/* * S390 version * Copyright IBM Corp. 1999, 2000 * Author(s): Hartmut Penner (hp@de.ibm.com) * Ulrich Weigand (weigand@de.ibm.com) * Martin Schwidefsky (schwidefsky@de.ibm.com) * * Derived from "include/asm-i386/pgtable.h" */ #ifndef _ASM_S390_PGTABLE_H #define _ASM_S390_PGTABLE_H /* * The Linux memory management assumes a three-level page table setup. * For s390 64 bit we use up to four of the five levels the hardware * provides (region first tables are not used). * * The "pgd_xxx()" functions are trivial for a folded two-level * setup: the pgd is never bad, and a pmd always exists (as it's folded * into the pgd entry) * * This file contains the functions and defines necessary to modify and use * the S390 page table tree. */ #ifndef __ASSEMBLY__ #include #include #include #include #include #include extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096))); extern void paging_init(void); extern void vmem_map_init(void); /* * The S390 doesn't have any external MMU info: the kernel page * tables contain all the necessary information. */ #define update_mmu_cache(vma, address, ptep) do { } while (0) #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0) /* * ZERO_PAGE is a global shared page that is always zero; used * for zero-mapped memory areas etc.. */ extern unsigned long empty_zero_page; extern unsigned long zero_page_mask; #define ZERO_PAGE(vaddr) \ (virt_to_page((void *)(empty_zero_page + \ (((unsigned long)(vaddr)) &zero_page_mask)))) #define __HAVE_COLOR_ZERO_PAGE /* TODO: s390 cannot support io_remap_pfn_range... */ #endif /* !__ASSEMBLY__ */ /* * PMD_SHIFT determines the size of the area a second-level page * table can map * PGDIR_SHIFT determines what a third-level page table entry can map */ #define PMD_SHIFT 20 #define PUD_SHIFT 31 #define PGDIR_SHIFT 42 #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) #define PUD_SIZE (1UL << PUD_SHIFT) #define PUD_MASK (~(PUD_SIZE-1)) #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) /* * entries per page directory level: the S390 is two-level, so * we don't really have any PMD directory physically. * for S390 segment-table entries are combined to one PGD * that leads to 1024 pte per pgd */ #define PTRS_PER_PTE 256 #define PTRS_PER_PMD 2048 #define PTRS_PER_PUD 2048 #define PTRS_PER_PGD 2048 #define FIRST_USER_ADDRESS 0UL #define pte_ERROR(e) \ printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e)) #define pmd_ERROR(e) \ printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e)) #define pud_ERROR(e) \ printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e)) #define pgd_ERROR(e) \ printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e)) #ifndef __ASSEMBLY__ /* * The vmalloc and module area will always be on the topmost area of the * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules. * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where * modules will reside. That makes sure that inter module branches always * happen without trampolines and in addition the placement within a 2GB frame * is branch prediction unit friendly. */ extern unsigned long VMALLOC_START; extern unsigned long VMALLOC_END; extern struct page *vmemmap; #define VMEM_MAX_PHYS ((unsigned long) vmemmap) extern unsigned long MODULES_VADDR; extern unsigned long MODULES_END; #define MODULES_VADDR MODULES_VADDR #define MODULES_END MODULES_END #define MODULES_LEN (1UL << 31) static inline int is_module_addr(void *addr) { BUILD_BUG_ON(MODULES_LEN > (1UL << 31)); if (addr < (void *)MODULES_VADDR) return 0; if (addr > (void *)MODULES_END) return 0; return 1; } /* * A 64 bit pagetable entry of S390 has following format: * | PFRA |0IPC| OS | * 0000000000111111111122222222223333333333444444444455555555556666 * 0123456789012345678901234567890123456789012345678901234567890123 * * I Page-Invalid Bit: Page is not available for address-translation * P Page-Protection Bit: Store access not possible for page * C Change-bit override: HW is not required to set change bit * * A 64 bit segmenttable entry of S390 has following format: * | P-table origin | TT * 0000000000111111111122222222223333333333444444444455555555556666 * 0123456789012345678901234567890123456789012345678901234567890123 * * I Segment-Invalid Bit: Segment is not available for address-translation * C Common-Segment Bit: Segment is not private (PoP 3-30) * P Page-Protection Bit: Store access not possible for page * TT Type 00 * * A 64 bit region table entry of S390 has following format: * | S-table origin | TF TTTL * 0000000000111111111122222222223333333333444444444455555555556666 * 0123456789012345678901234567890123456789012345678901234567890123 * * I Segment-Invalid Bit: Segment is not available for address-translation * TT Type 01 * TF * TL Table length * * The 64 bit regiontable origin of S390 has following format: * | region table origon | DTTL * 0000000000111111111122222222223333333333444444444455555555556666 * 0123456789012345678901234567890123456789012345678901234567890123 * * X Space-Switch event: * G Segment-Invalid Bit: * P Private-Space Bit: * S Storage-Alteration: * R Real space * TL Table-Length: * * A storage key has the following format: * | ACC |F|R|C|0| * 0 3 4 5 6 7 * ACC: access key * F : fetch protection bit * R : referenced bit * C : changed bit */ /* Hardware bits in the page table entry */ #define _PAGE_PROTECT 0x200 /* HW read-only bit */ #define _PAGE_INVALID 0x400 /* HW invalid bit */ #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */ /* Software bits in the page table entry */ #define _PAGE_PRESENT 0x001 /* SW pte present bit */ #define _PAGE_YOUNG 0x004 /* SW pte young bit */ #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */ #define _PAGE_READ 0x010 /* SW pte read bit */ #define _PAGE_WRITE 0x020 /* SW pte write bit */ #define _PAGE_SPECIAL 0x040 /* SW associated with special page */ #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */ #define __HAVE_ARCH_PTE_SPECIAL #ifdef CONFIG_MEM_SOFT_DIRTY #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */ #else #define _PAGE_SOFT_DIRTY 0x000 #endif /* Set of bits not changed in pte_modify */ #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \ _PAGE_YOUNG | _PAGE_SOFT_DIRTY) /* * handle_pte_fault uses pte_present and pte_none to find out the pte type * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to * distinguish present from not-present ptes. It is changed only with the page * table lock held. * * The following table gives the different possible bit combinations for * the pte hardware and software bits in the last 12 bits of a pte * (. unassigned bit, x don't care, t swap type): * * 842100000000 * 000084210000 * 000000008421 * .IR.uswrdy.p * empty .10.00000000 * swap .11..ttttt.0 * prot-none, clean, old .11.xx0000.1 * prot-none, clean, young .11.xx0001.1 * prot-none, dirty, old .10.xx0010.1 * prot-none, dirty, young .10.xx0011.1 * read-only, clean, old .11.xx0100.1 * read-only, clean, young .01.xx0101.1 * read-only, dirty, old .11.xx0110.1 * read-only, dirty, young .01.xx0111.1 * read-write, clean, old .11.xx1100.1 * read-write, clean, young .01.xx1101.1 * read-write, dirty, old .10.xx1110.1 * read-write, dirty, young .00.xx1111.1 * HW-bits: R read-only, I invalid * SW-bits: p present, y young, d dirty, r read, w write, s special, * u unused, l large * * pte_none is true for the bit pattern .10.00000000, pte == 0x400 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001 */ /* Bits in the segment/region table address-space-control-element */ #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */ #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */ #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */ #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */ #define _ASCE_REAL_SPACE 0x20 /* real space control */ #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */ #define _ASCE_TYPE_REGION1 0x0c /* region first table type */ #define _ASCE_TYPE_REGION2 0x08 /* region second table type */ #define _ASCE_TYPE_REGION3 0x04 /* region third table type */ #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */ #define _ASCE_TABLE_LENGTH 0x03 /* region table length */ /* Bits in the region table entry */ #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */ #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */ #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */ #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */ #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */ #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */ #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */ #define _REGION_ENTRY_LENGTH 0x03 /* region third length */ #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH) #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID) #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH) #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID) #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH) #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID) #define _REGION3_ENTRY_LARGE 0x400 /* RTTE-format control, large page */ #define _REGION3_ENTRY_RO 0x200 /* page protection bit */ /* Bits in the segment table entry */ #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL #define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */ #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */ #define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */ #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */ #define _SEGMENT_ENTRY (0) #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID) #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */ #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */ #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */ #define _SEGMENT_ENTRY_READ 0x0002 /* SW segment read bit */ #define _SEGMENT_ENTRY_WRITE 0x0001 /* SW segment write bit */ #ifdef CONFIG_MEM_SOFT_DIRTY #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */ #else #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */ #endif /* * Segment table entry encoding (R = read-only, I = invalid, y = young bit): * dy..R...I...rw * prot-none, clean, old 00..1...1...00 * prot-none, clean, young 01..1...1...00 * prot-none, dirty, old 10..1...1...00 * prot-none, dirty, young 11..1...1...00 * read-only, clean, old 00..1...1...10 * read-only, clean, young 01..1...0...10 * read-only, dirty, old 10..1...1...10 * read-only, dirty, young 11..1...0...10 * read-write, clean, old 00..1...1...11 * read-write, clean, young 01..1...0...11 * read-write, dirty, old 10..0...1...11 * read-write, dirty, young 11..0...0...11 * The segment table origin is used to distinguish empty (origin==0) from * read-write, old segment table entries (origin!=0) * HW-bits: R read-only, I invalid * SW-bits: y young, d dirty, r read, w write */ /* Page status table bits for virtualization */ #define PGSTE_ACC_BITS 0xf000000000000000UL #define PGSTE_FP_BIT 0x0800000000000000UL #define PGSTE_PCL_BIT 0x0080000000000000UL #define PGSTE_HR_BIT 0x0040000000000000UL #define PGSTE_HC_BIT 0x0020000000000000UL #define PGSTE_GR_BIT 0x0004000000000000UL #define PGSTE_GC_BIT 0x0002000000000000UL #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */ #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */ /* Guest Page State used for virtualization */ #define _PGSTE_GPS_ZERO 0x0000000080000000UL #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL /* * A user page table pointer has the space-switch-event bit, the * private-space-control bit and the storage-alteration-event-control * bit set. A kernel page table pointer doesn't need them. */ #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \ _ASCE_ALT_EVENT) /* * Page protection definitions. */ #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID) #define PAGE_READ __pgprot(_PAGE_PRESENT | _PAGE_READ | \ _PAGE_INVALID | _PAGE_PROTECT) #define PAGE_WRITE __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ _PAGE_INVALID | _PAGE_PROTECT) #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ _PAGE_YOUNG | _PAGE_DIRTY) #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ _PAGE_YOUNG | _PAGE_DIRTY) #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \ _PAGE_PROTECT) /* * On s390 the page table entry has an invalid bit and a read-only bit. * Read permission implies execute permission and write permission * implies read permission. */ /*xwr*/ #define __P000 PAGE_NONE #define __P001 PAGE_READ #define __P010 PAGE_READ #define __P011 PAGE_READ #define __P100 PAGE_READ #define __P101 PAGE_READ #define __P110 PAGE_READ #define __P111 PAGE_READ #define __S000 PAGE_NONE #define __S001 PAGE_READ #define __S010 PAGE_WRITE #define __S011 PAGE_WRITE #define __S100 PAGE_READ #define __S101 PAGE_READ #define __S110 PAGE_WRITE #define __S111 PAGE_WRITE /* * Segment entry (large page) protection definitions. */ #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \ _SEGMENT_ENTRY_PROTECT) #define SEGMENT_READ __pgprot(_SEGMENT_ENTRY_PROTECT | \ _SEGMENT_ENTRY_READ) #define SEGMENT_WRITE __pgprot(_SEGMENT_ENTRY_READ | \ _SEGMENT_ENTRY_WRITE) static inline int mm_has_pgste(struct mm_struct *mm) { #ifdef CONFIG_PGSTE if (unlikely(mm->context.has_pgste)) return 1; #endif return 0; } static inline int mm_alloc_pgste(struct mm_struct *mm) { #ifdef CONFIG_PGSTE if (unlikely(mm->context.alloc_pgste)) return 1; #endif return 0; } /* * In the case that a guest uses storage keys * faults should no longer be backed by zero pages */ #define mm_forbids_zeropage mm_use_skey static inline int mm_use_skey(struct mm_struct *mm) { #ifdef CONFIG_PGSTE if (mm->context.use_skey) return 1; #endif return 0; } /* * pgd/pmd/pte query functions */ static inline int pgd_present(pgd_t pgd) { if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2) return 1; return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL; } static inline int pgd_none(pgd_t pgd) { if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2) return 0; return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL; } static inline int pgd_bad(pgd_t pgd) { /* * With dynamic page table levels the pgd can be a region table * entry or a segment table entry. Check for the bit that are * invalid for either table entry. */ unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID & ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH; return (pgd_val(pgd) & mask) != 0; } static inline int pud_present(pud_t pud) { if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3) return 1; return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL; } static inline int pud_none(pud_t pud) { if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3) return 0; return (pud_val(pud) & _REGION_ENTRY_INVALID) != 0UL; } static inline int pud_large(pud_t pud) { if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3) return 0; return !!(pud_val(pud) & _REGION3_ENTRY_LARGE); } static inline int pud_bad(pud_t pud) { /* * With dynamic page table levels the pud can be a region table * entry or a segment table entry. Check for the bit that are * invalid for either table entry. */ unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID & ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH; return (pud_val(pud) & mask) != 0; } static inline int pmd_present(pmd_t pmd) { return pmd_val(pmd) != _SEGMENT_ENTRY_INVALID; } static inline int pmd_none(pmd_t pmd) { return pmd_val(pmd) == _SEGMENT_ENTRY_INVALID; } static inline int pmd_large(pmd_t pmd) { return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0; } static inline unsigned long pmd_pfn(pmd_t pmd) { unsigned long origin_mask; origin_mask = _SEGMENT_ENTRY_ORIGIN; if (pmd_large(pmd)) origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE; return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT; } static inline int pmd_bad(pmd_t pmd) { if (pmd_large(pmd)) return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0; return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0; } #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS extern int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t entry, int dirty); #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH extern int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #define __HAVE_ARCH_PMD_WRITE static inline int pmd_write(pmd_t pmd) { return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0; } static inline int pmd_dirty(pmd_t pmd) { int dirty = 1; if (pmd_large(pmd)) dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0; return dirty; } static inline int pmd_young(pmd_t pmd) { int young = 1; if (pmd_large(pmd)) young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0; return young; } static inline int pte_present(pte_t pte) { /* Bit pattern: (pte & 0x001) == 0x001 */ return (pte_val(pte) & _PAGE_PRESENT) != 0; } static inline int pte_none(pte_t pte) { /* Bit pattern: pte == 0x400 */ return pte_val(pte) == _PAGE_INVALID; } static inline int pte_swap(pte_t pte) { /* Bit pattern: (pte & 0x201) == 0x200 */ return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT)) == _PAGE_PROTECT; } static inline int pte_special(pte_t pte) { return (pte_val(pte) & _PAGE_SPECIAL); } #define __HAVE_ARCH_PTE_SAME static inline int pte_same(pte_t a, pte_t b) { return pte_val(a) == pte_val(b); } #ifdef CONFIG_NUMA_BALANCING static inline int pte_protnone(pte_t pte) { return pte_present(pte) && !(pte_val(pte) & _PAGE_READ); } static inline int pmd_protnone(pmd_t pmd) { /* pmd_large(pmd) implies pmd_present(pmd) */ return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ); } #endif static inline int pte_soft_dirty(pte_t pte) { return pte_val(pte) & _PAGE_SOFT_DIRTY; } #define pte_swp_soft_dirty pte_soft_dirty static inline pte_t pte_mksoft_dirty(pte_t pte) { pte_val(pte) |= _PAGE_SOFT_DIRTY; return pte; } #define pte_swp_mksoft_dirty pte_mksoft_dirty static inline pte_t pte_clear_soft_dirty(pte_t pte) { pte_val(pte) &= ~_PAGE_SOFT_DIRTY; return pte; } #define pte_swp_clear_soft_dirty pte_clear_soft_dirty static inline int pmd_soft_dirty(pmd_t pmd) { return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY; } static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) { pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY; return pmd; } static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) { pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY; return pmd; } static inline pgste_t pgste_get_lock(pte_t *ptep) { unsigned long new = 0; #ifdef CONFIG_PGSTE unsigned long old; preempt_disable(); asm( " lg %0,%2\n" "0: lgr %1,%0\n" " nihh %0,0xff7f\n" /* clear PCL bit in old */ " oihh %1,0x0080\n" /* set PCL bit in new */ " csg %0,%1,%2\n" " jl 0b\n" : "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE]) : "Q" (ptep[PTRS_PER_PTE]) : "cc", "memory"); #endif return __pgste(new); } static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste) { #ifdef CONFIG_PGSTE asm( " nihh %1,0xff7f\n" /* clear PCL bit */ " stg %1,%0\n" : "=Q" (ptep[PTRS_PER_PTE]) : "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE]) : "cc", "memory"); preempt_enable(); #endif } static inline pgste_t pgste_get(pte_t *ptep) { unsigned long pgste = 0; #ifdef CONFIG_PGSTE pgste = *(unsigned long *)(ptep + PTRS_PER_PTE); #endif return __pgste(pgste); } static inline void pgste_set(pte_t *ptep, pgste_t pgste) { #ifdef CONFIG_PGSTE *(pgste_t *)(ptep + PTRS_PER_PTE) = pgste; #endif } bool pgste_test_and_clear_dirty(struct mm_struct *, unsigned long address); void ptep_ipte_notify(struct mm_struct *, unsigned long addr, pte_t *); /** * struct gmap_struct - guest address space * @crst_list: list of all crst tables used in the guest address space * @mm: pointer to the parent mm_struct * @guest_to_host: radix tree with guest to host address translation * @host_to_guest: radix tree with pointer to segment table entries * @guest_table_lock: spinlock to protect all entries in the guest page table * @table: pointer to the page directory * @asce: address space control element for gmap page table * @pfault_enabled: defines if pfaults are applicable for the guest */ struct gmap { struct list_head list; struct list_head crst_list; struct mm_struct *mm; struct radix_tree_root guest_to_host; struct radix_tree_root host_to_guest; spinlock_t guest_table_lock; unsigned long *table; unsigned long asce; unsigned long asce_end; void *private; bool pfault_enabled; }; /** * struct gmap_notifier - notify function block for page invalidation * @notifier_call: address of callback function */ struct gmap_notifier { struct list_head list; void (*notifier_call)(struct gmap *gmap, unsigned long gaddr); }; struct gmap *gmap_alloc(struct mm_struct *mm, unsigned long limit); void gmap_free(struct gmap *gmap); void gmap_enable(struct gmap *gmap); void gmap_disable(struct gmap *gmap); int gmap_map_segment(struct gmap *gmap, unsigned long from, unsigned long to, unsigned long len); int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len); unsigned long __gmap_translate(struct gmap *, unsigned long gaddr); unsigned long gmap_translate(struct gmap *, unsigned long gaddr); int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr); int gmap_fault(struct gmap *, unsigned long gaddr, unsigned int fault_flags); void gmap_discard(struct gmap *, unsigned long from, unsigned long to); void __gmap_zap(struct gmap *, unsigned long gaddr); void gmap_register_ipte_notifier(struct gmap_notifier *); void gmap_unregister_ipte_notifier(struct gmap_notifier *); int gmap_ipte_notify(struct gmap *, unsigned long start, unsigned long len); /* * query functions pte_write/pte_dirty/pte_young only work if * pte_present() is true. Undefined behaviour if not.. */ static inline int pte_write(pte_t pte) { return (pte_val(pte) & _PAGE_WRITE) != 0; } static inline int pte_dirty(pte_t pte) { return (pte_val(pte) & _PAGE_DIRTY) != 0; } static inline int pte_young(pte_t pte) { return (pte_val(pte) & _PAGE_YOUNG) != 0; } #define __HAVE_ARCH_PTE_UNUSED static inline int pte_unused(pte_t pte) { return pte_val(pte) & _PAGE_UNUSED; } /* * pgd/pmd/pte modification functions */ static inline void pgd_clear(pgd_t *pgd) { if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2) pgd_val(*pgd) = _REGION2_ENTRY_EMPTY; } static inline void pud_clear(pud_t *pud) { if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) pud_val(*pud) = _REGION3_ENTRY_EMPTY; } static inline void pmd_clear(pmd_t *pmdp) { pmd_val(*pmdp) = _SEGMENT_ENTRY_INVALID; } static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { pte_val(*ptep) = _PAGE_INVALID; } /* * The following pte modification functions only work if * pte_present() is true. Undefined behaviour if not.. */ static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { pte_val(pte) &= _PAGE_CHG_MASK; pte_val(pte) |= pgprot_val(newprot); /* * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the * invalid bit set, clear it again for readable, young pages */ if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ)) pte_val(pte) &= ~_PAGE_INVALID; /* * newprot for PAGE_READ and PAGE_WRITE has the page protection * bit set, clear it again for writable, dirty pages */ if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE)) pte_val(pte) &= ~_PAGE_PROTECT; return pte; } static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_WRITE; pte_val(pte) |= _PAGE_PROTECT; return pte; } static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_WRITE; if (pte_val(pte) & _PAGE_DIRTY) pte_val(pte) &= ~_PAGE_PROTECT; return pte; } static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; pte_val(pte) |= _PAGE_PROTECT; return pte; } static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY; if (pte_val(pte) & _PAGE_WRITE) pte_val(pte) &= ~_PAGE_PROTECT; return pte; } static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_YOUNG; pte_val(pte) |= _PAGE_INVALID; return pte; } static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_YOUNG; if (pte_val(pte) & _PAGE_READ) pte_val(pte) &= ~_PAGE_INVALID; return pte; } static inline pte_t pte_mkspecial(pte_t pte) { pte_val(pte) |= _PAGE_SPECIAL; return pte; } #ifdef CONFIG_HUGETLB_PAGE static inline pte_t pte_mkhuge(pte_t pte) { pte_val(pte) |= _PAGE_LARGE; return pte; } #endif static inline void __ptep_ipte(unsigned long address, pte_t *ptep) { unsigned long pto = (unsigned long) ptep; /* Invalidation + global TLB flush for the pte */ asm volatile( " ipte %2,%3" : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address)); } static inline void __ptep_ipte_local(unsigned long address, pte_t *ptep) { unsigned long pto = (unsigned long) ptep; /* Invalidation + local TLB flush for the pte */ asm volatile( " .insn rrf,0xb2210000,%2,%3,0,1" : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address)); } static inline void __ptep_ipte_range(unsigned long address, int nr, pte_t *ptep) { unsigned long pto = (unsigned long) ptep; /* Invalidate a range of ptes + global TLB flush of the ptes */ do { asm volatile( " .insn rrf,0xb2210000,%2,%0,%1,0" : "+a" (address), "+a" (nr) : "a" (pto) : "memory"); } while (nr != 255); } /* * This is hard to understand. ptep_get_and_clear and ptep_clear_flush * both clear the TLB for the unmapped pte. The reason is that * ptep_get_and_clear is used in common code (e.g. change_pte_range) * to modify an active pte. The sequence is * 1) ptep_get_and_clear * 2) set_pte_at * 3) flush_tlb_range * On s390 the tlb needs to get flushed with the modification of the pte * if the pte is active. The only way how this can be implemented is to * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range * is a nop. */ pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t); pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t); #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { pte_t pte = *ptep; pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte)); return pte_young(pte); } #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH static inline int ptep_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) { return ptep_test_and_clear_young(vma, address, ptep); } #define __HAVE_ARCH_PTEP_GET_AND_CLEAR static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID)); } #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION pte_t ptep_modify_prot_start(struct mm_struct *, unsigned long, pte_t *); void ptep_modify_prot_commit(struct mm_struct *, unsigned long, pte_t *, pte_t); #define __HAVE_ARCH_PTEP_CLEAR_FLUSH static inline pte_t ptep_clear_flush(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID)); } /* * The batched pte unmap code uses ptep_get_and_clear_full to clear the * ptes. Here an optimization is possible. tlb_gather_mmu flushes all * tlbs of an mm if it can guarantee that the ptes of the mm_struct * cannot be accessed while the batched unmap is running. In this case * full==1 and a simple pte_clear is enough. See tlb.h. */ #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long addr, pte_t *ptep, int full) { if (full) { pte_t pte = *ptep; *ptep = __pte(_PAGE_INVALID); return pte; } return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID)); } #define __HAVE_ARCH_PTEP_SET_WRPROTECT static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { pte_t pte = *ptep; if (pte_write(pte)) ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte)); } #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS static inline int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep, pte_t entry, int dirty) { if (pte_same(*ptep, entry)) return 0; ptep_xchg_direct(vma->vm_mm, addr, ptep, entry); return 1; } void set_pte_pgste_at(struct mm_struct *, unsigned long, pte_t *, pte_t); /* * Certain architectures need to do special things when PTEs * within a page table are directly modified. Thus, the following * hook is made available. */ static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t entry) { if (mm_has_pgste(mm)) set_pte_pgste_at(mm, addr, ptep, entry); else *ptep = entry; } /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot) { pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); return pte_mkyoung(__pte); } static inline pte_t mk_pte(struct page *page, pgprot_t pgprot) { unsigned long physpage = page_to_phys(page); pte_t __pte = mk_pte_phys(physpage, pgprot); if (pte_write(__pte) && PageDirty(page)) __pte = pte_mkdirty(__pte); return __pte; } #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1)) #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1)) #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) #define pgd_offset_k(address) pgd_offset(&init_mm, address) #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN) #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address) { pud_t *pud = (pud_t *) pgd; if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2) pud = (pud_t *) pgd_deref(*pgd); return pud + pud_index(address); } static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) { pmd_t *pmd = (pmd_t *) pud; if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) pmd = (pmd_t *) pud_deref(*pud); return pmd + pmd_index(address); } #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot)) #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT) #define pte_page(x) pfn_to_page(pte_pfn(x)) #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd)) /* Find an entry in the lowest level page table.. */ #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr)) #define pte_offset_kernel(pmd, address) pte_offset(pmd,address) #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address) #define pte_unmap(pte) do { } while (0) #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE) static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot) { /* * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx) * Convert to segment table entry format. */ if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE)) return pgprot_val(SEGMENT_NONE); if (pgprot_val(pgprot) == pgprot_val(PAGE_READ)) return pgprot_val(SEGMENT_READ); return pgprot_val(SEGMENT_WRITE); } static inline pmd_t pmd_wrprotect(pmd_t pmd) { pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE; pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; return pmd; } static inline pmd_t pmd_mkwrite(pmd_t pmd) { pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE; if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)) return pmd; pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT; return pmd; } static inline pmd_t pmd_mkclean(pmd_t pmd) { if (pmd_large(pmd)) { pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY; pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; } return pmd; } static inline pmd_t pmd_mkdirty(pmd_t pmd) { if (pmd_large(pmd)) { pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY; if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT; } return pmd; } static inline pmd_t pmd_mkyoung(pmd_t pmd) { if (pmd_large(pmd)) { pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG; if (pmd_val(pmd) & _SEGMENT_ENTRY_READ) pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID; } return pmd; } static inline pmd_t pmd_mkold(pmd_t pmd) { if (pmd_large(pmd)) { pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG; pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID; } return pmd; } static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) { if (pmd_large(pmd)) { pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE | _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG | _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY; pmd_val(pmd) |= massage_pgprot_pmd(newprot); if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)) pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG)) pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID; return pmd; } pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN; pmd_val(pmd) |= massage_pgprot_pmd(newprot); return pmd; } static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot) { pmd_t __pmd; pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot); return __pmd; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */ static inline void __pmdp_csp(pmd_t *pmdp) { register unsigned long reg2 asm("2") = pmd_val(*pmdp); register unsigned long reg3 asm("3") = pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID; register unsigned long reg4 asm("4") = ((unsigned long) pmdp) + 5; asm volatile( " csp %1,%3" : "=m" (*pmdp) : "d" (reg2), "d" (reg3), "d" (reg4), "m" (*pmdp) : "cc"); } static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp) { unsigned long sto; sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t); asm volatile( " .insn rrf,0xb98e0000,%2,%3,0,0" : "=m" (*pmdp) : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK)) : "cc" ); } static inline void __pmdp_idte_local(unsigned long address, pmd_t *pmdp) { unsigned long sto; sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t); asm volatile( " .insn rrf,0xb98e0000,%2,%3,0,1" : "=m" (*pmdp) : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK)) : "cc" ); } static inline void pmdp_flush_direct(struct mm_struct *mm, unsigned long address, pmd_t *pmdp) { int active, count; if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID) return; if (!MACHINE_HAS_IDTE) { __pmdp_csp(pmdp); return; } active = (mm == current->active_mm) ? 1 : 0; count = atomic_add_return(0x10000, &mm->context.attach_count); if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active && cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id()))) __pmdp_idte_local(address, pmdp); else __pmdp_idte(address, pmdp); atomic_sub(0x10000, &mm->context.attach_count); } static inline void pmdp_flush_lazy(struct mm_struct *mm, unsigned long address, pmd_t *pmdp) { int active, count; if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID) return; active = (mm == current->active_mm) ? 1 : 0; count = atomic_add_return(0x10000, &mm->context.attach_count); if ((count & 0xffff) <= active) { pmd_val(*pmdp) |= _SEGMENT_ENTRY_INVALID; mm->context.flush_mm = 1; } else if (MACHINE_HAS_IDTE) __pmdp_idte(address, pmdp); else __pmdp_csp(pmdp); atomic_sub(0x10000, &mm->context.attach_count); } #ifdef CONFIG_TRANSPARENT_HUGEPAGE #define __HAVE_ARCH_PGTABLE_DEPOSIT extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, pgtable_t pgtable); #define __HAVE_ARCH_PGTABLE_WITHDRAW extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp, pmd_t entry) { *pmdp = entry; } static inline pmd_t pmd_mkhuge(pmd_t pmd) { pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE; pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG; pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; return pmd; } #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { pmd_t pmd; pmd = *pmdp; pmdp_flush_direct(vma->vm_mm, address, pmdp); *pmdp = pmd_mkold(pmd); return pmd_young(pmd); } #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long address, pmd_t *pmdp) { pmd_t pmd = *pmdp; pmdp_flush_direct(mm, address, pmdp); pmd_clear(pmdp); return pmd; } #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm, unsigned long address, pmd_t *pmdp, int full) { pmd_t pmd = *pmdp; if (!full) pmdp_flush_lazy(mm, address, pmdp); pmd_clear(pmdp); return pmd; } #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); } #define __HAVE_ARCH_PMDP_INVALIDATE static inline void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { pmdp_flush_direct(vma->vm_mm, address, pmdp); } #define __HAVE_ARCH_PMDP_SET_WRPROTECT static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long address, pmd_t *pmdp) { pmd_t pmd = *pmdp; if (pmd_write(pmd)) { pmdp_flush_direct(mm, address, pmdp); set_pmd_at(mm, address, pmdp, pmd_wrprotect(pmd)); } } static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); } #define pmdp_collapse_flush pmdp_collapse_flush #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot)) #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) static inline int pmd_trans_huge(pmd_t pmd) { return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE; } static inline int has_transparent_hugepage(void) { return MACHINE_HAS_HPAGE ? 1 : 0; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ /* * 64 bit swap entry format: * A page-table entry has some bits we have to treat in a special way. * Bits 52 and bit 55 have to be zero, otherwise a specification * exception will occur instead of a page translation exception. The * specification exception has the bad habit not to store necessary * information in the lowcore. * Bits 54 and 63 are used to indicate the page type. * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200 * This leaves the bits 0-51 and bits 56-62 to store type and offset. * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51 * for the offset. * | offset |01100|type |00| * |0000000000111111111122222222223333333333444444444455|55555|55566|66| * |0123456789012345678901234567890123456789012345678901|23456|78901|23| */ #define __SWP_OFFSET_MASK ((1UL << 52) - 1) #define __SWP_OFFSET_SHIFT 12 #define __SWP_TYPE_MASK ((1UL << 5) - 1) #define __SWP_TYPE_SHIFT 2 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) { pte_t pte; pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT; pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT; pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT; return pte; } static inline unsigned long __swp_type(swp_entry_t entry) { return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK; } static inline unsigned long __swp_offset(swp_entry_t entry) { return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK; } static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset) { return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) }; } #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) #endif /* !__ASSEMBLY__ */ #define kern_addr_valid(addr) (1) extern int vmem_add_mapping(unsigned long start, unsigned long size); extern int vmem_remove_mapping(unsigned long start, unsigned long size); extern int s390_enable_sie(void); extern int s390_enable_skey(void); extern void s390_reset_cmma(struct mm_struct *mm); /* s390 has a private copy of get unmapped area to deal with cache synonyms */ #define HAVE_ARCH_UNMAPPED_AREA #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN /* * No page table caches to initialise */ static inline void pgtable_cache_init(void) { } static inline void check_pgt_cache(void) { } #include #endif /* _S390_PAGE_H */