF) v = sci->hscif_tot >> HSSCR_TOT_SHIFT; else v = sci->rx_fifo_timeout; return sprintf(buf, "%d\n", v); } static ssize_t rx_fifo_timeout_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct uart_port *port = dev_get_drvdata(dev); struct sci_port *sci = to_sci_port(port); int ret; long r; ret = kstrtol(buf, 0, &r); if (ret) return ret; if (port->type == PORT_HSCIF) { if (r < 0 || r > 3) return -EINVAL; sci->hscif_tot = r << HSSCR_TOT_SHIFT; } else { sci->rx_fifo_timeout = r; scif_set_rtrg(port, 1); if (r > 0) timer_setup(&sci->rx_fifo_timer, rx_fifo_timer_fn, 0); } return count; } static DEVICE_ATTR_RW(rx_fifo_timeout); #ifdef CONFIG_SERIAL_SH_SCI_DMA static void sci_dma_tx_complete(void *arg) { struct sci_port *s = arg; struct uart_port *port = &s->port; struct circ_buf *xmit = &port->state->xmit; unsigned long flags; dev_dbg(port->dev, "%s(%d)\n", __func__, port->line); spin_lock_irqsave(&port->lock, flags); xmit->tail += s->tx_dma_len; xmit->tail &= UART_XMIT_SIZE - 1; port->icount.tx += s->tx_dma_len; if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) uart_write_wakeup(port); if (!uart_circ_empty(xmit)) { s->cookie_tx = 0; schedule_work(&s->work_tx); } else { s->cookie_tx = -EINVAL; if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { u16 ctrl = serial_port_in(port, SCSCR); serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE); } } spin_unlock_irqrestore(&port->lock, flags); } /* Locking: called with port lock held */ static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count) { struct uart_port *port = &s->port; struct tty_port *tport = &port->state->port; int copied; copied = tty_insert_flip_string(tport, buf, count); if (copied < count) port->icount.buf_overrun++; port->icount.rx += copied; return copied; } static int sci_dma_rx_find_active(struct sci_port *s) { unsigned int i; for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++) if (s->active_rx == s->cookie_rx[i]) return i; return -1; } static void sci_rx_dma_release(struct sci_port *s) { struct dma_chan *chan = s->chan_rx_saved; s->chan_rx_saved = s->chan_rx = NULL; s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL; dmaengine_terminate_sync(chan); dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0], sg_dma_address(&s->sg_rx[0])); dma_release_channel(chan); } static void start_hrtimer_us(struct hrtimer *hrt, unsigned long usec) { long sec = usec / 1000000; long nsec = (usec % 1000000) * 1000; ktime_t t = ktime_set(sec, nsec); hrtimer_start(hrt, t, HRTIMER_MODE_REL); } static void sci_dma_rx_complete(void *arg) { struct sci_port *s = arg; struct dma_chan *chan = s->chan_rx; struct uart_port *port = &s->port; struct dma_async_tx_descriptor *desc; unsigned long flags; int active, count = 0; dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line, s->active_rx); spin_lock_irqsave(&port->lock, flags); active = sci_dma_rx_find_active(s); if (active >= 0) count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx); start_hrtimer_us(&s->rx_timer, s->rx_timeout); if (count) tty_flip_buffer_push(&port->state->port); desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc) goto fail; desc->callback = sci_dma_rx_complete; desc->callback_param = s; s->cookie_rx[active] = dmaengine_submit(desc); if (dma_submit_error(s->cookie_rx[active])) goto fail; s->active_rx = s->cookie_rx[!active]; dma_async_issue_pending(chan); spin_unlock_irqrestore(&port->lock, flags); dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n", __func__, s->cookie_rx[active], active, s->active_rx); return; fail: spin_unlock_irqrestore(&port->lock, flags); dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n"); /* Switch to PIO */ spin_lock_irqsave(&port->lock, flags); s->chan_rx = NULL; sci_start_rx(port); spin_unlock_irqrestore(&port->lock, flags); } static void sci_tx_dma_release(struct sci_port *s) { struct dma_chan *chan = s->chan_tx_saved; cancel_work_sync(&s->work_tx); s->chan_tx_saved = s->chan_tx = NULL; s->cookie_tx = -EINVAL; dmaengine_terminate_sync(chan); dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE, DMA_TO_DEVICE); dma_release_channel(chan); } static void sci_submit_rx(struct sci_port *s) { struct dma_chan *chan = s->chan_rx; struct uart_port *port = &s->port; unsigned long flags; int i; for (i = 0; i < 2; i++) { struct scatterlist *sg = &s->sg_rx[i]; struct dma_async_tx_descriptor *desc; desc = dmaengine_prep_slave_sg(chan, sg, 1, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc) goto fail; desc->callback = sci_dma_rx_complete; desc->callback_param = s; s->cookie_rx[i] = dmaengine_submit(desc); if (dma_submit_error(s->cookie_rx[i])) goto fail; } s->active_rx = s->cookie_rx[0]; dma_async_issue_pending(chan); return; fail: if (i) dmaengine_terminate_async(chan); for (i = 0; i < 2; i++) s->cookie_rx[i] = -EINVAL; s->active_rx = -EINVAL; /* Switch to PIO */ spin_lock_irqsave(&port->lock, flags); s->chan_rx = NULL; sci_start_rx(port); spin_unlock_irqrestore(&port->lock, flags); } static void work_fn_tx(struct work_struct *work) { struct sci_port *s = container_of(work, struct sci_port, work_tx); struct dma_async_tx_descriptor *desc; struct dma_chan *chan = s->chan_tx; struct uart_port *port = &s->port; struct circ_buf *xmit = &port->state->xmit; unsigned long flags; dma_addr_t buf; /* * DMA is idle now. * Port xmit buffer is already mapped, and it is one page... Just adjust * offsets and lengths. Since it is a circular buffer, we have to * transmit till the end, and then the rest. Take the port lock to get a * consistent xmit buffer state. */ spin_lock_irq(&port->lock); buf = s->tx_dma_addr + (xmit->tail & (UART_XMIT_SIZE - 1)); s->tx_dma_len = min_t(unsigned int, CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE), CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE)); spin_unlock_irq(&port->lock); desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc) { dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n"); goto switch_to_pio; } dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len, DMA_TO_DEVICE); spin_lock_irq(&port->lock); desc->callback = sci_dma_tx_complete; desc->callback_param = s; spin_unlock_irq(&port->lock); s->cookie_tx = dmaengine_submit(desc); if (dma_submit_error(s->cookie_tx)) { dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n"); goto switch_to_pio; } dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n", __func__, xmit->buf, xmit->tail, xmit->head, s->cookie_tx); dma_async_issue_pending(chan); return; switch_to_pio: spin_lock_irqsave(&port->lock, flags); s->chan_tx = NULL; sci_start_tx(port); spin_unlock_irqrestore(&port->lock, flags); return; } static enum hrtimer_restart rx_timer_fn(struct hrtimer *t) { struct sci_port *s = container_of(t, struct sci_port, rx_timer); struct dma_chan *chan = s->chan_rx; struct uart_port *port = &s->port; struct dma_tx_state state; enum dma_status status; unsigned long flags; unsigned int read; int active, count; u16 scr; dev_dbg(port->dev, "DMA Rx timed out\n"); spin_lock_irqsave(&port->lock, flags); active = sci_dma_rx_find_active(s); if (active < 0) { spin_unlock_irqrestore(&port->lock, flags); return HRTIMER_NORESTART; } status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state); if (status == DMA_COMPLETE) { spin_unlock_irqrestore(&port->lock, flags); dev_dbg(port->dev, "Cookie %d #%d has already completed\n", s->active_rx, active); /* Let packet complete handler take care of the packet */ return HRTIMER_NORESTART; } dmaengine_pause(chan); /* * sometimes DMA transfer doesn't stop even if it is stopped and * data keeps on coming until transaction is complete so check * for DMA_COMPLETE again * Let packet complete handler take care of the packet */ status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state); if (status == DMA_COMPLETE) { spin_unlock_irqrestore(&port->lock, flags); dev_dbg(port->dev, "Transaction complete after DMA engine was stopped"); return HRTIMER_NORESTART; } /* Handle incomplete DMA receive */ dmaengine_terminate_async(s->chan_rx); read = sg_dma_len(&s->sg_rx[active]) - state.residue; if (read) { count = sci_dma_rx_push(s, s->rx_buf[active], read); if (count) tty_flip_buffer_push(&port->state->port); } if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) sci_submit_rx(s); /* Direct new serial port interrupts back to CPU */ scr = serial_port_in(port, SCSCR); if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { scr &= ~SCSCR_RDRQE; enable_irq(s->irqs[SCIx_RXI_IRQ]); } serial_port_out(port, SCSCR, scr | SCSCR_RIE); spin_unlock_irqrestore(&port->lock, flags); return HRTIMER_NORESTART; } static struct dma_chan *sci_request_dma_chan(struct uart_port *port, enum dma_transfer_direction dir) { struct dma_chan *chan; struct dma_slave_config cfg; int ret; chan = dma_request_slave_channel(port->dev, dir == DMA_MEM_TO_DEV ? "tx" : "rx"); if (!chan) { dev_dbg(port->dev, "dma_request_slave_channel failed\n"); return NULL; } memset(&cfg, 0, sizeof(cfg)); cfg.direction = dir; if (dir == DMA_MEM_TO_DEV) { cfg.dst_addr = port->mapbase + (sci_getreg(port, SCxTDR)->offset << port->regshift); cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; } else { cfg.src_addr = port->mapbase + (sci_getreg(port, SCxRDR)->offset << port->regshift); cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; } ret = dmaengine_slave_config(chan, &cfg); if (ret) { dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret); dma_release_channel(chan); return NULL; } return chan; } static void sci_request_dma(struct uart_port *port) { struct sci_port *s = to_sci_port(port); struct dma_chan *chan; dev_dbg(port->dev, "%s: port %d\n", __func__, port->line); if (!port->dev->of_node) return; s->cookie_tx = -EINVAL; /* * Don't request a dma channel if no channel was specified * in the device tree. */ if (!of_find_property(port->dev->of_node, "dmas", NULL)) return; chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV); dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan); if (chan) { /* UART circular tx buffer is an aligned page. */ s->tx_dma_addr = dma_map_single(chan->device->dev, port->state->xmit.buf, UART_XMIT_SIZE, DMA_TO_DEVICE); if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) { dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n"); dma_release_channel(chan); } else { dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n", __func__, UART_XMIT_SIZE, port->state->xmit.buf, &s->tx_dma_addr); INIT_WORK(&s->work_tx, work_fn_tx); s->chan_tx_saved = s->chan_tx = chan; } } chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM); dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan); if (chan) { unsigned int i; dma_addr_t dma; void *buf; s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize); buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2, &dma, GFP_KERNEL); if (!buf) { dev_warn(port->dev, "Failed to allocate Rx dma buffer, using PIO\n"); dma_release_channel(chan); return; } for (i = 0; i < 2; i++) { struct scatterlist *sg = &s->sg_rx[i]; sg_init_table(sg, 1); s->rx_buf[i] = buf; sg_dma_address(sg) = dma; sg_dma_len(sg) = s->buf_len_rx; buf += s->buf_len_rx; dma += s->buf_len_rx; } hrtimer_init(&s->rx_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); s->rx_timer.function = rx_timer_fn; if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) sci_submit_rx(s); s->chan_rx_saved = s->chan_rx = chan; } } static void sci_free_dma(struct uart_port *port) { struct sci_port *s = to_sci_port(port); if (s->chan_tx_saved) sci_tx_dma_release(s); if (s->chan_rx_saved) sci_rx_dma_release(s); } static void sci_flush_buffer(struct uart_port *port) { /* * In uart_flush_buffer(), the xmit circular buffer has just been * cleared, so we have to reset tx_dma_len accordingly. */ to_sci_port(port)->tx_dma_len = 0; } #else /* !CONFIG_SERIAL_SH_SCI_DMA */ static inline void sci_request_dma(struct uart_port *port) { } static inline void sci_free_dma(struct uart_port *port) { } #define sci_flush_buffer NULL #endif /* !CONFIG_SERIAL_SH_SCI_DMA */ static irqreturn_t sci_rx_interrupt(int irq, void *ptr) { struct uart_port *port = ptr; struct sci_port *s = to_sci_port(port); #ifdef CONFIG_SERIAL_SH_SCI_DMA if (s->chan_rx) { u16 scr = serial_port_in(port, SCSCR); u16 ssr = serial_port_in(port, SCxSR); /* Disable future Rx interrupts */ if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { disable_irq_nosync(irq); scr |= SCSCR_RDRQE; } else { scr &= ~SCSCR_RIE; sci_submit_rx(s); } serial_port_out(port, SCSCR, scr); /* Clear current interrupt */ serial_port_out(port, SCxSR, ssr & ~(SCIF_DR | SCxSR_RDxF(port))); dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u us\n", jiffies, s->rx_timeout); start_hrtimer_us(&s->rx_timer, s->rx_timeout); return IRQ_HANDLED; } #endif if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) { if (!scif_rtrg_enabled(port)) scif_set_rtrg(port, s->rx_trigger); mod_timer(&s->rx_fifo_timer, jiffies + DIV_ROUND_UP( s->rx_frame * HZ * s->rx_fifo_timeout, 1000000)); } /* I think sci_receive_chars has to be called irrespective * of whether the I_IXOFF is set, otherwise, how is the interrupt * to be disabled? */ sci_receive_chars(port); return IRQ_HANDLED; } static irqreturn_t sci_tx_interrupt(int irq, void *ptr) { struct uart_port *port = ptr; unsigned long flags; spin_lock_irqsave(&port->lock, flags); sci_transmit_chars(port); spin_unlock_irqrestore(&port->lock, flags); return IRQ_HANDLED; } static irqreturn_t sci_br_interrupt(int irq, void *ptr) { struct uart_port *port = ptr; /* Handle BREAKs */ sci_handle_breaks(port); sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port)); return IRQ_HANDLED; } static irqreturn_t sci_er_interrupt(int irq, void *ptr) { struct uart_port *port = ptr; struct sci_port *s = to_sci_port(port); if (s->irqs[SCIx_ERI_IRQ] == s->irqs[SCIx_BRI_IRQ]) { /* Break and Error interrupts are muxed */ unsigned short ssr_status = serial_port_in(port, SCxSR); /* Break Interrupt */ if (ssr_status & SCxSR_BRK(port)) sci_br_interrupt(irq, ptr); /* Break only? */ if (!(ssr_status & SCxSR_ERRORS(port))) return IRQ_HANDLED; } /* Handle errors */ if (port->type == PORT_SCI) { if (sci_handle_errors(port)) { /* discard character in rx buffer */ serial_port_in(port, SCxSR); sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port)); } } else { sci_handle_fifo_overrun(port); if (!s->chan_rx) sci_receive_chars(port); } sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port)); /* Kick the transmission */ if (!s->chan_tx) sci_tx_interrupt(irq, ptr); return IRQ_HANDLED; } static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr) { unsigned short ssr_status, scr_status, err_enabled, orer_status = 0; struct uart_port *port = ptr; struct sci_port *s = to_sci_port(port); irqreturn_t ret = IRQ_NONE; ssr_status = serial_port_in(port, SCxSR); scr_status = serial_port_in(port, SCSCR); if (s->params->overrun_reg == SCxSR) orer_status = ssr_status; else if (sci_getreg(port, s->params->overrun_reg)->size) orer_status = serial_port_in(port, s->params->overrun_reg); err_enabled = scr_status & port_rx_irq_mask(port); /* Tx Interrupt */ if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) && !s->chan_tx) ret = sci_tx_interrupt(irq, ptr); /* * Rx Interrupt: if we're using DMA, the DMA controller clears RDF / * DR flags */ if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) && (scr_status & SCSCR_RIE)) ret = sci_rx_interrupt(irq, ptr); /* Error Interrupt */ if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled) ret = sci_er_interrupt(irq, ptr); /* Break Interrupt */ if ((ssr_status & SCxSR_BRK(port)) && err_enabled) ret = sci_br_interrupt(irq, ptr); /* Overrun Interrupt */ if (orer_status & s->params->overrun_mask) { sci_handle_fifo_overrun(port); ret = IRQ_HANDLED; } return ret; } static const struct sci_irq_desc { const char *desc; irq_handler_t handler; } sci_irq_desc[] = { /* * Split out handlers, the default case. */ [SCIx_ERI_IRQ] = { .desc = "rx err", .handler = sci_er_interrupt, }, [SCIx_RXI_IRQ] = { .desc = "rx full", .handler = sci_rx_interrupt, }, [SCIx_TXI_IRQ] = { .desc = "tx empty", .handler = sci_tx_interrupt, }, [SCIx_BRI_IRQ] = { .desc = "break", .handler = sci_br_interrupt, }, [SCIx_DRI_IRQ] = { .desc = "rx ready", .handler = sci_rx_interrupt, }, [SCIx_TEI_IRQ] = { .desc = "tx end", .handler = sci_tx_interrupt, }, /* * Special muxed handler. */ [SCIx_MUX_IRQ] = { .desc = "mux", .handler = sci_mpxed_interrupt, }, }; static int sci_request_irq(struct sci_port *port) { struct uart_port *up = &port->port; int i, j, w, ret = 0; for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) { const struct sci_irq_desc *desc; int irq; /* Check if already registered (muxed) */ for (w = 0; w < i; w++) if (port->irqs[w] == port->irqs[i]) w = i + 1; if (w > i) continue; if (SCIx_IRQ_IS_MUXED(port)) { i = SCIx_MUX_IRQ; irq = up->irq; } else { irq = port->irqs[i]; /* * Certain port types won't support all of the * available interrupt sources. */ if (unlikely(irq < 0)) continue; } desc = sci_irq_desc + i; port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s", dev_name(up->dev), desc->desc); if (!port->irqstr[j]) { ret = -ENOMEM; goto out_nomem; } ret = request_irq(irq, desc->handler, up->irqflags, port->irqstr[j], port); if (unlikely(ret)) { dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc); goto out_noirq; } } return 0; out_noirq: while (--i >= 0) free_irq(port->irqs[i], port); out_nomem: while (--j >= 0) kfree(port->irqstr[j]); return ret; } static void sci_free_irq(struct sci_port *port) { int i; /* * Intentionally in reverse order so we iterate over the muxed * IRQ first. */ for (i = 0; i < SCIx_NR_IRQS; i++) { int irq = port->irqs[i]; /* * Certain port types won't support all of the available * interrupt sources. */ if (unlikely(irq < 0)) continue; free_irq(port->irqs[i], port); kfree(port->irqstr[i]); if (SCIx_IRQ_IS_MUXED(port)) { /* If there's only one IRQ, we're done. */ return; } } } static unsigned int sci_tx_empty(struct uart_port *port) { unsigned short status = serial_port_in(port, SCxSR); unsigned short in_tx_fifo = sci_txfill(port); return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0; } static void sci_set_rts(struct uart_port *port, bool state) { if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { u16 data = serial_port_in(port, SCPDR); /* Active low */ if (state) data &= ~SCPDR_RTSD; else data |= SCPDR_RTSD; serial_port_out(port, SCPDR, data); /* RTS# is output */ serial_port_out(port, SCPCR, serial_port_in(port, SCPCR) | SCPCR_RTSC); } else if (sci_getreg(port, SCSPTR)->size) { u16 ctrl = serial_port_in(port, SCSPTR); /* Active low */ if (state) ctrl &= ~SCSPTR_RTSDT; else ctrl |= SCSPTR_RTSDT; serial_port_out(port, SCSPTR, ctrl); } } static bool sci_get_cts(struct uart_port *port) { if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { /* Active low */ return !(serial_port_in(port, SCPDR) & SCPDR_CTSD); } else if (sci_getreg(port, SCSPTR)->size) { /* Active low */ return !(serial_port_in(port, SCSPTR) & SCSPTR_CTSDT); } return true; } /* * Modem control is a bit of a mixed bag for SCI(F) ports. Generally * CTS/RTS is supported in hardware by at least one port and controlled * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently * handled via the ->init_pins() op, which is a bit of a one-way street, * lacking any ability to defer pin control -- this will later be * converted over to the GPIO framework). * * Other modes (such as loopback) are supported generically on certain * port types, but not others. For these it's sufficient to test for the * existence of the support register and simply ignore the port type. */ static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl) { struct sci_port *s = to_sci_port(port); if (mctrl & TIOCM_LOOP) { const struct plat_sci_reg *reg; /* * Standard loopback mode for SCFCR ports. */ reg = sci_getreg(port, SCFCR); if (reg->size) serial_port_out(port, SCFCR, serial_port_in(port, SCFCR) | SCFCR_LOOP); } mctrl_gpio_set(s->gpios, mctrl); if (!s->has_rtscts) return; if (!(mctrl & TIOCM_RTS)) { /* Disable Auto RTS */ serial_port_out(port, SCFCR, serial_port_in(port, SCFCR) & ~SCFCR_MCE); /* Clear RTS */ sci_set_rts(port, 0); } else if (s->autorts) { if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) { /* Enable RTS# pin function */ serial_port_out(port, SCPCR, serial_port_in(port, SCPCR) & ~SCPCR_RTSC); } /* Enable Auto RTS */ serial_port_out(port, SCFCR, serial_port_in(port, SCFCR) | SCFCR_MCE); } else { /* Set RTS */ sci_set_rts(port, 1); } } static unsigned int sci_get_mctrl(struct uart_port *port) { struct sci_port *s = to_sci_port(port); struct mctrl_gpios *gpios = s->gpios; unsigned int mctrl = 0; mctrl_gpio_get(gpios, &mctrl); /* * CTS/RTS is handled in hardware when supported, while nothing * else is wired up. */ if (s->autorts) { if (sci_get_cts(port)) mctrl |= TIOCM_CTS; } else if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS))) { mctrl |= TIOCM_CTS; } if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR))) mctrl |= TIOCM_DSR; if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD))) mctrl |= TIOCM_CAR; return mctrl; } static void sci_enable_ms(struct uart_port *port) { mctrl_gpio_enable_ms(to_sci_port(port)->gpios); } static void sci_break_ctl(struct uart_port *port, int break_state) { unsigned short scscr, scsptr; unsigned long flags; /* check wheter the port has SCSPTR */ if (!sci_getreg(port, SCSPTR)->size) { /* * Not supported by hardware. Most parts couple break and rx * interrupts together, with break detection always enabled. */ return; } spin_lock_irqsave(&port->lock, flags); scsptr = serial_port_in(port, SCSPTR); scscr = serial_port_in(port, SCSCR); if (break_state == -1) { scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT; scscr &= ~SCSCR_TE; } else { scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO; scscr |= SCSCR_TE; } serial_port_out(port, SCSPTR, scsptr); serial_port_out(port, SCSCR, scscr); spin_unlock_irqrestore(&port->lock, flags); } static int sci_startup(struct uart_port *port) { struct sci_port *s = to_sci_port(port); int ret; dev_dbg(port->dev, "%s(%d)\n", __func__, port->line); sci_request_dma(port); ret = sci_request_irq(s); if (unlikely(ret < 0)) { sci_free_dma(port); return ret; } return 0; } static void sci_shutdown(struct uart_port *port) { struct sci_port *s = to_sci_port(port); unsigned long flags; u16 scr; dev_dbg(port->dev, "%s(%d)\n", __func__, port->line); s->autorts = false; mctrl_gpio_disable_ms(to_sci_port(port)->gpios); spin_lock_irqsave(&port->lock, flags); sci_stop_rx(port); sci_stop_tx(port); /* * Stop RX and TX, disable related interrupts, keep clock source * and HSCIF TOT bits */ scr = serial_port_in(port, SCSCR); serial_port_out(port, SCSCR, scr & (SCSCR_CKE1 | SCSCR_CKE0 | s->hscif_tot)); spin_unlock_irqrestore(&port->lock, flags); #ifdef CONFIG_SERIAL_SH_SCI_DMA if (s->chan_rx_saved) { dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__, port->line); hrtimer_cancel(&s->rx_timer); } #endif if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) del_timer_sync(&s->rx_fifo_timer); sci_free_irq(s); sci_free_dma(port); } static int sci_sck_calc(struct sci_port *s, unsigned int bps, unsigned int *srr) { unsigned long freq = s->clk_rates[SCI_SCK]; int err, min_err = INT_MAX; unsigned int sr; if (s->port.type != PORT_HSCIF) freq *= 2; for_each_sr(sr, s) { err = DIV_ROUND_CLOSEST(freq, sr) - bps; if (abs(err) >= abs(min_err)) continue; min_err = err; *srr = sr - 1; if (!err) break; } dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err, *srr + 1); return min_err; } static int sci_brg_calc(struct sci_port *s, unsigned int bps, unsigned long freq, unsigned int *dlr, unsigned int *srr) { int err, min_err = INT_MAX; unsigned int sr, dl; if (s->port.type != PORT_HSCIF) freq *= 2; for_each_sr(sr, s) { dl = DIV_ROUND_CLOSEST(freq, sr * bps); dl = clamp(dl, 1U, 65535U); err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps; if (abs(err) >= abs(min_err)) continue; min_err = err; *dlr = dl; *srr = sr - 1; if (!err) break; } dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps, min_err, *dlr, *srr + 1); return min_err; } /* calculate sample rate, BRR, and clock select */ static int sci_scbrr_calc(struct sci_port *s, unsigned int bps, unsigned int *brr, unsigned int *srr, unsigned int *cks) { unsigned long freq = s->clk_rates[SCI_FCK]; unsigned int sr, br, prediv, scrate, c; int err, min_err = INT_MAX; if (s->port.type != PORT_HSCIF) freq *= 2; /* * Find the combination of sample rate and clock select with the * smallest deviation from the desired baud rate. * Prefer high sample rates to maximise the receive margin. * * M: Receive margin (%) * N: Ratio of bit rate to clock (N = sampling rate) * D: Clock duty (D = 0 to 1.0) * L: Frame length (L = 9 to 12) * F: Absolute value of clock frequency deviation * * M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) - * (|D - 0.5| / N * (1 + F))| * NOTE: Usually, treat D for 0.5, F is 0 by this calculation. */ for_each_sr(sr, s) { for (c = 0; c <= 3; c++) { /* integerized formulas from HSCIF documentation */ prediv = sr * (1 << (2 * c + 1)); /* * We need to calculate: * * br = freq / (prediv * bps) clamped to [1..256] * err = freq / (br * prediv) - bps * * Watch out for overflow when calculating the desired * sampling clock rate! */ if (bps > UINT_MAX / prediv) break; scrate = prediv * bps; br = DIV_ROUND_CLOSEST(freq, scrate); br = clamp(br, 1U, 256U); err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps; if (abs(err) >= abs(min_err)) continue; min_err = err; *brr = br - 1; *srr = sr - 1; *cks = c; if (!err) goto found; } } found: dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps, min_err, *brr, *srr + 1, *cks); return min_err; } static void sci_reset(struct uart_port *port) { const struct plat_sci_reg *reg; unsigned int status; struct sci_port *s = to_sci_port(port); serial_port_out(port, SCSCR, s->hscif_tot); /* TE=0, RE=0, CKE1=0 */ reg = sci_getreg(port, SCFCR); if (reg->size) serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST); sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) & SCxSR_BREAK_CLEAR(port)); if (sci_getreg(port, SCLSR)->size) { status = serial_port_in(port, SCLSR); status &= ~(SCLSR_TO | SCLSR_ORER); serial_port_out(port, SCLSR, status); } if (s->rx_trigger > 1) { if (s->rx_fifo_timeout) { scif_set_rtrg(port, 1); timer_setup(&s->rx_fifo_timer, rx_fifo_timer_fn, 0); } else { if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) scif_set_rtrg(port, 1); else scif_set_rtrg(port, s->rx_trigger); } } } static void sci_set_termios(struct uart_port *port, struct ktermios *termios, struct ktermios *old) { unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i, bits; unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0; unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0; struct sci_port *s = to_sci_port(port); const struct plat_sci_reg *reg; int min_err = INT_MAX, err; unsigned long max_freq = 0; int best_clk = -1; unsigned long flags; if ((termios->c_cflag & CSIZE) == CS7) smr_val |= SCSMR_CHR; if (termios->c_cflag & PARENB) smr_val |= SCSMR_PE; if (termios->c_cflag & PARODD) smr_val |= SCSMR_PE | SCSMR_ODD; if (termios->c_cflag & CSTOPB) smr_val |= SCSMR_STOP; /* * earlyprintk comes here early on with port->uartclk set to zero. * the clock framework is not up and running at this point so here * we assume that 115200 is the maximum baud rate. please note that * the baud rate is not programmed during earlyprintk - it is assumed * that the previous boot loader has enabled required clocks and * setup the baud rate generator hardware for us already. */ if (!port->uartclk) { baud = uart_get_baud_rate(port, termios, old, 0, 115200); goto done; } for (i = 0; i < SCI_NUM_CLKS; i++) max_freq = max(max_freq, s->clk_rates[i]); baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s)); if (!baud) goto done; /* * There can be multiple sources for the sampling clock. Find the one * that gives us the smallest deviation from the desired baud rate. */ /* Optional Undivided External Clock */ if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA && port->type != PORT_SCIFB) { err = sci_sck_calc(s, baud, &srr1); if (abs(err) < abs(min_err)) { best_clk = SCI_SCK; scr_val = SCSCR_CKE1; sccks = SCCKS_CKS; min_err = err; srr = srr1; if (!err) goto done; } } /* Optional BRG Frequency Divided External Clock */ if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) { err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1, &srr1); if (abs(err) < abs(min_err)) { best_clk = SCI_SCIF_CLK; scr_val = SCSCR_CKE1; sccks = 0; min_err = err; dl = dl1; srr = srr1; if (!err) goto done; } } /* Optional BRG Frequency Divided Internal Clock */ if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) { err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1, &srr1); if (abs(err) < abs(min_err)) { best_clk = SCI_BRG_INT; scr_val = SCSCR_CKE1; sccks = SCCKS_XIN; min_err = err; dl = dl1; srr = srr1; if (!min_err) goto done; } } /* Divided Functional Clock using standard Bit Rate Register */ err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1); if (abs(err) < abs(min_err)) { best_clk = SCI_FCK; scr_val = 0; min_err = err; brr = brr1; srr = srr1; cks = cks1; } done: if (best_clk >= 0) dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n", s->clks[best_clk], baud, min_err); sci_port_enable(s); /* * Program the optional External Baud Rate Generator (BRG) first. * It controls the mux to select (H)SCK or frequency divided clock. */ if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) { serial_port_out(port, SCDL, dl); serial_port_out(port, SCCKS, sccks); } spin_lock_irqsave(&port->lock, flags); sci_reset(port); uart_update_timeout(port, termios->c_cflag, baud); /* byte size and parity */ switch (termios->c_cflag & CSIZE) { case CS5: bits = 7; break; case CS6: bits = 8; break; case CS7: bits = 9; break; default: bits = 10; break; } if (termios->c_cflag & CSTOPB) bits++; if (termios->c_cflag & PARENB) bits++; if (best_clk >= 0) { if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) switch (srr + 1) { case 5: smr_val |= SCSMR_SRC_5; break; case 7: smr_val |= SCSMR_SRC_7; break; case 11: smr_val |= SCSMR_SRC_11; break; case 13: smr_val |= SCSMR_SRC_13; break; case 16: smr_val |= SCSMR_SRC_16; break; case 17: smr_val |= SCSMR_SRC_17; break; case 19: smr_val |= SCSMR_SRC_19; break; case 27: smr_val |= SCSMR_SRC_27; break; } smr_val |= cks; serial_port_out(port, SCSCR, scr_val | s->hscif_tot); serial_port_out(port, SCSMR, smr_val); serial_port_out(port, SCBRR, brr); if (sci_getreg(port, HSSRR)->size) { unsigned int hssrr = srr | HSCIF_SRE; /* Calculate deviation from intended rate at the * center of the last stop bit in sampling clocks. */ int last_stop = bits * 2 - 1; int deviation = min_err * srr * last_stop / 2 / baud; if (abs(deviation) >= 2) { /* At least two sampling clocks off at the * last stop bit; we can increase the error * margin by shifting the sampling point. */ int shift = min(-8, max(7, deviation / 2)); hssrr |= (shift << HSCIF_SRHP_SHIFT) & HSCIF_SRHP_MASK; hssrr |= HSCIF_SRDE; } serial_port_out(port, HSSRR, hssrr); } /* Wait one bit interval */ udelay((1000000 + (baud - 1)) / baud); } else { /* Don't touch the bit rate configuration */ scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0); smr_val |= serial_port_in(port, SCSMR) & (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS); serial_port_out(port, SCSCR, scr_val | s->hscif_tot); serial_port_out(port, SCSMR, smr_val); } sci_init_pins(port, termios->c_cflag); port->status &= ~UPSTAT_AUTOCTS; s->autorts = false; reg = sci_getreg(port, SCFCR); if (reg->size) { unsigned short ctrl = serial_port_in(port, SCFCR); if ((port->flags & UPF_HARD_FLOW) && (termios->c_cflag & CRTSCTS)) { /* There is no CTS interrupt to restart the hardware */ port->status |= UPSTAT_AUTOCTS; /* MCE is enabled when RTS is raised */ s->autorts = true; } /* * As we've done a sci_reset() above, ensure we don't * interfere with the FIFOs while toggling MCE. As the * reset values could still be set, simply mask them out. */ ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST); serial_port_out(port, SCFCR, ctrl); } if (port->flags & UPF_HARD_FLOW) { /* Refresh (Auto) RTS */ sci_set_mctrl(port, port->mctrl); } scr_val |= SCSCR_RE | SCSCR_TE | (s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)); serial_port_out(port, SCSCR, scr_val | s->hscif_tot); if ((srr + 1 == 5) && (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) { /* * In asynchronous mode, when the sampling rate is 1/5, first * received data may become invalid on some SCIFA and SCIFB. * To avoid this problem wait more than 1 serial data time (1 * bit time x serial data number) after setting SCSCR.RE = 1. */ udelay(DIV_ROUND_UP(10 * 1000000, baud)); } /* * Calculate delay for 2 DMA buffers (4 FIFO). * See serial_core.c::uart_update_timeout(). * With 10 bits (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above * function calculates 1 jiffie for the data plus 5 jiffies for the * "slop(e)." Then below we calculate 5 jiffies (20ms) for 2 DMA * buffers (4 FIFO sizes), but when performing a faster transfer, the * value obtained by this formula is too small. Therefore, if the value * is smaller than 20ms, use 20ms as the timeout value for DMA. */ s->rx_frame = (10000 * bits) / (baud / 100); #ifdef CONFIG_SERIAL_SH_SCI_DMA s->rx_timeout = s->buf_len_rx * 2 * s->rx_frame; if (s->rx_timeout < 20) s->rx_timeout = 20; #endif if ((termios->c_cflag & CREAD) != 0) sci_start_rx(port); spin_unlock_irqrestore(&port->lock, flags); sci_port_disable(s); if (UART_ENABLE_MS(port, termios->c_cflag)) sci_enable_ms(port); } static void sci_pm(struct uart_port *port, unsigned int state, unsigned int oldstate) { struct sci_port *sci_port = to_sci_port(port); switch (state) { case UART_PM_STATE_OFF: sci_port_disable(sci_port); break; default: sci_port_enable(sci_port); break; } } static const char *sci_type(struct uart_port *port) { switch (port->type) { case PORT_IRDA: return "irda"; case PORT_SCI: return "sci"; case PORT_SCIF: return "scif"; case PORT_SCIFA: return "scifa"; case PORT_SCIFB: return "scifb"; case PORT_HSCIF: return "hscif"; } return NULL; } static int sci_remap_port(struct uart_port *port) { struct sci_port *sport = to_sci_port(port); /* * Nothing to do if there's already an established membase. */ if (port->membase) return 0; if (port->dev->of_node || (port->flags & UPF_IOREMAP)) { port->membase = ioremap_nocache(port->mapbase, sport->reg_size); if (unlikely(!port->membase)) { dev_err(port->dev, "can't remap port#%d\n", port->line); return -ENXIO; } } else { /* * For the simple (and majority of) cases where we don't * need to do any remapping, just cast the cookie * directly. */ port->membase = (void __iomem *)(uintptr_t)port->mapbase; } return 0; } static void sci_release_port(struct uart_port *port) { struct sci_port *sport = to_sci_port(port); if (port->dev->of_node || (port->flags & UPF_IOREMAP)) { iounmap(port->membase); port->membase = NULL; } release_mem_region(port->mapbase, sport->reg_size); } static int sci_request_port(struct uart_port *port) { struct resource *res; struct sci_port *sport = to_sci_port(port); int ret; res = request_mem_region(port->mapbase, sport->reg_size, dev_name(port->dev)); if (unlikely(res == NULL)) { dev_err(port->dev, "request_mem_region failed."); return -EBUSY; } ret = sci_remap_port(port); if (unlikely(ret != 0)) { release_resource(res); return ret; } return 0; } static void sci_config_port(struct uart_port *port, int flags) { if (flags & UART_CONFIG_TYPE) { struct sci_port *sport = to_sci_port(port); port->type = sport->cfg->type; sci_request_port(port); } } static int sci_verify_port(struct uart_port *port, struct serial_struct *ser) { if (ser->baud_base < 2400) /* No paper tape reader for Mitch.. */ return -EINVAL; return 0; } static const struct uart_ops sci_uart_ops = { .tx_empty = sci_tx_empty, .set_mctrl = sci_set_mctrl, .get_mctrl = sci_get_mctrl, .start_tx = sci_start_tx, .stop_tx = sci_stop_tx, .stop_rx = sci_stop_rx, .enable_ms = sci_enable_ms, .break_ctl = sci_break_ctl, .startup = sci_startup, .shutdown = sci_shutdown, .flush_buffer = sci_flush_buffer, .set_termios = sci_set_termios, .pm = sci_pm, .type = sci_type, .release_port = sci_release_port, .request_port = sci_request_port, .config_port = sci_config_port, .verify_port = sci_verify_port, #ifdef CONFIG_CONSOLE_POLL .poll_get_char = sci_poll_get_char, .poll_put_char = sci_poll_put_char, #endif }; static int sci_init_clocks(struct sci_port *sci_port, struct device *dev) { const char *clk_names[] = { [SCI_FCK] = "fck", [SCI_SCK] = "sck", [SCI_BRG_INT] = "brg_int", [SCI_SCIF_CLK] = "scif_clk", }; struct clk *clk; unsigned int i; if (sci_port->cfg->type == PORT_HSCIF) clk_names[SCI_SCK] = "hsck"; for (i = 0; i < SCI_NUM_CLKS; i++) { clk = devm_clk_get(dev, clk_names[i]); if (PTR_ERR(clk) == -EPROBE_DEFER) return -EPROBE_DEFER; if (IS_ERR(clk) && i == SCI_FCK) { /* * "fck" used to be called "sci_ick", and we need to * maintain DT backward compatibility. */ clk = devm_clk_get(dev, "sci_ick"); if (PTR_ERR(clk) == -EPROBE_DEFER) return -EPROBE_DEFER; if (!IS_ERR(clk)) goto found; /* * Not all SH platforms declare a clock lookup entry * for SCI devices, in which case we need to get the * global "peripheral_clk" clock. */ clk = devm_clk_get(dev, "peripheral_clk"); if (!IS_ERR(clk)) goto found; dev_err(dev, "failed to get %s (%ld)\n", clk_names[i], PTR_ERR(clk)); return PTR_ERR(clk); } found: if (IS_ERR(clk)) dev_dbg(dev, "failed to get %s (%ld)\n", clk_names[i], PTR_ERR(clk)); else dev_dbg(dev, "clk %s is %pC rate %lu\n", clk_names[i], clk, clk_get_rate(clk)); sci_port->clks[i] = IS_ERR(clk) ? NULL : clk; } return 0; } static const struct sci_port_params * sci_probe_regmap(const struct plat_sci_port *cfg) { unsigned int regtype; if (cfg->regtype != SCIx_PROBE_REGTYPE) return &sci_port_params[cfg->regtype]; switch (cfg->type) { case PORT_SCI: regtype = SCIx_SCI_REGTYPE; break; case PORT_IRDA: regtype = SCIx_IRDA_REGTYPE; break; case PORT_SCIFA: regtype = SCIx_SCIFA_REGTYPE; break; case PORT_SCIFB: regtype = SCIx_SCIFB_REGTYPE; break; case PORT_SCIF: /* * The SH-4 is a bit of a misnomer here, although that's * where this particular port layout originated. This * configuration (or some slight variation thereof) * remains the dominant model for all SCIFs. */ regtype = SCIx_SH4_SCIF_REGTYPE; break; case PORT_HSCIF: regtype = SCIx_HSCIF_REGTYPE; break; default: pr_err("Can't probe register map for given port\n"); return NULL; } return &sci_port_params[regtype]; } static int sci_init_single(struct platform_device *dev, struct sci_port *sci_port, unsigned int index, const struct plat_sci_port *p, bool early) { struct uart_port *port = &sci_port->port; const struct resource *res; unsigned int i; int ret; sci_port->cfg = p; port->ops = &sci_uart_ops; port->iotype = UPIO_MEM; port->line = index; res = platform_get_resource(dev, IORESOURCE_MEM, 0); if (res == NULL) return -ENOMEM; port->mapbase = res->start; sci_port->reg_size = resource_size(res); for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i) sci_port->irqs[i] = platform_get_irq(dev, i); /* The SCI generates several interrupts. They can be muxed together or * connected to different interrupt lines. In the muxed case only one * interrupt resource is specified as there is only one interrupt ID. * In the non-muxed case, up to 6 interrupt signals might be generated * from the SCI, however those signals might have their own individual * interrupt ID numbers, or muxed together with another interrupt. */ if (sci_port->irqs[0] < 0) return -ENXIO; if (sci_port->irqs[1] < 0) for (i = 1; i < ARRAY_SIZE(sci_port->irqs); i++) sci_port->irqs[i] = sci_port->irqs[0]; sci_port->params = sci_probe_regmap(p); if (unlikely(sci_port->params == NULL)) return -EINVAL; switch (p->type) { case PORT_SCIFB: sci_port->rx_trigger = 48; break; case PORT_HSCIF: sci_port->rx_trigger = 64; break; case PORT_SCIFA: sci_port->rx_trigger = 32; break; case PORT_SCIF: if (p->regtype == SCIx_SH7705_SCIF_REGTYPE) /* RX triggering not implemented for this IP */ sci_port->rx_trigger = 1; else sci_port->rx_trigger = 8; break; default: sci_port->rx_trigger = 1; break; } sci_port->rx_fifo_timeout = 0; sci_port->hscif_tot = 0; /* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't * match the SoC datasheet, this should be investigated. Let platform * data override the sampling rate for now. */ sci_port->sampling_rate_mask = p->sampling_rate ? SCI_SR(p->sampling_rate) : sci_port->params->sampling_rate_mask; if (!early) { ret = sci_init_clocks(sci_port, &dev->dev); if (ret < 0) return ret; port->dev = &dev->dev; pm_runtime_enable(&dev->dev); } port->type = p->type; port->flags = UPF_FIXED_PORT | UPF_BOOT_AUTOCONF | p->flags; port->fifosize = sci_port->params->fifosize; if (port->type == PORT_SCI) { if (sci_port->reg_size >= 0x20) port->regshift = 2; else port->regshift = 1; } /* * The UART port needs an IRQ value, so we peg this to the RX IRQ * for the multi-IRQ ports, which is where we are primarily * concerned with the shutdown path synchronization. * * For the muxed case there's nothing more to do. */ port->irq = sci_port->irqs[SCIx_RXI_IRQ]; port->irqflags = 0; port->serial_in = sci_serial_in; port->serial_out = sci_serial_out; return 0; } static void sci_cleanup_single(struct sci_port *port) { pm_runtime_disable(port->port.dev); } #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \ defined(CONFIG_SERIAL_SH_SCI_EARLYCON) static void serial_console_putchar(struct uart_port *port, int ch) { sci_poll_put_char(port, ch); } /* * Print a string to the serial port trying not to disturb * any possible real use of the port... */ static void serial_console_write(struct console *co, const char *s, unsigned count) { struct sci_port *sci_port = &sci_ports[co->index]; struct uart_port *port = &sci_port->port; unsigned short bits, ctrl, ctrl_temp; unsigned long flags; int locked = 1; #if defined(SUPPORT_SYSRQ) if (port->sysrq) locked = 0; else #endif if (oops_in_progress) locked = spin_trylock_irqsave(&port->lock, flags); else spin_lock_irqsave(&port->lock, flags); /* first save SCSCR then disable interrupts, keep clock source */ ctrl = serial_port_in(port, SCSCR); ctrl_temp = SCSCR_RE | SCSCR_TE | (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) | (ctrl & (SCSCR_CKE1 | SCSCR_CKE0)); serial_port_out(port, SCSCR, ctrl_temp | sci_port->hscif_tot); uart_console_write(port, s, count, serial_console_putchar); /* wait until fifo is empty and last bit has been transmitted */ bits = SCxSR_TDxE(port) | SCxSR_TEND(port); while ((serial_port_in(port, SCxSR) & bits) != bits) cpu_relax(); /* restore the SCSCR */ serial_port_out(port, SCSCR, ctrl); if (locked) spin_unlock_irqrestore(&port->lock, flags); } static int serial_console_setup(struct console *co, char *options) { struct sci_port *sci_port; struct uart_port *port; int baud = 115200; int bits = 8; int parity = 'n'; int flow = 'n'; int ret; /* * Refuse to handle any bogus ports. */ if (co->index < 0 || co->index >= SCI_NPORTS) return -ENODEV; sci_port = &sci_ports[co->index]; port = &sci_port->port; /* * Refuse to handle uninitialized ports. */ if (!port->ops) return -ENODEV; ret = sci_remap_port(port); if (unlikely(ret != 0)) return ret; if (options) uart_parse_options(options, &baud, &parity, &bits, &flow); return uart_set_options(port, co, baud, parity, bits, flow); } static struct console serial_console = { .name = "ttySC", .device = uart_console_device, .write = serial_console_write, .setup = serial_console_setup, .flags = CON_PRINTBUFFER, .index = -1, .data = &sci_uart_driver, }; static struct console early_serial_console = { .name = "early_ttySC", .write = serial_console_write, .flags = CON_PRINTBUFFER, .index = -1, }; static char early_serial_buf[32]; static int sci_probe_earlyprintk(struct platform_device *pdev) { const struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev); if (early_serial_console.data) return -EEXIST; early_serial_console.index = pdev->id; sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true); serial_console_setup(&early_serial_console, early_serial_buf); if (!strstr(early_serial_buf, "keep")) early_serial_console.flags |= CON_BOOT; register_console(&early_serial_console); return 0; } #define SCI_CONSOLE (&serial_console) #else static inline int sci_probe_earlyprintk(struct platform_device *pdev) { return -EINVAL; } #define SCI_CONSOLE NULL #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */ static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized"; static DEFINE_MUTEX(sci_uart_registration_lock); static struct uart_driver sci_uart_driver = { .owner = THIS_MODULE, .driver_name = "sci", .dev_name = "ttySC", .major = SCI_MAJOR, .minor = SCI_MINOR_START, .nr = SCI_NPORTS, .cons = SCI_CONSOLE, }; static int sci_remove(struct platform_device *dev) { struct sci_port *port = platform_get_drvdata(dev); sci_ports_in_use &= ~BIT(port->port.line); uart_remove_one_port(&sci_uart_driver, &port->port); sci_cleanup_single(port); if (port->port.fifosize > 1) { sysfs_remove_file(&dev->dev.kobj, &dev_attr_rx_fifo_trigger.attr); } if (port->port.type == PORT_SCIFA || port->port.type == PORT_SCIFB || port->port.type == PORT_HSCIF) { sysfs_remove_file(&dev->dev.kobj, &dev_attr_rx_fifo_timeout.attr); } return 0; } #define SCI_OF_DATA(type, regtype) (void *)((type) << 16 | (regtype)) #define SCI_OF_TYPE(data) ((unsigned long)(data) >> 16) #define SCI_OF_REGTYPE(data) ((unsigned long)(data) & 0xffff) static const struct of_device_id of_sci_match[] = { /* SoC-specific types */ { .compatible = "renesas,scif-r7s72100", .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE), }, { .compatible = "renesas,scif-r7s9210", .data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE), }, /* Family-specific types */ { .compatible = "renesas,rcar-gen1-scif", .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE), }, { .compatible = "renesas,rcar-gen2-scif", .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE), }, { .compatible = "renesas,rcar-gen3-scif", .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE), }, /* Generic types */ { .compatible = "renesas,scif", .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE), }, { .compatible = "renesas,scifa", .data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE), }, { .compatible = "renesas,scifb", .data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE), }, { .compatible = "renesas,hscif", .data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE), }, { .compatible = "renesas,sci", .data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE), }, { /* Terminator */ }, }; MODULE_DEVICE_TABLE(of, of_sci_match); static struct plat_sci_port *sci_parse_dt(struct platform_device *pdev, unsigned int *dev_id) { struct device_node *np = pdev->dev.of_node; struct plat_sci_port *p; struct sci_port *sp; const void *data; int id; if (!IS_ENABLED(CONFIG_OF) || !np) return NULL; data = of_device_get_match_data(&pdev->dev); p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL); if (!p) return NULL; /* Get the line number from the aliases node. */ id = of_alias_get_id(np, "serial"); if (id < 0 && ~sci_ports_in_use) id = ffz(sci_ports_in_use); if (id < 0) { dev_err(&pdev->dev, "failed to get alias id (%d)\n", id); return NULL; } if (id >= ARRAY_SIZE(sci_ports)) { dev_err(&pdev->dev, "serial%d out of range\n", id); return NULL; } sp = &sci_ports[id]; *dev_id = id; p->type = SCI_OF_TYPE(data); p->regtype = SCI_OF_REGTYPE(data); sp->has_rtscts = of_property_read_bool(np, "uart-has-rtscts"); return p; } static int sci_probe_single(struct platform_device *dev, unsigned int index, struct plat_sci_port *p, struct sci_port *sciport) { int ret; /* Sanity check */ if (unlikely(index >= SCI_NPORTS)) { dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n", index+1, SCI_NPORTS); dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n"); return -EINVAL; } BUILD_BUG_ON(SCI_NPORTS > sizeof(sci_ports_in_use) * 8); if (sci_ports_in_use & BIT(index)) return -EBUSY; mutex_lock(&sci_uart_registration_lock); if (!sci_uart_driver.state) { ret = uart_register_driver(&sci_uart_driver); if (ret) { mutex_unlock(&sci_uart_registration_lock); return ret; } } mutex_unlock(&sci_uart_registration_lock); ret = sci_init_single(dev, sciport, index, p, false); if (ret) return ret; sciport->gpios = mctrl_gpio_init(&sciport->port, 0); if (IS_ERR(sciport->gpios) && PTR_ERR(sciport->gpios) != -ENOSYS) return PTR_ERR(sciport->gpios); if (sciport->has_rtscts) { if (!IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_CTS)) || !IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_RTS))) { dev_err(&dev->dev, "Conflicting RTS/CTS config\n"); return -EINVAL; } sciport->port.flags |= UPF_HARD_FLOW; } ret = uart_add_one_port(&sci_uart_driver, &sciport->port); if (ret) { sci_cleanup_single(sciport); return ret; } return 0; } static int sci_probe(struct platform_device *dev) { struct plat_sci_port *p; struct sci_port *sp; unsigned int dev_id; int ret; /* * If we've come here via earlyprintk initialization, head off to * the special early probe. We don't have sufficient device state * to make it beyond this yet. */ if (is_early_platform_device(dev)) return sci_probe_earlyprintk(dev); if (dev->dev.of_node) { p = sci_parse_dt(dev, &dev_id); if (p == NULL) return -EINVAL; } else { p = dev->dev.platform_data; if (p == NULL) { dev_err(&dev->dev, "no platform data supplied\n"); return -EINVAL; } dev_id = dev->id; } sp = &sci_ports[dev_id]; platform_set_drvdata(dev, sp); ret = sci_probe_single(dev, dev_id, p, sp); if (ret) return ret; if (sp->port.fifosize > 1) { ret = sysfs_create_file(&dev->dev.kobj, &dev_attr_rx_fifo_trigger.attr); if (ret) return ret; } if (sp->port.type == PORT_SCIFA || sp->port.type == PORT_SCIFB || sp->port.type == PORT_HSCIF) { ret = sysfs_create_file(&dev->dev.kobj, &dev_attr_rx_fifo_timeout.attr); if (ret) { if (sp->port.fifosize > 1) { sysfs_remove_file(&dev->dev.kobj, &dev_attr_rx_fifo_trigger.attr); } return ret; } } #ifdef CONFIG_SH_STANDARD_BIOS sh_bios_gdb_detach(); #endif sci_ports_in_use |= BIT(dev_id); return 0; } static __maybe_unused int sci_suspend(struct device *dev) { struct sci_port *sport = dev_get_drvdata(dev); if (sport) uart_suspend_port(&sci_uart_driver, &sport->port); return 0; } static __maybe_unused int sci_resume(struct device *dev) { struct sci_port *sport = dev_get_drvdata(dev); if (sport) uart_resume_port(&sci_uart_driver, &sport->port); return 0; } static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume); static struct platform_driver sci_driver = { .probe = sci_probe, .remove = sci_remove, .driver = { .name = "sh-sci", .pm = &sci_dev_pm_ops, .of_match_table = of_match_ptr(of_sci_match), }, }; static int __init sci_init(void) { pr_info("%s\n", banner); return platform_driver_register(&sci_driver); } static void __exit sci_exit(void) { platform_driver_unregister(&sci_driver); if (sci_uart_driver.state) uart_unregister_driver(&sci_uart_driver); } #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE early_platform_init_buffer("earlyprintk", &sci_driver, early_serial_buf, ARRAY_SIZE(early_serial_buf)); #endif #ifdef CONFIG_SERIAL_SH_SCI_EARLYCON static struct plat_sci_port port_cfg __initdata; static int __init early_console_setup(struct earlycon_device *device, int type) { if (!device->port.membase) return -ENODEV; device->port.serial_in = sci_serial_in; device->port.serial_out = sci_serial_out; device->port.type = type; memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port)); port_cfg.type = type; sci_ports[0].cfg = &port_cfg; sci_ports[0].params = sci_probe_regmap(&port_cfg); port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR); sci_serial_out(&sci_ports[0].port, SCSCR, SCSCR_RE | SCSCR_TE | port_cfg.scscr); device->con->write = serial_console_write; return 0; } static int __init sci_early_console_setup(struct earlycon_device *device, const char *opt) { return early_console_setup(device, PORT_SCI); } static int __init scif_early_console_setup(struct earlycon_device *device, const char *opt) { return early_console_setup(device, PORT_SCIF); } static int __init rzscifa_early_console_setup(struct earlycon_device *device, const char *opt) { port_cfg.regtype = SCIx_RZ_SCIFA_REGTYPE; return early_console_setup(device, PORT_SCIF); } static int __init scifa_early_console_setup(struct earlycon_device *device, const char *opt) { return early_console_setup(device, PORT_SCIFA); } static int __init scifb_early_console_setup(struct earlycon_device *device, const char *opt) { return early_console_setup(device, PORT_SCIFB); } static int __init hscif_early_console_setup(struct earlycon_device *device, const char *opt) { return early_console_setup(device, PORT_HSCIF); } OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup); OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup); OF_EARLYCON_DECLARE(scif, "renesas,scif-r7s9210", rzscifa_early_console_setup); OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup); OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup); OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup); #endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */ module_init(sci_init); module_exit(sci_exit); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:sh-sci"); MODULE_AUTHOR("Paul Mundt"); MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");