/* * Copyright (c) 2014 Mellanox Technologies. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <linux/types.h> #include <linux/sched.h> #include <linux/sched/mm.h> #include <linux/sched/task.h> #include <linux/pid.h> #include <linux/slab.h> #include <linux/export.h> #include <linux/vmalloc.h> #include <linux/hugetlb.h> #include <linux/interval_tree_generic.h> #include <linux/pagemap.h> #include <rdma/ib_verbs.h> #include <rdma/ib_umem.h> #include <rdma/ib_umem_odp.h> /* * The ib_umem list keeps track of memory regions for which the HW * device request to receive notification when the related memory * mapping is changed. * * ib_umem_lock protects the list. */ static u64 node_start(struct umem_odp_node *n) { struct ib_umem_odp *umem_odp = container_of(n, struct ib_umem_odp, interval_tree); return ib_umem_start(umem_odp); } /* Note that the representation of the intervals in the interval tree * considers the ending point as contained in the interval, while the * function ib_umem_end returns the first address which is not contained * in the umem. */ static u64 node_last(struct umem_odp_node *n) { struct ib_umem_odp *umem_odp = container_of(n, struct ib_umem_odp, interval_tree); return ib_umem_end(umem_odp) - 1; } INTERVAL_TREE_DEFINE(struct umem_odp_node, rb, u64, __subtree_last, node_start, node_last, static, rbt_ib_umem) static void ib_umem_notifier_start_account(struct ib_umem_odp *umem_odp) { mutex_lock(&umem_odp->umem_mutex); if (umem_odp->notifiers_count++ == 0) /* * Initialize the completion object for waiting on * notifiers. Since notifier_count is zero, no one should be * waiting right now. */ reinit_completion(&umem_odp->notifier_completion); mutex_unlock(&umem_odp->umem_mutex); } static void ib_umem_notifier_end_account(struct ib_umem_odp *umem_odp) { mutex_lock(&umem_odp->umem_mutex); /* * This sequence increase will notify the QP page fault that the page * that is going to be mapped in the spte could have been freed. */ ++umem_odp->notifiers_seq; if (--umem_odp->notifiers_count == 0) complete_all(&umem_odp->notifier_completion); mutex_unlock(&umem_odp->umem_mutex); } static int ib_umem_notifier_release_trampoline(struct ib_umem_odp *umem_odp, u64 start, u64 end, void *cookie) { /* * Increase the number of notifiers running, to * prevent any further fault handling on this MR. */ ib_umem_notifier_start_account(umem_odp); umem_odp->dying = 1; /* Make sure that the fact the umem is dying is out before we release * all pending page faults. */ smp_wmb(); complete_all(&umem_odp->notifier_completion); umem_odp->umem.context->invalidate_range( umem_odp, ib_umem_start(umem_odp), ib_umem_end(umem_odp)); return 0; } static void ib_umem_notifier_release(struct mmu_notifier *mn, struct mm_struct *mm) { struct ib_ucontext_per_mm *per_mm = container_of(mn, struct ib_ucontext_per_mm, mn); down_read(&per_mm->umem_rwsem); if (per_mm->active) rbt_ib_umem_for_each_in_range( &per_mm->umem_tree, 0, ULLONG_MAX, ib_umem_notifier_release_trampoline, true, NULL); up_read(&per_mm->umem_rwsem); } static int invalidate_range_start_trampoline(struct ib_umem_odp *item, u64 start, u64 end, void *cookie) { ib_umem_notifier_start_account(item); item->umem.context->invalidate_range(item, start, end); return 0; } static int ib_umem_notifier_invalidate_range_start(struct mmu_notifier *mn, const struct mmu_notifier_range *range) { struct ib_ucontext_per_mm *per_mm = container_of(mn, struct ib_ucontext_per_mm, mn); if (mmu_notifier_range_blockable(range)) down_read(&per_mm->umem_rwsem); else if (!down_read_trylock(&per_mm->umem_rwsem)) return -EAGAIN; if (!per_mm->active) { up_read(&per_mm->umem_rwsem); /* * At this point active is permanently set and visible to this * CPU without a lock, that fact is relied on to skip the unlock * in range_end. */ return 0; } return rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, range->start, range->end, invalidate_range_start_trampoline, mmu_notifier_range_blockable(range), NULL); } static int invalidate_range_end_trampoline(struct ib_umem_odp *item, u64 start, u64 end, void *cookie) { ib_umem_notifier_end_account(item); return 0; } static void ib_umem_notifier_invalidate_range_end(struct mmu_notifier *mn, const struct mmu_notifier_range *range) { struct ib_ucontext_per_mm *per_mm = container_of(mn, struct ib_ucontext_per_mm, mn); if (unlikely(!per_mm->active)) return; rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, range->start, range->end, invalidate_range_end_trampoline, true, NULL); up_read(&per_mm->umem_rwsem); } static const struct mmu_notifier_ops ib_umem_notifiers = { .release = ib_umem_notifier_release, .invalidate_range_start = ib_umem_notifier_invalidate_range_start, .invalidate_range_end = ib_umem_notifier_invalidate_range_end, }; static void add_umem_to_per_mm(struct ib_umem_odp *umem_odp) { struct ib_ucontext_per_mm *per_mm = umem_odp->per_mm; down_write(&per_mm->umem_rwsem); if (likely(ib_umem_start(umem_odp) != ib_umem_end(umem_odp))) rbt_ib_umem_insert(&umem_odp->interval_tree, &per_mm->umem_tree); up_write(&per_mm->umem_rwsem); } static void remove_umem_from_per_mm(struct ib_umem_odp *umem_odp) { struct ib_ucontext_per_mm *per_mm = umem_odp->per_mm; down_write(&per_mm->umem_rwsem); if (likely(ib_umem_start(umem_odp) != ib_umem_end(umem_odp))) rbt_ib_umem_remove(&umem_odp->interval_tree, &per_mm->umem_tree); complete_all(&umem_odp->notifier_completion); up_write(&per_mm->umem_rwsem); } static struct ib_ucontext_per_mm *alloc_per_mm(struct ib_ucontext *ctx, struct mm_struct *mm) { struct ib_ucontext_per_mm *per_mm; int ret; per_mm = kzalloc(sizeof(*per_mm), GFP_KERNEL); if (!per_mm) return ERR_PTR(-ENOMEM); per_mm->context = ctx; per_mm->mm = mm; per_mm->umem_tree = RB_ROOT_CACHED; init_rwsem(&per_mm->umem_rwsem); per_mm->active = true; rcu_read_lock(); per_mm->tgid = get_task_pid(current->group_leader, PIDTYPE_PID); rcu_read_unlock(); WARN_ON(mm != current->mm); per_mm->mn.ops = &ib_umem_notifiers; ret = mmu_notifier_register(&per_mm->mn, per_mm->mm); if (ret) { dev_err(&ctx->device->dev, "Failed to register mmu_notifier %d\n", ret); goto out_pid; } list_add(&per_mm->ucontext_list, &ctx->per_mm_list); return per_mm; out_pid: put_pid(per_mm->tgid); kfree(per_mm); return ERR_PTR(ret); } static int get_per_mm(struct ib_umem_odp *umem_odp) { struct ib_ucontext *ctx = umem_odp->umem.context; struct ib_ucontext_per_mm *per_mm; /* * Generally speaking we expect only one or two per_mm in this list, * so no reason to optimize this search today. */ mutex_lock(&ctx->per_mm_list_lock); list_for_each_entry(per_mm, &ctx->per_mm_list, ucontext_list) { if (per_mm->mm == umem_odp->umem.owning_mm) goto found; } per_mm = alloc_per_mm(ctx, umem_odp->umem.owning_mm); if (IS_ERR(per_mm)) { mutex_unlock(&ctx->per_mm_list_lock); return PTR_ERR(per_mm); } found: umem_odp->per_mm = per_mm; per_mm->odp_mrs_count++; mutex_unlock(&ctx->per_mm_list_lock); return 0; } static void free_per_mm(struct rcu_head *rcu) { kfree(container_of(rcu, struct ib_ucontext_per_mm, rcu)); } static void put_per_mm(struct ib_umem_odp *umem_odp) { struct ib_ucontext_per_mm *per_mm = umem_odp->per_mm; struct ib_ucontext *ctx = umem_odp->umem.context; bool need_free; mutex_lock(&ctx->per_mm_list_lock); umem_odp->per_mm = NULL; per_mm->odp_mrs_count--; need_free = per_mm->odp_mrs_count == 0; if (need_free) list_del(&per_mm->ucontext_list); mutex_unlock(&ctx->per_mm_list_lock); if (!need_free) return; /* * NOTE! mmu_notifier_unregister() can happen between a start/end * callback, resulting in an start/end, and thus an unbalanced * lock. This doesn't really matter to us since we are about to kfree * the memory that holds the lock, however LOCKDEP doesn't like this. */ down_write(&per_mm->umem_rwsem); per_mm->active = false; up_write(&per_mm->umem_rwsem); WARN_ON(!RB_EMPTY_ROOT(&per_mm->umem_tree.rb_root)); mmu_notifier_unregister_no_release(&per_mm->mn, per_mm->mm); put_pid(per_mm->tgid); mmu_notifier_call_srcu(&per_mm->rcu, free_per_mm); } struct ib_umem_odp *ib_alloc_odp_umem(struct ib_umem_odp *root, unsigned long addr, size_t size) { struct ib_ucontext_per_mm *per_mm = root->per_mm; struct ib_ucontext *ctx = per_mm->context; struct ib_umem_odp *odp_data; struct ib_umem *umem; int pages = size >> PAGE_SHIFT; int ret; odp_data = kzalloc(sizeof(*odp_data), GFP_KERNEL); if (!odp_data) return ERR_PTR(-ENOMEM); umem = &odp_data->umem; umem->context = ctx; umem->length = size; umem->address = addr; odp_data->page_shift = PAGE_SHIFT; umem->writable = root->umem.writable; umem->is_odp = 1; odp_data->per_mm = per_mm; umem->owning_mm = per_mm->mm; mmgrab(umem->owning_mm); mutex_init(&odp_data->umem_mutex); init_completion(&odp_data->notifier_completion); odp_data->page_list = vzalloc(array_size(pages, sizeof(*odp_data->page_list))); if (!odp_data->page_list) { ret = -ENOMEM; goto out_odp_data; } odp_data->dma_list = vzalloc(array_size(pages, sizeof(*odp_data->dma_list))); if (!odp_data->dma_list) { ret = -ENOMEM; goto out_page_list; } /* * Caller must ensure that the umem_odp that the per_mm came from * cannot be freed during the call to ib_alloc_odp_umem. */ mutex_lock(&ctx->per_mm_list_lock); per_mm->odp_mrs_count++; mutex_unlock(&ctx->per_mm_list_lock); add_umem_to_per_mm(odp_data); return odp_data; out_page_list: vfree(odp_data->page_list); out_odp_data: mmdrop(umem->owning_mm); kfree(odp_data); return ERR_PTR(ret); } EXPORT_SYMBOL(ib_alloc_odp_umem); int ib_umem_odp_get(struct ib_umem_odp *umem_odp, int access) { struct ib_umem *umem = &umem_odp->umem; /* * NOTE: This must called in a process context where umem->owning_mm * == current->mm */ struct mm_struct *mm = umem->owning_mm; int ret_val; umem_odp->page_shift = PAGE_SHIFT; if (access & IB_ACCESS_HUGETLB) { struct vm_area_struct *vma; struct hstate *h; down_read(&mm->mmap_sem); vma = find_vma(mm, ib_umem_start(umem_odp)); if (!vma || !is_vm_hugetlb_page(vma)) { up_read(&mm->mmap_sem); return -EINVAL; } h = hstate_vma(vma); umem_odp->page_shift = huge_page_shift(h); up_read(&mm->mmap_sem); } mutex_init(&umem_odp->umem_mutex); init_completion(&umem_odp->notifier_completion); if (ib_umem_odp_num_pages(umem_odp)) { umem_odp->page_list = vzalloc(array_size(sizeof(*umem_odp->page_list), ib_umem_odp_num_pages(umem_odp))); if (!umem_odp->page_list) return -ENOMEM; umem_odp->dma_list = vzalloc(array_size(sizeof(*umem_odp->dma_list), ib_umem_odp_num_pages(umem_odp))); if (!umem_odp->dma_list) { ret_val = -ENOMEM; goto out_page_list; } } ret_val = get_per_mm(umem_odp); if (ret_val) goto out_dma_list; add_umem_to_per_mm(umem_odp); return 0; out_dma_list: vfree(umem_odp->dma_list); out_page_list: vfree(umem_odp->page_list); return ret_val; } void ib_umem_odp_release(struct ib_umem_odp *umem_odp) { /* * Ensure that no more pages are mapped in the umem. * * It is the driver's responsibility to ensure, before calling us, * that the hardware will not attempt to access the MR any more. */ ib_umem_odp_unmap_dma_pages(umem_odp, ib_umem_start(umem_odp), ib_umem_end(umem_odp)); remove_umem_from_per_mm(umem_odp); put_per_mm(umem_odp); vfree(umem_odp->dma_list); vfree(umem_odp->page_list); } /* * Map for DMA and insert a single page into the on-demand paging page tables. * * @umem: the umem to insert the page to. * @page_index: index in the umem to add the page to. * @page: the page struct to map and add. * @access_mask: access permissions needed for this page. * @current_seq: sequence number for synchronization with invalidations. * the sequence number is taken from * umem_odp->notifiers_seq. * * The function returns -EFAULT if the DMA mapping operation fails. It returns * -EAGAIN if a concurrent invalidation prevents us from updating the page. * * The page is released via put_user_page even if the operation failed. For * on-demand pinning, the page is released whenever it isn't stored in the * umem. */ static int ib_umem_odp_map_dma_single_page( struct ib_umem_odp *umem_odp, int page_index, struct page *page, u64 access_mask, unsigned long current_seq) { struct ib_ucontext *context = umem_odp->umem.context; struct ib_device *dev = context->device; dma_addr_t dma_addr; int remove_existing_mapping = 0; int ret = 0; /* * Note: we avoid writing if seq is different from the initial seq, to * handle case of a racing notifier. This check also allows us to bail * early if we have a notifier running in parallel with us. */ if (ib_umem_mmu_notifier_retry(umem_odp, current_seq)) { ret = -EAGAIN; goto out; } if (!(umem_odp->dma_list[page_index])) { dma_addr = ib_dma_map_page(dev, page, 0, BIT(umem_odp->page_shift), DMA_BIDIRECTIONAL); if (ib_dma_mapping_error(dev, dma_addr)) { ret = -EFAULT; goto out; } umem_odp->dma_list[page_index] = dma_addr | access_mask; umem_odp->page_list[page_index] = page; umem_odp->npages++; } else if (umem_odp->page_list[page_index] == page) { umem_odp->dma_list[page_index] |= access_mask; } else { pr_err("error: got different pages in IB device and from get_user_pages. IB device page: %p, gup page: %p\n", umem_odp->page_list[page_index], page); /* Better remove the mapping now, to prevent any further * damage. */ remove_existing_mapping = 1; } out: put_user_page(page); if (remove_existing_mapping) { ib_umem_notifier_start_account(umem_odp); context->invalidate_range( umem_odp, ib_umem_start(umem_odp) + (page_index << umem_odp->page_shift), ib_umem_start(umem_odp) + ((page_index + 1) << umem_odp->page_shift)); ib_umem_notifier_end_account(umem_odp); ret = -EAGAIN; } return ret; } /** * ib_umem_odp_map_dma_pages - Pin and DMA map userspace memory in an ODP MR. * * Pins the range of pages passed in the argument, and maps them to * DMA addresses. The DMA addresses of the mapped pages is updated in * umem_odp->dma_list. * * Returns the number of pages mapped in success, negative error code * for failure. * An -EAGAIN error code is returned when a concurrent mmu notifier prevents * the function from completing its task. * An -ENOENT error code indicates that userspace process is being terminated * and mm was already destroyed. * @umem_odp: the umem to map and pin * @user_virt: the address from which we need to map. * @bcnt: the minimal number of bytes to pin and map. The mapping might be * bigger due to alignment, and may also be smaller in case of an error * pinning or mapping a page. The actual pages mapped is returned in * the return value. * @access_mask: bit mask of the requested access permissions for the given * range. * @current_seq: the MMU notifiers sequance value for synchronization with * invalidations. the sequance number is read from * umem_odp->notifiers_seq before calling this function */ int ib_umem_odp_map_dma_pages(struct ib_umem_odp *umem_odp, u64 user_virt, u64 bcnt, u64 access_mask, unsigned long current_seq) { struct task_struct *owning_process = NULL; struct mm_struct *owning_mm = umem_odp->umem.owning_mm; struct page **local_page_list = NULL; u64 page_mask, off; int j, k, ret = 0, start_idx, npages = 0; unsigned int flags = 0, page_shift; phys_addr_t p = 0; if (access_mask == 0) return -EINVAL; if (user_virt < ib_umem_start(umem_odp) || user_virt + bcnt > ib_umem_end(umem_odp)) return -EFAULT; local_page_list = (struct page **)__get_free_page(GFP_KERNEL); if (!local_page_list) return -ENOMEM; page_shift = umem_odp->page_shift; page_mask = ~(BIT(page_shift) - 1); off = user_virt & (~page_mask); user_virt = user_virt & page_mask; bcnt += off; /* Charge for the first page offset as well. */ /* * owning_process is allowed to be NULL, this means somehow the mm is * existing beyond the lifetime of the originating process.. Presumably * mmget_not_zero will fail in this case. */ owning_process = get_pid_task(umem_odp->per_mm->tgid, PIDTYPE_PID); if (!owning_process || !mmget_not_zero(owning_mm)) { ret = -EINVAL; goto out_put_task; } if (access_mask & ODP_WRITE_ALLOWED_BIT) flags |= FOLL_WRITE; start_idx = (user_virt - ib_umem_start(umem_odp)) >> page_shift; k = start_idx; while (bcnt > 0) { const size_t gup_num_pages = min_t(size_t, (bcnt + BIT(page_shift) - 1) >> page_shift, PAGE_SIZE / sizeof(struct page *)); down_read(&owning_mm->mmap_sem); /* * Note: this might result in redundent page getting. We can * avoid this by checking dma_list to be 0 before calling * get_user_pages. However, this make the code much more * complex (and doesn't gain us much performance in most use * cases). */ npages = get_user_pages_remote(owning_process, owning_mm, user_virt, gup_num_pages, flags, local_page_list, NULL, NULL); up_read(&owning_mm->mmap_sem); if (npages < 0) { if (npages != -EAGAIN) pr_warn("fail to get %zu user pages with error %d\n", gup_num_pages, npages); else pr_debug("fail to get %zu user pages with error %d\n", gup_num_pages, npages); break; } bcnt -= min_t(size_t, npages << PAGE_SHIFT, bcnt); mutex_lock(&umem_odp->umem_mutex); for (j = 0; j < npages; j++, user_virt += PAGE_SIZE) { if (user_virt & ~page_mask) { p += PAGE_SIZE; if (page_to_phys(local_page_list[j]) != p) { ret = -EFAULT; break; } put_user_page(local_page_list[j]); continue; } ret = ib_umem_odp_map_dma_single_page( umem_odp, k, local_page_list[j], access_mask, current_seq); if (ret < 0) { if (ret != -EAGAIN) pr_warn("ib_umem_odp_map_dma_single_page failed with error %d\n", ret); else pr_debug("ib_umem_odp_map_dma_single_page failed with error %d\n", ret); break; } p = page_to_phys(local_page_list[j]); k++; } mutex_unlock(&umem_odp->umem_mutex); if (ret < 0) { /* * Release pages, remembering that the first page * to hit an error was already released by * ib_umem_odp_map_dma_single_page(). */ if (npages - (j + 1) > 0) put_user_pages(&local_page_list[j+1], npages - (j + 1)); break; } } if (ret >= 0) { if (npages < 0 && k == start_idx) ret = npages; else ret = k - start_idx; } mmput(owning_mm); out_put_task: if (owning_process) put_task_struct(owning_process); free_page((unsigned long)local_page_list); return ret; } EXPORT_SYMBOL(ib_umem_odp_map_dma_pages); void ib_umem_odp_unmap_dma_pages(struct ib_umem_odp *umem_odp, u64 virt, u64 bound) { int idx; u64 addr; struct ib_device *dev = umem_odp->umem.context->device; virt = max_t(u64, virt, ib_umem_start(umem_odp)); bound = min_t(u64, bound, ib_umem_end(umem_odp)); /* Note that during the run of this function, the * notifiers_count of the MR is > 0, preventing any racing * faults from completion. We might be racing with other * invalidations, so we must make sure we free each page only * once. */ mutex_lock(&umem_odp->umem_mutex); for (addr = virt; addr < bound; addr += BIT(umem_odp->page_shift)) { idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift; if (umem_odp->page_list[idx]) { struct page *page = umem_odp->page_list[idx]; dma_addr_t dma = umem_odp->dma_list[idx]; dma_addr_t dma_addr = dma & ODP_DMA_ADDR_MASK; WARN_ON(!dma_addr); ib_dma_unmap_page(dev, dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL); if (dma & ODP_WRITE_ALLOWED_BIT) { struct page *head_page = compound_head(page); /* * set_page_dirty prefers being called with * the page lock. However, MMU notifiers are * called sometimes with and sometimes without * the lock. We rely on the umem_mutex instead * to prevent other mmu notifiers from * continuing and allowing the page mapping to * be removed. */ set_page_dirty(head_page); } umem_odp->page_list[idx] = NULL; umem_odp->dma_list[idx] = 0; umem_odp->npages--; } } mutex_unlock(&umem_odp->umem_mutex); } EXPORT_SYMBOL(ib_umem_odp_unmap_dma_pages); /* @last is not a part of the interval. See comment for function * node_last. */ int rbt_ib_umem_for_each_in_range(struct rb_root_cached *root, u64 start, u64 last, umem_call_back cb, bool blockable, void *cookie) { int ret_val = 0; struct umem_odp_node *node, *next; struct ib_umem_odp *umem; if (unlikely(start == last)) return ret_val; for (node = rbt_ib_umem_iter_first(root, start, last - 1); node; node = next) { /* TODO move the blockable decision up to the callback */ if (!blockable) return -EAGAIN; next = rbt_ib_umem_iter_next(node, start, last - 1); umem = container_of(node, struct ib_umem_odp, interval_tree); ret_val = cb(umem, start, last, cookie) || ret_val; } return ret_val; } EXPORT_SYMBOL(rbt_ib_umem_for_each_in_range); struct ib_umem_odp *rbt_ib_umem_lookup(struct rb_root_cached *root, u64 addr, u64 length) { struct umem_odp_node *node; node = rbt_ib_umem_iter_first(root, addr, addr + length - 1); if (node) return container_of(node, struct ib_umem_odp, interval_tree); return NULL; } EXPORT_SYMBOL(rbt_ib_umem_lookup);