/* * Performance events: * * Copyright (C) 2008-2009, Thomas Gleixner * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra * * Data type definitions, declarations, prototypes. * * Started by: Thomas Gleixner and Ingo Molnar * * For licencing details see kernel-base/COPYING */ #ifndef _LINUX_PERF_EVENT_H #define _LINUX_PERF_EVENT_H #include #include #include /* * User-space ABI bits: */ /* * attr.type */ enum perf_type_id { PERF_TYPE_HARDWARE = 0, PERF_TYPE_SOFTWARE = 1, PERF_TYPE_TRACEPOINT = 2, PERF_TYPE_HW_CACHE = 3, PERF_TYPE_RAW = 4, PERF_TYPE_BREAKPOINT = 5, PERF_TYPE_MAX, /* non-ABI */ }; /* * Generalized performance event event_id types, used by the * attr.event_id parameter of the sys_perf_event_open() * syscall: */ enum perf_hw_id { /* * Common hardware events, generalized by the kernel: */ PERF_COUNT_HW_CPU_CYCLES = 0, PERF_COUNT_HW_INSTRUCTIONS = 1, PERF_COUNT_HW_CACHE_REFERENCES = 2, PERF_COUNT_HW_CACHE_MISSES = 3, PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4, PERF_COUNT_HW_BRANCH_MISSES = 5, PERF_COUNT_HW_BUS_CYCLES = 6, PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7, PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8, PERF_COUNT_HW_REF_CPU_CYCLES = 9, PERF_COUNT_HW_MAX, /* non-ABI */ }; /* * Generalized hardware cache events: * * { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x * { read, write, prefetch } x * { accesses, misses } */ enum perf_hw_cache_id { PERF_COUNT_HW_CACHE_L1D = 0, PERF_COUNT_HW_CACHE_L1I = 1, PERF_COUNT_HW_CACHE_LL = 2, PERF_COUNT_HW_CACHE_DTLB = 3, PERF_COUNT_HW_CACHE_ITLB = 4, PERF_COUNT_HW_CACHE_BPU = 5, PERF_COUNT_HW_CACHE_NODE = 6, PERF_COUNT_HW_CACHE_MAX, /* non-ABI */ }; enum perf_hw_cache_op_id { PERF_COUNT_HW_CACHE_OP_READ = 0, PERF_COUNT_HW_CACHE_OP_WRITE = 1, PERF_COUNT_HW_CACHE_OP_PREFETCH = 2, PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */ }; enum perf_hw_cache_op_result_id { PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0, PERF_COUNT_HW_CACHE_RESULT_MISS = 1, PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */ }; /* * Special "software" events provided by the kernel, even if the hardware * does not support performance events. These events measure various * physical and sw events of the kernel (and allow the profiling of them as * well): */ enum perf_sw_ids { PERF_COUNT_SW_CPU_CLOCK = 0, PERF_COUNT_SW_TASK_CLOCK = 1, PERF_COUNT_SW_PAGE_FAULTS = 2, PERF_COUNT_SW_CONTEXT_SWITCHES = 3, PERF_COUNT_SW_CPU_MIGRATIONS = 4, PERF_COUNT_SW_PAGE_FAULTS_MIN = 5, PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6, PERF_COUNT_SW_ALIGNMENT_FAULTS = 7, PERF_COUNT_SW_EMULATION_FAULTS = 8, PERF_COUNT_SW_MAX, /* non-ABI */ }; /* * Bits that can be set in attr.sample_type to request information * in the overflow packets. */ enum perf_event_sample_format { PERF_SAMPLE_IP = 1U << 0, PERF_SAMPLE_TID = 1U << 1, PERF_SAMPLE_TIME = 1U << 2, PERF_SAMPLE_ADDR = 1U << 3, PERF_SAMPLE_READ = 1U << 4, PERF_SAMPLE_CALLCHAIN = 1U << 5, PERF_SAMPLE_ID = 1U << 6, PERF_SAMPLE_CPU = 1U << 7, PERF_SAMPLE_PERIOD = 1U << 8, PERF_SAMPLE_STREAM_ID = 1U << 9, PERF_SAMPLE_RAW = 1U << 10, PERF_SAMPLE_BRANCH_STACK = 1U << 11, PERF_SAMPLE_MAX = 1U << 12, /* non-ABI */ }; /* * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set * * If the user does not pass priv level information via branch_sample_type, * the kernel uses the event's priv level. Branch and event priv levels do * not have to match. Branch priv level is checked for permissions. * * The branch types can be combined, however BRANCH_ANY covers all types * of branches and therefore it supersedes all the other types. */ enum perf_branch_sample_type { PERF_SAMPLE_BRANCH_USER = 1U << 0, /* user branches */ PERF_SAMPLE_BRANCH_KERNEL = 1U << 1, /* kernel branches */ PERF_SAMPLE_BRANCH_HV = 1U << 2, /* hypervisor branches */ PERF_SAMPLE_BRANCH_ANY = 1U << 3, /* any branch types */ PERF_SAMPLE_BRANCH_ANY_CALL = 1U << 4, /* any call branch */ PERF_SAMPLE_BRANCH_ANY_RETURN = 1U << 5, /* any return branch */ PERF_SAMPLE_BRANCH_IND_CALL = 1U << 6, /* indirect calls */ PERF_SAMPLE_BRANCH_MAX = 1U << 7, /* non-ABI */ }; #define PERF_SAMPLE_BRANCH_PLM_ALL \ (PERF_SAMPLE_BRANCH_USER|\ PERF_SAMPLE_BRANCH_KERNEL|\ PERF_SAMPLE_BRANCH_HV) /* * The format of the data returned by read() on a perf event fd, * as specified by attr.read_format: * * struct read_format { * { u64 value; * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING * { u64 id; } && PERF_FORMAT_ID * } && !PERF_FORMAT_GROUP * * { u64 nr; * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING * { u64 value; * { u64 id; } && PERF_FORMAT_ID * } cntr[nr]; * } && PERF_FORMAT_GROUP * }; */ enum perf_event_read_format { PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0, PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1, PERF_FORMAT_ID = 1U << 2, PERF_FORMAT_GROUP = 1U << 3, PERF_FORMAT_MAX = 1U << 4, /* non-ABI */ }; #define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */ #define PERF_ATTR_SIZE_VER1 72 /* add: config2 */ #define PERF_ATTR_SIZE_VER2 80 /* add: branch_sample_type */ /* * Hardware event_id to monitor via a performance monitoring event: */ struct perf_event_attr { /* * Major type: hardware/software/tracepoint/etc. */ __u32 type; /* * Size of the attr structure, for fwd/bwd compat. */ __u32 size; /* * Type specific configuration information. */ __u64 config; union { __u64 sample_period; __u64 sample_freq; }; __u64 sample_type; __u64 read_format; __u64 disabled : 1, /* off by default */ inherit : 1, /* children inherit it */ pinned : 1, /* must always be on PMU */ exclusive : 1, /* only group on PMU */ exclude_user : 1, /* don't count user */ exclude_kernel : 1, /* ditto kernel */ exclude_hv : 1, /* ditto hypervisor */ exclude_idle : 1, /* don't count when idle */ mmap : 1, /* include mmap data */ comm : 1, /* include comm data */ freq : 1, /* use freq, not period */ inherit_stat : 1, /* per task counts */ enable_on_exec : 1, /* next exec enables */ task : 1, /* trace fork/exit */ watermark : 1, /* wakeup_watermark */ /* * precise_ip: * * 0 - SAMPLE_IP can have arbitrary skid * 1 - SAMPLE_IP must have constant skid * 2 - SAMPLE_IP requested to have 0 skid * 3 - SAMPLE_IP must have 0 skid * * See also PERF_RECORD_MISC_EXACT_IP */ precise_ip : 2, /* skid constraint */ mmap_data : 1, /* non-exec mmap data */ sample_id_all : 1, /* sample_type all events */ exclude_host : 1, /* don't count in host */ exclude_guest : 1, /* don't count in guest */ __reserved_1 : 43; union { __u32 wakeup_events; /* wakeup every n events */ __u32 wakeup_watermark; /* bytes before wakeup */ }; __u32 bp_type; union { __u64 bp_addr; __u64 config1; /* extension of config */ }; union { __u64 bp_len; __u64 config2; /* extension of config1 */ }; __u64 branch_sample_type; /* enum branch_sample_type */ }; /* * Ioctls that can be done on a perf event fd: */ #define PERF_EVENT_IOC_ENABLE _IO ('$', 0) #define PERF_EVENT_IOC_DISABLE _IO ('$', 1) #define PERF_EVENT_IOC_REFRESH _IO ('$', 2) #define PERF_EVENT_IOC_RESET _IO ('$', 3) #define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64) #define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5) #define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *) enum perf_event_ioc_flags { PERF_IOC_FLAG_GROUP = 1U << 0, }; /* * Structure of the page that can be mapped via mmap */ struct perf_event_mmap_page { __u32 version; /* version number of this structure */ __u32 compat_version; /* lowest version this is compat with */ /* * Bits needed to read the hw events in user-space. * * u32 seq, time_mult, time_shift, idx, width; * u64 count, enabled, running; * u64 cyc, time_offset; * s64 pmc = 0; * * do { * seq = pc->lock; * barrier() * * enabled = pc->time_enabled; * running = pc->time_running; * * if (pc->cap_usr_time && enabled != running) { * cyc = rdtsc(); * time_offset = pc->time_offset; * time_mult = pc->time_mult; * time_shift = pc->time_shift; * } * * idx = pc->index; * count = pc->offset; * if (pc->cap_usr_rdpmc && idx) { * width = pc->pmc_width; * pmc = rdpmc(idx - 1); * } * * barrier(); * } while (pc->lock != seq); * * NOTE: for obvious reason this only works on self-monitoring * processes. */ __u32 lock; /* seqlock for synchronization */ __u32 index; /* hardware event identifier */ __s64 offset; /* add to hardware event value */ __u64 time_enabled; /* time event active */ __u64 time_running; /* time event on cpu */ union { __u64 capabilities; __u64 cap_usr_time : 1, cap_usr_rdpmc : 1, cap_____res : 62; }; /* * If cap_usr_rdpmc this field provides the bit-width of the value * read using the rdpmc() or equivalent instruction. This can be used * to sign extend the result like: * * pmc <<= 64 - width; * pmc >>= 64 - width; // signed shift right * count += pmc; */ __u16 pmc_width; /* * If cap_usr_time the below fields can be used to compute the time * delta since time_enabled (in ns) using rdtsc or similar. * * u64 quot, rem; * u64 delta; * * quot = (cyc >> time_shift); * rem = cyc & ((1 << time_shift) - 1); * delta = time_offset + quot * time_mult + * ((rem * time_mult) >> time_shift); * * Where time_offset,time_mult,time_shift and cyc are read in the * seqcount loop described above. This delta can then be added to * enabled and possible running (if idx), improving the scaling: * * enabled += delta; * if (idx) * running += delta; * * quot = count / running; * rem = count % running; * count = quot * enabled + (rem * enabled) / running; */ __u16 time_shift; __u32 time_mult; __u64 time_offset; /* * Hole for extension of the self monitor capabilities */ __u64 __reserved[120]; /* align to 1k */ /* * Control data for the mmap() data buffer. * * User-space reading the @data_head value should issue an rmb(), on * SMP capable platforms, after reading this value -- see * perf_event_wakeup(). * * When the mapping is PROT_WRITE the @data_tail value should be * written by userspace to reflect the last read data. In this case * the kernel will not over-write unread data. */ __u64 data_head; /* head in the data section */ __u64 data_tail; /* user-space written tail */ }; #define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0) #define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0) #define PERF_RECORD_MISC_KERNEL (1 << 0) #define PERF_RECORD_MISC_USER (2 << 0) #define PERF_RECORD_MISC_HYPERVISOR (3 << 0) #define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0) #define PERF_RECORD_MISC_GUEST_USER (5 << 0) /* * Indicates that the content of PERF_SAMPLE_IP points to * the actual instruction that triggered the event. See also * perf_event_attr::precise_ip. */ #define PERF_RECORD_MISC_EXACT_IP (1 << 14) /* * Reserve the last bit to indicate some extended misc field */ #define PERF_RECORD_MISC_EXT_RESERVED (1 << 15) struct perf_event_header { __u32 type; __u16 misc; __u16 size; }; enum perf_event_type { /* * If perf_event_attr.sample_id_all is set then all event types will * have the sample_type selected fields related to where/when * (identity) an event took place (TID, TIME, ID, CPU, STREAM_ID) * described in PERF_RECORD_SAMPLE below, it will be stashed just after * the perf_event_header and the fields already present for the existing * fields, i.e. at the end of the payload. That way a newer perf.data * file will be supported by older perf tools, with these new optional * fields being ignored. * * The MMAP events record the PROT_EXEC mappings so that we can * correlate userspace IPs to code. They have the following structure: * * struct { * struct perf_event_header header; * * u32 pid, tid; * u64 addr; * u64 len; * u64 pgoff; * char filename[]; * }; */ PERF_RECORD_MMAP = 1, /* * struct { * struct perf_event_header header; * u64 id; * u64 lost; * }; */ PERF_RECORD_LOST = 2, /* * struct { * struct perf_event_header header; * * u32 pid, tid; * char comm[]; * }; */ PERF_RECORD_COMM = 3, /* * struct { * struct perf_event_header header; * u32 pid, ppid; * u32 tid, ptid; * u64 time; * }; */ PERF_RECORD_EXIT = 4, /* * struct { * struct perf_event_header header; * u64 time; * u64 id; * u64 stream_id; * }; */ PERF_RECORD_THROTTLE = 5, PERF_RECORD_UNTHROTTLE = 6, /* * struct { * struct perf_event_header header; * u32 pid, ppid; * u32 tid, ptid; * u64 time; * }; */ PERF_RECORD_FORK = 7, /* * struct { * struct perf_event_header header; * u32 pid, tid; * * struct read_format values; * }; */ PERF_RECORD_READ = 8, /* * struct { * struct perf_event_header header; * * { u64 ip; } && PERF_SAMPLE_IP * { u32 pid, tid; } && PERF_SAMPLE_TID * { u64 time; } && PERF_SAMPLE_TIME * { u64 addr; } && PERF_SAMPLE_ADDR * { u64 id; } && PERF_SAMPLE_ID * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID * { u32 cpu, res; } && PERF_SAMPLE_CPU * { u64 period; } && PERF_SAMPLE_PERIOD * * { struct read_format values; } && PERF_SAMPLE_READ * * { u64 nr, * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN * * # * # The RAW record below is opaque data wrt the ABI * # * # That is, the ABI doesn't make any promises wrt to * # the stability of its content, it may vary depending * # on event, hardware, kernel version and phase of * # the moon. * # * # In other words, PERF_SAMPLE_RAW contents are not an ABI. * # * * { u32 size; * char data[size];}&& PERF_SAMPLE_RAW * * { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK * }; */ PERF_RECORD_SAMPLE = 9, PERF_RECORD_MAX, /* non-ABI */ }; #define PERF_MAX_STACK_DEPTH 127 enum perf_callchain_context { PERF_CONTEXT_HV = (__u64)-32, PERF_CONTEXT_KERNEL = (__u64)-128, PERF_CONTEXT_USER = (__u64)-512, PERF_CONTEXT_GUEST = (__u64)-2048, PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176, PERF_CONTEXT_GUEST_USER = (__u64)-2560, PERF_CONTEXT_MAX = (__u64)-4095, }; #define PERF_FLAG_FD_NO_GROUP (1U << 0) #define PERF_FLAG_FD_OUTPUT (1U << 1) #define PERF_FLAG_PID_CGROUP (1U << 2) /* pid=cgroup id, per-cpu mode only */ #ifdef __KERNEL__ /* * Kernel-internal data types and definitions: */ #ifdef CONFIG_PERF_EVENTS # include # include # include #endif struct perf_guest_info_callbacks { int (*is_in_guest)(void); int (*is_user_mode)(void); unsigned long (*get_guest_ip)(void); }; #ifdef CONFIG_HAVE_HW_BREAKPOINT #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct perf_callchain_entry { __u64 nr; __u64 ip[PERF_MAX_STACK_DEPTH]; }; struct perf_raw_record { u32 size; void *data; }; /* * single taken branch record layout: * * from: source instruction (may not always be a branch insn) * to: branch target * mispred: branch target was mispredicted * predicted: branch target was predicted * * support for mispred, predicted is optional. In case it * is not supported mispred = predicted = 0. */ struct perf_branch_entry { __u64 from; __u64 to; __u64 mispred:1, /* target mispredicted */ predicted:1,/* target predicted */ reserved:62; }; /* * branch stack layout: * nr: number of taken branches stored in entries[] * * Note that nr can vary from sample to sample * branches (to, from) are stored from most recent * to least recent, i.e., entries[0] contains the most * recent branch. */ struct perf_branch_stack { __u64 nr; struct perf_branch_entry entries[0]; }; struct task_struct; /* * extra PMU register associated with an event */ struct hw_perf_event_extra { u64 config; /* register value */ unsigned int reg; /* register address or index */ int alloc; /* extra register already allocated */ int idx; /* index in shared_regs->regs[] */ }; /** * struct hw_perf_event - performance event hardware details: */ struct hw_perf_event { #ifdef CONFIG_PERF_EVENTS union { struct { /* hardware */ u64 config; u64 last_tag; unsigned long config_base; unsigned long event_base; int event_base_rdpmc; int idx; int last_cpu; struct hw_perf_event_extra extra_reg; struct hw_perf_event_extra branch_reg; }; struct { /* software */ struct hrtimer hrtimer; }; #ifdef CONFIG_HAVE_HW_BREAKPOINT struct { /* breakpoint */ struct arch_hw_breakpoint info; struct list_head bp_list; /* * Crufty hack to avoid the chicken and egg * problem hw_breakpoint has with context * creation and event initalization. */ struct task_struct *bp_target; }; #endif }; int state; local64_t prev_count; u64 sample_period; u64 last_period; local64_t period_left; u64 interrupts_seq; u64 interrupts; u64 freq_time_stamp; u64 freq_count_stamp; #endif }; /* * hw_perf_event::state flags */ #define PERF_HES_STOPPED 0x01 /* the counter is stopped */ #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ #define PERF_HES_ARCH 0x04 struct perf_event; /* * Common implementation detail of pmu::{start,commit,cancel}_txn */ #define PERF_EVENT_TXN 0x1 /** * struct pmu - generic performance monitoring unit */ struct pmu { struct list_head entry; struct device *dev; const struct attribute_group **attr_groups; char *name; int type; int * __percpu pmu_disable_count; struct perf_cpu_context * __percpu pmu_cpu_context; int task_ctx_nr; /* * Fully disable/enable this PMU, can be used to protect from the PMI * as well as for lazy/batch writing of the MSRs. */ void (*pmu_enable) (struct pmu *pmu); /* optional */ void (*pmu_disable) (struct pmu *pmu); /* optional */ /* * Try and initialize the event for this PMU. * Should return -ENOENT when the @event doesn't match this PMU. */ int (*event_init) (struct perf_event *event); #define PERF_EF_START 0x01 /* start the counter when adding */ #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ /* * Adds/Removes a counter to/from the PMU, can be done inside * a transaction, see the ->*_txn() methods. */ int (*add) (struct perf_event *event, int flags); void (*del) (struct perf_event *event, int flags); /* * Starts/Stops a counter present on the PMU. The PMI handler * should stop the counter when perf_event_overflow() returns * !0. ->start() will be used to continue. */ void (*start) (struct perf_event *event, int flags); void (*stop) (struct perf_event *event, int flags); /* * Updates the counter value of the event. */ void (*read) (struct perf_event *event); /* * Group events scheduling is treated as a transaction, add * group events as a whole and perform one schedulability test. * If the test fails, roll back the whole group * * Start the transaction, after this ->add() doesn't need to * do schedulability tests. */ void (*start_txn) (struct pmu *pmu); /* optional */ /* * If ->start_txn() disabled the ->add() schedulability test * then ->commit_txn() is required to perform one. On success * the transaction is closed. On error the transaction is kept * open until ->cancel_txn() is called. */ int (*commit_txn) (struct pmu *pmu); /* optional */ /* * Will cancel the transaction, assumes ->del() is called * for each successful ->add() during the transaction. */ void (*cancel_txn) (struct pmu *pmu); /* optional */ /* * Will return the value for perf_event_mmap_page::index for this event, * if no implementation is provided it will default to: event->hw.idx + 1. */ int (*event_idx) (struct perf_event *event); /*optional */ /* * flush branch stack on context-switches (needed in cpu-wide mode) */ void (*flush_branch_stack) (void); }; /** * enum perf_event_active_state - the states of a event */ enum perf_event_active_state { PERF_EVENT_STATE_ERROR = -2, PERF_EVENT_STATE_OFF = -1, PERF_EVENT_STATE_INACTIVE = 0, PERF_EVENT_STATE_ACTIVE = 1, }; struct file; struct perf_sample_data; typedef void (*perf_overflow_handler_t)(struct perf_event *, struct perf_sample_data *, struct pt_regs *regs); enum perf_group_flag { PERF_GROUP_SOFTWARE = 0x1, }; #define SWEVENT_HLIST_BITS 8 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) struct swevent_hlist { struct hlist_head heads[SWEVENT_HLIST_SIZE]; struct rcu_head rcu_head; }; #define PERF_ATTACH_CONTEXT 0x01 #define PERF_ATTACH_GROUP 0x02 #define PERF_ATTACH_TASK 0x04 #ifdef CONFIG_CGROUP_PERF /* * perf_cgroup_info keeps track of time_enabled for a cgroup. * This is a per-cpu dynamically allocated data structure. */ struct perf_cgroup_info { u64 time; u64 timestamp; }; struct perf_cgroup { struct cgroup_subsys_state css; struct perf_cgroup_info *info; /* timing info, one per cpu */ }; #endif struct ring_buffer; /** * struct perf_event - performance event kernel representation: */ struct perf_event { #ifdef CONFIG_PERF_EVENTS struct list_head group_entry; struct list_head event_entry; struct list_head sibling_list; struct hlist_node hlist_entry; int nr_siblings; int group_flags; struct perf_event *group_leader; struct pmu *pmu; enum perf_event_active_state state; unsigned int attach_state; local64_t count; atomic64_t child_count; /* * These are the total time in nanoseconds that the event * has been enabled (i.e. eligible to run, and the task has * been scheduled in, if this is a per-task event) * and running (scheduled onto the CPU), respectively. * * They are computed from tstamp_enabled, tstamp_running and * tstamp_stopped when the event is in INACTIVE or ACTIVE state. */ u64 total_time_enabled; u64 total_time_running; /* * These are timestamps used for computing total_time_enabled * and total_time_running when the event is in INACTIVE or * ACTIVE state, measured in nanoseconds from an arbitrary point * in time. * tstamp_enabled: the notional time when the event was enabled * tstamp_running: the notional time when the event was scheduled on * tstamp_stopped: in INACTIVE state, the notional time when the * event was scheduled off. */ u64 tstamp_enabled; u64 tstamp_running; u64 tstamp_stopped; /* * timestamp shadows the actual context timing but it can * be safely used in NMI interrupt context. It reflects the * context time as it was when the event was last scheduled in. * * ctx_time already accounts for ctx->timestamp. Therefore to * compute ctx_time for a sample, simply add perf_clock(). */ u64 shadow_ctx_time; struct perf_event_attr attr; u16 header_size; u16 id_header_size; u16 read_size; struct hw_perf_event hw; struct perf_event_context *ctx; struct file *filp; /* * These accumulate total time (in nanoseconds) that children * events have been enabled and running, respectively. */ atomic64_t child_total_time_enabled; atomic64_t child_total_time_running; /* * Protect attach/detach and child_list: */ struct mutex child_mutex; struct list_head child_list; struct perf_event *parent; int oncpu; int cpu; struct list_head owner_entry; struct task_struct *owner; /* mmap bits */ struct mutex mmap_mutex; atomic_t mmap_count; int mmap_locked; struct user_struct *mmap_user; struct ring_buffer *rb; struct list_head rb_entry; /* poll related */ wait_queue_head_t waitq; struct fasync_struct *fasync; /* delayed work for NMIs and such */ int pending_wakeup; int pending_kill; int pending_disable; struct irq_work pending; atomic_t event_limit; void (*destroy)(struct perf_event *); struct rcu_head rcu_head; struct pid_namespace *ns; u64 id; perf_overflow_handler_t overflow_handler; void *overflow_handler_context; #ifdef CONFIG_EVENT_TRACING struct ftrace_event_call *tp_event; struct event_filter *filter; #ifdef CONFIG_FUNCTION_TRACER struct ftrace_ops ftrace_ops; #endif #endif #ifdef CONFIG_CGROUP_PERF struct perf_cgroup *cgrp; /* cgroup event is attach to */ int cgrp_defer_enabled; #endif #endif /* CONFIG_PERF_EVENTS */ }; enum perf_event_context_type { task_context, cpu_context, }; /** * struct perf_event_context - event context structure * * Used as a container for task events and CPU events as well: */ struct perf_event_context { struct pmu *pmu; enum perf_event_context_type type; /* * Protect the states of the events in the list, * nr_active, and the list: */ raw_spinlock_t lock; /* * Protect the list of events. Locking either mutex or lock * is sufficient to ensure the list doesn't change; to change * the list you need to lock both the mutex and the spinlock. */ struct mutex mutex; struct list_head pinned_groups; struct list_head flexible_groups; struct list_head event_list; int nr_events; int nr_active; int is_active; int nr_stat; int nr_freq; int rotate_disable; atomic_t refcount; struct task_struct *task; /* * Context clock, runs when context enabled. */ u64 time; u64 timestamp; /* * These fields let us detect when two contexts have both * been cloned (inherited) from a common ancestor. */ struct perf_event_context *parent_ctx; u64 parent_gen; u64 generation; int pin_count; int nr_cgroups; /* cgroup evts */ int nr_branch_stack; /* branch_stack evt */ struct rcu_head rcu_head; }; /* * Number of contexts where an event can trigger: * task, softirq, hardirq, nmi. */ #define PERF_NR_CONTEXTS 4 /** * struct perf_event_cpu_context - per cpu event context structure */ struct perf_cpu_context { struct perf_event_context ctx; struct perf_event_context *task_ctx; int active_oncpu; int exclusive; struct list_head rotation_list; int jiffies_interval; struct pmu *active_pmu; struct perf_cgroup *cgrp; }; struct perf_output_handle { struct perf_event *event; struct ring_buffer *rb; unsigned long wakeup; unsigned long size; void *addr; int page; }; #ifdef CONFIG_PERF_EVENTS extern int perf_pmu_register(struct pmu *pmu, char *name, int type); extern void perf_pmu_unregister(struct pmu *pmu); extern int perf_num_counters(void); extern const char *perf_pmu_name(void); extern void __perf_event_task_sched_in(struct task_struct *prev, struct task_struct *task); extern void __perf_event_task_sched_out(struct task_struct *prev, struct task_struct *next); extern int perf_event_init_task(struct task_struct *child); extern void perf_event_exit_task(struct task_struct *child); extern void perf_event_free_task(struct task_struct *task); extern void perf_event_delayed_put(struct task_struct *task); extern void perf_event_print_debug(void); extern void perf_pmu_disable(struct pmu *pmu); extern void perf_pmu_enable(struct pmu *pmu); extern int perf_event_task_disable(void); extern int perf_event_task_enable(void); extern int perf_event_refresh(struct perf_event *event, int refresh); extern void perf_event_update_userpage(struct perf_event *event); extern int perf_event_release_kernel(struct perf_event *event); extern struct perf_event * perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, struct task_struct *task, perf_overflow_handler_t callback, void *context); extern u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running); struct perf_sample_data { u64 type; u64 ip; struct { u32 pid; u32 tid; } tid_entry; u64 time; u64 addr; u64 id; u64 stream_id; struct { u32 cpu; u32 reserved; } cpu_entry; u64 period; struct perf_callchain_entry *callchain; struct perf_raw_record *raw; struct perf_branch_stack *br_stack; }; static inline void perf_sample_data_init(struct perf_sample_data *data, u64 addr, u64 period) { /* remaining struct members initialized in perf_prepare_sample() */ data->addr = addr; data->raw = NULL; data->br_stack = NULL; data->period = period; } extern void perf_output_sample(struct perf_output_handle *handle, struct perf_event_header *header, struct perf_sample_data *data, struct perf_event *event); extern void perf_prepare_sample(struct perf_event_header *header, struct perf_sample_data *data, struct perf_event *event, struct pt_regs *regs); extern int perf_event_overflow(struct perf_event *event, struct perf_sample_data *data, struct pt_regs *regs); static inline bool is_sampling_event(struct perf_event *event) { return event->attr.sample_period != 0; } /* * Return 1 for a software event, 0 for a hardware event */ static inline int is_software_event(struct perf_event *event) { return event->pmu->task_ctx_nr == perf_sw_context; } extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); #ifndef perf_arch_fetch_caller_regs static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } #endif /* * Take a snapshot of the regs. Skip ip and frame pointer to * the nth caller. We only need a few of the regs: * - ip for PERF_SAMPLE_IP * - cs for user_mode() tests * - bp for callchains * - eflags, for future purposes, just in case */ static inline void perf_fetch_caller_regs(struct pt_regs *regs) { memset(regs, 0, sizeof(*regs)); perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); } static __always_inline void perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { struct pt_regs hot_regs; if (static_key_false(&perf_swevent_enabled[event_id])) { if (!regs) { perf_fetch_caller_regs(&hot_regs); regs = &hot_regs; } __perf_sw_event(event_id, nr, regs, addr); } } extern struct static_key_deferred perf_sched_events; static inline void perf_event_task_sched_in(struct task_struct *prev, struct task_struct *task) { if (static_key_false(&perf_sched_events.key)) __perf_event_task_sched_in(prev, task); } static inline void perf_event_task_sched_out(struct task_struct *prev, struct task_struct *next) { perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0); if (static_key_false(&perf_sched_events.key)) __perf_event_task_sched_out(prev, next); } extern void perf_event_mmap(struct vm_area_struct *vma); extern struct perf_guest_info_callbacks *perf_guest_cbs; extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); extern void perf_event_comm(struct task_struct *tsk); extern void perf_event_fork(struct task_struct *tsk); /* Callchains */ DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs); extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs); static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip) { if (entry->nr < PERF_MAX_STACK_DEPTH) entry->ip[entry->nr++] = ip; } extern int sysctl_perf_event_paranoid; extern int sysctl_perf_event_mlock; extern int sysctl_perf_event_sample_rate; extern int perf_proc_update_handler(struct ctl_table *table, int write, void __user *buffer, size_t *lenp, loff_t *ppos); static inline bool perf_paranoid_tracepoint_raw(void) { return sysctl_perf_event_paranoid > -1; } static inline bool perf_paranoid_cpu(void) { return sysctl_perf_event_paranoid > 0; } static inline bool perf_paranoid_kernel(void) { return sysctl_perf_event_paranoid > 1; } extern void perf_event_init(void); extern void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, struct pt_regs *regs, struct hlist_head *head, int rctx); extern void perf_bp_event(struct perf_event *event, void *data); #ifndef perf_misc_flags # define perf_misc_flags(regs) \ (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) # define perf_instruction_pointer(regs) instruction_pointer(regs) #endif static inline bool has_branch_stack(struct perf_event *event) { return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; } extern int perf_output_begin(struct perf_output_handle *handle, struct perf_event *event, unsigned int size); extern void perf_output_end(struct perf_output_handle *handle); extern void perf_output_copy(struct perf_output_handle *handle, const void *buf, unsigned int len); extern int perf_swevent_get_recursion_context(void); extern void perf_swevent_put_recursion_context(int rctx); extern void perf_event_enable(struct perf_event *event); extern void perf_event_disable(struct perf_event *event); extern void perf_event_task_tick(void); #else static inline void perf_event_task_sched_in(struct task_struct *prev, struct task_struct *task) { } static inline void perf_event_task_sched_out(struct task_struct *prev, struct task_struct *next) { } static inline int perf_event_init_task(struct task_struct *child) { return 0; } static inline void perf_event_exit_task(struct task_struct *child) { } static inline void perf_event_free_task(struct task_struct *task) { } static inline void perf_event_delayed_put(struct task_struct *task) { } static inline void perf_event_print_debug(void) { } static inline int perf_event_task_disable(void) { return -EINVAL; } static inline int perf_event_task_enable(void) { return -EINVAL; } static inline int perf_event_refresh(struct perf_event *event, int refresh) { return -EINVAL; } static inline void perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } static inline void perf_bp_event(struct perf_event *event, void *data) { } static inline int perf_register_guest_info_callbacks (struct perf_guest_info_callbacks *callbacks) { return 0; } static inline int perf_unregister_guest_info_callbacks (struct perf_guest_info_callbacks *callbacks) { return 0; } static inline void perf_event_mmap(struct vm_area_struct *vma) { } static inline void perf_event_comm(struct task_struct *tsk) { } static inline void perf_event_fork(struct task_struct *tsk) { } static inline void perf_event_init(void) { } static inline int perf_swevent_get_recursion_context(void) { return -1; } static inline void perf_swevent_put_recursion_context(int rctx) { } static inline void perf_event_enable(struct perf_event *event) { } static inline void perf_event_disable(struct perf_event *event) { } static inline void perf_event_task_tick(void) { } #endif #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) /* * This has to have a higher priority than migration_notifier in sched.c. */ #define perf_cpu_notifier(fn) \ do { \ static struct notifier_block fn##_nb __cpuinitdata = \ { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \ (void *)(unsigned long)smp_processor_id()); \ fn(&fn##_nb, (unsigned long)CPU_STARTING, \ (void *)(unsigned long)smp_processor_id()); \ fn(&fn##_nb, (unsigned long)CPU_ONLINE, \ (void *)(unsigned long)smp_processor_id()); \ register_cpu_notifier(&fn##_nb); \ } while (0) #define PMU_FORMAT_ATTR(_name, _format) \ static ssize_t \ _name##_show(struct device *dev, \ struct device_attribute *attr, \ char *page) \ { \ BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ return sprintf(page, _format "\n"); \ } \ \ static struct device_attribute format_attr_##_name = __ATTR_RO(_name) #endif /* __KERNEL__ */ #endif /* _LINUX_PERF_EVENT_H */