/* * Copyright (c) 2008 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "core.h" #include "hw.h" #include "reg.h" #include "phy.h" static void ath9k_hw_analog_shift_rmw(struct ath_hal *ah, u32 reg, u32 mask, u32 shift, u32 val) { u32 regVal; regVal = REG_READ(ah, reg) & ~mask; regVal |= (val << shift) & mask; REG_WRITE(ah, reg, regVal); if (ah->ah_config.analog_shiftreg) udelay(100); return; } static inline u16 ath9k_hw_fbin2freq(u8 fbin, bool is2GHz) { if (fbin == AR5416_BCHAN_UNUSED) return fbin; return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin)); } static inline int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight, int16_t targetLeft, int16_t targetRight) { int16_t rv; if (srcRight == srcLeft) { rv = targetLeft; } else { rv = (int16_t) (((target - srcLeft) * targetRight + (srcRight - target) * targetLeft) / (srcRight - srcLeft)); } return rv; } static inline bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize, u16 *indexL, u16 *indexR) { u16 i; if (target <= pList[0]) { *indexL = *indexR = 0; return true; } if (target >= pList[listSize - 1]) { *indexL = *indexR = (u16) (listSize - 1); return true; } for (i = 0; i < listSize - 1; i++) { if (pList[i] == target) { *indexL = *indexR = i; return true; } if (target < pList[i + 1]) { *indexL = i; *indexR = (u16) (i + 1); return false; } } return false; } static bool ath9k_hw_eeprom_read(struct ath_hal *ah, u32 off, u16 *data) { (void)REG_READ(ah, AR5416_EEPROM_OFFSET + (off << AR5416_EEPROM_S)); if (!ath9k_hw_wait(ah, AR_EEPROM_STATUS_DATA, AR_EEPROM_STATUS_DATA_BUSY | AR_EEPROM_STATUS_DATA_PROT_ACCESS, 0)) { return false; } *data = MS(REG_READ(ah, AR_EEPROM_STATUS_DATA), AR_EEPROM_STATUS_DATA_VAL); return true; } static int ath9k_hw_flash_map(struct ath_hal *ah) { struct ath_hal_5416 *ahp = AH5416(ah); ahp->ah_cal_mem = ioremap(AR5416_EEPROM_START_ADDR, AR5416_EEPROM_MAX); if (!ahp->ah_cal_mem) { DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "cannot remap eeprom region \n"); return -EIO; } return 0; } static bool ath9k_hw_flash_read(struct ath_hal *ah, u32 off, u16 *data) { struct ath_hal_5416 *ahp = AH5416(ah); *data = ioread16(ahp->ah_cal_mem + off); return true; } static inline bool ath9k_hw_nvram_read(struct ath_hal *ah, u32 off, u16 *data) { if (ath9k_hw_use_flash(ah)) return ath9k_hw_flash_read(ah, off, data); else return ath9k_hw_eeprom_read(ah, off, data); } static bool ath9k_hw_fill_4k_eeprom(struct ath_hal *ah) { #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16)) struct ath_hal_5416 *ahp = AH5416(ah); struct ar5416_eeprom_4k *eep = &ahp->ah_eeprom.map4k; u16 *eep_data; int addr, eep_start_loc = 0; eep_start_loc = 64; if (!ath9k_hw_use_flash(ah)) { DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "Reading from EEPROM, not flash\n"); } eep_data = (u16 *)eep; for (addr = 0; addr < SIZE_EEPROM_4K; addr++) { if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data)) { DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "Unable to read eeprom region \n"); return false; } eep_data++; } return true; #undef SIZE_EEPROM_4K } static bool ath9k_hw_fill_def_eeprom(struct ath_hal *ah) { #define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16)) struct ath_hal_5416 *ahp = AH5416(ah); struct ar5416_eeprom_def *eep = &ahp->ah_eeprom.def; u16 *eep_data; int addr, ar5416_eep_start_loc = 0x100; eep_data = (u16 *)eep; for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) { if (!ath9k_hw_nvram_read(ah, addr + ar5416_eep_start_loc, eep_data)) { DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "Unable to read eeprom region\n"); return false; } eep_data++; } return true; #undef SIZE_EEPROM_DEF } bool (*ath9k_fill_eeprom[]) (struct ath_hal *) = { ath9k_hw_fill_def_eeprom, ath9k_hw_fill_4k_eeprom }; static inline bool ath9k_hw_fill_eeprom(struct ath_hal *ah) { struct ath_hal_5416 *ahp = AH5416(ah); return ath9k_fill_eeprom[ahp->ah_eep_map](ah); } static int ath9k_hw_check_def_eeprom(struct ath_hal *ah) { struct ath_hal_5416 *ahp = AH5416(ah); struct ar5416_eeprom_def *eep = (struct ar5416_eeprom_def *) &ahp->ah_eeprom.def; u16 *eepdata, temp, magic, magic2; u32 sum = 0, el; bool need_swap = false; int i, addr, size; if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) { DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "Reading Magic # failed\n"); return false; } if (!ath9k_hw_use_flash(ah)) { DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "Read Magic = 0x%04X\n", magic); if (magic != AR5416_EEPROM_MAGIC) { magic2 = swab16(magic); if (magic2 == AR5416_EEPROM_MAGIC) { size = sizeof(struct ar5416_eeprom_def); need_swap = true; eepdata = (u16 *) (&ahp->ah_eeprom); for (addr = 0; addr < size / sizeof(u16); addr++) { temp = swab16(*eepdata); *eepdata = temp; eepdata++; DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "0x%04X ", *eepdata); if (((addr + 1) % 6) == 0) DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "\n"); } } else { DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "Invalid EEPROM Magic. " "endianness mismatch.\n"); return -EINVAL; } } } DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "need_swap = %s.\n", need_swap ? "True" : "False"); if (need_swap) el = swab16(ahp->ah_eeprom.def.baseEepHeader.length); else el = ahp->ah_eeprom.def.baseEepHeader.length; if (el > sizeof(struct ar5416_eeprom_def)) el = sizeof(struct ar5416_eeprom_def) / sizeof(u16); else el = el / sizeof(u16); eepdata = (u16 *)(&ahp->ah_eeprom); for (i = 0; i < el; i++) sum ^= *eepdata++; if (need_swap) { u32 integer, j; u16 word; DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "EEPROM Endianness is not native.. Changing \n"); word = swab16(eep->baseEepHeader.length); eep->baseEepHeader.length = word; word = swab16(eep->baseEepHeader.checksum); eep->baseEepHeader.checksum = word; word = swab16(eep->baseEepHeader.version); eep->baseEepHeader.version = word; word = swab16(eep->baseEepHeader.regDmn[0]); eep->baseEepHeader.regDmn[0] = word; word = swab16(eep->baseEepHeader.regDmn[1]); eep->baseEepHeader.regDmn[1] = word; word = swab16(eep->baseEepHeader.rfSilent); eep->baseEepHeader.rfSilent = word; word = swab16(eep->baseEepHeader.blueToothOptions); eep->baseEepHeader.blueToothOptions = word; word = swab16(eep->baseEepHeader.deviceCap); eep->baseEepHeader.deviceCap = word; for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) { struct modal_eep_header *pModal = &eep->modalHeader[j]; integer = swab32(pModal->antCtrlCommon); pModal->antCtrlCommon = integer; for (i = 0; i < AR5416_MAX_CHAINS; i++) { integer = swab32(pModal->antCtrlChain[i]); pModal->antCtrlChain[i] = integer; } for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) { word = swab16(pModal->spurChans[i].spurChan); pModal->spurChans[i].spurChan = word; } } } if (sum != 0xffff || ar5416_get_eep_ver(ahp) != AR5416_EEP_VER || ar5416_get_eep_rev(ahp) < AR5416_EEP_NO_BACK_VER) { DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "Bad EEPROM checksum 0x%x or revision 0x%04x\n", sum, ar5416_get_eep_ver(ahp)); return -EINVAL; } return 0; } static int ath9k_hw_check_4k_eeprom(struct ath_hal *ah) { #define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16)) struct ath_hal_5416 *ahp = AH5416(ah); struct ar5416_eeprom_4k *eep = (struct ar5416_eeprom_4k *) &ahp->ah_eeprom.map4k; u16 *eepdata, temp, magic, magic2; u32 sum = 0, el; bool need_swap = false; int i, addr; if (!ath9k_hw_use_flash(ah)) { if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) { DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "Reading Magic # failed\n"); return false; } DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "Read Magic = 0x%04X\n", magic); if (magic != AR5416_EEPROM_MAGIC) { magic2 = swab16(magic); if (magic2 == AR5416_EEPROM_MAGIC) { need_swap = true; eepdata = (u16 *) (&ahp->ah_eeprom); for (addr = 0; addr < EEPROM_4K_SIZE; addr++) { temp = swab16(*eepdata); *eepdata = temp; eepdata++; DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "0x%04X ", *eepdata); if (((addr + 1) % 6) == 0) DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "\n"); } } else { DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "Invalid EEPROM Magic. " "endianness mismatch.\n"); return -EINVAL; } } } DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "need_swap = %s.\n", need_swap ? "True" : "False"); if (need_swap) el = swab16(ahp->ah_eeprom.map4k.baseEepHeader.length); else el = ahp->ah_eeprom.map4k.baseEepHeader.length; if (el > sizeof(struct ar5416_eeprom_def)) el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16); else el = el / sizeof(u16); eepdata = (u16 *)(&ahp->ah_eeprom); for (i = 0; i < el; i++) sum ^= *eepdata++; if (need_swap) { u32 integer; u16 word; DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "EEPROM Endianness is not native.. Changing \n"); word = swab16(eep->baseEepHeader.length); eep->baseEepHeader.length = word; word = swab16(eep->baseEepHeader.checksum); eep->baseEepHeader.checksum = word; word = swab16(eep->baseEepHeader.version); eep->baseEepHeader.version = word; word = swab16(eep->baseEepHeader.regDmn[0]); eep->baseEepHeader.regDmn[0] = word; word = swab16(eep->baseEepHeader.regDmn[1]); eep->baseEepHeader.regDmn[1] = word; word = swab16(eep->baseEepHeader.rfSilent); eep->baseEepHeader.rfSilent = word; word = swab16(eep->baseEepHeader.blueToothOptions); eep->baseEepHeader.blueToothOptions = word; word = swab16(eep->baseEepHeader.deviceCap); eep->baseEepHeader.deviceCap = word; integer = swab32(eep->modalHeader.antCtrlCommon); eep->modalHeader.antCtrlCommon = integer; for (i = 0; i < AR5416_MAX_CHAINS; i++) { integer = swab32(eep->modalHeader.antCtrlChain[i]); eep->modalHeader.antCtrlChain[i] = integer; } for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) { word = swab16(eep->modalHeader.spurChans[i].spurChan); eep->modalHeader.spurChans[i].spurChan = word; } } if (sum != 0xffff || ar5416_get_eep4k_ver(ahp) != AR5416_EEP_VER || ar5416_get_eep4k_rev(ahp) < AR5416_EEP_NO_BACK_VER) { DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "Bad EEPROM checksum 0x%x or revision 0x%04x\n", sum, ar5416_get_eep4k_ver(ahp)); return -EINVAL; } return 0; #undef EEPROM_4K_SIZE } int (*ath9k_check_eeprom[]) (struct ath_hal *) = { ath9k_hw_check_def_eeprom, ath9k_hw_check_4k_eeprom }; static inline int ath9k_hw_check_eeprom(struct ath_hal *ah) { struct ath_hal_5416 *ahp = AH5416(ah); return ath9k_check_eeprom[ahp->ah_eep_map](ah); } static inline bool ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList, u8 *pVpdList, u16 numIntercepts, u8 *pRetVpdList) { u16 i, k; u8 currPwr = pwrMin; u16 idxL = 0, idxR = 0; for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) { ath9k_hw_get_lower_upper_index(currPwr, pPwrList, numIntercepts, &(idxL), &(idxR)); if (idxR < 1) idxR = 1; if (idxL == numIntercepts - 1) idxL = (u16) (numIntercepts - 2); if (pPwrList[idxL] == pPwrList[idxR]) k = pVpdList[idxL]; else k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] + (pPwrList[idxR] - currPwr) * pVpdList[idxL]) / (pPwrList[idxR] - pPwrList[idxL])); pRetVpdList[i] = (u8) k; currPwr += 2; } return true; } static void ath9k_hw_get_4k_gain_boundaries_pdadcs(struct ath_hal *ah, struct ath9k_channel *chan, struct cal_data_per_freq_4k *pRawDataSet, u8 *bChans, u16 availPiers, u16 tPdGainOverlap, int16_t *pMinCalPower, u16 *pPdGainBoundaries, u8 *pPDADCValues, u16 numXpdGains) { #define TMP_VAL_VPD_TABLE \ ((vpdTableI[i][sizeCurrVpdTable - 1] + (ss - maxIndex + 1) * vpdStep)); int i, j, k; int16_t ss; u16 idxL = 0, idxR = 0, numPiers; static u8 vpdTableL[AR5416_EEP4K_NUM_PD_GAINS] [AR5416_MAX_PWR_RANGE_IN_HALF_DB]; static u8 vpdTableR[AR5416_EEP4K_NUM_PD_GAINS] [AR5416_MAX_PWR_RANGE_IN_HALF_DB]; static u8 vpdTableI[AR5416_EEP4K_NUM_PD_GAINS] [AR5416_MAX_PWR_RANGE_IN_HALF_DB]; u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR; u8 minPwrT4[AR5416_EEP4K_NUM_PD_GAINS]; u8 maxPwrT4[AR5416_EEP4K_NUM_PD_GAINS]; int16_t vpdStep; int16_t tmpVal; u16 sizeCurrVpdTable, maxIndex, tgtIndex; bool match; int16_t minDelta = 0; struct chan_centers centers; #define PD_GAIN_BOUNDARY_DEFAULT 58; ath9k_hw_get_channel_centers(ah, chan, ¢ers); for (numPiers = 0; numPiers < availPiers; numPiers++) { if (bChans[numPiers] == AR5416_BCHAN_UNUSED) break; } match = ath9k_hw_get_lower_upper_index( (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)), bChans, numPiers, &idxL, &idxR); if (match) { for (i = 0; i < numXpdGains; i++) { minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0]; maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4]; ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i], pRawDataSet[idxL].pwrPdg[i], pRawDataSet[idxL].vpdPdg[i], AR5416_EEP4K_PD_GAIN_ICEPTS, vpdTableI[i]); } } else { for (i = 0; i < numXpdGains; i++) { pVpdL = pRawDataSet[idxL].vpdPdg[i]; pPwrL = pRawDataSet[idxL].pwrPdg[i]; pVpdR = pRawDataSet[idxR].vpdPdg[i]; pPwrR = pRawDataSet[idxR].pwrPdg[i]; minPwrT4[i] = max(pPwrL[0], pPwrR[0]); maxPwrT4[i] = min(pPwrL[AR5416_EEP4K_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_EEP4K_PD_GAIN_ICEPTS - 1]); ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL, AR5416_EEP4K_PD_GAIN_ICEPTS, vpdTableL[i]); ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR, AR5416_EEP4K_PD_GAIN_ICEPTS, vpdTableR[i]); for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) { vpdTableI[i][j] = (u8)(ath9k_hw_interpolate((u16) FREQ2FBIN(centers. synth_center, IS_CHAN_2GHZ (chan)), bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j])); } } } *pMinCalPower = (int16_t)(minPwrT4[0] / 2); k = 0; for (i = 0; i < numXpdGains; i++) { if (i == (numXpdGains - 1)) pPdGainBoundaries[i] = (u16)(maxPwrT4[i] / 2); else pPdGainBoundaries[i] = (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4); pPdGainBoundaries[i] = min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]); if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah)) { minDelta = pPdGainBoundaries[0] - 23; pPdGainBoundaries[0] = 23; } else { minDelta = 0; } if (i == 0) { if (AR_SREV_9280_10_OR_LATER(ah)) ss = (int16_t)(0 - (minPwrT4[i] / 2)); else ss = 0; } else { ss = (int16_t)((pPdGainBoundaries[i - 1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta); } vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]); vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep); while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) { tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep); pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal); ss++; } sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1); tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2)); maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable; while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) pPDADCValues[k++] = vpdTableI[i][ss++]; vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]); vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep); if (tgtIndex > maxIndex) { while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) { tmpVal = (int16_t) TMP_VAL_VPD_TABLE; pPDADCValues[k++] = (u8)((tmpVal > 255) ? 255 : tmpVal); ss++; } } } while (i < AR5416_EEP4K_PD_GAINS_IN_MASK) { pPdGainBoundaries[i] = PD_GAIN_BOUNDARY_DEFAULT; i++; } while (k < AR5416_NUM_PDADC_VALUES) { pPDADCValues[k] = pPDADCValues[k - 1]; k++; } return; #undef TMP_VAL_VPD_TABLE } static void ath9k_hw_get_def_gain_boundaries_pdadcs(struct ath_hal *ah, struct ath9k_channel *chan, struct cal_data_per_freq *pRawDataSet, u8 *bChans, u16 availPiers, u16 tPdGainOverlap, int16_t *pMinCalPower, u16 *pPdGainBoundaries, u8 *pPDADCValues, u16 numXpdGains) { int i, j, k; int16_t ss; u16 idxL = 0, idxR = 0, numPiers; static u8 vpdTableL[AR5416_NUM_PD_GAINS] [AR5416_MAX_PWR_RANGE_IN_HALF_DB]; static u8 vpdTableR[AR5416_NUM_PD_GAINS] [AR5416_MAX_PWR_RANGE_IN_HALF_DB]; static u8 vpdTableI[AR5416_NUM_PD_GAINS] [AR5416_MAX_PWR_RANGE_IN_HALF_DB]; u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR; u8 minPwrT4[AR5416_NUM_PD_GAINS]; u8 maxPwrT4[AR5416_NUM_PD_GAINS]; int16_t vpdStep; int16_t tmpVal; u16 sizeCurrVpdTable, maxIndex, tgtIndex; bool match; int16_t minDelta = 0; struct chan_centers centers; ath9k_hw_get_channel_centers(ah, chan, ¢ers); for (numPiers = 0; numPiers < availPiers; numPiers++) { if (bChans[numPiers] == AR5416_BCHAN_UNUSED) break; } match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)), bChans, numPiers, &idxL, &idxR); if (match) { for (i = 0; i < numXpdGains; i++) { minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0]; maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4]; ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i], pRawDataSet[idxL].pwrPdg[i], pRawDataSet[idxL].vpdPdg[i], AR5416_PD_GAIN_ICEPTS, vpdTableI[i]); } } else { for (i = 0; i < numXpdGains; i++) { pVpdL = pRawDataSet[idxL].vpdPdg[i]; pPwrL = pRawDataSet[idxL].pwrPdg[i]; pVpdR = pRawDataSet[idxR].vpdPdg[i]; pPwrR = pRawDataSet[idxR].pwrPdg[i]; minPwrT4[i] = max(pPwrL[0], pPwrR[0]); maxPwrT4[i] = min(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]); ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL, AR5416_PD_GAIN_ICEPTS, vpdTableL[i]); ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR, AR5416_PD_GAIN_ICEPTS, vpdTableR[i]); for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) { vpdTableI[i][j] = (u8)(ath9k_hw_interpolate((u16) FREQ2FBIN(centers. synth_center, IS_CHAN_2GHZ (chan)), bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j])); } } } *pMinCalPower = (int16_t)(minPwrT4[0] / 2); k = 0; for (i = 0; i < numXpdGains; i++) { if (i == (numXpdGains - 1)) pPdGainBoundaries[i] = (u16)(maxPwrT4[i] / 2); else pPdGainBoundaries[i] = (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4); pPdGainBoundaries[i] = min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]); if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah)) { minDelta = pPdGainBoundaries[0] - 23; pPdGainBoundaries[0] = 23; } else { minDelta = 0; } if (i == 0) { if (AR_SREV_9280_10_OR_LATER(ah)) ss = (int16_t)(0 - (minPwrT4[i] / 2)); else ss = 0; } else { ss = (int16_t)((pPdGainBoundaries[i - 1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta); } vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]); vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep); while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) { tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep); pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal); ss++; } sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1); tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2)); maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable; while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) { pPDADCValues[k++] = vpdTableI[i][ss++]; } vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]); vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep); if (tgtIndex > maxIndex) { while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) { tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] + (ss - maxIndex + 1) * vpdStep)); pPDADCValues[k++] = (u8)((tmpVal > 255) ? 255 : tmpVal); ss++; } } } while (i < AR5416_PD_GAINS_IN_MASK) { pPdGainBoundaries[i] = pPdGainBoundaries[i - 1]; i++; } while (k < AR5416_NUM_PDADC_VALUES) { pPDADCValues[k] = pPDADCValues[k - 1]; k++; } return; } static void ath9k_hw_get_legacy_target_powers(struct ath_hal *ah, struct ath9k_channel *chan, struct cal_target_power_leg *powInfo, u16 numChannels, struct cal_target_power_leg *pNewPower, u16 numRates, bool isExtTarget) { struct chan_centers centers; u16 clo, chi; int i; int matchIndex = -1, lowIndex = -1; u16 freq; ath9k_hw_get_channel_centers(ah, chan, ¢ers); freq = (isExtTarget) ? centers.ext_center : centers.ctl_center; if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) { matchIndex = 0; } else { for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) { if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel, IS_CHAN_2GHZ(chan))) { matchIndex = i; break; } else if ((freq < ath9k_hw_fbin2freq(powInfo[i].bChannel, IS_CHAN_2GHZ(chan))) && (freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel, IS_CHAN_2GHZ(chan)))) { lowIndex = i - 1; break; } } if ((matchIndex == -1) && (lowIndex == -1)) matchIndex = i - 1; } if (matchIndex != -1) { *pNewPower = powInfo[matchIndex]; } else { clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel, IS_CHAN_2GHZ(chan)); chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel, IS_CHAN_2GHZ(chan)); for (i = 0; i < numRates; i++) { pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq, clo, chi, powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]); } } } static void ath9k_hw_get_target_powers(struct ath_hal *ah, struct ath9k_channel *chan, struct cal_target_power_ht *powInfo, u16 numChannels, struct cal_target_power_ht *pNewPower, u16 numRates, bool isHt40Target) { struct chan_centers centers; u16 clo, chi; int i; int matchIndex = -1, lowIndex = -1; u16 freq; ath9k_hw_get_channel_centers(ah, chan, ¢ers); freq = isHt40Target ? centers.synth_center : centers.ctl_center; if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) { matchIndex = 0; } else { for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) { if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel, IS_CHAN_2GHZ(chan))) { matchIndex = i; break; } else if ((freq < ath9k_hw_fbin2freq(powInfo[i].bChannel, IS_CHAN_2GHZ(chan))) && (freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel, IS_CHAN_2GHZ(chan)))) { lowIndex = i - 1; break; } } if ((matchIndex == -1) && (lowIndex == -1)) matchIndex = i - 1; } if (matchIndex != -1) { *pNewPower = powInfo[matchIndex]; } else { clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel, IS_CHAN_2GHZ(chan)); chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel, IS_CHAN_2GHZ(chan)); for (i = 0; i < numRates; i++) { pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq, clo, chi, powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]); } } } static u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower, bool is2GHz, int num_band_edges) { u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER; int i; for (i = 0; (i < num_band_edges) && (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) { if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) { twiceMaxEdgePower = pRdEdgesPower[i].tPower; break; } else if ((i > 0) && (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz))) { if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel, is2GHz) < freq && pRdEdgesPower[i - 1].flag) { twiceMaxEdgePower = pRdEdgesPower[i - 1].tPower; } break; } } return twiceMaxEdgePower; } static bool ath9k_hw_set_def_power_cal_table(struct ath_hal *ah, struct ath9k_channel *chan, int16_t *pTxPowerIndexOffset) { struct ath_hal_5416 *ahp = AH5416(ah); struct ar5416_eeprom_def *pEepData = &ahp->ah_eeprom.def; struct cal_data_per_freq *pRawDataset; u8 *pCalBChans = NULL; u16 pdGainOverlap_t2; static u8 pdadcValues[AR5416_NUM_PDADC_VALUES]; u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK]; u16 numPiers, i, j; int16_t tMinCalPower; u16 numXpdGain, xpdMask; u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 }; u32 reg32, regOffset, regChainOffset; int16_t modalIdx; modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0; xpdMask = pEepData->modalHeader[modalIdx].xpdGain; if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= AR5416_EEP_MINOR_VER_2) { pdGainOverlap_t2 = pEepData->modalHeader[modalIdx].pdGainOverlap; } else { pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP)); } if (IS_CHAN_2GHZ(chan)) { pCalBChans = pEepData->calFreqPier2G; numPiers = AR5416_NUM_2G_CAL_PIERS; } else { pCalBChans = pEepData->calFreqPier5G; numPiers = AR5416_NUM_5G_CAL_PIERS; } numXpdGain = 0; for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) { if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) { if (numXpdGain >= AR5416_NUM_PD_GAINS) break; xpdGainValues[numXpdGain] = (u16)(AR5416_PD_GAINS_IN_MASK - i); numXpdGain++; } } REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, (numXpdGain - 1) & 0x3); REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1, xpdGainValues[0]); REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2, xpdGainValues[1]); REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, xpdGainValues[2]); for (i = 0; i < AR5416_MAX_CHAINS; i++) { if (AR_SREV_5416_V20_OR_LATER(ah) && (ahp->ah_rxchainmask == 5 || ahp->ah_txchainmask == 5) && (i != 0)) { regChainOffset = (i == 1) ? 0x2000 : 0x1000; } else regChainOffset = i * 0x1000; if (pEepData->baseEepHeader.txMask & (1 << i)) { if (IS_CHAN_2GHZ(chan)) pRawDataset = pEepData->calPierData2G[i]; else pRawDataset = pEepData->calPierData5G[i]; ath9k_hw_get_def_gain_boundaries_pdadcs(ah, chan, pRawDataset, pCalBChans, numPiers, pdGainOverlap_t2, &tMinCalPower, gainBoundaries, pdadcValues, numXpdGain); if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) { REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset, SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) | SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) | SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) | SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4)); } regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset; for (j = 0; j < 32; j++) { reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) | ((pdadcValues[4 * j + 1] & 0xFF) << 8) | ((pdadcValues[4 * j + 2] & 0xFF) << 16)| ((pdadcValues[4 * j + 3] & 0xFF) << 24); REG_WRITE(ah, regOffset, reg32); DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "PDADC (%d,%4x): %4.4x %8.8x\n", i, regChainOffset, regOffset, reg32); DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "PDADC: Chain %d | PDADC %3d " "Value %3d | PDADC %3d Value %3d | " "PDADC %3d Value %3d | PDADC %3d " "Value %3d |\n", i, 4 * j, pdadcValues[4 * j], 4 * j + 1, pdadcValues[4 * j + 1], 4 * j + 2, pdadcValues[4 * j + 2], 4 * j + 3, pdadcValues[4 * j + 3]); regOffset += 4; } } } *pTxPowerIndexOffset = 0; return true; } static bool ath9k_hw_set_4k_power_cal_table(struct ath_hal *ah, struct ath9k_channel *chan, int16_t *pTxPowerIndexOffset) { struct ath_hal_5416 *ahp = AH5416(ah); struct ar5416_eeprom_4k *pEepData = &ahp->ah_eeprom.map4k; struct cal_data_per_freq_4k *pRawDataset; u8 *pCalBChans = NULL; u16 pdGainOverlap_t2; static u8 pdadcValues[AR5416_NUM_PDADC_VALUES]; u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK]; u16 numPiers, i, j; int16_t tMinCalPower; u16 numXpdGain, xpdMask; u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 }; u32 reg32, regOffset, regChainOffset; xpdMask = pEepData->modalHeader.xpdGain; if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= AR5416_EEP_MINOR_VER_2) { pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap; } else { pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP)); } pCalBChans = pEepData->calFreqPier2G; numPiers = AR5416_NUM_2G_CAL_PIERS; numXpdGain = 0; for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) { if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) { if (numXpdGain >= AR5416_NUM_PD_GAINS) break; xpdGainValues[numXpdGain] = (u16)(AR5416_PD_GAINS_IN_MASK - i); numXpdGain++; } } REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, (numXpdGain - 1) & 0x3); REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1, xpdGainValues[0]); REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2, xpdGainValues[1]); REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, xpdGainValues[2]); for (i = 0; i < AR5416_MAX_CHAINS; i++) { if (AR_SREV_5416_V20_OR_LATER(ah) && (ahp->ah_rxchainmask == 5 || ahp->ah_txchainmask == 5) && (i != 0)) { regChainOffset = (i == 1) ? 0x2000 : 0x1000; } else regChainOffset = i * 0x1000; if (pEepData->baseEepHeader.txMask & (1 << i)) { pRawDataset = pEepData->calPierData2G[i]; ath9k_hw_get_4k_gain_boundaries_pdadcs(ah, chan, pRawDataset, pCalBChans, numPiers, pdGainOverlap_t2, &tMinCalPower, gainBoundaries, pdadcValues, numXpdGain); if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) { REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset, SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) | SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) | SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) | SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4)); } regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset; for (j = 0; j < 32; j++) { reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) | ((pdadcValues[4 * j + 1] & 0xFF) << 8) | ((pdadcValues[4 * j + 2] & 0xFF) << 16)| ((pdadcValues[4 * j + 3] & 0xFF) << 24); REG_WRITE(ah, regOffset, reg32); DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "PDADC (%d,%4x): %4.4x %8.8x\n", i, regChainOffset, regOffset, reg32); DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "PDADC: Chain %d | " "PDADC %3d Value %3d | " "PDADC %3d Value %3d | " "PDADC %3d Value %3d | " "PDADC %3d Value %3d |\n", i, 4 * j, pdadcValues[4 * j], 4 * j + 1, pdadcValues[4 * j + 1], 4 * j + 2, pdadcValues[4 * j + 2], 4 * j + 3, pdadcValues[4 * j + 3]); regOffset += 4; } } } *pTxPowerIndexOffset = 0; return true; } bool ath9k_hw_set_def_power_per_rate_table(struct ath_hal *ah, struct ath9k_channel *chan, int16_t *ratesArray, u16 cfgCtl, u16 AntennaReduction, u16 twiceMaxRegulatoryPower, u16 powerLimit) { #define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6 /* 10*log10(2)*2 */ #define REDUCE_SCALED_POWER_BY_THREE_CHAIN 10 /* 10*log10(3)*2 */ struct ath_hal_5416 *ahp = AH5416(ah); struct ar5416_eeprom_def *pEepData = &ahp->ah_eeprom.def; u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER; static const u16 tpScaleReductionTable[5] = { 0, 3, 6, 9, AR5416_MAX_RATE_POWER }; int i; int16_t twiceLargestAntenna; struct cal_ctl_data *rep; struct cal_target_power_leg targetPowerOfdm, targetPowerCck = { 0, { 0, 0, 0, 0} }; struct cal_target_power_leg targetPowerOfdmExt = { 0, { 0, 0, 0, 0} }, targetPowerCckExt = { 0, { 0, 0, 0, 0 } }; struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = { 0, {0, 0, 0, 0} }; u16 scaledPower = 0, minCtlPower, maxRegAllowedPower; u16 ctlModesFor11a[] = { CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40 }; u16 ctlModesFor11g[] = { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40 }; u16 numCtlModes, *pCtlMode, ctlMode, freq; struct chan_centers centers; int tx_chainmask; u16 twiceMinEdgePower; tx_chainmask = ahp->ah_txchainmask; ath9k_hw_get_channel_centers(ah, chan, ¢ers); twiceLargestAntenna = max( pEepData->modalHeader [IS_CHAN_2GHZ(chan)].antennaGainCh[0], pEepData->modalHeader [IS_CHAN_2GHZ(chan)].antennaGainCh[1]); twiceLargestAntenna = max((u8)twiceLargestAntenna, pEepData->modalHeader [IS_CHAN_2GHZ(chan)].antennaGainCh[2]); twiceLargestAntenna = (int16_t)min(AntennaReduction - twiceLargestAntenna, 0); maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna; if (ah->ah_tpScale != ATH9K_TP_SCALE_MAX) { maxRegAllowedPower -= (tpScaleReductionTable[(ah->ah_tpScale)] * 2); } scaledPower = min(powerLimit, maxRegAllowedPower); switch (ar5416_get_ntxchains(tx_chainmask)) { case 1: break; case 2: scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN; break; case 3: scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN; break; } scaledPower = max((u16)0, scaledPower); if (IS_CHAN_2GHZ(chan)) { numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; pCtlMode = ctlModesFor11g; ath9k_hw_get_legacy_target_powers(ah, chan, pEepData->calTargetPowerCck, AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, false); ath9k_hw_get_legacy_target_powers(ah, chan, pEepData->calTargetPower2G, AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, false); ath9k_hw_get_target_powers(ah, chan, pEepData->calTargetPower2GHT20, AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, false); if (IS_CHAN_HT40(chan)) { numCtlModes = ARRAY_SIZE(ctlModesFor11g); ath9k_hw_get_target_powers(ah, chan, pEepData->calTargetPower2GHT40, AR5416_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, true); ath9k_hw_get_legacy_target_powers(ah, chan, pEepData->calTargetPowerCck, AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, true); ath9k_hw_get_legacy_target_powers(ah, chan, pEepData->calTargetPower2G, AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, true); } } else { numCtlModes = ARRAY_SIZE(ctlModesFor11a) - SUB_NUM_CTL_MODES_AT_5G_40; pCtlMode = ctlModesFor11a; ath9k_hw_get_legacy_target_powers(ah, chan, pEepData->calTargetPower5G, AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdm, 4, false); ath9k_hw_get_target_powers(ah, chan, pEepData->calTargetPower5GHT20, AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerHt20, 8, false); if (IS_CHAN_HT40(chan)) { numCtlModes = ARRAY_SIZE(ctlModesFor11a); ath9k_hw_get_target_powers(ah, chan, pEepData->calTargetPower5GHT40, AR5416_NUM_5G_40_TARGET_POWERS, &targetPowerHt40, 8, true); ath9k_hw_get_legacy_target_powers(ah, chan, pEepData->calTargetPower5G, AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, true); } } for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) { bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) || (pCtlMode[ctlMode] == CTL_2GHT40); if (isHt40CtlMode) freq = centers.synth_center; else if (pCtlMode[ctlMode] & EXT_ADDITIVE) freq = centers.ext_center; else freq = centers.ctl_center; if (ar5416_get_eep_ver(ahp) == 14 && ar5416_get_eep_rev(ahp) <= 2) twiceMaxEdgePower = AR5416_MAX_RATE_POWER; DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT, "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, " "EXT_ADDITIVE %d\n", ctlMode, numCtlModes, isHt40CtlMode, (pCtlMode[ctlMode] & EXT_ADDITIVE)); for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) { DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT, " LOOP-Ctlidx %d: cfgCtl 0x%2.2x " "pCtlMode 0x%2.2x ctlIndex 0x%2.2x " "chan %d\n", i, cfgCtl, pCtlMode[ctlMode], pEepData->ctlIndex[i], chan->channel); if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) || (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) { rep = &(pEepData->ctlData[i]); twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq, rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1], IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES); DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT, " MATCH-EE_IDX %d: ch %d is2 %d " "2xMinEdge %d chainmask %d chains %d\n", i, freq, IS_CHAN_2GHZ(chan), twiceMinEdgePower, tx_chainmask, ar5416_get_ntxchains (tx_chainmask)); if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) { twiceMaxEdgePower = min(twiceMaxEdgePower, twiceMinEdgePower); } else { twiceMaxEdgePower = twiceMinEdgePower; break; } } } minCtlPower = min(twiceMaxEdgePower, scaledPower); DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT, " SEL-Min ctlMode %d pCtlMode %d " "2xMaxEdge %d sP %d minCtlPwr %d\n", ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower, scaledPower, minCtlPower); switch (pCtlMode[ctlMode]) { case CTL_11B: for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) { targetPowerCck.tPow2x[i] = min((u16)targetPowerCck.tPow2x[i], minCtlPower); } break; case CTL_11A: case CTL_11G: for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) { targetPowerOfdm.tPow2x[i] = min((u16)targetPowerOfdm.tPow2x[i], minCtlPower); } break; case CTL_5GHT20: case CTL_2GHT20: for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) { targetPowerHt20.tPow2x[i] = min((u16)targetPowerHt20.tPow2x[i], minCtlPower); } break; case CTL_11B_EXT: targetPowerCckExt.tPow2x[0] = min((u16) targetPowerCckExt.tPow2x[0], minCtlPower); break; case CTL_11A_EXT: case CTL_11G_EXT: targetPowerOfdmExt.tPow2x[0] = min((u16) targetPowerOfdmExt.tPow2x[0], minCtlPower); break; case CTL_5GHT40: case CTL_2GHT40: for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) { targetPowerHt40.tPow2x[i] = min((u16)targetPowerHt40.tPow2x[i], minCtlPower); } break; default: break; } } ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] = ratesArray[rate18mb] = ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0]; ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1]; ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2]; ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3]; ratesArray[rateXr] = targetPowerOfdm.tPow2x[0]; for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i]; if (IS_CHAN_2GHZ(chan)) { ratesArray[rate1l] = targetPowerCck.tPow2x[0]; ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1]; ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2]; ; ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3]; ; } if (IS_CHAN_HT40(chan)) { for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) { ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i]; } ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0]; ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0]; ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0]; if (IS_CHAN_2GHZ(chan)) { ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0]; } } return true; } bool ath9k_hw_set_4k_power_per_rate_table(struct ath_hal *ah, struct ath9k_channel *chan, int16_t *ratesArray, u16 cfgCtl, u16 AntennaReduction, u16 twiceMaxRegulatoryPower, u16 powerLimit) { struct ath_hal_5416 *ahp = AH5416(ah); struct ar5416_eeprom_4k *pEepData = &ahp->ah_eeprom.map4k; u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER; static const u16 tpScaleReductionTable[5] = { 0, 3, 6, 9, AR5416_MAX_RATE_POWER }; int i; int16_t twiceLargestAntenna; struct cal_ctl_data_4k *rep; struct cal_target_power_leg targetPowerOfdm, targetPowerCck = { 0, { 0, 0, 0, 0} }; struct cal_target_power_leg targetPowerOfdmExt = { 0, { 0, 0, 0, 0} }, targetPowerCckExt = { 0, { 0, 0, 0, 0 } }; struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = { 0, {0, 0, 0, 0} }; u16 scaledPower = 0, minCtlPower, maxRegAllowedPower; u16 ctlModesFor11g[] = { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40 }; u16 numCtlModes, *pCtlMode, ctlMode, freq; struct chan_centers centers; int tx_chainmask; u16 twiceMinEdgePower; tx_chainmask = ahp->ah_txchainmask; ath9k_hw_get_channel_centers(ah, chan, ¢ers); twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0]; twiceLargestAntenna = (int16_t)min(AntennaReduction - twiceLargestAntenna, 0); maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna; if (ah->ah_tpScale != ATH9K_TP_SCALE_MAX) { maxRegAllowedPower -= (tpScaleReductionTable[(ah->ah_tpScale)] * 2); } scaledPower = min(powerLimit, maxRegAllowedPower); scaledPower = max((u16)0, scaledPower); numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; pCtlMode = ctlModesFor11g; ath9k_hw_get_legacy_target_powers(ah, chan, pEepData->calTargetPowerCck, AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, false); ath9k_hw_get_legacy_target_powers(ah, chan, pEepData->calTargetPower2G, AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, false); ath9k_hw_get_target_powers(ah, chan, pEepData->calTargetPower2GHT20, AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, false); if (IS_CHAN_HT40(chan)) { numCtlModes = ARRAY_SIZE(ctlModesFor11g); ath9k_hw_get_target_powers(ah, chan, pEepData->calTargetPower2GHT40, AR5416_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, true); ath9k_hw_get_legacy_target_powers(ah, chan, pEepData->calTargetPowerCck, AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, true); ath9k_hw_get_legacy_target_powers(ah, chan, pEepData->calTargetPower2G, AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, true); } for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) { bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) || (pCtlMode[ctlMode] == CTL_2GHT40); if (isHt40CtlMode) freq = centers.synth_center; else if (pCtlMode[ctlMode] & EXT_ADDITIVE) freq = centers.ext_center; else freq = centers.ctl_center; if (ar5416_get_eep_ver(ahp) == 14 && ar5416_get_eep_rev(ahp) <= 2) twiceMaxEdgePower = AR5416_MAX_RATE_POWER; DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT, "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, " "EXT_ADDITIVE %d\n", ctlMode, numCtlModes, isHt40CtlMode, (pCtlMode[ctlMode] & EXT_ADDITIVE)); for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) { DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT, " LOOP-Ctlidx %d: cfgCtl 0x%2.2x " "pCtlMode 0x%2.2x ctlIndex 0x%2.2x " "chan %d\n", i, cfgCtl, pCtlMode[ctlMode], pEepData->ctlIndex[i], chan->channel); if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) || (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) { rep = &(pEepData->ctlData[i]); twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq, rep->ctlEdges[ar5416_get_ntxchains (tx_chainmask) - 1], IS_CHAN_2GHZ(chan), AR5416_EEP4K_NUM_BAND_EDGES); DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT, " MATCH-EE_IDX %d: ch %d is2 %d " "2xMinEdge %d chainmask %d chains %d\n", i, freq, IS_CHAN_2GHZ(chan), twiceMinEdgePower, tx_chainmask, ar5416_get_ntxchains (tx_chainmask)); if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) { twiceMaxEdgePower = min(twiceMaxEdgePower, twiceMinEdgePower); } else { twiceMaxEdgePower = twiceMinEdgePower; break; } } } minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower); DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT, " SEL-Min ctlMode %d pCtlMode %d " "2xMaxEdge %d sP %d minCtlPwr %d\n", ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower, scaledPower, minCtlPower); switch (pCtlMode[ctlMode]) { case CTL_11B: for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) { targetPowerCck.tPow2x[i] = min((u16)targetPowerCck.tPow2x[i], minCtlPower); } break; case CTL_11G: for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) { targetPowerOfdm.tPow2x[i] = min((u16)targetPowerOfdm.tPow2x[i], minCtlPower); } break; case CTL_2GHT20: for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) { targetPowerHt20.tPow2x[i] = min((u16)targetPowerHt20.tPow2x[i], minCtlPower); } break; case CTL_11B_EXT: targetPowerCckExt.tPow2x[0] = min((u16) targetPowerCckExt.tPow2x[0], minCtlPower); break; case CTL_11G_EXT: targetPowerOfdmExt.tPow2x[0] = min((u16) targetPowerOfdmExt.tPow2x[0], minCtlPower); break; case CTL_2GHT40: for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) { targetPowerHt40.tPow2x[i] = min((u16)targetPowerHt40.tPow2x[i], minCtlPower); } break; default: break; } } ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] = ratesArray[rate18mb] = ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0]; ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1]; ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2]; ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3]; ratesArray[rateXr] = targetPowerOfdm.tPow2x[0]; for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i]; ratesArray[rate1l] = targetPowerCck.tPow2x[0]; ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1]; ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2]; ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3]; if (IS_CHAN_HT40(chan)) { for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) { ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i]; } ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0]; ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0]; ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0]; ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0]; } return true; } static int ath9k_hw_def_set_txpower(struct ath_hal *ah, struct ath9k_channel *chan, u16 cfgCtl, u8 twiceAntennaReduction, u8 twiceMaxRegulatoryPower, u8 powerLimit) { struct ath_hal_5416 *ahp = AH5416(ah); struct ar5416_eeprom_def *pEepData = &ahp->ah_eeprom.def; struct modal_eep_header *pModal = &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]); int16_t ratesArray[Ar5416RateSize]; int16_t txPowerIndexOffset = 0; u8 ht40PowerIncForPdadc = 2; int i; memset(ratesArray, 0, sizeof(ratesArray)); if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= AR5416_EEP_MINOR_VER_2) { ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc; } if (!ath9k_hw_set_def_power_per_rate_table(ah, chan, &ratesArray[0], cfgCtl, twiceAntennaReduction, twiceMaxRegulatoryPower, powerLimit)) { DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "ath9k_hw_set_txpower: unable to set " "tx power per rate table\n"); return -EIO; } if (!ath9k_hw_set_def_power_cal_table(ah, chan, &txPowerIndexOffset)) { DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "ath9k_hw_set_txpower: unable to set power table\n"); return -EIO; } for (i = 0; i < ARRAY_SIZE(ratesArray); i++) { ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]); if (ratesArray[i] > AR5416_MAX_RATE_POWER) ratesArray[i] = AR5416_MAX_RATE_POWER; } if (AR_SREV_9280_10_OR_LATER(ah)) { for (i = 0; i < Ar5416RateSize; i++) ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2; } REG_WRITE(ah, AR_PHY_POWER_TX_RATE1, ATH9K_POW_SM(ratesArray[rate18mb], 24) | ATH9K_POW_SM(ratesArray[rate12mb], 16) | ATH9K_POW_SM(ratesArray[rate9mb], 8) | ATH9K_POW_SM(ratesArray[rate6mb], 0)); REG_WRITE(ah, AR_PHY_POWER_TX_RATE2, ATH9K_POW_SM(ratesArray[rate54mb], 24) | ATH9K_POW_SM(ratesArray[rate48mb], 16) | ATH9K_POW_SM(ratesArray[rate36mb], 8) | ATH9K_POW_SM(ratesArray[rate24mb], 0)); if (IS_CHAN_2GHZ(chan)) { REG_WRITE(ah, AR_PHY_POWER_TX_RATE3, ATH9K_POW_SM(ratesArray[rate2s], 24) | ATH9K_POW_SM(ratesArray[rate2l], 16) | ATH9K_POW_SM(ratesArray[rateXr], 8) | ATH9K_POW_SM(ratesArray[rate1l], 0)); REG_WRITE(ah, AR_PHY_POWER_TX_RATE4, ATH9K_POW_SM(ratesArray[rate11s], 24) | ATH9K_POW_SM(ratesArray[rate11l], 16) | ATH9K_POW_SM(ratesArray[rate5_5s], 8) | ATH9K_POW_SM(ratesArray[rate5_5l], 0)); } REG_WRITE(ah, AR_PHY_POWER_TX_RATE5, ATH9K_POW_SM(ratesArray[rateHt20_3], 24) | ATH9K_POW_SM(ratesArray[rateHt20_2], 16) | ATH9K_POW_SM(ratesArray[rateHt20_1], 8) | ATH9K_POW_SM(ratesArray[rateHt20_0], 0)); REG_WRITE(ah, AR_PHY_POWER_TX_RATE6, ATH9K_POW_SM(ratesArray[rateHt20_7], 24) | ATH9K_POW_SM(ratesArray[rateHt20_6], 16) | ATH9K_POW_SM(ratesArray[rateHt20_5], 8) | ATH9K_POW_SM(ratesArray[rateHt20_4], 0)); if (IS_CHAN_HT40(chan)) { REG_WRITE(ah, AR_PHY_POWER_TX_RATE7, ATH9K_POW_SM(ratesArray[rateHt40_3] + ht40PowerIncForPdadc, 24) | ATH9K_POW_SM(ratesArray[rateHt40_2] + ht40PowerIncForPdadc, 16) | ATH9K_POW_SM(ratesArray[rateHt40_1] + ht40PowerIncForPdadc, 8) | ATH9K_POW_SM(ratesArray[rateHt40_0] + ht40PowerIncForPdadc, 0)); REG_WRITE(ah, AR_PHY_POWER_TX_RATE8, ATH9K_POW_SM(ratesArray[rateHt40_7] + ht40PowerIncForPdadc, 24) | ATH9K_POW_SM(ratesArray[rateHt40_6] + ht40PowerIncForPdadc, 16) | ATH9K_POW_SM(ratesArray[rateHt40_5] + ht40PowerIncForPdadc, 8) | ATH9K_POW_SM(ratesArray[rateHt40_4] + ht40PowerIncForPdadc, 0)); REG_WRITE(ah, AR_PHY_POWER_TX_RATE9, ATH9K_POW_SM(ratesArray[rateExtOfdm], 24) | ATH9K_POW_SM(ratesArray[rateExtCck], 16) | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8) | ATH9K_POW_SM(ratesArray[rateDupCck], 0)); } REG_WRITE(ah, AR_PHY_POWER_TX_SUB, ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6) | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0)); i = rate6mb; if (IS_CHAN_HT40(chan)) i = rateHt40_0; else if (IS_CHAN_HT20(chan)) i = rateHt20_0; if (AR_SREV_9280_10_OR_LATER(ah)) ah->ah_maxPowerLevel = ratesArray[i] + AR5416_PWR_TABLE_OFFSET * 2; else ah->ah_maxPowerLevel = ratesArray[i]; return 0; } static int ath9k_hw_4k_set_txpower(struct ath_hal *ah, struct ath9k_channel *chan, u16 cfgCtl, u8 twiceAntennaReduction, u8 twiceMaxRegulatoryPower, u8 powerLimit) { struct ath_hal_5416 *ahp = AH5416(ah); struct ar5416_eeprom_4k *pEepData = &ahp->ah_eeprom.map4k; struct modal_eep_4k_header *pModal = &pEepData->modalHeader; int16_t ratesArray[Ar5416RateSize]; int16_t txPowerIndexOffset = 0; u8 ht40PowerIncForPdadc = 2; int i; memset(ratesArray, 0, sizeof(ratesArray)); if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= AR5416_EEP_MINOR_VER_2) { ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc; } if (!ath9k_hw_set_4k_power_per_rate_table(ah, chan, &ratesArray[0], cfgCtl, twiceAntennaReduction, twiceMaxRegulatoryPower, powerLimit)) { DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "ath9k_hw_set_txpower: unable to set " "tx power per rate table\n"); return -EIO; } if (!ath9k_hw_set_4k_power_cal_table(ah, chan, &txPowerIndexOffset)) { DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "ath9k_hw_set_txpower: unable to set power table\n"); return -EIO; } for (i = 0; i < ARRAY_SIZE(ratesArray); i++) { ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]); if (ratesArray[i] > AR5416_MAX_RATE_POWER) ratesArray[i] = AR5416_MAX_RATE_POWER; } if (AR_SREV_9280_10_OR_LATER(ah)) { for (i = 0; i < Ar5416RateSize; i++) ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2; } REG_WRITE(ah, AR_PHY_POWER_TX_RATE1, ATH9K_POW_SM(ratesArray[rate18mb], 24) | ATH9K_POW_SM(ratesArray[rate12mb], 16) | ATH9K_POW_SM(ratesArray[rate9mb], 8) | ATH9K_POW_SM(ratesArray[rate6mb], 0)); REG_WRITE(ah, AR_PHY_POWER_TX_RATE2, ATH9K_POW_SM(ratesArray[rate54mb], 24) | ATH9K_POW_SM(ratesArray[rate48mb], 16) | ATH9K_POW_SM(ratesArray[rate36mb], 8) | ATH9K_POW_SM(ratesArray[rate24mb], 0)); if (IS_CHAN_2GHZ(chan)) { REG_WRITE(ah, AR_PHY_POWER_TX_RATE3, ATH9K_POW_SM(ratesArray[rate2s], 24) | ATH9K_POW_SM(ratesArray[rate2l], 16) | ATH9K_POW_SM(ratesArray[rateXr], 8) | ATH9K_POW_SM(ratesArray[rate1l], 0)); REG_WRITE(ah, AR_PHY_POWER_TX_RATE4, ATH9K_POW_SM(ratesArray[rate11s], 24) | ATH9K_POW_SM(ratesArray[rate11l], 16) | ATH9K_POW_SM(ratesArray[rate5_5s], 8) | ATH9K_POW_SM(ratesArray[rate5_5l], 0)); } REG_WRITE(ah, AR_PHY_POWER_TX_RATE5, ATH9K_POW_SM(ratesArray[rateHt20_3], 24) | ATH9K_POW_SM(ratesArray[rateHt20_2], 16) | ATH9K_POW_SM(ratesArray[rateHt20_1], 8) | ATH9K_POW_SM(ratesArray[rateHt20_0], 0)); REG_WRITE(ah, AR_PHY_POWER_TX_RATE6, ATH9K_POW_SM(ratesArray[rateHt20_7], 24) | ATH9K_POW_SM(ratesArray[rateHt20_6], 16) | ATH9K_POW_SM(ratesArray[rateHt20_5], 8) | ATH9K_POW_SM(ratesArray[rateHt20_4], 0)); if (IS_CHAN_HT40(chan)) { REG_WRITE(ah, AR_PHY_POWER_TX_RATE7, ATH9K_POW_SM(ratesArray[rateHt40_3] + ht40PowerIncForPdadc, 24) | ATH9K_POW_SM(ratesArray[rateHt40_2] + ht40PowerIncForPdadc, 16) | ATH9K_POW_SM(ratesArray[rateHt40_1] + ht40PowerIncForPdadc, 8) | ATH9K_POW_SM(ratesArray[rateHt40_0] + ht40PowerIncForPdadc, 0)); REG_WRITE(ah, AR_PHY_POWER_TX_RATE8, ATH9K_POW_SM(ratesArray[rateHt40_7] + ht40PowerIncForPdadc, 24) | ATH9K_POW_SM(ratesArray[rateHt40_6] + ht40PowerIncForPdadc, 16) | ATH9K_POW_SM(ratesArray[rateHt40_5] + ht40PowerIncForPdadc, 8) | ATH9K_POW_SM(ratesArray[rateHt40_4] + ht40PowerIncForPdadc, 0)); REG_WRITE(ah, AR_PHY_POWER_TX_RATE9, ATH9K_POW_SM(ratesArray[rateExtOfdm], 24) | ATH9K_POW_SM(ratesArray[rateExtCck], 16) | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8) | ATH9K_POW_SM(ratesArray[rateDupCck], 0)); } i = rate6mb; if (IS_CHAN_HT40(chan)) i = rateHt40_0; else if (IS_CHAN_HT20(chan)) i = rateHt20_0; if (AR_SREV_9280_10_OR_LATER(ah)) ah->ah_maxPowerLevel = ratesArray[i] + AR5416_PWR_TABLE_OFFSET * 2; else ah->ah_maxPowerLevel = ratesArray[i]; return 0; } int (*ath9k_set_txpower[]) (struct ath_hal *, struct ath9k_channel *, u16, u8, u8, u8) = { ath9k_hw_def_set_txpower, ath9k_hw_4k_set_txpower }; int ath9k_hw_set_txpower(struct ath_hal *ah, struct ath9k_channel *chan, u16 cfgCtl, u8 twiceAntennaReduction, u8 twiceMaxRegulatoryPower, u8 powerLimit) { struct ath_hal_5416 *ahp = AH5416(ah); return ath9k_set_txpower[ahp->ah_eep_map](ah, chan, cfgCtl, twiceAntennaReduction, twiceMaxRegulatoryPower, powerLimit); } static void ath9k_hw_set_def_addac(struct ath_hal *ah, struct ath9k_channel *chan) { #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt]) struct modal_eep_header *pModal; struct ath_hal_5416 *ahp = AH5416(ah); struct ar5416_eeprom_def *eep = &ahp->ah_eeprom.def; u8 biaslevel; if (ah->ah_macVersion != AR_SREV_VERSION_9160) return; if (ar5416_get_eep_rev(ahp) < AR5416_EEP_MINOR_VER_7) return; pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]); if (pModal->xpaBiasLvl != 0xff) { biaslevel = pModal->xpaBiasLvl; } else { u16 resetFreqBin, freqBin, freqCount = 0; struct chan_centers centers; ath9k_hw_get_channel_centers(ah, chan, ¢ers); resetFreqBin = FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)); freqBin = XPA_LVL_FREQ(0) & 0xff; biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14); freqCount++; while (freqCount < 3) { if (XPA_LVL_FREQ(freqCount) == 0x0) break; freqBin = XPA_LVL_FREQ(freqCount) & 0xff; if (resetFreqBin >= freqBin) biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14); else break; freqCount++; } } if (IS_CHAN_2GHZ(chan)) { INI_RA(&ahp->ah_iniAddac, 7, 1) = (INI_RA(&ahp->ah_iniAddac, 7, 1) & (~0x18)) | biaslevel << 3; } else { INI_RA(&ahp->ah_iniAddac, 6, 1) = (INI_RA(&ahp->ah_iniAddac, 6, 1) & (~0xc0)) | biaslevel << 6; } #undef XPA_LVL_FREQ } static void ath9k_hw_set_4k_addac(struct ath_hal *ah, struct ath9k_channel *chan) { struct modal_eep_4k_header *pModal; struct ath_hal_5416 *ahp = AH5416(ah); struct ar5416_eeprom_4k *eep = &ahp->ah_eeprom.map4k; u8 biaslevel; if (ah->ah_macVersion != AR_SREV_VERSION_9160) return; if (ar5416_get_eep_rev(ahp) < AR5416_EEP_MINOR_VER_7) return; pModal = &eep->modalHeader; if (pModal->xpaBiasLvl != 0xff) { biaslevel = pModal->xpaBiasLvl; INI_RA(&ahp->ah_iniAddac, 7, 1) = (INI_RA(&ahp->ah_iniAddac, 7, 1) & (~0x18)) | biaslevel << 3; } } void (*ath9k_set_addac[]) (struct ath_hal *, struct ath9k_channel *) = { ath9k_hw_set_def_addac, ath9k_hw_set_4k_addac }; void ath9k_hw_set_addac(struct ath_hal *ah, struct ath9k_channel *chan) { struct ath_hal_5416 *ahp = AH5416(ah); ath9k_set_addac[ahp->ah_eep_map](ah, chan); } /* XXX: Clean me up, make me more legible */ static bool ath9k_hw_eeprom_set_def_board_values(struct ath_hal *ah, struct ath9k_channel *chan) { struct modal_eep_header *pModal; struct ath_hal_5416 *ahp = AH5416(ah); struct ar5416_eeprom_def *eep = &ahp->ah_eeprom.def; int i, regChainOffset; u8 txRxAttenLocal; u16 ant_config; pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]); txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44; ath9k_hw_get_eeprom_antenna_cfg(ah, chan, 0, &ant_config); REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config); for (i = 0; i < AR5416_MAX_CHAINS; i++) { if (AR_SREV_9280(ah)) { if (i >= 2) break; } if (AR_SREV_5416_V20_OR_LATER(ah) && (ahp->ah_rxchainmask == 5 || ahp->ah_txchainmask == 5) && (i != 0)) regChainOffset = (i == 1) ? 0x2000 : 0x1000; else regChainOffset = i * 0x1000; REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, pModal->antCtrlChain[i]); REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset, (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) | SM(pModal->iqCalICh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) | SM(pModal->iqCalQCh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF)); if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) { if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= AR5416_EEP_MINOR_VER_3) { txRxAttenLocal = pModal->txRxAttenCh[i]; if (AR_SREV_9280_10_OR_LATER(ah)) { REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal-> bswMargin[i]); REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal-> bswAtten[i]); REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, pModal-> xatten2Margin[i]); REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal-> xatten2Db[i]); } else { REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset, (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) | SM(pModal-> bswMargin[i], AR_PHY_GAIN_2GHZ_BSW_MARGIN)); REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset, (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) | SM(pModal->bswAtten[i], AR_PHY_GAIN_2GHZ_BSW_ATTEN)); } } if (AR_SREV_9280_10_OR_LATER(ah)) { REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset, AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal); REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset, AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]); } else { REG_WRITE(ah, AR_PHY_RXGAIN + regChainOffset, (REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) & ~AR_PHY_RXGAIN_TXRX_ATTEN) | SM(txRxAttenLocal, AR_PHY_RXGAIN_TXRX_ATTEN)); REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset, (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) & ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) | SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN)); } } } if (AR_SREV_9280_10_OR_LATER(ah)) { if (IS_CHAN_2GHZ(chan)) { ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_OB, AR_AN_RF2G1_CH0_OB_S, pModal->ob); ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_DB, AR_AN_RF2G1_CH0_DB_S, pModal->db); ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_OB, AR_AN_RF2G1_CH1_OB_S, pModal->ob_ch1); ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_DB, AR_AN_RF2G1_CH1_DB_S, pModal->db_ch1); } else { ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_OB5, AR_AN_RF5G1_CH0_OB5_S, pModal->ob); ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_DB5, AR_AN_RF5G1_CH0_DB5_S, pModal->db); ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_OB5, AR_AN_RF5G1_CH1_OB5_S, pModal->ob_ch1); ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_DB5, AR_AN_RF5G1_CH1_DB5_S, pModal->db_ch1); } ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2, AR_AN_TOP2_XPABIAS_LVL, AR_AN_TOP2_XPABIAS_LVL_S, pModal->xpaBiasLvl); ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2, AR_AN_TOP2_LOCALBIAS, AR_AN_TOP2_LOCALBIAS_S, pModal->local_bias); DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "ForceXPAon: %d\n", pModal->force_xpaon); REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG, pModal->force_xpaon); } REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->switchSettling); REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize); if (!AR_SREV_9280_10_OR_LATER(ah)) REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_PGA, pModal->pgaDesiredSize); REG_WRITE(ah, AR_PHY_RF_CTL4, SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON)); REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn); if (AR_SREV_9280_10_OR_LATER(ah)) { REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62, pModal->thresh62); REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62); } else { REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62, pModal->thresh62); REG_RMW_FIELD(ah, AR_PHY_EXT_CCA, AR_PHY_EXT_CCA_THRESH62, pModal->thresh62); } if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= AR5416_EEP_MINOR_VER_2) { REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart); REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn); } if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= AR5416_EEP_MINOR_VER_3) { if (IS_CHAN_HT40(chan)) REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40); } return true; } static bool ath9k_hw_eeprom_set_4k_board_values(struct ath_hal *ah, struct ath9k_channel *chan) { struct modal_eep_4k_header *pModal; struct ath_hal_5416 *ahp = AH5416(ah); struct ar5416_eeprom_4k *eep = &ahp->ah_eeprom.map4k; int regChainOffset; u8 txRxAttenLocal; u16 ant_config = 0; u8 ob[5], db1[5], db2[5]; u8 ant_div_control1, ant_div_control2; u32 regVal; pModal = &eep->modalHeader; txRxAttenLocal = 23; ath9k_hw_get_eeprom_antenna_cfg(ah, chan, 0, &ant_config); REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config); regChainOffset = 0; REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, pModal->antCtrlChain[0]); REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset, (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) | SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) | SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF)); if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= AR5416_EEP_MINOR_VER_3) { txRxAttenLocal = pModal->txRxAttenCh[0]; REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]); REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]); REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, pModal->xatten2Margin[0]); REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]); } REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset, AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal); REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset, AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]); if (AR_SREV_9285_11(ah)) REG_WRITE(ah, AR9285_AN_TOP4, (AR9285_AN_TOP4_DEFAULT | 0x14)); /* Initialize Ant Diversity settings from EEPROM */ if (pModal->version == 3) { ant_div_control1 = ((pModal->ob_234 >> 12) & 0xf); ant_div_control2 = ((pModal->db1_234 >> 12) & 0xf); regVal = REG_READ(ah, 0x99ac); regVal &= (~(0x7f000000)); regVal |= ((ant_div_control1 & 0x1) << 24); regVal |= (((ant_div_control1 >> 1) & 0x1) << 29); regVal |= (((ant_div_control1 >> 2) & 0x1) << 30); regVal |= ((ant_div_control2 & 0x3) << 25); regVal |= (((ant_div_control2 >> 2) & 0x3) << 27); REG_WRITE(ah, 0x99ac, regVal); regVal = REG_READ(ah, 0x99ac); regVal = REG_READ(ah, 0xa208); regVal &= (~(0x1 << 13)); regVal |= (((ant_div_control1 >> 3) & 0x1) << 13); REG_WRITE(ah, 0xa208, regVal); regVal = REG_READ(ah, 0xa208); } if (pModal->version >= 2) { ob[0] = (pModal->ob_01 & 0xf); ob[1] = (pModal->ob_01 >> 4) & 0xf; ob[2] = (pModal->ob_234 & 0xf); ob[3] = ((pModal->ob_234 >> 4) & 0xf); ob[4] = ((pModal->ob_234 >> 8) & 0xf); db1[0] = (pModal->db1_01 & 0xf); db1[1] = ((pModal->db1_01 >> 4) & 0xf); db1[2] = (pModal->db1_234 & 0xf); db1[3] = ((pModal->db1_234 >> 4) & 0xf); db1[4] = ((pModal->db1_234 >> 8) & 0xf); db2[0] = (pModal->db2_01 & 0xf); db2[1] = ((pModal->db2_01 >> 4) & 0xf); db2[2] = (pModal->db2_234 & 0xf); db2[3] = ((pModal->db2_234 >> 4) & 0xf); db2[4] = ((pModal->db2_234 >> 8) & 0xf); } else if (pModal->version == 1) { DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "EEPROM Model version is set to 1 \n"); ob[0] = (pModal->ob_01 & 0xf); ob[1] = ob[2] = ob[3] = ob[4] = (pModal->ob_01 >> 4) & 0xf; db1[0] = (pModal->db1_01 & 0xf); db1[1] = db1[2] = db1[3] = db1[4] = ((pModal->db1_01 >> 4) & 0xf); db2[0] = (pModal->db2_01 & 0xf); db2[1] = db2[2] = db2[3] = db2[4] = ((pModal->db2_01 >> 4) & 0xf); } else { int i; for (i = 0; i < 5; i++) { ob[i] = pModal->ob_01; db1[i] = pModal->db1_01; db2[i] = pModal->db1_01; } } ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_0, AR9285_AN_RF2G3_OB_0_S, ob[0]); ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_1, AR9285_AN_RF2G3_OB_1_S, ob[1]); ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_2, AR9285_AN_RF2G3_OB_2_S, ob[2]); ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_3, AR9285_AN_RF2G3_OB_3_S, ob[3]); ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_4, AR9285_AN_RF2G3_OB_4_S, ob[4]); ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_0, AR9285_AN_RF2G3_DB1_0_S, db1[0]); ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_1, AR9285_AN_RF2G3_DB1_1_S, db1[1]); ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_2, AR9285_AN_RF2G3_DB1_2_S, db1[2]); ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB1_3, AR9285_AN_RF2G4_DB1_3_S, db1[3]); ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB1_4, AR9285_AN_RF2G4_DB1_4_S, db1[4]); ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_0, AR9285_AN_RF2G4_DB2_0_S, db2[0]); ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_1, AR9285_AN_RF2G4_DB2_1_S, db2[1]); ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_2, AR9285_AN_RF2G4_DB2_2_S, db2[2]); ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_3, AR9285_AN_RF2G4_DB2_3_S, db2[3]); ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_4, AR9285_AN_RF2G4_DB2_4_S, db2[4]); if (AR_SREV_9285_11(ah)) REG_WRITE(ah, AR9285_AN_TOP4, AR9285_AN_TOP4_DEFAULT); REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->switchSettling); REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize); REG_WRITE(ah, AR_PHY_RF_CTL4, SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON)); REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn); REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62, pModal->thresh62); REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62); if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= AR5416_EEP_MINOR_VER_2) { REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart); REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn); } if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= AR5416_EEP_MINOR_VER_3) { if (IS_CHAN_HT40(chan)) REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40); } return true; } bool (*ath9k_eeprom_set_board_values[])(struct ath_hal *, struct ath9k_channel *) = { ath9k_hw_eeprom_set_def_board_values, ath9k_hw_eeprom_set_4k_board_values }; bool ath9k_hw_eeprom_set_board_values(struct ath_hal *ah, struct ath9k_channel *chan) { struct ath_hal_5416 *ahp = AH5416(ah); return ath9k_eeprom_set_board_values[ahp->ah_eep_map](ah, chan); } static int ath9k_hw_get_def_eeprom_antenna_cfg(struct ath_hal *ah, struct ath9k_channel *chan, u8 index, u16 *config) { struct ath_hal_5416 *ahp = AH5416(ah); struct ar5416_eeprom_def *eep = &ahp->ah_eeprom.def; struct modal_eep_header *pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]); struct base_eep_header *pBase = &eep->baseEepHeader; switch (index) { case 0: *config = pModal->antCtrlCommon & 0xFFFF; return 0; case 1: if (pBase->version >= 0x0E0D) { if (pModal->useAnt1) { *config = ((pModal->antCtrlCommon & 0xFFFF0000) >> 16); return 0; } } break; default: break; } return -EINVAL; } static int ath9k_hw_get_4k_eeprom_antenna_cfg(struct ath_hal *ah, struct ath9k_channel *chan, u8 index, u16 *config) { struct ath_hal_5416 *ahp = AH5416(ah); struct ar5416_eeprom_4k *eep = &ahp->ah_eeprom.map4k; struct modal_eep_4k_header *pModal = &eep->modalHeader; switch (index) { case 0: *config = pModal->antCtrlCommon & 0xFFFF; return 0; default: break; } return -EINVAL; } int (*ath9k_get_eeprom_antenna_cfg[])(struct ath_hal *, struct ath9k_channel *, u8, u16 *) = { ath9k_hw_get_def_eeprom_antenna_cfg, ath9k_hw_get_4k_eeprom_antenna_cfg }; int ath9k_hw_get_eeprom_antenna_cfg(struct ath_hal *ah, struct ath9k_channel *chan, u8 index, u16 *config) { struct ath_hal_5416 *ahp = AH5416(ah); return ath9k_get_eeprom_antenna_cfg[ahp->ah_eep_map](ah, chan, index, config); } u8 ath9k_hw_get_4k_num_ant_config(struct ath_hal *ah, enum ieee80211_band freq_band) { return 1; } u8 ath9k_hw_get_def_num_ant_config(struct ath_hal *ah, enum ieee80211_band freq_band) { struct ath_hal_5416 *ahp = AH5416(ah); struct ar5416_eeprom_def *eep = &ahp->ah_eeprom.def; struct modal_eep_header *pModal = &(eep->modalHeader[IEEE80211_BAND_5GHZ == freq_band]); struct base_eep_header *pBase = &eep->baseEepHeader; u8 num_ant_config; num_ant_config = 1; if (pBase->version >= 0x0E0D) if (pModal->useAnt1) num_ant_config += 1; return num_ant_config; } u8 (*ath9k_get_num_ant_config[])(struct ath_hal *, enum ieee80211_band) = { ath9k_hw_get_def_num_ant_config, ath9k_hw_get_4k_num_ant_config }; u8 ath9k_hw_get_num_ant_config(struct ath_hal *ah, enum ieee80211_band freq_band) { struct ath_hal_5416 *ahp = AH5416(ah); return ath9k_get_num_ant_config[ahp->ah_eep_map](ah, freq_band); } u16 ath9k_hw_eeprom_get_spur_chan(struct ath_hal *ah, u16 i, bool is2GHz) { #define EEP_MAP4K_SPURCHAN \ (ahp->ah_eeprom.map4k.modalHeader.spurChans[i].spurChan) #define EEP_DEF_SPURCHAN \ (ahp->ah_eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan) struct ath_hal_5416 *ahp = AH5416(ah); u16 spur_val = AR_NO_SPUR; DPRINTF(ah->ah_sc, ATH_DBG_ANI, "Getting spur idx %d is2Ghz. %d val %x\n", i, is2GHz, ah->ah_config.spurchans[i][is2GHz]); switch (ah->ah_config.spurmode) { case SPUR_DISABLE: break; case SPUR_ENABLE_IOCTL: spur_val = ah->ah_config.spurchans[i][is2GHz]; DPRINTF(ah->ah_sc, ATH_DBG_ANI, "Getting spur val from new loc. %d\n", spur_val); break; case SPUR_ENABLE_EEPROM: if (ahp->ah_eep_map == EEP_MAP_4KBITS) spur_val = EEP_MAP4K_SPURCHAN; else spur_val = EEP_DEF_SPURCHAN; break; } return spur_val; #undef EEP_DEF_SPURCHAN #undef EEP_MAP4K_SPURCHAN } static u32 ath9k_hw_get_eeprom_4k(struct ath_hal *ah, enum eeprom_param param) { struct ath_hal_5416 *ahp = AH5416(ah); struct ar5416_eeprom_4k *eep = &ahp->ah_eeprom.map4k; struct modal_eep_4k_header *pModal = &eep->modalHeader; struct base_eep_header_4k *pBase = &eep->baseEepHeader; switch (param) { case EEP_NFTHRESH_2: return pModal[1].noiseFloorThreshCh[0]; case AR_EEPROM_MAC(0): return pBase->macAddr[0] << 8 | pBase->macAddr[1]; case AR_EEPROM_MAC(1): return pBase->macAddr[2] << 8 | pBase->macAddr[3]; case AR_EEPROM_MAC(2): return pBase->macAddr[4] << 8 | pBase->macAddr[5]; case EEP_REG_0: return pBase->regDmn[0]; case EEP_REG_1: return pBase->regDmn[1]; case EEP_OP_CAP: return pBase->deviceCap; case EEP_OP_MODE: return pBase->opCapFlags; case EEP_RF_SILENT: return pBase->rfSilent; case EEP_OB_2: return pModal->ob_01; case EEP_DB_2: return pModal->db1_01; case EEP_MINOR_REV: return pBase->version & AR5416_EEP_VER_MINOR_MASK; case EEP_TX_MASK: return pBase->txMask; case EEP_RX_MASK: return pBase->rxMask; default: return 0; } } static u32 ath9k_hw_get_eeprom_def(struct ath_hal *ah, enum eeprom_param param) { struct ath_hal_5416 *ahp = AH5416(ah); struct ar5416_eeprom_def *eep = &ahp->ah_eeprom.def; struct modal_eep_header *pModal = eep->modalHeader; struct base_eep_header *pBase = &eep->baseEepHeader; switch (param) { case EEP_NFTHRESH_5: return pModal[0].noiseFloorThreshCh[0]; case EEP_NFTHRESH_2: return pModal[1].noiseFloorThreshCh[0]; case AR_EEPROM_MAC(0): return pBase->macAddr[0] << 8 | pBase->macAddr[1]; case AR_EEPROM_MAC(1): return pBase->macAddr[2] << 8 | pBase->macAddr[3]; case AR_EEPROM_MAC(2): return pBase->macAddr[4] << 8 | pBase->macAddr[5]; case EEP_REG_0: return pBase->regDmn[0]; case EEP_REG_1: return pBase->regDmn[1]; case EEP_OP_CAP: return pBase->deviceCap; case EEP_OP_MODE: return pBase->opCapFlags; case EEP_RF_SILENT: return pBase->rfSilent; case EEP_OB_5: return pModal[0].ob; case EEP_DB_5: return pModal[0].db; case EEP_OB_2: return pModal[1].ob; case EEP_DB_2: return pModal[1].db; case EEP_MINOR_REV: return pBase->version & AR5416_EEP_VER_MINOR_MASK; case EEP_TX_MASK: return pBase->txMask; case EEP_RX_MASK: return pBase->rxMask; case EEP_RXGAIN_TYPE: return pBase->rxGainType; case EEP_TXGAIN_TYPE: return pBase->txGainType; default: return 0; } } u32 (*ath9k_get_eeprom[])(struct ath_hal *, enum eeprom_param) = { ath9k_hw_get_eeprom_def, ath9k_hw_get_eeprom_4k }; u32 ath9k_hw_get_eeprom(struct ath_hal *ah, enum eeprom_param param) { struct ath_hal_5416 *ahp = AH5416(ah); return ath9k_get_eeprom[ahp->ah_eep_map](ah, param); } int ath9k_hw_eeprom_attach(struct ath_hal *ah) { int status; struct ath_hal_5416 *ahp = AH5416(ah); if (ath9k_hw_use_flash(ah)) ath9k_hw_flash_map(ah); if (AR_SREV_9285(ah)) ahp->ah_eep_map = EEP_MAP_4KBITS; else ahp->ah_eep_map = EEP_MAP_DEFAULT; if (!ath9k_hw_fill_eeprom(ah)) return -EIO; status = ath9k_hw_check_eeprom(ah); return status; }