/* * Copyright 2014 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include "kfd_priv.h" #include "kfd_events.h" #include /* * A task can only be on a single wait_queue at a time, but we need to support * waiting on multiple events (any/all). * Instead of each event simply having a wait_queue with sleeping tasks, it * has a singly-linked list of tasks. * A thread that wants to sleep creates an array of these, one for each event * and adds one to each event's waiter chain. */ struct kfd_event_waiter { struct list_head waiters; struct task_struct *sleeping_task; /* Transitions to true when the event this belongs to is signaled. */ bool activated; /* Event */ struct kfd_event *event; }; /* * Over-complicated pooled allocator for event notification slots. * * Each signal event needs a 64-bit signal slot where the signaler will write * a 1 before sending an interrupt.l (This is needed because some interrupts * do not contain enough spare data bits to identify an event.) * We get whole pages from vmalloc and map them to the process VA. * Individual signal events are then allocated a slot in a page. */ struct signal_page { struct list_head event_pages; /* kfd_process.signal_event_pages */ uint64_t *kernel_address; uint64_t __user *user_address; uint32_t page_index; /* Index into the mmap aperture. */ unsigned int free_slots; unsigned long used_slot_bitmap[0]; }; #define SLOTS_PER_PAGE KFD_SIGNAL_EVENT_LIMIT #define SLOT_BITMAP_SIZE BITS_TO_LONGS(SLOTS_PER_PAGE) #define BITS_PER_PAGE (ilog2(SLOTS_PER_PAGE)+1) #define SIGNAL_PAGE_SIZE (sizeof(struct signal_page) + \ SLOT_BITMAP_SIZE * sizeof(long)) /* * For signal events, the event ID is used as the interrupt user data. * For SQ s_sendmsg interrupts, this is limited to 8 bits. */ #define INTERRUPT_DATA_BITS 8 #define SIGNAL_EVENT_ID_SLOT_SHIFT 0 static uint64_t *page_slots(struct signal_page *page) { return page->kernel_address; } static bool allocate_free_slot(struct kfd_process *process, struct signal_page **out_page, unsigned int *out_slot_index) { struct signal_page *page; list_for_each_entry(page, &process->signal_event_pages, event_pages) { if (page->free_slots > 0) { unsigned int slot = find_first_zero_bit(page->used_slot_bitmap, SLOTS_PER_PAGE); __set_bit(slot, page->used_slot_bitmap); page->free_slots--; page_slots(page)[slot] = UNSIGNALED_EVENT_SLOT; *out_page = page; *out_slot_index = slot; pr_debug("Allocated event signal slot in page %p, slot %d\n", page, slot); return true; } } pr_debug("No free event signal slots were found for process %p\n", process); return false; } #define list_tail_entry(head, type, member) \ list_entry((head)->prev, type, member) static bool allocate_signal_page(struct file *devkfd, struct kfd_process *p) { void *backing_store; struct signal_page *page; page = kzalloc(SIGNAL_PAGE_SIZE, GFP_KERNEL); if (!page) goto fail_alloc_signal_page; page->free_slots = SLOTS_PER_PAGE; backing_store = (void *) __get_free_pages(GFP_KERNEL | __GFP_ZERO, get_order(KFD_SIGNAL_EVENT_LIMIT * 8)); if (!backing_store) goto fail_alloc_signal_store; /* prevent user-mode info leaks */ memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT, KFD_SIGNAL_EVENT_LIMIT * 8); page->kernel_address = backing_store; if (list_empty(&p->signal_event_pages)) page->page_index = 0; else page->page_index = list_tail_entry(&p->signal_event_pages, struct signal_page, event_pages)->page_index + 1; pr_debug("Allocated new event signal page at %p, for process %p\n", page, p); pr_debug("Page index is %d\n", page->page_index); list_add(&page->event_pages, &p->signal_event_pages); return true; fail_alloc_signal_store: kfree(page); fail_alloc_signal_page: return false; } static bool allocate_event_notification_slot(struct file *devkfd, struct kfd_process *p, struct signal_page **page, unsigned int *signal_slot_index) { bool ret; ret = allocate_free_slot(p, page, signal_slot_index); if (!ret) { ret = allocate_signal_page(devkfd, p); if (ret) ret = allocate_free_slot(p, page, signal_slot_index); } return ret; } /* Assumes that the process's event_mutex is locked. */ static void release_event_notification_slot(struct signal_page *page, size_t slot_index) { __clear_bit(slot_index, page->used_slot_bitmap); page->free_slots++; /* We don't free signal pages, they are retained by the process * and reused until it exits. */ } static struct signal_page *lookup_signal_page_by_index(struct kfd_process *p, unsigned int page_index) { struct signal_page *page; /* * This is safe because we don't delete signal pages until the * process exits. */ list_for_each_entry(page, &p->signal_event_pages, event_pages) if (page->page_index == page_index) return page; return NULL; } /* * Assumes that p->event_mutex is held and of course that p is not going * away (current or locked). */ static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id) { struct kfd_event *ev; hash_for_each_possible(p->events, ev, events, id) if (ev->event_id == id) return ev; return NULL; } static u32 make_signal_event_id(struct signal_page *page, unsigned int signal_slot_index) { return page->page_index | (signal_slot_index << SIGNAL_EVENT_ID_SLOT_SHIFT); } /* * Produce a kfd event id for a nonsignal event. * These are arbitrary numbers, so we do a sequential search through * the hash table for an unused number. */ static u32 make_nonsignal_event_id(struct kfd_process *p) { u32 id; for (id = p->next_nonsignal_event_id; id < KFD_LAST_NONSIGNAL_EVENT_ID && lookup_event_by_id(p, id); id++) ; if (id < KFD_LAST_NONSIGNAL_EVENT_ID) { /* * What if id == LAST_NONSIGNAL_EVENT_ID - 1? * Then next_nonsignal_event_id = LAST_NONSIGNAL_EVENT_ID so * the first loop fails immediately and we proceed with the * wraparound loop below. */ p->next_nonsignal_event_id = id + 1; return id; } for (id = KFD_FIRST_NONSIGNAL_EVENT_ID; id < KFD_LAST_NONSIGNAL_EVENT_ID && lookup_event_by_id(p, id); id++) ; if (id < KFD_LAST_NONSIGNAL_EVENT_ID) { p->next_nonsignal_event_id = id + 1; return id; } p->next_nonsignal_event_id = KFD_FIRST_NONSIGNAL_EVENT_ID; return 0; } static struct kfd_event *lookup_event_by_page_slot(struct kfd_process *p, struct signal_page *page, unsigned int signal_slot) { return lookup_event_by_id(p, make_signal_event_id(page, signal_slot)); } static int create_signal_event(struct file *devkfd, struct kfd_process *p, struct kfd_event *ev) { if (p->signal_event_count == KFD_SIGNAL_EVENT_LIMIT) { if (!p->signal_event_limit_reached) { pr_warn("Signal event wasn't created because limit was reached\n"); p->signal_event_limit_reached = true; } return -ENOMEM; } if (!allocate_event_notification_slot(devkfd, p, &ev->signal_page, &ev->signal_slot_index)) { pr_warn("Signal event wasn't created because out of kernel memory\n"); return -ENOMEM; } p->signal_event_count++; ev->user_signal_address = &ev->signal_page->user_address[ev->signal_slot_index]; ev->event_id = make_signal_event_id(ev->signal_page, ev->signal_slot_index); pr_debug("Signal event number %zu created with id %d, address %p\n", p->signal_event_count, ev->event_id, ev->user_signal_address); return 0; } /* * No non-signal events are supported yet. * We create them as events that never signal. * Set event calls from user-mode are failed. */ static int create_other_event(struct kfd_process *p, struct kfd_event *ev) { ev->event_id = make_nonsignal_event_id(p); if (ev->event_id == 0) return -ENOMEM; return 0; } void kfd_event_init_process(struct kfd_process *p) { mutex_init(&p->event_mutex); hash_init(p->events); INIT_LIST_HEAD(&p->signal_event_pages); p->next_nonsignal_event_id = KFD_FIRST_NONSIGNAL_EVENT_ID; p->signal_event_count = 0; } static void destroy_event(struct kfd_process *p, struct kfd_event *ev) { /* Wake up pending waiters. They will return failure */ while (!list_empty(&ev->waiters)) { struct kfd_event_waiter *waiter = list_first_entry(&ev->waiters, struct kfd_event_waiter, waiters); waiter->event = NULL; /* _init because free_waiters will call list_del */ list_del_init(&waiter->waiters); wake_up_process(waiter->sleeping_task); } if (ev->signal_page) { release_event_notification_slot(ev->signal_page, ev->signal_slot_index); p->signal_event_count--; } hash_del(&ev->events); kfree(ev); } static void destroy_events(struct kfd_process *p) { struct kfd_event *ev; struct hlist_node *tmp; unsigned int hash_bkt; hash_for_each_safe(p->events, hash_bkt, tmp, ev, events) destroy_event(p, ev); } /* * We assume that the process is being destroyed and there is no need to * unmap the pages or keep bookkeeping data in order. */ static void shutdown_signal_pages(struct kfd_process *p) { struct signal_page *page, *tmp; list_for_each_entry_safe(page, tmp, &p->signal_event_pages, event_pages) { free_pages((unsigned long)page->kernel_address, get_order(KFD_SIGNAL_EVENT_LIMIT * 8)); kfree(page); } } void kfd_event_free_process(struct kfd_process *p) { destroy_events(p); shutdown_signal_pages(p); } static bool event_can_be_gpu_signaled(const struct kfd_event *ev) { return ev->type == KFD_EVENT_TYPE_SIGNAL || ev->type == KFD_EVENT_TYPE_DEBUG; } static bool event_can_be_cpu_signaled(const struct kfd_event *ev) { return ev->type == KFD_EVENT_TYPE_SIGNAL; } int kfd_event_create(struct file *devkfd, struct kfd_process *p, uint32_t event_type, bool auto_reset, uint32_t node_id, uint32_t *event_id, uint32_t *event_trigger_data, uint64_t *event_page_offset, uint32_t *event_slot_index) { int ret = 0; struct kfd_event *ev = kzalloc(sizeof(*ev), GFP_KERNEL); if (!ev) return -ENOMEM; ev->type = event_type; ev->auto_reset = auto_reset; ev->signaled = false; INIT_LIST_HEAD(&ev->waiters); *event_page_offset = 0; mutex_lock(&p->event_mutex); switch (event_type) { case KFD_EVENT_TYPE_SIGNAL: case KFD_EVENT_TYPE_DEBUG: ret = create_signal_event(devkfd, p, ev); if (!ret) { *event_page_offset = (ev->signal_page->page_index | KFD_MMAP_EVENTS_MASK); *event_page_offset <<= PAGE_SHIFT; *event_slot_index = ev->signal_slot_index; } break; default: ret = create_other_event(p, ev); break; } if (!ret) { hash_add(p->events, &ev->events, ev->event_id); *event_id = ev->event_id; *event_trigger_data = ev->event_id; } else { kfree(ev); } mutex_unlock(&p->event_mutex); return ret; } /* Assumes that p is current. */ int kfd_event_destroy(struct kfd_process *p, uint32_t event_id) { struct kfd_event *ev; int ret = 0; mutex_lock(&p->event_mutex); ev = lookup_event_by_id(p, event_id); if (ev) destroy_event(p, ev); else ret = -EINVAL; mutex_unlock(&p->event_mutex); return ret; } static void set_event(struct kfd_event *ev) { struct kfd_event_waiter *waiter; struct kfd_event_waiter *next; /* Auto reset if the list is non-empty and we're waking someone. */ ev->signaled = !ev->auto_reset || list_empty(&ev->waiters); list_for_each_entry_safe(waiter, next, &ev->waiters, waiters) { waiter->activated = true; /* _init because free_waiters will call list_del */ list_del_init(&waiter->waiters); wake_up_process(waiter->sleeping_task); } } /* Assumes that p is current. */ int kfd_set_event(struct kfd_process *p, uint32_t event_id) { int ret = 0; struct kfd_event *ev; mutex_lock(&p->event_mutex); ev = lookup_event_by_id(p, event_id); if (ev && event_can_be_cpu_signaled(ev)) set_event(ev); else ret = -EINVAL; mutex_unlock(&p->event_mutex); return ret; } static void reset_event(struct kfd_event *ev) { ev->signaled = false; } /* Assumes that p is current. */ int kfd_reset_event(struct kfd_process *p, uint32_t event_id) { int ret = 0; struct kfd_event *ev; mutex_lock(&p->event_mutex); ev = lookup_event_by_id(p, event_id); if (ev && event_can_be_cpu_signaled(ev)) reset_event(ev); else ret = -EINVAL; mutex_unlock(&p->event_mutex); return ret; } static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev) { page_slots(ev->signal_page)[ev->signal_slot_index] = UNSIGNALED_EVENT_SLOT; } static bool is_slot_signaled(struct signal_page *page, unsigned int index) { return page_slots(page)[index] != UNSIGNALED_EVENT_SLOT; } static void set_event_from_interrupt(struct kfd_process *p, struct kfd_event *ev) { if (ev && event_can_be_gpu_signaled(ev)) { acknowledge_signal(p, ev); set_event(ev); } } void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id, uint32_t valid_id_bits) { struct kfd_event *ev; /* * Because we are called from arbitrary context (workqueue) as opposed * to process context, kfd_process could attempt to exit while we are * running so the lookup function returns a locked process. */ struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); if (!p) return; /* Presumably process exited. */ mutex_lock(&p->event_mutex); if (valid_id_bits >= INTERRUPT_DATA_BITS) { /* Partial ID is a full ID. */ ev = lookup_event_by_id(p, partial_id); set_event_from_interrupt(p, ev); } else { /* * Partial ID is in fact partial. For now we completely * ignore it, but we could use any bits we did receive to * search faster. */ struct signal_page *page; unsigned int i; list_for_each_entry(page, &p->signal_event_pages, event_pages) for (i = 0; i < SLOTS_PER_PAGE; i++) if (is_slot_signaled(page, i)) { ev = lookup_event_by_page_slot(p, page, i); set_event_from_interrupt(p, ev); } } mutex_unlock(&p->event_mutex); mutex_unlock(&p->mutex); } static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events) { struct kfd_event_waiter *event_waiters; uint32_t i; event_waiters = kmalloc_array(num_events, sizeof(struct kfd_event_waiter), GFP_KERNEL); for (i = 0; (event_waiters) && (i < num_events) ; i++) { INIT_LIST_HEAD(&event_waiters[i].waiters); event_waiters[i].sleeping_task = current; event_waiters[i].activated = false; } return event_waiters; } static int init_event_waiter_get_status(struct kfd_process *p, struct kfd_event_waiter *waiter, uint32_t event_id) { struct kfd_event *ev = lookup_event_by_id(p, event_id); if (!ev) return -EINVAL; waiter->event = ev; waiter->activated = ev->signaled; ev->signaled = ev->signaled && !ev->auto_reset; return 0; } static void init_event_waiter_add_to_waitlist(struct kfd_event_waiter *waiter) { struct kfd_event *ev = waiter->event; /* Only add to the wait list if we actually need to * wait on this event. */ if (!waiter->activated) list_add(&waiter->waiters, &ev->waiters); } /* test_event_condition - Test condition of events being waited for * @all: Return completion only if all events have signaled * @num_events: Number of events to wait for * @event_waiters: Array of event waiters, one per event * * Returns KFD_IOC_WAIT_RESULT_COMPLETE if all (or one) event(s) have * signaled. Returns KFD_IOC_WAIT_RESULT_TIMEOUT if no (or not all) * events have signaled. Returns KFD_IOC_WAIT_RESULT_FAIL if any of * the events have been destroyed. */ static uint32_t test_event_condition(bool all, uint32_t num_events, struct kfd_event_waiter *event_waiters) { uint32_t i; uint32_t activated_count = 0; for (i = 0; i < num_events; i++) { if (!event_waiters[i].event) return KFD_IOC_WAIT_RESULT_FAIL; if (event_waiters[i].activated) { if (!all) return KFD_IOC_WAIT_RESULT_COMPLETE; activated_count++; } } return activated_count == num_events ? KFD_IOC_WAIT_RESULT_COMPLETE : KFD_IOC_WAIT_RESULT_TIMEOUT; } /* * Copy event specific data, if defined. * Currently only memory exception events have additional data to copy to user */ static int copy_signaled_event_data(uint32_t num_events, struct kfd_event_waiter *event_waiters, struct kfd_event_data __user *data) { struct kfd_hsa_memory_exception_data *src; struct kfd_hsa_memory_exception_data __user *dst; struct kfd_event_waiter *waiter; struct kfd_event *event; uint32_t i; for (i = 0; i < num_events; i++) { waiter = &event_waiters[i]; event = waiter->event; if (waiter->activated && event->type == KFD_EVENT_TYPE_MEMORY) { dst = &data[i].memory_exception_data; src = &event->memory_exception_data; if (copy_to_user(dst, src, sizeof(struct kfd_hsa_memory_exception_data))) return -EFAULT; } } return 0; } static long user_timeout_to_jiffies(uint32_t user_timeout_ms) { if (user_timeout_ms == KFD_EVENT_TIMEOUT_IMMEDIATE) return 0; if (user_timeout_ms == KFD_EVENT_TIMEOUT_INFINITE) return MAX_SCHEDULE_TIMEOUT; /* * msecs_to_jiffies interprets all values above 2^31-1 as infinite, * but we consider them finite. * This hack is wrong, but nobody is likely to notice. */ user_timeout_ms = min_t(uint32_t, user_timeout_ms, 0x7FFFFFFF); return msecs_to_jiffies(user_timeout_ms) + 1; } static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters) { uint32_t i; for (i = 0; i < num_events; i++) list_del(&waiters[i].waiters); kfree(waiters); } int kfd_wait_on_events(struct kfd_process *p, uint32_t num_events, void __user *data, bool all, uint32_t user_timeout_ms, uint32_t *wait_result) { struct kfd_event_data __user *events = (struct kfd_event_data __user *) data; uint32_t i; int ret = 0; struct kfd_event_waiter *event_waiters = NULL; long timeout = user_timeout_to_jiffies(user_timeout_ms); event_waiters = alloc_event_waiters(num_events); if (!event_waiters) { ret = -ENOMEM; goto out; } mutex_lock(&p->event_mutex); for (i = 0; i < num_events; i++) { struct kfd_event_data event_data; if (copy_from_user(&event_data, &events[i], sizeof(struct kfd_event_data))) { ret = -EFAULT; goto out_unlock; } ret = init_event_waiter_get_status(p, &event_waiters[i], event_data.event_id); if (ret) goto out_unlock; } /* Check condition once. */ *wait_result = test_event_condition(all, num_events, event_waiters); if (*wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) { ret = copy_signaled_event_data(num_events, event_waiters, events); goto out_unlock; } else if (WARN_ON(*wait_result == KFD_IOC_WAIT_RESULT_FAIL)) { /* This should not happen. Events shouldn't be * destroyed while we're holding the event_mutex */ goto out_unlock; } /* Add to wait lists if we need to wait. */ for (i = 0; i < num_events; i++) init_event_waiter_add_to_waitlist(&event_waiters[i]); mutex_unlock(&p->event_mutex); while (true) { if (fatal_signal_pending(current)) { ret = -EINTR; break; } if (signal_pending(current)) { /* * This is wrong when a nonzero, non-infinite timeout * is specified. We need to use * ERESTARTSYS_RESTARTBLOCK, but struct restart_block * contains a union with data for each user and it's * in generic kernel code that I don't want to * touch yet. */ ret = -ERESTARTSYS; break; } /* Set task state to interruptible sleep before * checking wake-up conditions. A concurrent wake-up * will put the task back into runnable state. In that * case schedule_timeout will not put the task to * sleep and we'll get a chance to re-check the * updated conditions almost immediately. Otherwise, * this race condition would lead to a soft hang or a * very long sleep. */ set_current_state(TASK_INTERRUPTIBLE); *wait_result = test_event_condition(all, num_events, event_waiters); if (*wait_result != KFD_IOC_WAIT_RESULT_TIMEOUT) break; if (timeout <= 0) break; timeout = schedule_timeout(timeout); } __set_current_state(TASK_RUNNING); /* copy_signaled_event_data may sleep. So this has to happen * after the task state is set back to RUNNING. */ if (!ret && *wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) ret = copy_signaled_event_data(num_events, event_waiters, events); mutex_lock(&p->event_mutex); out_unlock: free_waiters(num_events, event_waiters); mutex_unlock(&p->event_mutex); out: if (ret) *wait_result = KFD_IOC_WAIT_RESULT_FAIL; else if (*wait_result == KFD_IOC_WAIT_RESULT_FAIL) ret = -EIO; return ret; } int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma) { unsigned int page_index; unsigned long pfn; struct signal_page *page; /* check required size is logical */ if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) != get_order(vma->vm_end - vma->vm_start)) { pr_err("Event page mmap requested illegal size\n"); return -EINVAL; } page_index = vma->vm_pgoff; page = lookup_signal_page_by_index(p, page_index); if (!page) { /* Probably KFD bug, but mmap is user-accessible. */ pr_debug("Signal page could not be found for page_index %u\n", page_index); return -EINVAL; } pfn = __pa(page->kernel_address); pfn >>= PAGE_SHIFT; vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP; pr_debug("Mapping signal page\n"); pr_debug(" start user address == 0x%08lx\n", vma->vm_start); pr_debug(" end user address == 0x%08lx\n", vma->vm_end); pr_debug(" pfn == 0x%016lX\n", pfn); pr_debug(" vm_flags == 0x%08lX\n", vma->vm_flags); pr_debug(" size == 0x%08lX\n", vma->vm_end - vma->vm_start); page->user_address = (uint64_t __user *)vma->vm_start; /* mapping the page to user process */ return remap_pfn_range(vma, vma->vm_start, pfn, vma->vm_end - vma->vm_start, vma->vm_page_prot); } /* * Assumes that p->event_mutex is held and of course * that p is not going away (current or locked). */ static void lookup_events_by_type_and_signal(struct kfd_process *p, int type, void *event_data) { struct kfd_hsa_memory_exception_data *ev_data; struct kfd_event *ev; int bkt; bool send_signal = true; ev_data = (struct kfd_hsa_memory_exception_data *) event_data; hash_for_each(p->events, bkt, ev, events) if (ev->type == type) { send_signal = false; dev_dbg(kfd_device, "Event found: id %X type %d", ev->event_id, ev->type); set_event(ev); if (ev->type == KFD_EVENT_TYPE_MEMORY && ev_data) ev->memory_exception_data = *ev_data; } /* Send SIGTERM no event of type "type" has been found*/ if (send_signal) { if (send_sigterm) { dev_warn(kfd_device, "Sending SIGTERM to HSA Process with PID %d ", p->lead_thread->pid); send_sig(SIGTERM, p->lead_thread, 0); } else { dev_err(kfd_device, "HSA Process (PID %d) got unhandled exception", p->lead_thread->pid); } } } void kfd_signal_iommu_event(struct kfd_dev *dev, unsigned int pasid, unsigned long address, bool is_write_requested, bool is_execute_requested) { struct kfd_hsa_memory_exception_data memory_exception_data; struct vm_area_struct *vma; /* * Because we are called from arbitrary context (workqueue) as opposed * to process context, kfd_process could attempt to exit while we are * running so the lookup function returns a locked process. */ struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); struct mm_struct *mm; if (!p) return; /* Presumably process exited. */ /* Take a safe reference to the mm_struct, which may otherwise * disappear even while the kfd_process is still referenced. */ mm = get_task_mm(p->lead_thread); if (!mm) { mutex_unlock(&p->mutex); return; /* Process is exiting */ } memset(&memory_exception_data, 0, sizeof(memory_exception_data)); down_read(&mm->mmap_sem); vma = find_vma(mm, address); memory_exception_data.gpu_id = dev->id; memory_exception_data.va = address; /* Set failure reason */ memory_exception_data.failure.NotPresent = 1; memory_exception_data.failure.NoExecute = 0; memory_exception_data.failure.ReadOnly = 0; if (vma) { if (vma->vm_start > address) { memory_exception_data.failure.NotPresent = 1; memory_exception_data.failure.NoExecute = 0; memory_exception_data.failure.ReadOnly = 0; } else { memory_exception_data.failure.NotPresent = 0; if (is_write_requested && !(vma->vm_flags & VM_WRITE)) memory_exception_data.failure.ReadOnly = 1; else memory_exception_data.failure.ReadOnly = 0; if (is_execute_requested && !(vma->vm_flags & VM_EXEC)) memory_exception_data.failure.NoExecute = 1; else memory_exception_data.failure.NoExecute = 0; } } up_read(&mm->mmap_sem); mmput(mm); mutex_lock(&p->event_mutex); /* Lookup events by type and signal them */ lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_MEMORY, &memory_exception_data); mutex_unlock(&p->event_mutex); mutex_unlock(&p->mutex); } void kfd_signal_hw_exception_event(unsigned int pasid) { /* * Because we are called from arbitrary context (workqueue) as opposed * to process context, kfd_process could attempt to exit while we are * running so the lookup function returns a locked process. */ struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); if (!p) return; /* Presumably process exited. */ mutex_lock(&p->event_mutex); /* Lookup events by type and signal them */ lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL); mutex_unlock(&p->event_mutex); mutex_unlock(&p->mutex); }