// SPDX-License-Identifier: GPL-2.0 OR BSD-2-Clause /* * Copyright 2018-2019 Amazon.com, Inc. or its affiliates. All rights reserved. */ #include "efa_com.h" #include "efa_regs_defs.h" #define ADMIN_CMD_TIMEOUT_US 30000000 /* usecs */ #define EFA_REG_READ_TIMEOUT_US 50000 /* usecs */ #define EFA_MMIO_READ_INVALID 0xffffffff #define EFA_POLL_INTERVAL_MS 100 /* msecs */ #define EFA_ASYNC_QUEUE_DEPTH 16 #define EFA_ADMIN_QUEUE_DEPTH 32 #define MIN_EFA_VER\ ((EFA_ADMIN_API_VERSION_MAJOR << EFA_REGS_VERSION_MAJOR_VERSION_SHIFT) | \ (EFA_ADMIN_API_VERSION_MINOR & EFA_REGS_VERSION_MINOR_VERSION_MASK)) #define EFA_CTRL_MAJOR 0 #define EFA_CTRL_MINOR 0 #define EFA_CTRL_SUB_MINOR 1 #define MIN_EFA_CTRL_VER \ (((EFA_CTRL_MAJOR) << \ (EFA_REGS_CONTROLLER_VERSION_MAJOR_VERSION_SHIFT)) | \ ((EFA_CTRL_MINOR) << \ (EFA_REGS_CONTROLLER_VERSION_MINOR_VERSION_SHIFT)) | \ (EFA_CTRL_SUB_MINOR)) #define EFA_DMA_ADDR_TO_UINT32_LOW(x) ((u32)((u64)(x))) #define EFA_DMA_ADDR_TO_UINT32_HIGH(x) ((u32)(((u64)(x)) >> 32)) #define EFA_REGS_ADMIN_INTR_MASK 1 enum efa_cmd_status { EFA_CMD_SUBMITTED, EFA_CMD_COMPLETED, }; struct efa_comp_ctx { struct completion wait_event; struct efa_admin_acq_entry *user_cqe; u32 comp_size; enum efa_cmd_status status; /* status from the device */ u8 comp_status; u8 cmd_opcode; u8 occupied; }; static const char *efa_com_cmd_str(u8 cmd) { #define EFA_CMD_STR_CASE(_cmd) case EFA_ADMIN_##_cmd: return #_cmd switch (cmd) { EFA_CMD_STR_CASE(CREATE_QP); EFA_CMD_STR_CASE(MODIFY_QP); EFA_CMD_STR_CASE(QUERY_QP); EFA_CMD_STR_CASE(DESTROY_QP); EFA_CMD_STR_CASE(CREATE_AH); EFA_CMD_STR_CASE(DESTROY_AH); EFA_CMD_STR_CASE(REG_MR); EFA_CMD_STR_CASE(DEREG_MR); EFA_CMD_STR_CASE(CREATE_CQ); EFA_CMD_STR_CASE(DESTROY_CQ); EFA_CMD_STR_CASE(GET_FEATURE); EFA_CMD_STR_CASE(SET_FEATURE); EFA_CMD_STR_CASE(GET_STATS); EFA_CMD_STR_CASE(ALLOC_PD); EFA_CMD_STR_CASE(DEALLOC_PD); EFA_CMD_STR_CASE(ALLOC_UAR); EFA_CMD_STR_CASE(DEALLOC_UAR); default: return "unknown command opcode"; } #undef EFA_CMD_STR_CASE } static u32 efa_com_reg_read32(struct efa_com_dev *edev, u16 offset) { struct efa_com_mmio_read *mmio_read = &edev->mmio_read; struct efa_admin_mmio_req_read_less_resp *read_resp; unsigned long exp_time; u32 mmio_read_reg; u32 err; read_resp = mmio_read->read_resp; spin_lock(&mmio_read->lock); mmio_read->seq_num++; /* trash DMA req_id to identify when hardware is done */ read_resp->req_id = mmio_read->seq_num + 0x9aL; mmio_read_reg = (offset << EFA_REGS_MMIO_REG_READ_REG_OFF_SHIFT) & EFA_REGS_MMIO_REG_READ_REG_OFF_MASK; mmio_read_reg |= mmio_read->seq_num & EFA_REGS_MMIO_REG_READ_REQ_ID_MASK; writel(mmio_read_reg, edev->reg_bar + EFA_REGS_MMIO_REG_READ_OFF); exp_time = jiffies + usecs_to_jiffies(mmio_read->mmio_read_timeout); do { if (READ_ONCE(read_resp->req_id) == mmio_read->seq_num) break; udelay(1); } while (time_is_after_jiffies(exp_time)); if (read_resp->req_id != mmio_read->seq_num) { ibdev_err(edev->efa_dev, "Reading register timed out. expected: req id[%u] offset[%#x] actual: req id[%u] offset[%#x]\n", mmio_read->seq_num, offset, read_resp->req_id, read_resp->reg_off); err = EFA_MMIO_READ_INVALID; goto out; } if (read_resp->reg_off != offset) { ibdev_err(edev->efa_dev, "Reading register failed: wrong offset provided\n"); err = EFA_MMIO_READ_INVALID; goto out; } err = read_resp->reg_val; out: spin_unlock(&mmio_read->lock); return err; } static int efa_com_admin_init_sq(struct efa_com_dev *edev) { struct efa_com_admin_queue *aq = &edev->aq; struct efa_com_admin_sq *sq = &aq->sq; u16 size = aq->depth * sizeof(*sq->entries); u32 addr_high; u32 addr_low; u32 aq_caps; sq->entries = dma_alloc_coherent(aq->dmadev, size, &sq->dma_addr, GFP_KERNEL); if (!sq->entries) return -ENOMEM; spin_lock_init(&sq->lock); sq->cc = 0; sq->pc = 0; sq->phase = 1; sq->db_addr = (u32 __iomem *)(edev->reg_bar + EFA_REGS_AQ_PROD_DB_OFF); addr_high = EFA_DMA_ADDR_TO_UINT32_HIGH(sq->dma_addr); addr_low = EFA_DMA_ADDR_TO_UINT32_LOW(sq->dma_addr); writel(addr_low, edev->reg_bar + EFA_REGS_AQ_BASE_LO_OFF); writel(addr_high, edev->reg_bar + EFA_REGS_AQ_BASE_HI_OFF); aq_caps = aq->depth & EFA_REGS_AQ_CAPS_AQ_DEPTH_MASK; aq_caps |= (sizeof(struct efa_admin_aq_entry) << EFA_REGS_AQ_CAPS_AQ_ENTRY_SIZE_SHIFT) & EFA_REGS_AQ_CAPS_AQ_ENTRY_SIZE_MASK; writel(aq_caps, edev->reg_bar + EFA_REGS_AQ_CAPS_OFF); return 0; } static int efa_com_admin_init_cq(struct efa_com_dev *edev) { struct efa_com_admin_queue *aq = &edev->aq; struct efa_com_admin_cq *cq = &aq->cq; u16 size = aq->depth * sizeof(*cq->entries); u32 addr_high; u32 addr_low; u32 acq_caps; cq->entries = dma_alloc_coherent(aq->dmadev, size, &cq->dma_addr, GFP_KERNEL); if (!cq->entries) return -ENOMEM; spin_lock_init(&cq->lock); cq->cc = 0; cq->phase = 1; addr_high = EFA_DMA_ADDR_TO_UINT32_HIGH(cq->dma_addr); addr_low = EFA_DMA_ADDR_TO_UINT32_LOW(cq->dma_addr); writel(addr_low, edev->reg_bar + EFA_REGS_ACQ_BASE_LO_OFF); writel(addr_high, edev->reg_bar + EFA_REGS_ACQ_BASE_HI_OFF); acq_caps = aq->depth & EFA_REGS_ACQ_CAPS_ACQ_DEPTH_MASK; acq_caps |= (sizeof(struct efa_admin_acq_entry) << EFA_REGS_ACQ_CAPS_ACQ_ENTRY_SIZE_SHIFT) & EFA_REGS_ACQ_CAPS_ACQ_ENTRY_SIZE_MASK; acq_caps |= (aq->msix_vector_idx << EFA_REGS_ACQ_CAPS_ACQ_MSIX_VECTOR_SHIFT) & EFA_REGS_ACQ_CAPS_ACQ_MSIX_VECTOR_MASK; writel(acq_caps, edev->reg_bar + EFA_REGS_ACQ_CAPS_OFF); return 0; } static int efa_com_admin_init_aenq(struct efa_com_dev *edev, struct efa_aenq_handlers *aenq_handlers) { struct efa_com_aenq *aenq = &edev->aenq; u32 addr_low, addr_high, aenq_caps; u16 size; if (!aenq_handlers) { ibdev_err(edev->efa_dev, "aenq handlers pointer is NULL\n"); return -EINVAL; } size = EFA_ASYNC_QUEUE_DEPTH * sizeof(*aenq->entries); aenq->entries = dma_alloc_coherent(edev->dmadev, size, &aenq->dma_addr, GFP_KERNEL); if (!aenq->entries) return -ENOMEM; aenq->aenq_handlers = aenq_handlers; aenq->depth = EFA_ASYNC_QUEUE_DEPTH; aenq->cc = 0; aenq->phase = 1; addr_low = EFA_DMA_ADDR_TO_UINT32_LOW(aenq->dma_addr); addr_high = EFA_DMA_ADDR_TO_UINT32_HIGH(aenq->dma_addr); writel(addr_low, edev->reg_bar + EFA_REGS_AENQ_BASE_LO_OFF); writel(addr_high, edev->reg_bar + EFA_REGS_AENQ_BASE_HI_OFF); aenq_caps = aenq->depth & EFA_REGS_AENQ_CAPS_AENQ_DEPTH_MASK; aenq_caps |= (sizeof(struct efa_admin_aenq_entry) << EFA_REGS_AENQ_CAPS_AENQ_ENTRY_SIZE_SHIFT) & EFA_REGS_AENQ_CAPS_AENQ_ENTRY_SIZE_MASK; aenq_caps |= (aenq->msix_vector_idx << EFA_REGS_AENQ_CAPS_AENQ_MSIX_VECTOR_SHIFT) & EFA_REGS_AENQ_CAPS_AENQ_MSIX_VECTOR_MASK; writel(aenq_caps, edev->reg_bar + EFA_REGS_AENQ_CAPS_OFF); /* * Init cons_db to mark that all entries in the queue * are initially available */ writel(edev->aenq.cc, edev->reg_bar + EFA_REGS_AENQ_CONS_DB_OFF); return 0; } /* ID to be used with efa_com_get_comp_ctx */ static u16 efa_com_alloc_ctx_id(struct efa_com_admin_queue *aq) { u16 ctx_id; spin_lock(&aq->comp_ctx_lock); ctx_id = aq->comp_ctx_pool[aq->comp_ctx_pool_next]; aq->comp_ctx_pool_next++; spin_unlock(&aq->comp_ctx_lock); return ctx_id; } static void efa_com_dealloc_ctx_id(struct efa_com_admin_queue *aq, u16 ctx_id) { spin_lock(&aq->comp_ctx_lock); aq->comp_ctx_pool_next--; aq->comp_ctx_pool[aq->comp_ctx_pool_next] = ctx_id; spin_unlock(&aq->comp_ctx_lock); } static inline void efa_com_put_comp_ctx(struct efa_com_admin_queue *aq, struct efa_comp_ctx *comp_ctx) { u16 comp_id = comp_ctx->user_cqe->acq_common_descriptor.command & EFA_ADMIN_ACQ_COMMON_DESC_COMMAND_ID_MASK; ibdev_dbg(aq->efa_dev, "Putting completion command_id %d\n", comp_id); comp_ctx->occupied = 0; efa_com_dealloc_ctx_id(aq, comp_id); } static struct efa_comp_ctx *efa_com_get_comp_ctx(struct efa_com_admin_queue *aq, u16 command_id, bool capture) { if (command_id >= aq->depth) { ibdev_err(aq->efa_dev, "command id is larger than the queue size. cmd_id: %u queue size %d\n", command_id, aq->depth); return NULL; } if (aq->comp_ctx[command_id].occupied && capture) { ibdev_err(aq->efa_dev, "Completion context is occupied\n"); return NULL; } if (capture) { aq->comp_ctx[command_id].occupied = 1; ibdev_dbg(aq->efa_dev, "Taking completion ctxt command_id %d\n", command_id); } return &aq->comp_ctx[command_id]; } static struct efa_comp_ctx *__efa_com_submit_admin_cmd(struct efa_com_admin_queue *aq, struct efa_admin_aq_entry *cmd, size_t cmd_size_in_bytes, struct efa_admin_acq_entry *comp, size_t comp_size_in_bytes) { struct efa_comp_ctx *comp_ctx; u16 queue_size_mask; u16 ctx_id; u16 pi; queue_size_mask = aq->depth - 1; pi = aq->sq.pc & queue_size_mask; ctx_id = efa_com_alloc_ctx_id(aq); cmd->aq_common_descriptor.flags |= aq->sq.phase & EFA_ADMIN_AQ_COMMON_DESC_PHASE_MASK; cmd->aq_common_descriptor.command_id |= ctx_id & EFA_ADMIN_AQ_COMMON_DESC_COMMAND_ID_MASK; comp_ctx = efa_com_get_comp_ctx(aq, ctx_id, true); if (!comp_ctx) { efa_com_dealloc_ctx_id(aq, ctx_id); return ERR_PTR(-EINVAL); } comp_ctx->status = EFA_CMD_SUBMITTED; comp_ctx->comp_size = comp_size_in_bytes; comp_ctx->user_cqe = comp; comp_ctx->cmd_opcode = cmd->aq_common_descriptor.opcode; reinit_completion(&comp_ctx->wait_event); memcpy(&aq->sq.entries[pi], cmd, cmd_size_in_bytes); aq->sq.pc++; atomic64_inc(&aq->stats.submitted_cmd); if ((aq->sq.pc & queue_size_mask) == 0) aq->sq.phase = !aq->sq.phase; /* barrier not needed in case of writel */ writel(aq->sq.pc, aq->sq.db_addr); return comp_ctx; } static inline int efa_com_init_comp_ctxt(struct efa_com_admin_queue *aq) { size_t pool_size = aq->depth * sizeof(*aq->comp_ctx_pool); size_t size = aq->depth * sizeof(struct efa_comp_ctx); struct efa_comp_ctx *comp_ctx; u16 i; aq->comp_ctx = devm_kzalloc(aq->dmadev, size, GFP_KERNEL); aq->comp_ctx_pool = devm_kzalloc(aq->dmadev, pool_size, GFP_KERNEL); if (!aq->comp_ctx || !aq->comp_ctx_pool) { devm_kfree(aq->dmadev, aq->comp_ctx_pool); devm_kfree(aq->dmadev, aq->comp_ctx); return -ENOMEM; } for (i = 0; i < aq->depth; i++) { comp_ctx = efa_com_get_comp_ctx(aq, i, false); if (comp_ctx) init_completion(&comp_ctx->wait_event); aq->comp_ctx_pool[i] = i; } spin_lock_init(&aq->comp_ctx_lock); aq->comp_ctx_pool_next = 0; return 0; } static struct efa_comp_ctx *efa_com_submit_admin_cmd(struct efa_com_admin_queue *aq, struct efa_admin_aq_entry *cmd, size_t cmd_size_in_bytes, struct efa_admin_acq_entry *comp, size_t comp_size_in_bytes) { struct efa_comp_ctx *comp_ctx; spin_lock(&aq->sq.lock); if (!test_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state)) { ibdev_err(aq->efa_dev, "Admin queue is closed\n"); spin_unlock(&aq->sq.lock); return ERR_PTR(-ENODEV); } comp_ctx = __efa_com_submit_admin_cmd(aq, cmd, cmd_size_in_bytes, comp, comp_size_in_bytes); spin_unlock(&aq->sq.lock); if (IS_ERR(comp_ctx)) clear_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state); return comp_ctx; } static void efa_com_handle_single_admin_completion(struct efa_com_admin_queue *aq, struct efa_admin_acq_entry *cqe) { struct efa_comp_ctx *comp_ctx; u16 cmd_id; cmd_id = cqe->acq_common_descriptor.command & EFA_ADMIN_ACQ_COMMON_DESC_COMMAND_ID_MASK; comp_ctx = efa_com_get_comp_ctx(aq, cmd_id, false); if (!comp_ctx) { ibdev_err(aq->efa_dev, "comp_ctx is NULL. Changing the admin queue running state\n"); clear_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state); return; } comp_ctx->status = EFA_CMD_COMPLETED; comp_ctx->comp_status = cqe->acq_common_descriptor.status; if (comp_ctx->user_cqe) memcpy(comp_ctx->user_cqe, cqe, comp_ctx->comp_size); if (!test_bit(EFA_AQ_STATE_POLLING_BIT, &aq->state)) complete(&comp_ctx->wait_event); } static void efa_com_handle_admin_completion(struct efa_com_admin_queue *aq) { struct efa_admin_acq_entry *cqe; u16 queue_size_mask; u16 comp_num = 0; u8 phase; u16 ci; queue_size_mask = aq->depth - 1; ci = aq->cq.cc & queue_size_mask; phase = aq->cq.phase; cqe = &aq->cq.entries[ci]; /* Go over all the completions */ while ((READ_ONCE(cqe->acq_common_descriptor.flags) & EFA_ADMIN_ACQ_COMMON_DESC_PHASE_MASK) == phase) { /* * Do not read the rest of the completion entry before the * phase bit was validated */ dma_rmb(); efa_com_handle_single_admin_completion(aq, cqe); ci++; comp_num++; if (ci == aq->depth) { ci = 0; phase = !phase; } cqe = &aq->cq.entries[ci]; } aq->cq.cc += comp_num; aq->cq.phase = phase; aq->sq.cc += comp_num; atomic64_add(comp_num, &aq->stats.completed_cmd); } static int efa_com_comp_status_to_errno(u8 comp_status) { switch (comp_status) { case EFA_ADMIN_SUCCESS: return 0; case EFA_ADMIN_RESOURCE_ALLOCATION_FAILURE: return -ENOMEM; case EFA_ADMIN_UNSUPPORTED_OPCODE: return -EOPNOTSUPP; case EFA_ADMIN_BAD_OPCODE: case EFA_ADMIN_MALFORMED_REQUEST: case EFA_ADMIN_ILLEGAL_PARAMETER: case EFA_ADMIN_UNKNOWN_ERROR: return -EINVAL; default: return -EINVAL; } } static int efa_com_wait_and_process_admin_cq_polling(struct efa_comp_ctx *comp_ctx, struct efa_com_admin_queue *aq) { unsigned long timeout; unsigned long flags; int err; timeout = jiffies + usecs_to_jiffies(aq->completion_timeout); while (1) { spin_lock_irqsave(&aq->cq.lock, flags); efa_com_handle_admin_completion(aq); spin_unlock_irqrestore(&aq->cq.lock, flags); if (comp_ctx->status != EFA_CMD_SUBMITTED) break; if (time_is_before_jiffies(timeout)) { ibdev_err(aq->efa_dev, "Wait for completion (polling) timeout\n"); /* EFA didn't have any completion */ atomic64_inc(&aq->stats.no_completion); clear_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state); err = -ETIME; goto out; } msleep(aq->poll_interval); } err = efa_com_comp_status_to_errno(comp_ctx->comp_status); out: efa_com_put_comp_ctx(aq, comp_ctx); return err; } static int efa_com_wait_and_process_admin_cq_interrupts(struct efa_comp_ctx *comp_ctx, struct efa_com_admin_queue *aq) { unsigned long flags; int err; wait_for_completion_timeout(&comp_ctx->wait_event, usecs_to_jiffies(aq->completion_timeout)); /* * In case the command wasn't completed find out the root cause. * There might be 2 kinds of errors * 1) No completion (timeout reached) * 2) There is completion but the device didn't get any msi-x interrupt. */ if (comp_ctx->status == EFA_CMD_SUBMITTED) { spin_lock_irqsave(&aq->cq.lock, flags); efa_com_handle_admin_completion(aq); spin_unlock_irqrestore(&aq->cq.lock, flags); atomic64_inc(&aq->stats.no_completion); if (comp_ctx->status == EFA_CMD_COMPLETED) ibdev_err(aq->efa_dev, "The device sent a completion but the driver didn't receive any MSI-X interrupt for admin cmd %s(%d) status %d (ctx: 0x%p, sq producer: %d, sq consumer: %d, cq consumer: %d)\n", efa_com_cmd_str(comp_ctx->cmd_opcode), comp_ctx->cmd_opcode, comp_ctx->status, comp_ctx, aq->sq.pc, aq->sq.cc, aq->cq.cc); else ibdev_err(aq->efa_dev, "The device didn't send any completion for admin cmd %s(%d) status %d (ctx 0x%p, sq producer: %d, sq consumer: %d, cq consumer: %d)\n", efa_com_cmd_str(comp_ctx->cmd_opcode), comp_ctx->cmd_opcode, comp_ctx->status, comp_ctx, aq->sq.pc, aq->sq.cc, aq->cq.cc); clear_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state); err = -ETIME; goto out; } err = efa_com_comp_status_to_errno(comp_ctx->comp_status); out: efa_com_put_comp_ctx(aq, comp_ctx); return err; } /* * There are two types to wait for completion. * Polling mode - wait until the completion is available. * Async mode - wait on wait queue until the completion is ready * (or the timeout expired). * It is expected that the IRQ called efa_com_handle_admin_completion * to mark the completions. */ static int efa_com_wait_and_process_admin_cq(struct efa_comp_ctx *comp_ctx, struct efa_com_admin_queue *aq) { if (test_bit(EFA_AQ_STATE_POLLING_BIT, &aq->state)) return efa_com_wait_and_process_admin_cq_polling(comp_ctx, aq); return efa_com_wait_and_process_admin_cq_interrupts(comp_ctx, aq); } /** * efa_com_cmd_exec - Execute admin command * @aq: admin queue. * @cmd: the admin command to execute. * @cmd_size: the command size. * @comp: command completion return entry. * @comp_size: command completion size. * Submit an admin command and then wait until the device will return a * completion. * The completion will be copied into comp. * * @return - 0 on success, negative value on failure. */ int efa_com_cmd_exec(struct efa_com_admin_queue *aq, struct efa_admin_aq_entry *cmd, size_t cmd_size, struct efa_admin_acq_entry *comp, size_t comp_size) { struct efa_comp_ctx *comp_ctx; int err; might_sleep(); /* In case of queue FULL */ down(&aq->avail_cmds); ibdev_dbg(aq->efa_dev, "%s (opcode %d)\n", efa_com_cmd_str(cmd->aq_common_descriptor.opcode), cmd->aq_common_descriptor.opcode); comp_ctx = efa_com_submit_admin_cmd(aq, cmd, cmd_size, comp, comp_size); if (IS_ERR(comp_ctx)) { ibdev_err(aq->efa_dev, "Failed to submit command %s (opcode %u) err %ld\n", efa_com_cmd_str(cmd->aq_common_descriptor.opcode), cmd->aq_common_descriptor.opcode, PTR_ERR(comp_ctx)); up(&aq->avail_cmds); return PTR_ERR(comp_ctx); } err = efa_com_wait_and_process_admin_cq(comp_ctx, aq); if (err) ibdev_err(aq->efa_dev, "Failed to process command %s (opcode %u) comp_status %d err %d\n", efa_com_cmd_str(cmd->aq_common_descriptor.opcode), cmd->aq_common_descriptor.opcode, comp_ctx->comp_status, err); up(&aq->avail_cmds); return err; } /** * efa_com_admin_destroy - Destroy the admin and the async events queues. * @edev: EFA communication layer struct */ void efa_com_admin_destroy(struct efa_com_dev *edev) { struct efa_com_admin_queue *aq = &edev->aq; struct efa_com_aenq *aenq = &edev->aenq; struct efa_com_admin_cq *cq = &aq->cq; struct efa_com_admin_sq *sq = &aq->sq; u16 size; clear_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state); devm_kfree(edev->dmadev, aq->comp_ctx_pool); devm_kfree(edev->dmadev, aq->comp_ctx); size = aq->depth * sizeof(*sq->entries); dma_free_coherent(edev->dmadev, size, sq->entries, sq->dma_addr); size = aq->depth * sizeof(*cq->entries); dma_free_coherent(edev->dmadev, size, cq->entries, cq->dma_addr); size = aenq->depth * sizeof(*aenq->entries); dma_free_coherent(edev->dmadev, size, aenq->entries, aenq->dma_addr); } /** * efa_com_set_admin_polling_mode - Set the admin completion queue polling mode * @edev: EFA communication layer struct * @polling: Enable/Disable polling mode * * Set the admin completion mode. */ void efa_com_set_admin_polling_mode(struct efa_com_dev *edev, bool polling) { u32 mask_value = 0; if (polling) mask_value = EFA_REGS_ADMIN_INTR_MASK; writel(mask_value, edev->reg_bar + EFA_REGS_INTR_MASK_OFF); if (polling) set_bit(EFA_AQ_STATE_POLLING_BIT, &edev->aq.state); else clear_bit(EFA_AQ_STATE_POLLING_BIT, &edev->aq.state); } static void efa_com_stats_init(struct efa_com_dev *edev) { atomic64_t *s = (atomic64_t *)&edev->aq.stats; int i; for (i = 0; i < sizeof(edev->aq.stats) / sizeof(*s); i++, s++) atomic64_set(s, 0); } /** * efa_com_admin_init - Init the admin and the async queues * @edev: EFA communication layer struct * @aenq_handlers: Those handlers to be called upon event. * * Initialize the admin submission and completion queues. * Initialize the asynchronous events notification queues. * * @return - 0 on success, negative value on failure. */ int efa_com_admin_init(struct efa_com_dev *edev, struct efa_aenq_handlers *aenq_handlers) { struct efa_com_admin_queue *aq = &edev->aq; u32 timeout; u32 dev_sts; u32 cap; int err; dev_sts = efa_com_reg_read32(edev, EFA_REGS_DEV_STS_OFF); if (!(dev_sts & EFA_REGS_DEV_STS_READY_MASK)) { ibdev_err(edev->efa_dev, "Device isn't ready, abort com init %#x\n", dev_sts); return -ENODEV; } aq->depth = EFA_ADMIN_QUEUE_DEPTH; aq->dmadev = edev->dmadev; aq->efa_dev = edev->efa_dev; set_bit(EFA_AQ_STATE_POLLING_BIT, &aq->state); sema_init(&aq->avail_cmds, aq->depth); efa_com_stats_init(edev); err = efa_com_init_comp_ctxt(aq); if (err) return err; err = efa_com_admin_init_sq(edev); if (err) goto err_destroy_comp_ctxt; err = efa_com_admin_init_cq(edev); if (err) goto err_destroy_sq; efa_com_set_admin_polling_mode(edev, false); err = efa_com_admin_init_aenq(edev, aenq_handlers); if (err) goto err_destroy_cq; cap = efa_com_reg_read32(edev, EFA_REGS_CAPS_OFF); timeout = (cap & EFA_REGS_CAPS_ADMIN_CMD_TO_MASK) >> EFA_REGS_CAPS_ADMIN_CMD_TO_SHIFT; if (timeout) /* the resolution of timeout reg is 100ms */ aq->completion_timeout = timeout * 100000; else aq->completion_timeout = ADMIN_CMD_TIMEOUT_US; aq->poll_interval = EFA_POLL_INTERVAL_MS; set_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state); return 0; err_destroy_cq: dma_free_coherent(edev->dmadev, aq->depth * sizeof(*aq->cq.entries), aq->cq.entries, aq->cq.dma_addr); err_destroy_sq: dma_free_coherent(edev->dmadev, aq->depth * sizeof(*aq->sq.entries), aq->sq.entries, aq->sq.dma_addr); err_destroy_comp_ctxt: devm_kfree(edev->dmadev, aq->comp_ctx); return err; } /** * efa_com_admin_q_comp_intr_handler - admin queue interrupt handler * @edev: EFA communication layer struct * * This method goes over the admin completion queue and wakes up * all the pending threads that wait on the commands wait event. * * @note: Should be called after MSI-X interrupt. */ void efa_com_admin_q_comp_intr_handler(struct efa_com_dev *edev) { unsigned long flags; spin_lock_irqsave(&edev->aq.cq.lock, flags); efa_com_handle_admin_completion(&edev->aq); spin_unlock_irqrestore(&edev->aq.cq.lock, flags); } /* * efa_handle_specific_aenq_event: * return the handler that is relevant to the specific event group */ static efa_aenq_handler efa_com_get_specific_aenq_cb(struct efa_com_dev *edev, u16 group) { struct efa_aenq_handlers *aenq_handlers = edev->aenq.aenq_handlers; if (group < EFA_MAX_HANDLERS && aenq_handlers->handlers[group]) return aenq_handlers->handlers[group]; return aenq_handlers->unimplemented_handler; } /** * efa_com_aenq_intr_handler - AENQ interrupt handler * @edev: EFA communication layer struct * @data: Data of interrupt handler. * * Go over the async event notification queue and call the proper aenq handler. */ void efa_com_aenq_intr_handler(struct efa_com_dev *edev, void *data) { struct efa_admin_aenq_common_desc *aenq_common; struct efa_com_aenq *aenq = &edev->aenq; struct efa_admin_aenq_entry *aenq_e; efa_aenq_handler handler_cb; u32 processed = 0; u8 phase; u32 ci; ci = aenq->cc & (aenq->depth - 1); phase = aenq->phase; aenq_e = &aenq->entries[ci]; /* Get first entry */ aenq_common = &aenq_e->aenq_common_desc; /* Go over all the events */ while ((READ_ONCE(aenq_common->flags) & EFA_ADMIN_AENQ_COMMON_DESC_PHASE_MASK) == phase) { /* * Do not read the rest of the completion entry before the * phase bit was validated */ dma_rmb(); /* Handle specific event*/ handler_cb = efa_com_get_specific_aenq_cb(edev, aenq_common->group); handler_cb(data, aenq_e); /* call the actual event handler*/ /* Get next event entry */ ci++; processed++; if (ci == aenq->depth) { ci = 0; phase = !phase; } aenq_e = &aenq->entries[ci]; aenq_common = &aenq_e->aenq_common_desc; } aenq->cc += processed; aenq->phase = phase; /* Don't update aenq doorbell if there weren't any processed events */ if (!processed) return; /* barrier not needed in case of writel */ writel(aenq->cc, edev->reg_bar + EFA_REGS_AENQ_CONS_DB_OFF); } static void efa_com_mmio_reg_read_resp_addr_init(struct efa_com_dev *edev) { struct efa_com_mmio_read *mmio_read = &edev->mmio_read; u32 addr_high; u32 addr_low; /* dma_addr_bits is unknown at this point */ addr_high = (mmio_read->read_resp_dma_addr >> 32) & GENMASK(31, 0); addr_low = mmio_read->read_resp_dma_addr & GENMASK(31, 0); writel(addr_high, edev->reg_bar + EFA_REGS_MMIO_RESP_HI_OFF); writel(addr_low, edev->reg_bar + EFA_REGS_MMIO_RESP_LO_OFF); } int efa_com_mmio_reg_read_init(struct efa_com_dev *edev) { struct efa_com_mmio_read *mmio_read = &edev->mmio_read; spin_lock_init(&mmio_read->lock); mmio_read->read_resp = dma_alloc_coherent(edev->dmadev, sizeof(*mmio_read->read_resp), &mmio_read->read_resp_dma_addr, GFP_KERNEL); if (!mmio_read->read_resp) return -ENOMEM; efa_com_mmio_reg_read_resp_addr_init(edev); mmio_read->read_resp->req_id = 0; mmio_read->seq_num = 0; mmio_read->mmio_read_timeout = EFA_REG_READ_TIMEOUT_US; return 0; } void efa_com_mmio_reg_read_destroy(struct efa_com_dev *edev) { struct efa_com_mmio_read *mmio_read = &edev->mmio_read; dma_free_coherent(edev->dmadev, sizeof(*mmio_read->read_resp), mmio_read->read_resp, mmio_read->read_resp_dma_addr); } int efa_com_validate_version(struct efa_com_dev *edev) { u32 ctrl_ver_masked; u32 ctrl_ver; u32 ver; /* * Make sure the EFA version and the controller version are at least * as the driver expects */ ver = efa_com_reg_read32(edev, EFA_REGS_VERSION_OFF); ctrl_ver = efa_com_reg_read32(edev, EFA_REGS_CONTROLLER_VERSION_OFF); ibdev_dbg(edev->efa_dev, "efa device version: %d.%d\n", (ver & EFA_REGS_VERSION_MAJOR_VERSION_MASK) >> EFA_REGS_VERSION_MAJOR_VERSION_SHIFT, ver & EFA_REGS_VERSION_MINOR_VERSION_MASK); if (ver < MIN_EFA_VER) { ibdev_err(edev->efa_dev, "EFA version is lower than the minimal version the driver supports\n"); return -EOPNOTSUPP; } ibdev_dbg(edev->efa_dev, "efa controller version: %d.%d.%d implementation version %d\n", (ctrl_ver & EFA_REGS_CONTROLLER_VERSION_MAJOR_VERSION_MASK) >> EFA_REGS_CONTROLLER_VERSION_MAJOR_VERSION_SHIFT, (ctrl_ver & EFA_REGS_CONTROLLER_VERSION_MINOR_VERSION_MASK) >> EFA_REGS_CONTROLLER_VERSION_MINOR_VERSION_SHIFT, (ctrl_ver & EFA_REGS_CONTROLLER_VERSION_SUBMINOR_VERSION_MASK), (ctrl_ver & EFA_REGS_CONTROLLER_VERSION_IMPL_ID_MASK) >> EFA_REGS_CONTROLLER_VERSION_IMPL_ID_SHIFT); ctrl_ver_masked = (ctrl_ver & EFA_REGS_CONTROLLER_VERSION_MAJOR_VERSION_MASK) | (ctrl_ver & EFA_REGS_CONTROLLER_VERSION_MINOR_VERSION_MASK) | (ctrl_ver & EFA_REGS_CONTROLLER_VERSION_SUBMINOR_VERSION_MASK); /* Validate the ctrl version without the implementation ID */ if (ctrl_ver_masked < MIN_EFA_CTRL_VER) { ibdev_err(edev->efa_dev, "EFA ctrl version is lower than the minimal ctrl version the driver supports\n"); return -EOPNOTSUPP; } return 0; } /** * efa_com_get_dma_width - Retrieve physical dma address width the device * supports. * @edev: EFA communication layer struct * * Retrieve the maximum physical address bits the device can handle. * * @return: > 0 on Success and negative value otherwise. */ int efa_com_get_dma_width(struct efa_com_dev *edev) { u32 caps = efa_com_reg_read32(edev, EFA_REGS_CAPS_OFF); int width; width = (caps & EFA_REGS_CAPS_DMA_ADDR_WIDTH_MASK) >> EFA_REGS_CAPS_DMA_ADDR_WIDTH_SHIFT; ibdev_dbg(edev->efa_dev, "DMA width: %d\n", width); if (width < 32 || width > 64) { ibdev_err(edev->efa_dev, "DMA width illegal value: %d\n", width); return -EINVAL; } edev->dma_addr_bits = width; return width; } static int wait_for_reset_state(struct efa_com_dev *edev, u32 timeout, u16 exp_state) { u32 val, i; for (i = 0; i < timeout; i++) { val = efa_com_reg_read32(edev, EFA_REGS_DEV_STS_OFF); if ((val & EFA_REGS_DEV_STS_RESET_IN_PROGRESS_MASK) == exp_state) return 0; ibdev_dbg(edev->efa_dev, "Reset indication val %d\n", val); msleep(EFA_POLL_INTERVAL_MS); } return -ETIME; } /** * efa_com_dev_reset - Perform device FLR to the device. * @edev: EFA communication layer struct * @reset_reason: Specify what is the trigger for the reset in case of an error. * * @return - 0 on success, negative value on failure. */ int efa_com_dev_reset(struct efa_com_dev *edev, enum efa_regs_reset_reason_types reset_reason) { u32 stat, timeout, cap, reset_val; int err; stat = efa_com_reg_read32(edev, EFA_REGS_DEV_STS_OFF); cap = efa_com_reg_read32(edev, EFA_REGS_CAPS_OFF); if (!(stat & EFA_REGS_DEV_STS_READY_MASK)) { ibdev_err(edev->efa_dev, "Device isn't ready, can't reset device\n"); return -EINVAL; } timeout = (cap & EFA_REGS_CAPS_RESET_TIMEOUT_MASK) >> EFA_REGS_CAPS_RESET_TIMEOUT_SHIFT; if (!timeout) { ibdev_err(edev->efa_dev, "Invalid timeout value\n"); return -EINVAL; } /* start reset */ reset_val = EFA_REGS_DEV_CTL_DEV_RESET_MASK; reset_val |= (reset_reason << EFA_REGS_DEV_CTL_RESET_REASON_SHIFT) & EFA_REGS_DEV_CTL_RESET_REASON_MASK; writel(reset_val, edev->reg_bar + EFA_REGS_DEV_CTL_OFF); /* reset clears the mmio readless address, restore it */ efa_com_mmio_reg_read_resp_addr_init(edev); err = wait_for_reset_state(edev, timeout, EFA_REGS_DEV_STS_RESET_IN_PROGRESS_MASK); if (err) { ibdev_err(edev->efa_dev, "Reset indication didn't turn on\n"); return err; } /* reset done */ writel(0, edev->reg_bar + EFA_REGS_DEV_CTL_OFF); err = wait_for_reset_state(edev, timeout, 0); if (err) { ibdev_err(edev->efa_dev, "Reset indication didn't turn off\n"); return err; } timeout = (cap & EFA_REGS_CAPS_ADMIN_CMD_TO_MASK) >> EFA_REGS_CAPS_ADMIN_CMD_TO_SHIFT; if (timeout) /* the resolution of timeout reg is 100ms */ edev->aq.completion_timeout = timeout * 100000; else edev->aq.completion_timeout = ADMIN_CMD_TIMEOUT_US; return 0; }