/* * net/dsa/dsa2.c - Hardware switch handling, binding version 2 * Copyright (c) 2008-2009 Marvell Semiconductor * Copyright (c) 2013 Florian Fainelli * Copyright (c) 2016 Andrew Lunn * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include "dsa_priv.h" static LIST_HEAD(dsa_tree_list); static DEFINE_MUTEX(dsa2_mutex); static const struct devlink_ops dsa_devlink_ops = { }; static struct dsa_switch_tree *dsa_tree_find(int index) { struct dsa_switch_tree *dst; list_for_each_entry(dst, &dsa_tree_list, list) if (dst->index == index) return dst; return NULL; } static struct dsa_switch_tree *dsa_tree_alloc(int index) { struct dsa_switch_tree *dst; dst = kzalloc(sizeof(*dst), GFP_KERNEL); if (!dst) return NULL; dst->index = index; INIT_LIST_HEAD(&dst->list); list_add_tail(&dsa_tree_list, &dst->list); kref_init(&dst->refcount); return dst; } static void dsa_tree_free(struct dsa_switch_tree *dst) { list_del(&dst->list); kfree(dst); } static struct dsa_switch_tree *dsa_tree_get(struct dsa_switch_tree *dst) { if (dst) kref_get(&dst->refcount); return dst; } static struct dsa_switch_tree *dsa_tree_touch(int index) { struct dsa_switch_tree *dst; dst = dsa_tree_find(index); if (dst) return dsa_tree_get(dst); else return dsa_tree_alloc(index); } static void dsa_tree_release(struct kref *ref) { struct dsa_switch_tree *dst; dst = container_of(ref, struct dsa_switch_tree, refcount); dsa_tree_free(dst); } static void dsa_tree_put(struct dsa_switch_tree *dst) { if (dst) kref_put(&dst->refcount, dsa_tree_release); } static bool dsa_port_is_dsa(struct dsa_port *port) { return port->type == DSA_PORT_TYPE_DSA; } static bool dsa_port_is_cpu(struct dsa_port *port) { return port->type == DSA_PORT_TYPE_CPU; } static bool dsa_port_is_user(struct dsa_port *dp) { return dp->type == DSA_PORT_TYPE_USER; } static struct dsa_port *dsa_tree_find_port_by_node(struct dsa_switch_tree *dst, struct device_node *dn) { struct dsa_switch *ds; struct dsa_port *dp; int device, port; for (device = 0; device < DSA_MAX_SWITCHES; device++) { ds = dst->ds[device]; if (!ds) continue; for (port = 0; port < ds->num_ports; port++) { dp = &ds->ports[port]; if (dp->dn == dn) return dp; } } return NULL; } static bool dsa_port_setup_routing_table(struct dsa_port *dp) { struct dsa_switch *ds = dp->ds; struct dsa_switch_tree *dst = ds->dst; struct device_node *dn = dp->dn; struct of_phandle_iterator it; struct dsa_port *link_dp; int err; of_for_each_phandle(&it, err, dn, "link", NULL, 0) { link_dp = dsa_tree_find_port_by_node(dst, it.node); if (!link_dp) { of_node_put(it.node); return false; } ds->rtable[link_dp->ds->index] = dp->index; } return true; } static bool dsa_switch_setup_routing_table(struct dsa_switch *ds) { bool complete = true; struct dsa_port *dp; int i; for (i = 0; i < DSA_MAX_SWITCHES; i++) ds->rtable[i] = DSA_RTABLE_NONE; for (i = 0; i < ds->num_ports; i++) { dp = &ds->ports[i]; if (dsa_port_is_dsa(dp)) { complete = dsa_port_setup_routing_table(dp); if (!complete) break; } } return complete; } static bool dsa_tree_setup_routing_table(struct dsa_switch_tree *dst) { struct dsa_switch *ds; bool complete = true; int device; for (device = 0; device < DSA_MAX_SWITCHES; device++) { ds = dst->ds[device]; if (!ds) continue; complete = dsa_switch_setup_routing_table(ds); if (!complete) break; } return complete; } static struct dsa_port *dsa_tree_find_first_cpu(struct dsa_switch_tree *dst) { struct dsa_switch *ds; struct dsa_port *dp; int device, port; for (device = 0; device < DSA_MAX_SWITCHES; device++) { ds = dst->ds[device]; if (!ds) continue; for (port = 0; port < ds->num_ports; port++) { dp = &ds->ports[port]; if (dsa_port_is_cpu(dp)) return dp; } } return NULL; } static int dsa_tree_setup_default_cpu(struct dsa_switch_tree *dst) { struct dsa_switch *ds; struct dsa_port *dp; int device, port; /* DSA currently only supports a single CPU port */ dst->cpu_dp = dsa_tree_find_first_cpu(dst); if (!dst->cpu_dp) { pr_warn("Tree has no master device\n"); return -EINVAL; } /* Assign the default CPU port to all ports of the fabric */ for (device = 0; device < DSA_MAX_SWITCHES; device++) { ds = dst->ds[device]; if (!ds) continue; for (port = 0; port < ds->num_ports; port++) { dp = &ds->ports[port]; if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp)) dp->cpu_dp = dst->cpu_dp; } } return 0; } static void dsa_tree_teardown_default_cpu(struct dsa_switch_tree *dst) { /* DSA currently only supports a single CPU port */ dst->cpu_dp = NULL; } static int dsa_port_setup(struct dsa_port *dp) { struct dsa_switch *ds = dp->ds; int err = 0; memset(&dp->devlink_port, 0, sizeof(dp->devlink_port)); if (dp->type != DSA_PORT_TYPE_UNUSED) err = devlink_port_register(ds->devlink, &dp->devlink_port, dp->index); if (err) return err; switch (dp->type) { case DSA_PORT_TYPE_UNUSED: break; case DSA_PORT_TYPE_CPU: /* dp->index is used now as port_number. However * CPU ports should have separate numbering * independent from front panel port numbers. */ devlink_port_attrs_set(&dp->devlink_port, DEVLINK_PORT_FLAVOUR_CPU, dp->index, false, 0); err = dsa_port_link_register_of(dp); if (err) { dev_err(ds->dev, "failed to setup link for port %d.%d\n", ds->index, dp->index); return err; } break; case DSA_PORT_TYPE_DSA: /* dp->index is used now as port_number. However * DSA ports should have separate numbering * independent from front panel port numbers. */ devlink_port_attrs_set(&dp->devlink_port, DEVLINK_PORT_FLAVOUR_DSA, dp->index, false, 0); err = dsa_port_link_register_of(dp); if (err) { dev_err(ds->dev, "failed to setup link for port %d.%d\n", ds->index, dp->index); return err; } break; case DSA_PORT_TYPE_USER: devlink_port_attrs_set(&dp->devlink_port, DEVLINK_PORT_FLAVOUR_PHYSICAL, dp->index, false, 0); err = dsa_slave_create(dp); if (err) dev_err(ds->dev, "failed to create slave for port %d.%d\n", ds->index, dp->index); else devlink_port_type_eth_set(&dp->devlink_port, dp->slave); break; } return 0; } static void dsa_port_teardown(struct dsa_port *dp) { if (dp->type != DSA_PORT_TYPE_UNUSED) devlink_port_unregister(&dp->devlink_port); switch (dp->type) { case DSA_PORT_TYPE_UNUSED: break; case DSA_PORT_TYPE_CPU: case DSA_PORT_TYPE_DSA: dsa_port_link_unregister_of(dp); break; case DSA_PORT_TYPE_USER: if (dp->slave) { dsa_slave_destroy(dp->slave); dp->slave = NULL; } break; } } static int dsa_switch_setup(struct dsa_switch *ds) { int err; /* Initialize ds->phys_mii_mask before registering the slave MDIO bus * driver and before ops->setup() has run, since the switch drivers and * the slave MDIO bus driver rely on these values for probing PHY * devices or not */ ds->phys_mii_mask |= dsa_user_ports(ds); /* Add the switch to devlink before calling setup, so that setup can * add dpipe tables */ ds->devlink = devlink_alloc(&dsa_devlink_ops, 0); if (!ds->devlink) return -ENOMEM; err = devlink_register(ds->devlink, ds->dev); if (err) return err; err = ds->ops->setup(ds); if (err < 0) return err; err = dsa_switch_register_notifier(ds); if (err) return err; if (!ds->slave_mii_bus && ds->ops->phy_read) { ds->slave_mii_bus = devm_mdiobus_alloc(ds->dev); if (!ds->slave_mii_bus) return -ENOMEM; dsa_slave_mii_bus_init(ds); err = mdiobus_register(ds->slave_mii_bus); if (err < 0) return err; } return 0; } static void dsa_switch_teardown(struct dsa_switch *ds) { if (ds->slave_mii_bus && ds->ops->phy_read) mdiobus_unregister(ds->slave_mii_bus); dsa_switch_unregister_notifier(ds); if (ds->devlink) { devlink_unregister(ds->devlink); devlink_free(ds->devlink); ds->devlink = NULL; } } static int dsa_tree_setup_switches(struct dsa_switch_tree *dst) { struct dsa_switch *ds; struct dsa_port *dp; int device, port; int err; for (device = 0; device < DSA_MAX_SWITCHES; device++) { ds = dst->ds[device]; if (!ds) continue; err = dsa_switch_setup(ds); if (err) return err; for (port = 0; port < ds->num_ports; port++) { dp = &ds->ports[port]; err = dsa_port_setup(dp); if (err) return err; } } return 0; } static void dsa_tree_teardown_switches(struct dsa_switch_tree *dst) { struct dsa_switch *ds; struct dsa_port *dp; int device, port; for (device = 0; device < DSA_MAX_SWITCHES; device++) { ds = dst->ds[device]; if (!ds) continue; for (port = 0; port < ds->num_ports; port++) { dp = &ds->ports[port]; dsa_port_teardown(dp); } dsa_switch_teardown(ds); } } static int dsa_tree_setup_master(struct dsa_switch_tree *dst) { struct dsa_port *cpu_dp = dst->cpu_dp; struct net_device *master = cpu_dp->master; /* DSA currently supports a single pair of CPU port and master device */ return dsa_master_setup(master, cpu_dp); } static void dsa_tree_teardown_master(struct dsa_switch_tree *dst) { struct dsa_port *cpu_dp = dst->cpu_dp; struct net_device *master = cpu_dp->master; return dsa_master_teardown(master); } static int dsa_tree_setup(struct dsa_switch_tree *dst) { bool complete; int err; if (dst->setup) { pr_err("DSA: tree %d already setup! Disjoint trees?\n", dst->index); return -EEXIST; } complete = dsa_tree_setup_routing_table(dst); if (!complete) return 0; err = dsa_tree_setup_default_cpu(dst); if (err) return err; err = dsa_tree_setup_switches(dst); if (err) return err; err = dsa_tree_setup_master(dst); if (err) return err; dst->setup = true; pr_info("DSA: tree %d setup\n", dst->index); return 0; } static void dsa_tree_teardown(struct dsa_switch_tree *dst) { if (!dst->setup) return; dsa_tree_teardown_master(dst); dsa_tree_teardown_switches(dst); dsa_tree_teardown_default_cpu(dst); pr_info("DSA: tree %d torn down\n", dst->index); dst->setup = false; } static void dsa_tree_remove_switch(struct dsa_switch_tree *dst, unsigned int index) { dsa_tree_teardown(dst); dst->ds[index] = NULL; dsa_tree_put(dst); } static int dsa_tree_add_switch(struct dsa_switch_tree *dst, struct dsa_switch *ds) { unsigned int index = ds->index; int err; if (dst->ds[index]) return -EBUSY; dsa_tree_get(dst); dst->ds[index] = ds; err = dsa_tree_setup(dst); if (err) dsa_tree_remove_switch(dst, index); return err; } static int dsa_port_parse_user(struct dsa_port *dp, const char *name) { if (!name) name = "eth%d"; dp->type = DSA_PORT_TYPE_USER; dp->name = name; return 0; } static int dsa_port_parse_dsa(struct dsa_port *dp) { dp->type = DSA_PORT_TYPE_DSA; return 0; } static int dsa_port_parse_cpu(struct dsa_port *dp, struct net_device *master) { struct dsa_switch *ds = dp->ds; struct dsa_switch_tree *dst = ds->dst; const struct dsa_device_ops *tag_ops; enum dsa_tag_protocol tag_protocol; tag_protocol = ds->ops->get_tag_protocol(ds, dp->index); tag_ops = dsa_resolve_tag_protocol(tag_protocol); if (IS_ERR(tag_ops)) { dev_warn(ds->dev, "No tagger for this switch\n"); return PTR_ERR(tag_ops); } dp->type = DSA_PORT_TYPE_CPU; dp->rcv = tag_ops->rcv; dp->tag_ops = tag_ops; dp->master = master; dp->dst = dst; return 0; } static int dsa_port_parse_of(struct dsa_port *dp, struct device_node *dn) { struct device_node *ethernet = of_parse_phandle(dn, "ethernet", 0); const char *name = of_get_property(dn, "label", NULL); bool link = of_property_read_bool(dn, "link"); dp->dn = dn; if (ethernet) { struct net_device *master; master = of_find_net_device_by_node(ethernet); if (!master) return -EPROBE_DEFER; return dsa_port_parse_cpu(dp, master); } if (link) return dsa_port_parse_dsa(dp); return dsa_port_parse_user(dp, name); } static int dsa_switch_parse_ports_of(struct dsa_switch *ds, struct device_node *dn) { struct device_node *ports, *port; struct dsa_port *dp; int err = 0; u32 reg; ports = of_get_child_by_name(dn, "ports"); if (!ports) { dev_err(ds->dev, "no ports child node found\n"); return -EINVAL; } for_each_available_child_of_node(ports, port) { err = of_property_read_u32(port, "reg", ®); if (err) goto out_put_node; if (reg >= ds->num_ports) { err = -EINVAL; goto out_put_node; } dp = &ds->ports[reg]; err = dsa_port_parse_of(dp, port); if (err) goto out_put_node; } out_put_node: of_node_put(ports); return err; } static int dsa_switch_parse_member_of(struct dsa_switch *ds, struct device_node *dn) { u32 m[2] = { 0, 0 }; int sz; /* Don't error out if this optional property isn't found */ sz = of_property_read_variable_u32_array(dn, "dsa,member", m, 2, 2); if (sz < 0 && sz != -EINVAL) return sz; ds->index = m[1]; if (ds->index >= DSA_MAX_SWITCHES) return -EINVAL; ds->dst = dsa_tree_touch(m[0]); if (!ds->dst) return -ENOMEM; return 0; } static int dsa_switch_parse_of(struct dsa_switch *ds, struct device_node *dn) { int err; err = dsa_switch_parse_member_of(ds, dn); if (err) return err; return dsa_switch_parse_ports_of(ds, dn); } static int dsa_port_parse(struct dsa_port *dp, const char *name, struct device *dev) { if (!strcmp(name, "cpu")) { struct net_device *master; master = dsa_dev_to_net_device(dev); if (!master) return -EPROBE_DEFER; dev_put(master); return dsa_port_parse_cpu(dp, master); } if (!strcmp(name, "dsa")) return dsa_port_parse_dsa(dp); return dsa_port_parse_user(dp, name); } static int dsa_switch_parse_ports(struct dsa_switch *ds, struct dsa_chip_data *cd) { bool valid_name_found = false; struct dsa_port *dp; struct device *dev; const char *name; unsigned int i; int err; for (i = 0; i < DSA_MAX_PORTS; i++) { name = cd->port_names[i]; dev = cd->netdev[i]; dp = &ds->ports[i]; if (!name) continue; err = dsa_port_parse(dp, name, dev); if (err) return err; valid_name_found = true; } if (!valid_name_found && i == DSA_MAX_PORTS) return -EINVAL; return 0; } static int dsa_switch_parse(struct dsa_switch *ds, struct dsa_chip_data *cd) { ds->cd = cd; /* We don't support interconnected switches nor multiple trees via * platform data, so this is the unique switch of the tree. */ ds->index = 0; ds->dst = dsa_tree_touch(0); if (!ds->dst) return -ENOMEM; return dsa_switch_parse_ports(ds, cd); } static int dsa_switch_add(struct dsa_switch *ds) { struct dsa_switch_tree *dst = ds->dst; return dsa_tree_add_switch(dst, ds); } static int dsa_switch_probe(struct dsa_switch *ds) { struct dsa_chip_data *pdata = ds->dev->platform_data; struct device_node *np = ds->dev->of_node; int err; if (np) err = dsa_switch_parse_of(ds, np); else if (pdata) err = dsa_switch_parse(ds, pdata); else err = -ENODEV; if (err) return err; return dsa_switch_add(ds); } struct dsa_switch *dsa_switch_alloc(struct device *dev, size_t n) { struct dsa_switch *ds; int i; ds = devm_kzalloc(dev, struct_size(ds, ports, n), GFP_KERNEL); if (!ds) return NULL; /* We avoid allocating memory outside dsa_switch * if it is not needed. */ if (n <= sizeof(ds->_bitmap) * 8) { ds->bitmap = &ds->_bitmap; } else { ds->bitmap = devm_kcalloc(dev, BITS_TO_LONGS(n), sizeof(unsigned long), GFP_KERNEL); if (unlikely(!ds->bitmap)) return NULL; } ds->dev = dev; ds->num_ports = n; for (i = 0; i < ds->num_ports; ++i) { ds->ports[i].index = i; ds->ports[i].ds = ds; } return ds; } EXPORT_SYMBOL_GPL(dsa_switch_alloc); int dsa_register_switch(struct dsa_switch *ds) { int err; mutex_lock(&dsa2_mutex); err = dsa_switch_probe(ds); dsa_tree_put(ds->dst); mutex_unlock(&dsa2_mutex); return err; } EXPORT_SYMBOL_GPL(dsa_register_switch); static void dsa_switch_remove(struct dsa_switch *ds) { struct dsa_switch_tree *dst = ds->dst; unsigned int index = ds->index; dsa_tree_remove_switch(dst, index); } void dsa_unregister_switch(struct dsa_switch *ds) { mutex_lock(&dsa2_mutex); dsa_switch_remove(ds); mutex_unlock(&dsa2_mutex); } EXPORT_SYMBOL_GPL(dsa_unregister_switch);