// SPDX-License-Identifier: GPL-2.0 /* * Silicon Laboratories CP210x USB to RS232 serial adaptor driver * * Copyright (C) 2005 Craig Shelley (craig@microtron.org.uk) * Copyright (C) 2010-2021 Johan Hovold (johan@kernel.org) * * Support to set flow control line levels using TIOCMGET and TIOCMSET * thanks to Karl Hiramoto karl@hiramoto.org. RTSCTS hardware flow * control thanks to Munir Nassar nassarmu@real-time.com * */ #include #include #include #include #include #include #include #include #include #include #include #define DRIVER_DESC "Silicon Labs CP210x RS232 serial adaptor driver" /* * Function Prototypes */ static int cp210x_open(struct tty_struct *tty, struct usb_serial_port *); static void cp210x_close(struct usb_serial_port *); static void cp210x_change_speed(struct tty_struct *, struct usb_serial_port *, struct ktermios *); static void cp210x_set_termios(struct tty_struct *, struct usb_serial_port *, struct ktermios*); static bool cp210x_tx_empty(struct usb_serial_port *port); static int cp210x_tiocmget(struct tty_struct *); static int cp210x_tiocmset(struct tty_struct *, unsigned int, unsigned int); static int cp210x_tiocmset_port(struct usb_serial_port *port, unsigned int, unsigned int); static void cp210x_break_ctl(struct tty_struct *, int); static int cp210x_attach(struct usb_serial *); static void cp210x_disconnect(struct usb_serial *); static void cp210x_release(struct usb_serial *); static int cp210x_port_probe(struct usb_serial_port *); static void cp210x_port_remove(struct usb_serial_port *); static void cp210x_dtr_rts(struct usb_serial_port *port, int on); static void cp210x_process_read_urb(struct urb *urb); static void cp210x_enable_event_mode(struct usb_serial_port *port); static void cp210x_disable_event_mode(struct usb_serial_port *port); static const struct usb_device_id id_table[] = { { USB_DEVICE(0x045B, 0x0053) }, /* Renesas RX610 RX-Stick */ { USB_DEVICE(0x0471, 0x066A) }, /* AKTAKOM ACE-1001 cable */ { USB_DEVICE(0x0489, 0xE000) }, /* Pirelli Broadband S.p.A, DP-L10 SIP/GSM Mobile */ { USB_DEVICE(0x0489, 0xE003) }, /* Pirelli Broadband S.p.A, DP-L10 SIP/GSM Mobile */ { USB_DEVICE(0x0745, 0x1000) }, /* CipherLab USB CCD Barcode Scanner 1000 */ { USB_DEVICE(0x0846, 0x1100) }, /* NetGear Managed Switch M4100 series, M5300 series, M7100 series */ { USB_DEVICE(0x08e6, 0x5501) }, /* Gemalto Prox-PU/CU contactless smartcard reader */ { USB_DEVICE(0x08FD, 0x000A) }, /* Digianswer A/S , ZigBee/802.15.4 MAC Device */ { USB_DEVICE(0x0908, 0x01FF) }, /* Siemens RUGGEDCOM USB Serial Console */ { USB_DEVICE(0x0988, 0x0578) }, /* Teraoka AD2000 */ { USB_DEVICE(0x0B00, 0x3070) }, /* Ingenico 3070 */ { USB_DEVICE(0x0BED, 0x1100) }, /* MEI (TM) Cashflow-SC Bill/Voucher Acceptor */ { USB_DEVICE(0x0BED, 0x1101) }, /* MEI series 2000 Combo Acceptor */ { USB_DEVICE(0x0FCF, 0x1003) }, /* Dynastream ANT development board */ { USB_DEVICE(0x0FCF, 0x1004) }, /* Dynastream ANT2USB */ { USB_DEVICE(0x0FCF, 0x1006) }, /* Dynastream ANT development board */ { USB_DEVICE(0x0FDE, 0xCA05) }, /* OWL Wireless Electricity Monitor CM-160 */ { USB_DEVICE(0x10A6, 0xAA26) }, /* Knock-off DCU-11 cable */ { USB_DEVICE(0x10AB, 0x10C5) }, /* Siemens MC60 Cable */ { USB_DEVICE(0x10B5, 0xAC70) }, /* Nokia CA-42 USB */ { USB_DEVICE(0x10C4, 0x0F91) }, /* Vstabi */ { USB_DEVICE(0x10C4, 0x1101) }, /* Arkham Technology DS101 Bus Monitor */ { USB_DEVICE(0x10C4, 0x1601) }, /* Arkham Technology DS101 Adapter */ { USB_DEVICE(0x10C4, 0x800A) }, /* SPORTident BSM7-D-USB main station */ { USB_DEVICE(0x10C4, 0x803B) }, /* Pololu USB-serial converter */ { USB_DEVICE(0x10C4, 0x8044) }, /* Cygnal Debug Adapter */ { USB_DEVICE(0x10C4, 0x804E) }, /* Software Bisque Paramount ME build-in converter */ { USB_DEVICE(0x10C4, 0x8053) }, /* Enfora EDG1228 */ { USB_DEVICE(0x10C4, 0x8054) }, /* Enfora GSM2228 */ { USB_DEVICE(0x10C4, 0x8056) }, /* Lorenz Messtechnik devices */ { USB_DEVICE(0x10C4, 0x8066) }, /* Argussoft In-System Programmer */ { USB_DEVICE(0x10C4, 0x806F) }, /* IMS USB to RS422 Converter Cable */ { USB_DEVICE(0x10C4, 0x807A) }, /* Crumb128 board */ { USB_DEVICE(0x10C4, 0x80C4) }, /* Cygnal Integrated Products, Inc., Optris infrared thermometer */ { USB_DEVICE(0x10C4, 0x80CA) }, /* Degree Controls Inc */ { USB_DEVICE(0x10C4, 0x80DD) }, /* Tracient RFID */ { USB_DEVICE(0x10C4, 0x80F6) }, /* Suunto sports instrument */ { USB_DEVICE(0x10C4, 0x8115) }, /* Arygon NFC/Mifare Reader */ { USB_DEVICE(0x10C4, 0x813D) }, /* Burnside Telecom Deskmobile */ { USB_DEVICE(0x10C4, 0x813F) }, /* Tams Master Easy Control */ { USB_DEVICE(0x10C4, 0x814A) }, /* West Mountain Radio RIGblaster P&P */ { USB_DEVICE(0x10C4, 0x814B) }, /* West Mountain Radio RIGtalk */ { USB_DEVICE(0x2405, 0x0003) }, /* West Mountain Radio RIGblaster Advantage */ { USB_DEVICE(0x10C4, 0x8156) }, /* B&G H3000 link cable */ { USB_DEVICE(0x10C4, 0x815E) }, /* Helicomm IP-Link 1220-DVM */ { USB_DEVICE(0x10C4, 0x815F) }, /* Timewave HamLinkUSB */ { USB_DEVICE(0x10C4, 0x817C) }, /* CESINEL MEDCAL N Power Quality Monitor */ { USB_DEVICE(0x10C4, 0x817D) }, /* CESINEL MEDCAL NT Power Quality Monitor */ { USB_DEVICE(0x10C4, 0x817E) }, /* CESINEL MEDCAL S Power Quality Monitor */ { USB_DEVICE(0x10C4, 0x818B) }, /* AVIT Research USB to TTL */ { USB_DEVICE(0x10C4, 0x819F) }, /* MJS USB Toslink Switcher */ { USB_DEVICE(0x10C4, 0x81A6) }, /* ThinkOptics WavIt */ { USB_DEVICE(0x10C4, 0x81A9) }, /* Multiplex RC Interface */ { USB_DEVICE(0x10C4, 0x81AC) }, /* MSD Dash Hawk */ { USB_DEVICE(0x10C4, 0x81AD) }, /* INSYS USB Modem */ { USB_DEVICE(0x10C4, 0x81C8) }, /* Lipowsky Industrie Elektronik GmbH, Baby-JTAG */ { USB_DEVICE(0x10C4, 0x81D7) }, /* IAI Corp. RCB-CV-USB USB to RS485 Adaptor */ { USB_DEVICE(0x10C4, 0x81E2) }, /* Lipowsky Industrie Elektronik GmbH, Baby-LIN */ { USB_DEVICE(0x10C4, 0x81E7) }, /* Aerocomm Radio */ { USB_DEVICE(0x10C4, 0x81E8) }, /* Zephyr Bioharness */ { USB_DEVICE(0x10C4, 0x81F2) }, /* C1007 HF band RFID controller */ { USB_DEVICE(0x10C4, 0x8218) }, /* Lipowsky Industrie Elektronik GmbH, HARP-1 */ { USB_DEVICE(0x10C4, 0x822B) }, /* Modem EDGE(GSM) Comander 2 */ { USB_DEVICE(0x10C4, 0x826B) }, /* Cygnal Integrated Products, Inc., Fasttrax GPS demonstration module */ { USB_DEVICE(0x10C4, 0x8281) }, /* Nanotec Plug & Drive */ { USB_DEVICE(0x10C4, 0x8293) }, /* Telegesis ETRX2USB */ { USB_DEVICE(0x10C4, 0x82EF) }, /* CESINEL FALCO 6105 AC Power Supply */ { USB_DEVICE(0x10C4, 0x82F1) }, /* CESINEL MEDCAL EFD Earth Fault Detector */ { USB_DEVICE(0x10C4, 0x82F2) }, /* CESINEL MEDCAL ST Network Analyzer */ { USB_DEVICE(0x10C4, 0x82F4) }, /* Starizona MicroTouch */ { USB_DEVICE(0x10C4, 0x82F9) }, /* Procyon AVS */ { USB_DEVICE(0x10C4, 0x8341) }, /* Siemens MC35PU GPRS Modem */ { USB_DEVICE(0x10C4, 0x8382) }, /* Cygnal Integrated Products, Inc. */ { USB_DEVICE(0x10C4, 0x83A8) }, /* Amber Wireless AMB2560 */ { USB_DEVICE(0x10C4, 0x83AA) }, /* Mark-10 Digital Force Gauge */ { USB_DEVICE(0x10C4, 0x83D8) }, /* DekTec DTA Plus VHF/UHF Booster/Attenuator */ { USB_DEVICE(0x10C4, 0x8411) }, /* Kyocera GPS Module */ { USB_DEVICE(0x10C4, 0x8418) }, /* IRZ Automation Teleport SG-10 GSM/GPRS Modem */ { USB_DEVICE(0x10C4, 0x846E) }, /* BEI USB Sensor Interface (VCP) */ { USB_DEVICE(0x10C4, 0x8470) }, /* Juniper Networks BX Series System Console */ { USB_DEVICE(0x10C4, 0x8477) }, /* Balluff RFID */ { USB_DEVICE(0x10C4, 0x84B6) }, /* Starizona Hyperion */ { USB_DEVICE(0x10C4, 0x851E) }, /* CESINEL MEDCAL PT Network Analyzer */ { USB_DEVICE(0x10C4, 0x85A7) }, /* LifeScan OneTouch Verio IQ */ { USB_DEVICE(0x10C4, 0x85B8) }, /* CESINEL ReCon T Energy Logger */ { USB_DEVICE(0x10C4, 0x85EA) }, /* AC-Services IBUS-IF */ { USB_DEVICE(0x10C4, 0x85EB) }, /* AC-Services CIS-IBUS */ { USB_DEVICE(0x10C4, 0x85F8) }, /* Virtenio Preon32 */ { USB_DEVICE(0x10C4, 0x8664) }, /* AC-Services CAN-IF */ { USB_DEVICE(0x10C4, 0x8665) }, /* AC-Services OBD-IF */ { USB_DEVICE(0x10C4, 0x8856) }, /* CEL EM357 ZigBee USB Stick - LR */ { USB_DEVICE(0x10C4, 0x8857) }, /* CEL EM357 ZigBee USB Stick */ { USB_DEVICE(0x10C4, 0x88A4) }, /* MMB Networks ZigBee USB Device */ { USB_DEVICE(0x10C4, 0x88A5) }, /* Planet Innovation Ingeni ZigBee USB Device */ { USB_DEVICE(0x10C4, 0x88D8) }, /* Acuity Brands nLight Air Adapter */ { USB_DEVICE(0x10C4, 0x88FB) }, /* CESINEL MEDCAL STII Network Analyzer */ { USB_DEVICE(0x10C4, 0x8938) }, /* CESINEL MEDCAL S II Network Analyzer */ { USB_DEVICE(0x10C4, 0x8946) }, /* Ketra N1 Wireless Interface */ { USB_DEVICE(0x10C4, 0x8962) }, /* Brim Brothers charging dock */ { USB_DEVICE(0x10C4, 0x8977) }, /* CEL MeshWorks DevKit Device */ { USB_DEVICE(0x10C4, 0x8998) }, /* KCF Technologies PRN */ { USB_DEVICE(0x10C4, 0x89A4) }, /* CESINEL FTBC Flexible Thyristor Bridge Controller */ { USB_DEVICE(0x10C4, 0x89FB) }, /* Qivicon ZigBee USB Radio Stick */ { USB_DEVICE(0x10C4, 0x8A2A) }, /* HubZ dual ZigBee and Z-Wave dongle */ { USB_DEVICE(0x10C4, 0x8A5E) }, /* CEL EM3588 ZigBee USB Stick Long Range */ { USB_DEVICE(0x10C4, 0x8B34) }, /* Qivicon ZigBee USB Radio Stick */ { USB_DEVICE(0x10C4, 0xEA60) }, /* Silicon Labs factory default */ { USB_DEVICE(0x10C4, 0xEA61) }, /* Silicon Labs factory default */ { USB_DEVICE(0x10C4, 0xEA63) }, /* Silicon Labs Windows Update (CP2101-4/CP2102N) */ { USB_DEVICE(0x10C4, 0xEA70) }, /* Silicon Labs factory default */ { USB_DEVICE(0x10C4, 0xEA71) }, /* Infinity GPS-MIC-1 Radio Monophone */ { USB_DEVICE(0x10C4, 0xEA7A) }, /* Silicon Labs Windows Update (CP2105) */ { USB_DEVICE(0x10C4, 0xEA7B) }, /* Silicon Labs Windows Update (CP2108) */ { USB_DEVICE(0x10C4, 0xF001) }, /* Elan Digital Systems USBscope50 */ { USB_DEVICE(0x10C4, 0xF002) }, /* Elan Digital Systems USBwave12 */ { USB_DEVICE(0x10C4, 0xF003) }, /* Elan Digital Systems USBpulse100 */ { USB_DEVICE(0x10C4, 0xF004) }, /* Elan Digital Systems USBcount50 */ { USB_DEVICE(0x10C5, 0xEA61) }, /* Silicon Labs MobiData GPRS USB Modem */ { USB_DEVICE(0x10CE, 0xEA6A) }, /* Silicon Labs MobiData GPRS USB Modem 100EU */ { USB_DEVICE(0x12B8, 0xEC60) }, /* Link G4 ECU */ { USB_DEVICE(0x12B8, 0xEC62) }, /* Link G4+ ECU */ { USB_DEVICE(0x13AD, 0x9999) }, /* Baltech card reader */ { USB_DEVICE(0x1555, 0x0004) }, /* Owen AC4 USB-RS485 Converter */ { USB_DEVICE(0x155A, 0x1006) }, /* ELDAT Easywave RX09 */ { USB_DEVICE(0x166A, 0x0201) }, /* Clipsal 5500PACA C-Bus Pascal Automation Controller */ { USB_DEVICE(0x166A, 0x0301) }, /* Clipsal 5800PC C-Bus Wireless PC Interface */ { USB_DEVICE(0x166A, 0x0303) }, /* Clipsal 5500PCU C-Bus USB interface */ { USB_DEVICE(0x166A, 0x0304) }, /* Clipsal 5000CT2 C-Bus Black and White Touchscreen */ { USB_DEVICE(0x166A, 0x0305) }, /* Clipsal C-5000CT2 C-Bus Spectrum Colour Touchscreen */ { USB_DEVICE(0x166A, 0x0401) }, /* Clipsal L51xx C-Bus Architectural Dimmer */ { USB_DEVICE(0x166A, 0x0101) }, /* Clipsal 5560884 C-Bus Multi-room Audio Matrix Switcher */ { USB_DEVICE(0x16C0, 0x09B0) }, /* Lunatico Seletek */ { USB_DEVICE(0x16C0, 0x09B1) }, /* Lunatico Seletek */ { USB_DEVICE(0x16D6, 0x0001) }, /* Jablotron serial interface */ { USB_DEVICE(0x16DC, 0x0010) }, /* W-IE-NE-R Plein & Baus GmbH PL512 Power Supply */ { USB_DEVICE(0x16DC, 0x0011) }, /* W-IE-NE-R Plein & Baus GmbH RCM Remote Control for MARATON Power Supply */ { USB_DEVICE(0x16DC, 0x0012) }, /* W-IE-NE-R Plein & Baus GmbH MPOD Multi Channel Power Supply */ { USB_DEVICE(0x16DC, 0x0015) }, /* W-IE-NE-R Plein & Baus GmbH CML Control, Monitoring and Data Logger */ { USB_DEVICE(0x17A8, 0x0001) }, /* Kamstrup Optical Eye/3-wire */ { USB_DEVICE(0x17A8, 0x0005) }, /* Kamstrup M-Bus Master MultiPort 250D */ { USB_DEVICE(0x17F4, 0xAAAA) }, /* Wavesense Jazz blood glucose meter */ { USB_DEVICE(0x1843, 0x0200) }, /* Vaisala USB Instrument Cable */ { USB_DEVICE(0x18EF, 0xE00F) }, /* ELV USB-I2C-Interface */ { USB_DEVICE(0x18EF, 0xE025) }, /* ELV Marble Sound Board 1 */ { USB_DEVICE(0x18EF, 0xE030) }, /* ELV ALC 8xxx Battery Charger */ { USB_DEVICE(0x18EF, 0xE032) }, /* ELV TFD500 Data Logger */ { USB_DEVICE(0x1901, 0x0190) }, /* GE B850 CP2105 Recorder interface */ { USB_DEVICE(0x1901, 0x0193) }, /* GE B650 CP2104 PMC interface */ { USB_DEVICE(0x1901, 0x0194) }, /* GE Healthcare Remote Alarm Box */ { USB_DEVICE(0x1901, 0x0195) }, /* GE B850/B650/B450 CP2104 DP UART interface */ { USB_DEVICE(0x1901, 0x0196) }, /* GE B850 CP2105 DP UART interface */ { USB_DEVICE(0x1901, 0x0197) }, /* GE CS1000 M.2 Key E serial interface */ { USB_DEVICE(0x1901, 0x0198) }, /* GE CS1000 Display serial interface */ { USB_DEVICE(0x199B, 0xBA30) }, /* LORD WSDA-200-USB */ { USB_DEVICE(0x19CF, 0x3000) }, /* Parrot NMEA GPS Flight Recorder */ { USB_DEVICE(0x1ADB, 0x0001) }, /* Schweitzer Engineering C662 Cable */ { USB_DEVICE(0x1B1C, 0x1C00) }, /* Corsair USB Dongle */ { USB_DEVICE(0x1BA4, 0x0002) }, /* Silicon Labs 358x factory default */ { USB_DEVICE(0x1BE3, 0x07A6) }, /* WAGO 750-923 USB Service Cable */ { USB_DEVICE(0x1D6F, 0x0010) }, /* Seluxit ApS RF Dongle */ { USB_DEVICE(0x1E29, 0x0102) }, /* Festo CPX-USB */ { USB_DEVICE(0x1E29, 0x0501) }, /* Festo CMSP */ { USB_DEVICE(0x1FB9, 0x0100) }, /* Lake Shore Model 121 Current Source */ { USB_DEVICE(0x1FB9, 0x0200) }, /* Lake Shore Model 218A Temperature Monitor */ { USB_DEVICE(0x1FB9, 0x0201) }, /* Lake Shore Model 219 Temperature Monitor */ { USB_DEVICE(0x1FB9, 0x0202) }, /* Lake Shore Model 233 Temperature Transmitter */ { USB_DEVICE(0x1FB9, 0x0203) }, /* Lake Shore Model 235 Temperature Transmitter */ { USB_DEVICE(0x1FB9, 0x0300) }, /* Lake Shore Model 335 Temperature Controller */ { USB_DEVICE(0x1FB9, 0x0301) }, /* Lake Shore Model 336 Temperature Controller */ { USB_DEVICE(0x1FB9, 0x0302) }, /* Lake Shore Model 350 Temperature Controller */ { USB_DEVICE(0x1FB9, 0x0303) }, /* Lake Shore Model 371 AC Bridge */ { USB_DEVICE(0x1FB9, 0x0400) }, /* Lake Shore Model 411 Handheld Gaussmeter */ { USB_DEVICE(0x1FB9, 0x0401) }, /* Lake Shore Model 425 Gaussmeter */ { USB_DEVICE(0x1FB9, 0x0402) }, /* Lake Shore Model 455A Gaussmeter */ { USB_DEVICE(0x1FB9, 0x0403) }, /* Lake Shore Model 475A Gaussmeter */ { USB_DEVICE(0x1FB9, 0x0404) }, /* Lake Shore Model 465 Three Axis Gaussmeter */ { USB_DEVICE(0x1FB9, 0x0600) }, /* Lake Shore Model 625A Superconducting MPS */ { USB_DEVICE(0x1FB9, 0x0601) }, /* Lake Shore Model 642A Magnet Power Supply */ { USB_DEVICE(0x1FB9, 0x0602) }, /* Lake Shore Model 648 Magnet Power Supply */ { USB_DEVICE(0x1FB9, 0x0700) }, /* Lake Shore Model 737 VSM Controller */ { USB_DEVICE(0x1FB9, 0x0701) }, /* Lake Shore Model 776 Hall Matrix */ { USB_DEVICE(0x2626, 0xEA60) }, /* Aruba Networks 7xxx USB Serial Console */ { USB_DEVICE(0x3195, 0xF190) }, /* Link Instruments MSO-19 */ { USB_DEVICE(0x3195, 0xF280) }, /* Link Instruments MSO-28 */ { USB_DEVICE(0x3195, 0xF281) }, /* Link Instruments MSO-28 */ { USB_DEVICE(0x3923, 0x7A0B) }, /* National Instruments USB Serial Console */ { USB_DEVICE(0x413C, 0x9500) }, /* DW700 GPS USB interface */ { } /* Terminating Entry */ }; MODULE_DEVICE_TABLE(usb, id_table); struct cp210x_serial_private { #ifdef CONFIG_GPIOLIB struct gpio_chip gc; bool gpio_registered; u16 gpio_pushpull; u16 gpio_altfunc; u16 gpio_input; #endif u8 partnum; u32 fw_version; speed_t min_speed; speed_t max_speed; bool use_actual_rate; bool no_flow_control; }; enum cp210x_event_state { ES_DATA, ES_ESCAPE, ES_LSR, ES_LSR_DATA_0, ES_LSR_DATA_1, ES_MSR }; struct cp210x_port_private { u8 bInterfaceNumber; bool event_mode; enum cp210x_event_state event_state; u8 lsr; struct mutex mutex; bool crtscts; bool dtr; bool rts; }; static struct usb_serial_driver cp210x_device = { .driver = { .owner = THIS_MODULE, .name = "cp210x", }, .id_table = id_table, .num_ports = 1, .bulk_in_size = 256, .bulk_out_size = 256, .open = cp210x_open, .close = cp210x_close, .break_ctl = cp210x_break_ctl, .set_termios = cp210x_set_termios, .tx_empty = cp210x_tx_empty, .throttle = usb_serial_generic_throttle, .unthrottle = usb_serial_generic_unthrottle, .tiocmget = cp210x_tiocmget, .tiocmset = cp210x_tiocmset, .get_icount = usb_serial_generic_get_icount, .attach = cp210x_attach, .disconnect = cp210x_disconnect, .release = cp210x_release, .port_probe = cp210x_port_probe, .port_remove = cp210x_port_remove, .dtr_rts = cp210x_dtr_rts, .process_read_urb = cp210x_process_read_urb, }; static struct usb_serial_driver * const serial_drivers[] = { &cp210x_device, NULL }; /* Config request types */ #define REQTYPE_HOST_TO_INTERFACE 0x41 #define REQTYPE_INTERFACE_TO_HOST 0xc1 #define REQTYPE_HOST_TO_DEVICE 0x40 #define REQTYPE_DEVICE_TO_HOST 0xc0 /* Config request codes */ #define CP210X_IFC_ENABLE 0x00 #define CP210X_SET_BAUDDIV 0x01 #define CP210X_GET_BAUDDIV 0x02 #define CP210X_SET_LINE_CTL 0x03 #define CP210X_GET_LINE_CTL 0x04 #define CP210X_SET_BREAK 0x05 #define CP210X_IMM_CHAR 0x06 #define CP210X_SET_MHS 0x07 #define CP210X_GET_MDMSTS 0x08 #define CP210X_SET_XON 0x09 #define CP210X_SET_XOFF 0x0A #define CP210X_SET_EVENTMASK 0x0B #define CP210X_GET_EVENTMASK 0x0C #define CP210X_SET_CHAR 0x0D #define CP210X_GET_CHARS 0x0E #define CP210X_GET_PROPS 0x0F #define CP210X_GET_COMM_STATUS 0x10 #define CP210X_RESET 0x11 #define CP210X_PURGE 0x12 #define CP210X_SET_FLOW 0x13 #define CP210X_GET_FLOW 0x14 #define CP210X_EMBED_EVENTS 0x15 #define CP210X_GET_EVENTSTATE 0x16 #define CP210X_SET_CHARS 0x19 #define CP210X_GET_BAUDRATE 0x1D #define CP210X_SET_BAUDRATE 0x1E #define CP210X_VENDOR_SPECIFIC 0xFF /* CP210X_IFC_ENABLE */ #define UART_ENABLE 0x0001 #define UART_DISABLE 0x0000 /* CP210X_(SET|GET)_BAUDDIV */ #define BAUD_RATE_GEN_FREQ 0x384000 /* CP210X_(SET|GET)_LINE_CTL */ #define BITS_DATA_MASK 0X0f00 #define BITS_DATA_5 0X0500 #define BITS_DATA_6 0X0600 #define BITS_DATA_7 0X0700 #define BITS_DATA_8 0X0800 #define BITS_DATA_9 0X0900 #define BITS_PARITY_MASK 0x00f0 #define BITS_PARITY_NONE 0x0000 #define BITS_PARITY_ODD 0x0010 #define BITS_PARITY_EVEN 0x0020 #define BITS_PARITY_MARK 0x0030 #define BITS_PARITY_SPACE 0x0040 #define BITS_STOP_MASK 0x000f #define BITS_STOP_1 0x0000 #define BITS_STOP_1_5 0x0001 #define BITS_STOP_2 0x0002 /* CP210X_SET_BREAK */ #define BREAK_ON 0x0001 #define BREAK_OFF 0x0000 /* CP210X_(SET_MHS|GET_MDMSTS) */ #define CONTROL_DTR 0x0001 #define CONTROL_RTS 0x0002 #define CONTROL_CTS 0x0010 #define CONTROL_DSR 0x0020 #define CONTROL_RING 0x0040 #define CONTROL_DCD 0x0080 #define CONTROL_WRITE_DTR 0x0100 #define CONTROL_WRITE_RTS 0x0200 /* CP210X_(GET|SET)_CHARS */ struct cp210x_special_chars { u8 bEofChar; u8 bErrorChar; u8 bBreakChar; u8 bEventChar; u8 bXonChar; u8 bXoffChar; }; /* CP210X_VENDOR_SPECIFIC values */ #define CP210X_READ_2NCONFIG 0x000E #define CP210X_GET_FW_VER_2N 0x0010 #define CP210X_READ_LATCH 0x00C2 #define CP210X_GET_PARTNUM 0x370B #define CP210X_GET_PORTCONFIG 0x370C #define CP210X_GET_DEVICEMODE 0x3711 #define CP210X_WRITE_LATCH 0x37E1 /* Part number definitions */ #define CP210X_PARTNUM_CP2101 0x01 #define CP210X_PARTNUM_CP2102 0x02 #define CP210X_PARTNUM_CP2103 0x03 #define CP210X_PARTNUM_CP2104 0x04 #define CP210X_PARTNUM_CP2105 0x05 #define CP210X_PARTNUM_CP2108 0x08 #define CP210X_PARTNUM_CP2102N_QFN28 0x20 #define CP210X_PARTNUM_CP2102N_QFN24 0x21 #define CP210X_PARTNUM_CP2102N_QFN20 0x22 #define CP210X_PARTNUM_UNKNOWN 0xFF /* CP210X_GET_COMM_STATUS returns these 0x13 bytes */ struct cp210x_comm_status { __le32 ulErrors; __le32 ulHoldReasons; __le32 ulAmountInInQueue; __le32 ulAmountInOutQueue; u8 bEofReceived; u8 bWaitForImmediate; u8 bReserved; } __packed; /* * CP210X_PURGE - 16 bits passed in wValue of USB request. * SiLabs app note AN571 gives a strange description of the 4 bits: * bit 0 or bit 2 clears the transmit queue and 1 or 3 receive. * writing 1 to all, however, purges cp2108 well enough to avoid the hang. */ #define PURGE_ALL 0x000f /* CP210X_EMBED_EVENTS */ #define CP210X_ESCCHAR 0xec #define CP210X_LSR_OVERRUN BIT(1) #define CP210X_LSR_PARITY BIT(2) #define CP210X_LSR_FRAME BIT(3) #define CP210X_LSR_BREAK BIT(4) /* CP210X_GET_FLOW/CP210X_SET_FLOW read/write these 0x10 bytes */ struct cp210x_flow_ctl { __le32 ulControlHandshake; __le32 ulFlowReplace; __le32 ulXonLimit; __le32 ulXoffLimit; }; /* cp210x_flow_ctl::ulControlHandshake */ #define CP210X_SERIAL_DTR_MASK GENMASK(1, 0) #define CP210X_SERIAL_DTR_INACTIVE (0 << 0) #define CP210X_SERIAL_DTR_ACTIVE (1 << 0) #define CP210X_SERIAL_DTR_FLOW_CTL (2 << 0) #define CP210X_SERIAL_CTS_HANDSHAKE BIT(3) #define CP210X_SERIAL_DSR_HANDSHAKE BIT(4) #define CP210X_SERIAL_DCD_HANDSHAKE BIT(5) #define CP210X_SERIAL_DSR_SENSITIVITY BIT(6) /* cp210x_flow_ctl::ulFlowReplace */ #define CP210X_SERIAL_AUTO_TRANSMIT BIT(0) #define CP210X_SERIAL_AUTO_RECEIVE BIT(1) #define CP210X_SERIAL_ERROR_CHAR BIT(2) #define CP210X_SERIAL_NULL_STRIPPING BIT(3) #define CP210X_SERIAL_BREAK_CHAR BIT(4) #define CP210X_SERIAL_RTS_MASK GENMASK(7, 6) #define CP210X_SERIAL_RTS_INACTIVE (0 << 6) #define CP210X_SERIAL_RTS_ACTIVE (1 << 6) #define CP210X_SERIAL_RTS_FLOW_CTL (2 << 6) #define CP210X_SERIAL_XOFF_CONTINUE BIT(31) /* CP210X_VENDOR_SPECIFIC, CP210X_GET_DEVICEMODE call reads these 0x2 bytes. */ struct cp210x_pin_mode { u8 eci; u8 sci; }; #define CP210X_PIN_MODE_MODEM 0 #define CP210X_PIN_MODE_GPIO BIT(0) /* * CP210X_VENDOR_SPECIFIC, CP210X_GET_PORTCONFIG call reads these 0xf bytes * on a CP2105 chip. Structure needs padding due to unused/unspecified bytes. */ struct cp210x_dual_port_config { __le16 gpio_mode; u8 __pad0[2]; __le16 reset_state; u8 __pad1[4]; __le16 suspend_state; u8 sci_cfg; u8 eci_cfg; u8 device_cfg; } __packed; /* * CP210X_VENDOR_SPECIFIC, CP210X_GET_PORTCONFIG call reads these 0xd bytes * on a CP2104 chip. Structure needs padding due to unused/unspecified bytes. */ struct cp210x_single_port_config { __le16 gpio_mode; u8 __pad0[2]; __le16 reset_state; u8 __pad1[4]; __le16 suspend_state; u8 device_cfg; } __packed; /* GPIO modes */ #define CP210X_SCI_GPIO_MODE_OFFSET 9 #define CP210X_SCI_GPIO_MODE_MASK GENMASK(11, 9) #define CP210X_ECI_GPIO_MODE_OFFSET 2 #define CP210X_ECI_GPIO_MODE_MASK GENMASK(3, 2) #define CP210X_GPIO_MODE_OFFSET 8 #define CP210X_GPIO_MODE_MASK GENMASK(11, 8) /* CP2105 port configuration values */ #define CP2105_GPIO0_TXLED_MODE BIT(0) #define CP2105_GPIO1_RXLED_MODE BIT(1) #define CP2105_GPIO1_RS485_MODE BIT(2) /* CP2104 port configuration values */ #define CP2104_GPIO0_TXLED_MODE BIT(0) #define CP2104_GPIO1_RXLED_MODE BIT(1) #define CP2104_GPIO2_RS485_MODE BIT(2) struct cp210x_quad_port_state { __le16 gpio_mode_pb0; __le16 gpio_mode_pb1; __le16 gpio_mode_pb2; __le16 gpio_mode_pb3; __le16 gpio_mode_pb4; __le16 gpio_lowpower_pb0; __le16 gpio_lowpower_pb1; __le16 gpio_lowpower_pb2; __le16 gpio_lowpower_pb3; __le16 gpio_lowpower_pb4; __le16 gpio_latch_pb0; __le16 gpio_latch_pb1; __le16 gpio_latch_pb2; __le16 gpio_latch_pb3; __le16 gpio_latch_pb4; }; /* * CP210X_VENDOR_SPECIFIC, CP210X_GET_PORTCONFIG call reads these 0x49 bytes * on a CP2108 chip. * * See https://www.silabs.com/documents/public/application-notes/an978-cp210x-usb-to-uart-api-specification.pdf */ struct cp210x_quad_port_config { struct cp210x_quad_port_state reset_state; struct cp210x_quad_port_state suspend_state; u8 ipdelay_ifc[4]; u8 enhancedfxn_ifc[4]; u8 enhancedfxn_device; u8 extclkfreq[4]; } __packed; #define CP2108_EF_IFC_GPIO_TXLED 0x01 #define CP2108_EF_IFC_GPIO_RXLED 0x02 #define CP2108_EF_IFC_GPIO_RS485 0x04 #define CP2108_EF_IFC_GPIO_RS485_LOGIC 0x08 #define CP2108_EF_IFC_GPIO_CLOCK 0x10 #define CP2108_EF_IFC_DYNAMIC_SUSPEND 0x40 /* CP2102N configuration array indices */ #define CP210X_2NCONFIG_CONFIG_VERSION_IDX 2 #define CP210X_2NCONFIG_GPIO_MODE_IDX 581 #define CP210X_2NCONFIG_GPIO_RSTLATCH_IDX 587 #define CP210X_2NCONFIG_GPIO_CONTROL_IDX 600 /* CP2102N QFN20 port configuration values */ #define CP2102N_QFN20_GPIO2_TXLED_MODE BIT(2) #define CP2102N_QFN20_GPIO3_RXLED_MODE BIT(3) #define CP2102N_QFN20_GPIO1_RS485_MODE BIT(4) #define CP2102N_QFN20_GPIO0_CLK_MODE BIT(6) /* * CP210X_VENDOR_SPECIFIC, CP210X_WRITE_LATCH call writes these 0x02 bytes * for CP2102N, CP2103, CP2104 and CP2105. */ struct cp210x_gpio_write { u8 mask; u8 state; }; /* * CP210X_VENDOR_SPECIFIC, CP210X_WRITE_LATCH call writes these 0x04 bytes * for CP2108. */ struct cp210x_gpio_write16 { __le16 mask; __le16 state; }; /* * Helper to get interface number when we only have struct usb_serial. */ static u8 cp210x_interface_num(struct usb_serial *serial) { struct usb_host_interface *cur_altsetting; cur_altsetting = serial->interface->cur_altsetting; return cur_altsetting->desc.bInterfaceNumber; } /* * Reads a variable-sized block of CP210X_ registers, identified by req. * Returns data into buf in native USB byte order. */ static int cp210x_read_reg_block(struct usb_serial_port *port, u8 req, void *buf, int bufsize) { struct usb_serial *serial = port->serial; struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); void *dmabuf; int result; dmabuf = kmalloc(bufsize, GFP_KERNEL); if (!dmabuf) return -ENOMEM; result = usb_control_msg(serial->dev, usb_rcvctrlpipe(serial->dev, 0), req, REQTYPE_INTERFACE_TO_HOST, 0, port_priv->bInterfaceNumber, dmabuf, bufsize, USB_CTRL_SET_TIMEOUT); if (result == bufsize) { memcpy(buf, dmabuf, bufsize); result = 0; } else { dev_err(&port->dev, "failed get req 0x%x size %d status: %d\n", req, bufsize, result); if (result >= 0) result = -EIO; } kfree(dmabuf); return result; } /* * Reads any 8-bit CP210X_ register identified by req. */ static int cp210x_read_u8_reg(struct usb_serial_port *port, u8 req, u8 *val) { return cp210x_read_reg_block(port, req, val, sizeof(*val)); } /* * Reads a variable-sized vendor block of CP210X_ registers, identified by val. * Returns data into buf in native USB byte order. */ static int cp210x_read_vendor_block(struct usb_serial *serial, u8 type, u16 val, void *buf, int bufsize) { void *dmabuf; int result; dmabuf = kmalloc(bufsize, GFP_KERNEL); if (!dmabuf) return -ENOMEM; result = usb_control_msg(serial->dev, usb_rcvctrlpipe(serial->dev, 0), CP210X_VENDOR_SPECIFIC, type, val, cp210x_interface_num(serial), dmabuf, bufsize, USB_CTRL_GET_TIMEOUT); if (result == bufsize) { memcpy(buf, dmabuf, bufsize); result = 0; } else { dev_err(&serial->interface->dev, "failed to get vendor val 0x%04x size %d: %d\n", val, bufsize, result); if (result >= 0) result = -EIO; } kfree(dmabuf); return result; } /* * Writes any 16-bit CP210X_ register (req) whose value is passed * entirely in the wValue field of the USB request. */ static int cp210x_write_u16_reg(struct usb_serial_port *port, u8 req, u16 val) { struct usb_serial *serial = port->serial; struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); int result; result = usb_control_msg(serial->dev, usb_sndctrlpipe(serial->dev, 0), req, REQTYPE_HOST_TO_INTERFACE, val, port_priv->bInterfaceNumber, NULL, 0, USB_CTRL_SET_TIMEOUT); if (result < 0) { dev_err(&port->dev, "failed set request 0x%x status: %d\n", req, result); } return result; } /* * Writes a variable-sized block of CP210X_ registers, identified by req. * Data in buf must be in native USB byte order. */ static int cp210x_write_reg_block(struct usb_serial_port *port, u8 req, void *buf, int bufsize) { struct usb_serial *serial = port->serial; struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); void *dmabuf; int result; dmabuf = kmemdup(buf, bufsize, GFP_KERNEL); if (!dmabuf) return -ENOMEM; result = usb_control_msg(serial->dev, usb_sndctrlpipe(serial->dev, 0), req, REQTYPE_HOST_TO_INTERFACE, 0, port_priv->bInterfaceNumber, dmabuf, bufsize, USB_CTRL_SET_TIMEOUT); kfree(dmabuf); if (result < 0) { dev_err(&port->dev, "failed set req 0x%x size %d status: %d\n", req, bufsize, result); return result; } return 0; } /* * Writes any 32-bit CP210X_ register identified by req. */ static int cp210x_write_u32_reg(struct usb_serial_port *port, u8 req, u32 val) { __le32 le32_val; le32_val = cpu_to_le32(val); return cp210x_write_reg_block(port, req, &le32_val, sizeof(le32_val)); } #ifdef CONFIG_GPIOLIB /* * Writes a variable-sized vendor block of CP210X_ registers, identified by val. * Data in buf must be in native USB byte order. */ static int cp210x_write_vendor_block(struct usb_serial *serial, u8 type, u16 val, void *buf, int bufsize) { void *dmabuf; int result; dmabuf = kmemdup(buf, bufsize, GFP_KERNEL); if (!dmabuf) return -ENOMEM; result = usb_control_msg(serial->dev, usb_sndctrlpipe(serial->dev, 0), CP210X_VENDOR_SPECIFIC, type, val, cp210x_interface_num(serial), dmabuf, bufsize, USB_CTRL_SET_TIMEOUT); kfree(dmabuf); if (result < 0) { dev_err(&serial->interface->dev, "failed to set vendor val 0x%04x size %d: %d\n", val, bufsize, result); return result; } return 0; } #endif static int cp210x_open(struct tty_struct *tty, struct usb_serial_port *port) { struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); int result; result = cp210x_write_u16_reg(port, CP210X_IFC_ENABLE, UART_ENABLE); if (result) { dev_err(&port->dev, "%s - Unable to enable UART\n", __func__); return result; } if (tty) cp210x_set_termios(tty, port, NULL); result = usb_serial_generic_open(tty, port); if (result) goto err_disable; return 0; err_disable: cp210x_write_u16_reg(port, CP210X_IFC_ENABLE, UART_DISABLE); port_priv->event_mode = false; return result; } static void cp210x_close(struct usb_serial_port *port) { struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); usb_serial_generic_close(port); /* Clear both queues; cp2108 needs this to avoid an occasional hang */ cp210x_write_u16_reg(port, CP210X_PURGE, PURGE_ALL); cp210x_write_u16_reg(port, CP210X_IFC_ENABLE, UART_DISABLE); /* Disabling the interface disables event-insertion mode. */ port_priv->event_mode = false; } static void cp210x_process_lsr(struct usb_serial_port *port, unsigned char lsr, char *flag) { if (lsr & CP210X_LSR_BREAK) { port->icount.brk++; *flag = TTY_BREAK; } else if (lsr & CP210X_LSR_PARITY) { port->icount.parity++; *flag = TTY_PARITY; } else if (lsr & CP210X_LSR_FRAME) { port->icount.frame++; *flag = TTY_FRAME; } if (lsr & CP210X_LSR_OVERRUN) { port->icount.overrun++; tty_insert_flip_char(&port->port, 0, TTY_OVERRUN); } } static bool cp210x_process_char(struct usb_serial_port *port, unsigned char *ch, char *flag) { struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); switch (port_priv->event_state) { case ES_DATA: if (*ch == CP210X_ESCCHAR) { port_priv->event_state = ES_ESCAPE; break; } return false; case ES_ESCAPE: switch (*ch) { case 0: dev_dbg(&port->dev, "%s - escape char\n", __func__); *ch = CP210X_ESCCHAR; port_priv->event_state = ES_DATA; return false; case 1: port_priv->event_state = ES_LSR_DATA_0; break; case 2: port_priv->event_state = ES_LSR; break; case 3: port_priv->event_state = ES_MSR; break; default: dev_err(&port->dev, "malformed event 0x%02x\n", *ch); port_priv->event_state = ES_DATA; break; } break; case ES_LSR_DATA_0: port_priv->lsr = *ch; port_priv->event_state = ES_LSR_DATA_1; break; case ES_LSR_DATA_1: dev_dbg(&port->dev, "%s - lsr = 0x%02x, data = 0x%02x\n", __func__, port_priv->lsr, *ch); cp210x_process_lsr(port, port_priv->lsr, flag); port_priv->event_state = ES_DATA; return false; case ES_LSR: dev_dbg(&port->dev, "%s - lsr = 0x%02x\n", __func__, *ch); port_priv->lsr = *ch; cp210x_process_lsr(port, port_priv->lsr, flag); port_priv->event_state = ES_DATA; break; case ES_MSR: dev_dbg(&port->dev, "%s - msr = 0x%02x\n", __func__, *ch); /* unimplemented */ port_priv->event_state = ES_DATA; break; } return true; } static void cp210x_process_read_urb(struct urb *urb) { struct usb_serial_port *port = urb->context; struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); unsigned char *ch = urb->transfer_buffer; char flag; int i; if (!urb->actual_length) return; if (port_priv->event_mode) { for (i = 0; i < urb->actual_length; i++, ch++) { flag = TTY_NORMAL; if (cp210x_process_char(port, ch, &flag)) continue; tty_insert_flip_char(&port->port, *ch, flag); } } else { tty_insert_flip_string(&port->port, ch, urb->actual_length); } tty_flip_buffer_push(&port->port); } /* * Read how many bytes are waiting in the TX queue. */ static int cp210x_get_tx_queue_byte_count(struct usb_serial_port *port, u32 *count) { struct usb_serial *serial = port->serial; struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); struct cp210x_comm_status *sts; int result; sts = kmalloc(sizeof(*sts), GFP_KERNEL); if (!sts) return -ENOMEM; result = usb_control_msg(serial->dev, usb_rcvctrlpipe(serial->dev, 0), CP210X_GET_COMM_STATUS, REQTYPE_INTERFACE_TO_HOST, 0, port_priv->bInterfaceNumber, sts, sizeof(*sts), USB_CTRL_GET_TIMEOUT); if (result == sizeof(*sts)) { *count = le32_to_cpu(sts->ulAmountInOutQueue); result = 0; } else { dev_err(&port->dev, "failed to get comm status: %d\n", result); if (result >= 0) result = -EIO; } kfree(sts); return result; } static bool cp210x_tx_empty(struct usb_serial_port *port) { int err; u32 count; err = cp210x_get_tx_queue_byte_count(port, &count); if (err) return true; return !count; } struct cp210x_rate { speed_t rate; speed_t high; }; static const struct cp210x_rate cp210x_an205_table1[] = { { 300, 300 }, { 600, 600 }, { 1200, 1200 }, { 1800, 1800 }, { 2400, 2400 }, { 4000, 4000 }, { 4800, 4803 }, { 7200, 7207 }, { 9600, 9612 }, { 14400, 14428 }, { 16000, 16062 }, { 19200, 19250 }, { 28800, 28912 }, { 38400, 38601 }, { 51200, 51558 }, { 56000, 56280 }, { 57600, 58053 }, { 64000, 64111 }, { 76800, 77608 }, { 115200, 117028 }, { 128000, 129347 }, { 153600, 156868 }, { 230400, 237832 }, { 250000, 254234 }, { 256000, 273066 }, { 460800, 491520 }, { 500000, 567138 }, { 576000, 670254 }, { 921600, UINT_MAX } }; /* * Quantises the baud rate as per AN205 Table 1 */ static speed_t cp210x_get_an205_rate(speed_t baud) { int i; for (i = 0; i < ARRAY_SIZE(cp210x_an205_table1); ++i) { if (baud <= cp210x_an205_table1[i].high) break; } return cp210x_an205_table1[i].rate; } static speed_t cp210x_get_actual_rate(speed_t baud) { unsigned int prescale = 1; unsigned int div; if (baud <= 365) prescale = 4; div = DIV_ROUND_CLOSEST(48000000, 2 * prescale * baud); baud = 48000000 / (2 * prescale * div); return baud; } /* * CP2101 supports the following baud rates: * * 300, 600, 1200, 1800, 2400, 4800, 7200, 9600, 14400, 19200, 28800, * 38400, 56000, 57600, 115200, 128000, 230400, 460800, 921600 * * CP2102 and CP2103 support the following additional rates: * * 4000, 16000, 51200, 64000, 76800, 153600, 250000, 256000, 500000, * 576000 * * The device will map a requested rate to a supported one, but the result * of requests for rates greater than 1053257 is undefined (see AN205). * * CP2104, CP2105 and CP2110 support most rates up to 2M, 921k and 1M baud, * respectively, with an error less than 1%. The actual rates are determined * by * * div = round(freq / (2 x prescale x request)) * actual = freq / (2 x prescale x div) * * For CP2104 and CP2105 freq is 48Mhz and prescale is 4 for request <= 365bps * or 1 otherwise. * For CP2110 freq is 24Mhz and prescale is 4 for request <= 300bps or 1 * otherwise. */ static void cp210x_change_speed(struct tty_struct *tty, struct usb_serial_port *port, struct ktermios *old_termios) { struct usb_serial *serial = port->serial; struct cp210x_serial_private *priv = usb_get_serial_data(serial); u32 baud; /* * This maps the requested rate to the actual rate, a valid rate on * cp2102 or cp2103, or to an arbitrary rate in [1M, max_speed]. * * NOTE: B0 is not implemented. */ baud = clamp(tty->termios.c_ospeed, priv->min_speed, priv->max_speed); if (priv->use_actual_rate) baud = cp210x_get_actual_rate(baud); else if (baud < 1000000) baud = cp210x_get_an205_rate(baud); dev_dbg(&port->dev, "%s - setting baud rate to %u\n", __func__, baud); if (cp210x_write_u32_reg(port, CP210X_SET_BAUDRATE, baud)) { dev_warn(&port->dev, "failed to set baud rate to %u\n", baud); if (old_termios) baud = old_termios->c_ospeed; else baud = 9600; } tty_encode_baud_rate(tty, baud, baud); } static void cp210x_enable_event_mode(struct usb_serial_port *port) { struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); int ret; if (port_priv->event_mode) return; port_priv->event_state = ES_DATA; port_priv->event_mode = true; ret = cp210x_write_u16_reg(port, CP210X_EMBED_EVENTS, CP210X_ESCCHAR); if (ret) { dev_err(&port->dev, "failed to enable events: %d\n", ret); port_priv->event_mode = false; } } static void cp210x_disable_event_mode(struct usb_serial_port *port) { struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); int ret; if (!port_priv->event_mode) return; ret = cp210x_write_u16_reg(port, CP210X_EMBED_EVENTS, 0); if (ret) { dev_err(&port->dev, "failed to disable events: %d\n", ret); return; } port_priv->event_mode = false; } static int cp210x_set_chars(struct usb_serial_port *port, struct cp210x_special_chars *chars) { struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); struct usb_serial *serial = port->serial; void *dmabuf; int result; dmabuf = kmemdup(chars, sizeof(*chars), GFP_KERNEL); if (!dmabuf) return -ENOMEM; result = usb_control_msg(serial->dev, usb_sndctrlpipe(serial->dev, 0), CP210X_SET_CHARS, REQTYPE_HOST_TO_INTERFACE, 0, port_priv->bInterfaceNumber, dmabuf, sizeof(*chars), USB_CTRL_SET_TIMEOUT); kfree(dmabuf); if (result < 0) { dev_err(&port->dev, "failed to set special chars: %d\n", result); return result; } return 0; } static bool cp210x_termios_change(const struct ktermios *a, const struct ktermios *b) { bool iflag_change, cc_change; iflag_change = ((a->c_iflag ^ b->c_iflag) & (INPCK | IXON | IXOFF)); cc_change = a->c_cc[VSTART] != b->c_cc[VSTART] || a->c_cc[VSTOP] != b->c_cc[VSTOP]; return tty_termios_hw_change(a, b) || iflag_change || cc_change; } static void cp210x_set_flow_control(struct tty_struct *tty, struct usb_serial_port *port, struct ktermios *old_termios) { struct cp210x_serial_private *priv = usb_get_serial_data(port->serial); struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); struct cp210x_special_chars chars; struct cp210x_flow_ctl flow_ctl; u32 flow_repl; u32 ctl_hs; int ret; /* * Some CP2102N interpret ulXonLimit as ulFlowReplace (erratum * CP2102N_E104). Report back that flow control is not supported. */ if (priv->no_flow_control) { tty->termios.c_cflag &= ~CRTSCTS; tty->termios.c_iflag &= ~(IXON | IXOFF); } if (old_termios && C_CRTSCTS(tty) == (old_termios->c_cflag & CRTSCTS) && I_IXON(tty) == (old_termios->c_iflag & IXON) && I_IXOFF(tty) == (old_termios->c_iflag & IXOFF) && START_CHAR(tty) == old_termios->c_cc[VSTART] && STOP_CHAR(tty) == old_termios->c_cc[VSTOP]) { return; } if (I_IXON(tty) || I_IXOFF(tty)) { memset(&chars, 0, sizeof(chars)); chars.bXonChar = START_CHAR(tty); chars.bXoffChar = STOP_CHAR(tty); ret = cp210x_set_chars(port, &chars); if (ret) return; } mutex_lock(&port_priv->mutex); ret = cp210x_read_reg_block(port, CP210X_GET_FLOW, &flow_ctl, sizeof(flow_ctl)); if (ret) goto out_unlock; ctl_hs = le32_to_cpu(flow_ctl.ulControlHandshake); flow_repl = le32_to_cpu(flow_ctl.ulFlowReplace); ctl_hs &= ~CP210X_SERIAL_DSR_HANDSHAKE; ctl_hs &= ~CP210X_SERIAL_DCD_HANDSHAKE; ctl_hs &= ~CP210X_SERIAL_DSR_SENSITIVITY; ctl_hs &= ~CP210X_SERIAL_DTR_MASK; if (port_priv->dtr) ctl_hs |= CP210X_SERIAL_DTR_ACTIVE; else ctl_hs |= CP210X_SERIAL_DTR_INACTIVE; flow_repl &= ~CP210X_SERIAL_RTS_MASK; if (C_CRTSCTS(tty)) { ctl_hs |= CP210X_SERIAL_CTS_HANDSHAKE; if (port_priv->rts) flow_repl |= CP210X_SERIAL_RTS_FLOW_CTL; else flow_repl |= CP210X_SERIAL_RTS_INACTIVE; port_priv->crtscts = true; } else { ctl_hs &= ~CP210X_SERIAL_CTS_HANDSHAKE; if (port_priv->rts) flow_repl |= CP210X_SERIAL_RTS_ACTIVE; else flow_repl |= CP210X_SERIAL_RTS_INACTIVE; port_priv->crtscts = false; } if (I_IXOFF(tty)) { flow_repl |= CP210X_SERIAL_AUTO_RECEIVE; flow_ctl.ulXonLimit = cpu_to_le32(128); flow_ctl.ulXoffLimit = cpu_to_le32(128); } else { flow_repl &= ~CP210X_SERIAL_AUTO_RECEIVE; } if (I_IXON(tty)) flow_repl |= CP210X_SERIAL_AUTO_TRANSMIT; else flow_repl &= ~CP210X_SERIAL_AUTO_TRANSMIT; dev_dbg(&port->dev, "%s - ctrl = 0x%02x, flow = 0x%02x\n", __func__, ctl_hs, flow_repl); flow_ctl.ulControlHandshake = cpu_to_le32(ctl_hs); flow_ctl.ulFlowReplace = cpu_to_le32(flow_repl); cp210x_write_reg_block(port, CP210X_SET_FLOW, &flow_ctl, sizeof(flow_ctl)); out_unlock: mutex_unlock(&port_priv->mutex); } static void cp210x_set_termios(struct tty_struct *tty, struct usb_serial_port *port, struct ktermios *old_termios) { struct cp210x_serial_private *priv = usb_get_serial_data(port->serial); u16 bits; int ret; if (old_termios && !cp210x_termios_change(&tty->termios, old_termios)) return; if (!old_termios || tty->termios.c_ospeed != old_termios->c_ospeed) cp210x_change_speed(tty, port, old_termios); /* CP2101 only supports CS8, 1 stop bit and non-stick parity. */ if (priv->partnum == CP210X_PARTNUM_CP2101) { tty->termios.c_cflag &= ~(CSIZE | CSTOPB | CMSPAR); tty->termios.c_cflag |= CS8; } bits = 0; switch (C_CSIZE(tty)) { case CS5: bits |= BITS_DATA_5; break; case CS6: bits |= BITS_DATA_6; break; case CS7: bits |= BITS_DATA_7; break; case CS8: default: bits |= BITS_DATA_8; break; } if (C_PARENB(tty)) { if (C_CMSPAR(tty)) { if (C_PARODD(tty)) bits |= BITS_PARITY_MARK; else bits |= BITS_PARITY_SPACE; } else { if (C_PARODD(tty)) bits |= BITS_PARITY_ODD; else bits |= BITS_PARITY_EVEN; } } if (C_CSTOPB(tty)) bits |= BITS_STOP_2; else bits |= BITS_STOP_1; ret = cp210x_write_u16_reg(port, CP210X_SET_LINE_CTL, bits); if (ret) dev_err(&port->dev, "failed to set line control: %d\n", ret); cp210x_set_flow_control(tty, port, old_termios); /* * Enable event-insertion mode only if input parity checking is * enabled for now. */ if (I_INPCK(tty)) cp210x_enable_event_mode(port); else cp210x_disable_event_mode(port); } static int cp210x_tiocmset(struct tty_struct *tty, unsigned int set, unsigned int clear) { struct usb_serial_port *port = tty->driver_data; return cp210x_tiocmset_port(port, set, clear); } static int cp210x_tiocmset_port(struct usb_serial_port *port, unsigned int set, unsigned int clear) { struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); struct cp210x_flow_ctl flow_ctl; u32 ctl_hs, flow_repl; u16 control = 0; int ret; mutex_lock(&port_priv->mutex); if (set & TIOCM_RTS) { port_priv->rts = true; control |= CONTROL_RTS; control |= CONTROL_WRITE_RTS; } if (set & TIOCM_DTR) { port_priv->dtr = true; control |= CONTROL_DTR; control |= CONTROL_WRITE_DTR; } if (clear & TIOCM_RTS) { port_priv->rts = false; control &= ~CONTROL_RTS; control |= CONTROL_WRITE_RTS; } if (clear & TIOCM_DTR) { port_priv->dtr = false; control &= ~CONTROL_DTR; control |= CONTROL_WRITE_DTR; } /* * Use SET_FLOW to set DTR and enable/disable auto-RTS when hardware * flow control is enabled. */ if (port_priv->crtscts && control & CONTROL_WRITE_RTS) { ret = cp210x_read_reg_block(port, CP210X_GET_FLOW, &flow_ctl, sizeof(flow_ctl)); if (ret) goto out_unlock; ctl_hs = le32_to_cpu(flow_ctl.ulControlHandshake); flow_repl = le32_to_cpu(flow_ctl.ulFlowReplace); ctl_hs &= ~CP210X_SERIAL_DTR_MASK; if (port_priv->dtr) ctl_hs |= CP210X_SERIAL_DTR_ACTIVE; else ctl_hs |= CP210X_SERIAL_DTR_INACTIVE; flow_repl &= ~CP210X_SERIAL_RTS_MASK; if (port_priv->rts) flow_repl |= CP210X_SERIAL_RTS_FLOW_CTL; else flow_repl |= CP210X_SERIAL_RTS_INACTIVE; flow_ctl.ulControlHandshake = cpu_to_le32(ctl_hs); flow_ctl.ulFlowReplace = cpu_to_le32(flow_repl); dev_dbg(&port->dev, "%s - ctrl = 0x%02x, flow = 0x%02x\n", __func__, ctl_hs, flow_repl); ret = cp210x_write_reg_block(port, CP210X_SET_FLOW, &flow_ctl, sizeof(flow_ctl)); } else { dev_dbg(&port->dev, "%s - control = 0x%04x\n", __func__, control); ret = cp210x_write_u16_reg(port, CP210X_SET_MHS, control); } out_unlock: mutex_unlock(&port_priv->mutex); return ret; } static void cp210x_dtr_rts(struct usb_serial_port *port, int on) { if (on) cp210x_tiocmset_port(port, TIOCM_DTR | TIOCM_RTS, 0); else cp210x_tiocmset_port(port, 0, TIOCM_DTR | TIOCM_RTS); } static int cp210x_tiocmget(struct tty_struct *tty) { struct usb_serial_port *port = tty->driver_data; u8 control; int result; result = cp210x_read_u8_reg(port, CP210X_GET_MDMSTS, &control); if (result) return result; result = ((control & CONTROL_DTR) ? TIOCM_DTR : 0) |((control & CONTROL_RTS) ? TIOCM_RTS : 0) |((control & CONTROL_CTS) ? TIOCM_CTS : 0) |((control & CONTROL_DSR) ? TIOCM_DSR : 0) |((control & CONTROL_RING)? TIOCM_RI : 0) |((control & CONTROL_DCD) ? TIOCM_CD : 0); dev_dbg(&port->dev, "%s - control = 0x%02x\n", __func__, control); return result; } static void cp210x_break_ctl(struct tty_struct *tty, int break_state) { struct usb_serial_port *port = tty->driver_data; u16 state; if (break_state == 0) state = BREAK_OFF; else state = BREAK_ON; dev_dbg(&port->dev, "%s - turning break %s\n", __func__, state == BREAK_OFF ? "off" : "on"); cp210x_write_u16_reg(port, CP210X_SET_BREAK, state); } #ifdef CONFIG_GPIOLIB static int cp210x_gpio_get(struct gpio_chip *gc, unsigned int gpio) { struct usb_serial *serial = gpiochip_get_data(gc); struct cp210x_serial_private *priv = usb_get_serial_data(serial); u8 req_type; u16 mask; int result; int len; result = usb_autopm_get_interface(serial->interface); if (result) return result; switch (priv->partnum) { case CP210X_PARTNUM_CP2105: req_type = REQTYPE_INTERFACE_TO_HOST; len = 1; break; case CP210X_PARTNUM_CP2108: req_type = REQTYPE_INTERFACE_TO_HOST; len = 2; break; default: req_type = REQTYPE_DEVICE_TO_HOST; len = 1; break; } mask = 0; result = cp210x_read_vendor_block(serial, req_type, CP210X_READ_LATCH, &mask, len); usb_autopm_put_interface(serial->interface); if (result < 0) return result; le16_to_cpus(&mask); return !!(mask & BIT(gpio)); } static void cp210x_gpio_set(struct gpio_chip *gc, unsigned int gpio, int value) { struct usb_serial *serial = gpiochip_get_data(gc); struct cp210x_serial_private *priv = usb_get_serial_data(serial); struct cp210x_gpio_write16 buf16; struct cp210x_gpio_write buf; u16 mask, state; u16 wIndex; int result; if (value == 1) state = BIT(gpio); else state = 0; mask = BIT(gpio); result = usb_autopm_get_interface(serial->interface); if (result) goto out; switch (priv->partnum) { case CP210X_PARTNUM_CP2105: buf.mask = (u8)mask; buf.state = (u8)state; result = cp210x_write_vendor_block(serial, REQTYPE_HOST_TO_INTERFACE, CP210X_WRITE_LATCH, &buf, sizeof(buf)); break; case CP210X_PARTNUM_CP2108: buf16.mask = cpu_to_le16(mask); buf16.state = cpu_to_le16(state); result = cp210x_write_vendor_block(serial, REQTYPE_HOST_TO_INTERFACE, CP210X_WRITE_LATCH, &buf16, sizeof(buf16)); break; default: wIndex = state << 8 | mask; result = usb_control_msg(serial->dev, usb_sndctrlpipe(serial->dev, 0), CP210X_VENDOR_SPECIFIC, REQTYPE_HOST_TO_DEVICE, CP210X_WRITE_LATCH, wIndex, NULL, 0, USB_CTRL_SET_TIMEOUT); break; } usb_autopm_put_interface(serial->interface); out: if (result < 0) { dev_err(&serial->interface->dev, "failed to set GPIO value: %d\n", result); } } static int cp210x_gpio_direction_get(struct gpio_chip *gc, unsigned int gpio) { struct usb_serial *serial = gpiochip_get_data(gc); struct cp210x_serial_private *priv = usb_get_serial_data(serial); return priv->gpio_input & BIT(gpio); } static int cp210x_gpio_direction_input(struct gpio_chip *gc, unsigned int gpio) { struct usb_serial *serial = gpiochip_get_data(gc); struct cp210x_serial_private *priv = usb_get_serial_data(serial); if (priv->partnum == CP210X_PARTNUM_CP2105) { /* hardware does not support an input mode */ return -ENOTSUPP; } /* push-pull pins cannot be changed to be inputs */ if (priv->gpio_pushpull & BIT(gpio)) return -EINVAL; /* make sure to release pin if it is being driven low */ cp210x_gpio_set(gc, gpio, 1); priv->gpio_input |= BIT(gpio); return 0; } static int cp210x_gpio_direction_output(struct gpio_chip *gc, unsigned int gpio, int value) { struct usb_serial *serial = gpiochip_get_data(gc); struct cp210x_serial_private *priv = usb_get_serial_data(serial); priv->gpio_input &= ~BIT(gpio); cp210x_gpio_set(gc, gpio, value); return 0; } static int cp210x_gpio_set_config(struct gpio_chip *gc, unsigned int gpio, unsigned long config) { struct usb_serial *serial = gpiochip_get_data(gc); struct cp210x_serial_private *priv = usb_get_serial_data(serial); enum pin_config_param param = pinconf_to_config_param(config); /* Succeed only if in correct mode (this can't be set at runtime) */ if ((param == PIN_CONFIG_DRIVE_PUSH_PULL) && (priv->gpio_pushpull & BIT(gpio))) return 0; if ((param == PIN_CONFIG_DRIVE_OPEN_DRAIN) && !(priv->gpio_pushpull & BIT(gpio))) return 0; return -ENOTSUPP; } static int cp210x_gpio_init_valid_mask(struct gpio_chip *gc, unsigned long *valid_mask, unsigned int ngpios) { struct usb_serial *serial = gpiochip_get_data(gc); struct cp210x_serial_private *priv = usb_get_serial_data(serial); struct device *dev = &serial->interface->dev; unsigned long altfunc_mask = priv->gpio_altfunc; bitmap_complement(valid_mask, &altfunc_mask, ngpios); if (bitmap_empty(valid_mask, ngpios)) dev_dbg(dev, "no pin configured for GPIO\n"); else dev_dbg(dev, "GPIO.%*pbl configured for GPIO\n", ngpios, valid_mask); return 0; } /* * This function is for configuring GPIO using shared pins, where other signals * are made unavailable by configuring the use of GPIO. This is believed to be * only applicable to the cp2105 at this point, the other devices supported by * this driver that provide GPIO do so in a way that does not impact other * signals and are thus expected to have very different initialisation. */ static int cp2105_gpioconf_init(struct usb_serial *serial) { struct cp210x_serial_private *priv = usb_get_serial_data(serial); struct cp210x_pin_mode mode; struct cp210x_dual_port_config config; u8 intf_num = cp210x_interface_num(serial); u8 iface_config; int result; result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, CP210X_GET_DEVICEMODE, &mode, sizeof(mode)); if (result < 0) return result; result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, CP210X_GET_PORTCONFIG, &config, sizeof(config)); if (result < 0) return result; /* 2 banks of GPIO - One for the pins taken from each serial port */ if (intf_num == 0) { if (mode.eci == CP210X_PIN_MODE_MODEM) { /* mark all GPIOs of this interface as reserved */ priv->gpio_altfunc = 0xff; return 0; } iface_config = config.eci_cfg; priv->gpio_pushpull = (u8)((le16_to_cpu(config.gpio_mode) & CP210X_ECI_GPIO_MODE_MASK) >> CP210X_ECI_GPIO_MODE_OFFSET); priv->gc.ngpio = 2; } else if (intf_num == 1) { if (mode.sci == CP210X_PIN_MODE_MODEM) { /* mark all GPIOs of this interface as reserved */ priv->gpio_altfunc = 0xff; return 0; } iface_config = config.sci_cfg; priv->gpio_pushpull = (u8)((le16_to_cpu(config.gpio_mode) & CP210X_SCI_GPIO_MODE_MASK) >> CP210X_SCI_GPIO_MODE_OFFSET); priv->gc.ngpio = 3; } else { return -ENODEV; } /* mark all pins which are not in GPIO mode */ if (iface_config & CP2105_GPIO0_TXLED_MODE) /* GPIO 0 */ priv->gpio_altfunc |= BIT(0); if (iface_config & (CP2105_GPIO1_RXLED_MODE | /* GPIO 1 */ CP2105_GPIO1_RS485_MODE)) priv->gpio_altfunc |= BIT(1); /* driver implementation for CP2105 only supports outputs */ priv->gpio_input = 0; return 0; } static int cp2104_gpioconf_init(struct usb_serial *serial) { struct cp210x_serial_private *priv = usb_get_serial_data(serial); struct cp210x_single_port_config config; u8 iface_config; u8 gpio_latch; int result; u8 i; result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, CP210X_GET_PORTCONFIG, &config, sizeof(config)); if (result < 0) return result; priv->gc.ngpio = 4; iface_config = config.device_cfg; priv->gpio_pushpull = (u8)((le16_to_cpu(config.gpio_mode) & CP210X_GPIO_MODE_MASK) >> CP210X_GPIO_MODE_OFFSET); gpio_latch = (u8)((le16_to_cpu(config.reset_state) & CP210X_GPIO_MODE_MASK) >> CP210X_GPIO_MODE_OFFSET); /* mark all pins which are not in GPIO mode */ if (iface_config & CP2104_GPIO0_TXLED_MODE) /* GPIO 0 */ priv->gpio_altfunc |= BIT(0); if (iface_config & CP2104_GPIO1_RXLED_MODE) /* GPIO 1 */ priv->gpio_altfunc |= BIT(1); if (iface_config & CP2104_GPIO2_RS485_MODE) /* GPIO 2 */ priv->gpio_altfunc |= BIT(2); /* * Like CP2102N, CP2104 has also no strict input and output pin * modes. * Do the same input mode emulation as CP2102N. */ for (i = 0; i < priv->gc.ngpio; ++i) { /* * Set direction to "input" iff pin is open-drain and reset * value is 1. */ if (!(priv->gpio_pushpull & BIT(i)) && (gpio_latch & BIT(i))) priv->gpio_input |= BIT(i); } return 0; } static int cp2108_gpio_init(struct usb_serial *serial) { struct cp210x_serial_private *priv = usb_get_serial_data(serial); struct cp210x_quad_port_config config; u16 gpio_latch; int result; u8 i; result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, CP210X_GET_PORTCONFIG, &config, sizeof(config)); if (result < 0) return result; priv->gc.ngpio = 16; priv->gpio_pushpull = le16_to_cpu(config.reset_state.gpio_mode_pb1); gpio_latch = le16_to_cpu(config.reset_state.gpio_latch_pb1); /* * Mark all pins which are not in GPIO mode. * * Refer to table 9.1 "GPIO Mode alternate Functions" in the datasheet: * https://www.silabs.com/documents/public/data-sheets/cp2108-datasheet.pdf * * Alternate functions of GPIO0 to GPIO3 are determine by enhancedfxn_ifc[0] * and the similarly for the other pins; enhancedfxn_ifc[1]: GPIO4 to GPIO7, * enhancedfxn_ifc[2]: GPIO8 to GPIO11, enhancedfxn_ifc[3]: GPIO12 to GPIO15. */ for (i = 0; i < 4; i++) { if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_TXLED) priv->gpio_altfunc |= BIT(i * 4); if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_RXLED) priv->gpio_altfunc |= BIT((i * 4) + 1); if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_RS485) priv->gpio_altfunc |= BIT((i * 4) + 2); if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_CLOCK) priv->gpio_altfunc |= BIT((i * 4) + 3); } /* * Like CP2102N, CP2108 has also no strict input and output pin * modes. Do the same input mode emulation as CP2102N. */ for (i = 0; i < priv->gc.ngpio; ++i) { /* * Set direction to "input" iff pin is open-drain and reset * value is 1. */ if (!(priv->gpio_pushpull & BIT(i)) && (gpio_latch & BIT(i))) priv->gpio_input |= BIT(i); } return 0; } static int cp2102n_gpioconf_init(struct usb_serial *serial) { struct cp210x_serial_private *priv = usb_get_serial_data(serial); const u16 config_size = 0x02a6; u8 gpio_rst_latch; u8 config_version; u8 gpio_pushpull; u8 *config_buf; u8 gpio_latch; u8 gpio_ctrl; int result; u8 i; /* * Retrieve device configuration from the device. * The array received contains all customization settings done at the * factory/manufacturer. Format of the array is documented at the * time of writing at: * https://www.silabs.com/community/interface/knowledge-base.entry.html/2017/03/31/cp2102n_setconfig-xsfa */ config_buf = kmalloc(config_size, GFP_KERNEL); if (!config_buf) return -ENOMEM; result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, CP210X_READ_2NCONFIG, config_buf, config_size); if (result < 0) { kfree(config_buf); return result; } config_version = config_buf[CP210X_2NCONFIG_CONFIG_VERSION_IDX]; gpio_pushpull = config_buf[CP210X_2NCONFIG_GPIO_MODE_IDX]; gpio_ctrl = config_buf[CP210X_2NCONFIG_GPIO_CONTROL_IDX]; gpio_rst_latch = config_buf[CP210X_2NCONFIG_GPIO_RSTLATCH_IDX]; kfree(config_buf); /* Make sure this is a config format we understand. */ if (config_version != 0x01) return -ENOTSUPP; priv->gc.ngpio = 4; /* * Get default pin states after reset. Needed so we can determine * the direction of an open-drain pin. */ gpio_latch = (gpio_rst_latch >> 3) & 0x0f; /* 0 indicates open-drain mode, 1 is push-pull */ priv->gpio_pushpull = (gpio_pushpull >> 3) & 0x0f; /* 0 indicates GPIO mode, 1 is alternate function */ if (priv->partnum == CP210X_PARTNUM_CP2102N_QFN20) { /* QFN20 is special... */ if (gpio_ctrl & CP2102N_QFN20_GPIO0_CLK_MODE) /* GPIO 0 */ priv->gpio_altfunc |= BIT(0); if (gpio_ctrl & CP2102N_QFN20_GPIO1_RS485_MODE) /* GPIO 1 */ priv->gpio_altfunc |= BIT(1); if (gpio_ctrl & CP2102N_QFN20_GPIO2_TXLED_MODE) /* GPIO 2 */ priv->gpio_altfunc |= BIT(2); if (gpio_ctrl & CP2102N_QFN20_GPIO3_RXLED_MODE) /* GPIO 3 */ priv->gpio_altfunc |= BIT(3); } else { priv->gpio_altfunc = (gpio_ctrl >> 2) & 0x0f; } if (priv->partnum == CP210X_PARTNUM_CP2102N_QFN28) { /* * For the QFN28 package, GPIO4-6 are controlled by * the low three bits of the mode/latch fields. * Contrary to the document linked above, the bits for * the SUSPEND pins are elsewhere. No alternate * function is available for these pins. */ priv->gc.ngpio = 7; gpio_latch |= (gpio_rst_latch & 7) << 4; priv->gpio_pushpull |= (gpio_pushpull & 7) << 4; } /* * The CP2102N does not strictly has input and output pin modes, * it only knows open-drain and push-pull modes which is set at * factory. An open-drain pin can function both as an * input or an output. We emulate input mode for open-drain pins * by making sure they are not driven low, and we do not allow * push-pull pins to be set as an input. */ for (i = 0; i < priv->gc.ngpio; ++i) { /* * Set direction to "input" iff pin is open-drain and reset * value is 1. */ if (!(priv->gpio_pushpull & BIT(i)) && (gpio_latch & BIT(i))) priv->gpio_input |= BIT(i); } return 0; } static int cp210x_gpio_init(struct usb_serial *serial) { struct cp210x_serial_private *priv = usb_get_serial_data(serial); int result; switch (priv->partnum) { case CP210X_PARTNUM_CP2104: result = cp2104_gpioconf_init(serial); break; case CP210X_PARTNUM_CP2105: result = cp2105_gpioconf_init(serial); break; case CP210X_PARTNUM_CP2108: /* * The GPIOs are not tied to any specific port so only register * once for interface 0. */ if (cp210x_interface_num(serial) != 0) return 0; result = cp2108_gpio_init(serial); break; case CP210X_PARTNUM_CP2102N_QFN28: case CP210X_PARTNUM_CP2102N_QFN24: case CP210X_PARTNUM_CP2102N_QFN20: result = cp2102n_gpioconf_init(serial); break; default: return 0; } if (result < 0) return result; priv->gc.label = "cp210x"; priv->gc.get_direction = cp210x_gpio_direction_get; priv->gc.direction_input = cp210x_gpio_direction_input; priv->gc.direction_output = cp210x_gpio_direction_output; priv->gc.get = cp210x_gpio_get; priv->gc.set = cp210x_gpio_set; priv->gc.set_config = cp210x_gpio_set_config; priv->gc.init_valid_mask = cp210x_gpio_init_valid_mask; priv->gc.owner = THIS_MODULE; priv->gc.parent = &serial->interface->dev; priv->gc.base = -1; priv->gc.can_sleep = true; result = gpiochip_add_data(&priv->gc, serial); if (!result) priv->gpio_registered = true; return result; } static void cp210x_gpio_remove(struct usb_serial *serial) { struct cp210x_serial_private *priv = usb_get_serial_data(serial); if (priv->gpio_registered) { gpiochip_remove(&priv->gc); priv->gpio_registered = false; } } #else static int cp210x_gpio_init(struct usb_serial *serial) { return 0; } static void cp210x_gpio_remove(struct usb_serial *serial) { /* Nothing to do */ } #endif static int cp210x_port_probe(struct usb_serial_port *port) { struct usb_serial *serial = port->serial; struct cp210x_port_private *port_priv; port_priv = kzalloc(sizeof(*port_priv), GFP_KERNEL); if (!port_priv) return -ENOMEM; port_priv->bInterfaceNumber = cp210x_interface_num(serial); mutex_init(&port_priv->mutex); usb_set_serial_port_data(port, port_priv); return 0; } static void cp210x_port_remove(struct usb_serial_port *port) { struct cp210x_port_private *port_priv; port_priv = usb_get_serial_port_data(port); kfree(port_priv); } static void cp210x_init_max_speed(struct usb_serial *serial) { struct cp210x_serial_private *priv = usb_get_serial_data(serial); bool use_actual_rate = false; speed_t min = 300; speed_t max; switch (priv->partnum) { case CP210X_PARTNUM_CP2101: max = 921600; break; case CP210X_PARTNUM_CP2102: case CP210X_PARTNUM_CP2103: max = 1000000; break; case CP210X_PARTNUM_CP2104: use_actual_rate = true; max = 2000000; break; case CP210X_PARTNUM_CP2108: max = 2000000; break; case CP210X_PARTNUM_CP2105: if (cp210x_interface_num(serial) == 0) { use_actual_rate = true; max = 2000000; /* ECI */ } else { min = 2400; max = 921600; /* SCI */ } break; case CP210X_PARTNUM_CP2102N_QFN28: case CP210X_PARTNUM_CP2102N_QFN24: case CP210X_PARTNUM_CP2102N_QFN20: use_actual_rate = true; max = 3000000; break; default: max = 2000000; break; } priv->min_speed = min; priv->max_speed = max; priv->use_actual_rate = use_actual_rate; } static int cp210x_get_fw_version(struct usb_serial *serial, u16 value) { struct cp210x_serial_private *priv = usb_get_serial_data(serial); u8 ver[3]; int ret; ret = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, value, ver, sizeof(ver)); if (ret) return ret; dev_dbg(&serial->interface->dev, "%s - %d.%d.%d\n", __func__, ver[0], ver[1], ver[2]); priv->fw_version = ver[0] << 16 | ver[1] << 8 | ver[2]; return 0; } static void cp210x_determine_quirks(struct usb_serial *serial) { struct cp210x_serial_private *priv = usb_get_serial_data(serial); int ret; switch (priv->partnum) { case CP210X_PARTNUM_CP2102N_QFN28: case CP210X_PARTNUM_CP2102N_QFN24: case CP210X_PARTNUM_CP2102N_QFN20: ret = cp210x_get_fw_version(serial, CP210X_GET_FW_VER_2N); if (ret) break; if (priv->fw_version <= 0x10004) priv->no_flow_control = true; break; default: break; } } static int cp210x_attach(struct usb_serial *serial) { int result; struct cp210x_serial_private *priv; priv = kzalloc(sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, CP210X_GET_PARTNUM, &priv->partnum, sizeof(priv->partnum)); if (result < 0) { dev_warn(&serial->interface->dev, "querying part number failed\n"); priv->partnum = CP210X_PARTNUM_UNKNOWN; } usb_set_serial_data(serial, priv); cp210x_determine_quirks(serial); cp210x_init_max_speed(serial); result = cp210x_gpio_init(serial); if (result < 0) { dev_err(&serial->interface->dev, "GPIO initialisation failed: %d\n", result); } return 0; } static void cp210x_disconnect(struct usb_serial *serial) { cp210x_gpio_remove(serial); } static void cp210x_release(struct usb_serial *serial) { struct cp210x_serial_private *priv = usb_get_serial_data(serial); cp210x_gpio_remove(serial); kfree(priv); } module_usb_serial_driver(serial_drivers, id_table); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL v2");