/* * Copyright © 2006-2007 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Authors: * Eric Anholt */ #include #include #include #include #include #include #include "drmP.h" #include "intel_drv.h" #include "i915_drm.h" #include "i915_drv.h" #include "i915_trace.h" #include "drm_dp_helper.h" #include "drm_crtc_helper.h" #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) bool intel_pipe_has_type (struct drm_crtc *crtc, int type); static void intel_update_watermarks(struct drm_device *dev); static void intel_increase_pllclock(struct drm_crtc *crtc); static void intel_crtc_update_cursor(struct drm_crtc *crtc); typedef struct { /* given values */ int n; int m1, m2; int p1, p2; /* derived values */ int dot; int vco; int m; int p; } intel_clock_t; typedef struct { int min, max; } intel_range_t; typedef struct { int dot_limit; int p2_slow, p2_fast; } intel_p2_t; #define INTEL_P2_NUM 2 typedef struct intel_limit intel_limit_t; struct intel_limit { intel_range_t dot, vco, n, m, m1, m2, p, p1; intel_p2_t p2; bool (* find_pll)(const intel_limit_t *, struct drm_crtc *, int, int, intel_clock_t *); }; #define I8XX_DOT_MIN 25000 #define I8XX_DOT_MAX 350000 #define I8XX_VCO_MIN 930000 #define I8XX_VCO_MAX 1400000 #define I8XX_N_MIN 3 #define I8XX_N_MAX 16 #define I8XX_M_MIN 96 #define I8XX_M_MAX 140 #define I8XX_M1_MIN 18 #define I8XX_M1_MAX 26 #define I8XX_M2_MIN 6 #define I8XX_M2_MAX 16 #define I8XX_P_MIN 4 #define I8XX_P_MAX 128 #define I8XX_P1_MIN 2 #define I8XX_P1_MAX 33 #define I8XX_P1_LVDS_MIN 1 #define I8XX_P1_LVDS_MAX 6 #define I8XX_P2_SLOW 4 #define I8XX_P2_FAST 2 #define I8XX_P2_LVDS_SLOW 14 #define I8XX_P2_LVDS_FAST 7 #define I8XX_P2_SLOW_LIMIT 165000 #define I9XX_DOT_MIN 20000 #define I9XX_DOT_MAX 400000 #define I9XX_VCO_MIN 1400000 #define I9XX_VCO_MAX 2800000 #define PINEVIEW_VCO_MIN 1700000 #define PINEVIEW_VCO_MAX 3500000 #define I9XX_N_MIN 1 #define I9XX_N_MAX 6 /* Pineview's Ncounter is a ring counter */ #define PINEVIEW_N_MIN 3 #define PINEVIEW_N_MAX 6 #define I9XX_M_MIN 70 #define I9XX_M_MAX 120 #define PINEVIEW_M_MIN 2 #define PINEVIEW_M_MAX 256 #define I9XX_M1_MIN 10 #define I9XX_M1_MAX 22 #define I9XX_M2_MIN 5 #define I9XX_M2_MAX 9 /* Pineview M1 is reserved, and must be 0 */ #define PINEVIEW_M1_MIN 0 #define PINEVIEW_M1_MAX 0 #define PINEVIEW_M2_MIN 0 #define PINEVIEW_M2_MAX 254 #define I9XX_P_SDVO_DAC_MIN 5 #define I9XX_P_SDVO_DAC_MAX 80 #define I9XX_P_LVDS_MIN 7 #define I9XX_P_LVDS_MAX 98 #define PINEVIEW_P_LVDS_MIN 7 #define PINEVIEW_P_LVDS_MAX 112 #define I9XX_P1_MIN 1 #define I9XX_P1_MAX 8 #define I9XX_P2_SDVO_DAC_SLOW 10 #define I9XX_P2_SDVO_DAC_FAST 5 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000 #define I9XX_P2_LVDS_SLOW 14 #define I9XX_P2_LVDS_FAST 7 #define I9XX_P2_LVDS_SLOW_LIMIT 112000 /*The parameter is for SDVO on G4x platform*/ #define G4X_DOT_SDVO_MIN 25000 #define G4X_DOT_SDVO_MAX 270000 #define G4X_VCO_MIN 1750000 #define G4X_VCO_MAX 3500000 #define G4X_N_SDVO_MIN 1 #define G4X_N_SDVO_MAX 4 #define G4X_M_SDVO_MIN 104 #define G4X_M_SDVO_MAX 138 #define G4X_M1_SDVO_MIN 17 #define G4X_M1_SDVO_MAX 23 #define G4X_M2_SDVO_MIN 5 #define G4X_M2_SDVO_MAX 11 #define G4X_P_SDVO_MIN 10 #define G4X_P_SDVO_MAX 30 #define G4X_P1_SDVO_MIN 1 #define G4X_P1_SDVO_MAX 3 #define G4X_P2_SDVO_SLOW 10 #define G4X_P2_SDVO_FAST 10 #define G4X_P2_SDVO_LIMIT 270000 /*The parameter is for HDMI_DAC on G4x platform*/ #define G4X_DOT_HDMI_DAC_MIN 22000 #define G4X_DOT_HDMI_DAC_MAX 400000 #define G4X_N_HDMI_DAC_MIN 1 #define G4X_N_HDMI_DAC_MAX 4 #define G4X_M_HDMI_DAC_MIN 104 #define G4X_M_HDMI_DAC_MAX 138 #define G4X_M1_HDMI_DAC_MIN 16 #define G4X_M1_HDMI_DAC_MAX 23 #define G4X_M2_HDMI_DAC_MIN 5 #define G4X_M2_HDMI_DAC_MAX 11 #define G4X_P_HDMI_DAC_MIN 5 #define G4X_P_HDMI_DAC_MAX 80 #define G4X_P1_HDMI_DAC_MIN 1 #define G4X_P1_HDMI_DAC_MAX 8 #define G4X_P2_HDMI_DAC_SLOW 10 #define G4X_P2_HDMI_DAC_FAST 5 #define G4X_P2_HDMI_DAC_LIMIT 165000 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/ #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/ #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000 #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1 #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3 #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104 #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11 #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14 #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0 /*The parameter is for DISPLAY PORT on G4x platform*/ #define G4X_DOT_DISPLAY_PORT_MIN 161670 #define G4X_DOT_DISPLAY_PORT_MAX 227000 #define G4X_N_DISPLAY_PORT_MIN 1 #define G4X_N_DISPLAY_PORT_MAX 2 #define G4X_M_DISPLAY_PORT_MIN 97 #define G4X_M_DISPLAY_PORT_MAX 108 #define G4X_M1_DISPLAY_PORT_MIN 0x10 #define G4X_M1_DISPLAY_PORT_MAX 0x12 #define G4X_M2_DISPLAY_PORT_MIN 0x05 #define G4X_M2_DISPLAY_PORT_MAX 0x06 #define G4X_P_DISPLAY_PORT_MIN 10 #define G4X_P_DISPLAY_PORT_MAX 20 #define G4X_P1_DISPLAY_PORT_MIN 1 #define G4X_P1_DISPLAY_PORT_MAX 2 #define G4X_P2_DISPLAY_PORT_SLOW 10 #define G4X_P2_DISPLAY_PORT_FAST 10 #define G4X_P2_DISPLAY_PORT_LIMIT 0 /* Ironlake / Sandybridge */ /* as we calculate clock using (register_value + 2) for N/M1/M2, so here the range value for them is (actual_value-2). */ #define IRONLAKE_DOT_MIN 25000 #define IRONLAKE_DOT_MAX 350000 #define IRONLAKE_VCO_MIN 1760000 #define IRONLAKE_VCO_MAX 3510000 #define IRONLAKE_M1_MIN 12 #define IRONLAKE_M1_MAX 22 #define IRONLAKE_M2_MIN 5 #define IRONLAKE_M2_MAX 9 #define IRONLAKE_P2_DOT_LIMIT 225000 /* 225Mhz */ /* We have parameter ranges for different type of outputs. */ /* DAC & HDMI Refclk 120Mhz */ #define IRONLAKE_DAC_N_MIN 1 #define IRONLAKE_DAC_N_MAX 5 #define IRONLAKE_DAC_M_MIN 79 #define IRONLAKE_DAC_M_MAX 127 #define IRONLAKE_DAC_P_MIN 5 #define IRONLAKE_DAC_P_MAX 80 #define IRONLAKE_DAC_P1_MIN 1 #define IRONLAKE_DAC_P1_MAX 8 #define IRONLAKE_DAC_P2_SLOW 10 #define IRONLAKE_DAC_P2_FAST 5 /* LVDS single-channel 120Mhz refclk */ #define IRONLAKE_LVDS_S_N_MIN 1 #define IRONLAKE_LVDS_S_N_MAX 3 #define IRONLAKE_LVDS_S_M_MIN 79 #define IRONLAKE_LVDS_S_M_MAX 118 #define IRONLAKE_LVDS_S_P_MIN 28 #define IRONLAKE_LVDS_S_P_MAX 112 #define IRONLAKE_LVDS_S_P1_MIN 2 #define IRONLAKE_LVDS_S_P1_MAX 8 #define IRONLAKE_LVDS_S_P2_SLOW 14 #define IRONLAKE_LVDS_S_P2_FAST 14 /* LVDS dual-channel 120Mhz refclk */ #define IRONLAKE_LVDS_D_N_MIN 1 #define IRONLAKE_LVDS_D_N_MAX 3 #define IRONLAKE_LVDS_D_M_MIN 79 #define IRONLAKE_LVDS_D_M_MAX 127 #define IRONLAKE_LVDS_D_P_MIN 14 #define IRONLAKE_LVDS_D_P_MAX 56 #define IRONLAKE_LVDS_D_P1_MIN 2 #define IRONLAKE_LVDS_D_P1_MAX 8 #define IRONLAKE_LVDS_D_P2_SLOW 7 #define IRONLAKE_LVDS_D_P2_FAST 7 /* LVDS single-channel 100Mhz refclk */ #define IRONLAKE_LVDS_S_SSC_N_MIN 1 #define IRONLAKE_LVDS_S_SSC_N_MAX 2 #define IRONLAKE_LVDS_S_SSC_M_MIN 79 #define IRONLAKE_LVDS_S_SSC_M_MAX 126 #define IRONLAKE_LVDS_S_SSC_P_MIN 28 #define IRONLAKE_LVDS_S_SSC_P_MAX 112 #define IRONLAKE_LVDS_S_SSC_P1_MIN 2 #define IRONLAKE_LVDS_S_SSC_P1_MAX 8 #define IRONLAKE_LVDS_S_SSC_P2_SLOW 14 #define IRONLAKE_LVDS_S_SSC_P2_FAST 14 /* LVDS dual-channel 100Mhz refclk */ #define IRONLAKE_LVDS_D_SSC_N_MIN 1 #define IRONLAKE_LVDS_D_SSC_N_MAX 3 #define IRONLAKE_LVDS_D_SSC_M_MIN 79 #define IRONLAKE_LVDS_D_SSC_M_MAX 126 #define IRONLAKE_LVDS_D_SSC_P_MIN 14 #define IRONLAKE_LVDS_D_SSC_P_MAX 42 #define IRONLAKE_LVDS_D_SSC_P1_MIN 2 #define IRONLAKE_LVDS_D_SSC_P1_MAX 6 #define IRONLAKE_LVDS_D_SSC_P2_SLOW 7 #define IRONLAKE_LVDS_D_SSC_P2_FAST 7 /* DisplayPort */ #define IRONLAKE_DP_N_MIN 1 #define IRONLAKE_DP_N_MAX 2 #define IRONLAKE_DP_M_MIN 81 #define IRONLAKE_DP_M_MAX 90 #define IRONLAKE_DP_P_MIN 10 #define IRONLAKE_DP_P_MAX 20 #define IRONLAKE_DP_P2_FAST 10 #define IRONLAKE_DP_P2_SLOW 10 #define IRONLAKE_DP_P2_LIMIT 0 #define IRONLAKE_DP_P1_MIN 1 #define IRONLAKE_DP_P1_MAX 2 /* FDI */ #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */ static bool intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc, int target, int refclk, intel_clock_t *best_clock); static bool intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc, int target, int refclk, intel_clock_t *best_clock); static bool intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc, int target, int refclk, intel_clock_t *best_clock); static bool intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc, int target, int refclk, intel_clock_t *best_clock); static const intel_limit_t intel_limits_i8xx_dvo = { .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX }, .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX }, .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX }, .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX }, .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX }, .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX }, .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX }, .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX }, .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT, .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST }, .find_pll = intel_find_best_PLL, }; static const intel_limit_t intel_limits_i8xx_lvds = { .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX }, .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX }, .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX }, .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX }, .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX }, .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX }, .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX }, .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX }, .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT, .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST }, .find_pll = intel_find_best_PLL, }; static const intel_limit_t intel_limits_i9xx_sdvo = { .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX }, .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX }, .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX }, .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX }, .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX }, .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX }, .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX }, .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX }, .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT, .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST }, .find_pll = intel_find_best_PLL, }; static const intel_limit_t intel_limits_i9xx_lvds = { .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX }, .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX }, .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX }, .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX }, .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX }, .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX }, .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX }, .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX }, /* The single-channel range is 25-112Mhz, and dual-channel * is 80-224Mhz. Prefer single channel as much as possible. */ .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT, .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST }, .find_pll = intel_find_best_PLL, }; /* below parameter and function is for G4X Chipset Family*/ static const intel_limit_t intel_limits_g4x_sdvo = { .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX }, .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX}, .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX }, .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX }, .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX }, .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX }, .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX }, .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX}, .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT, .p2_slow = G4X_P2_SDVO_SLOW, .p2_fast = G4X_P2_SDVO_FAST }, .find_pll = intel_g4x_find_best_PLL, }; static const intel_limit_t intel_limits_g4x_hdmi = { .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX }, .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX}, .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX }, .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX }, .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX }, .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX }, .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX }, .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX}, .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT, .p2_slow = G4X_P2_HDMI_DAC_SLOW, .p2_fast = G4X_P2_HDMI_DAC_FAST }, .find_pll = intel_g4x_find_best_PLL, }; static const intel_limit_t intel_limits_g4x_single_channel_lvds = { .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN, .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX }, .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX }, .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN, .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX }, .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN, .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX }, .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN, .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX }, .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN, .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX }, .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN, .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX }, .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN, .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX }, .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT, .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW, .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST }, .find_pll = intel_g4x_find_best_PLL, }; static const intel_limit_t intel_limits_g4x_dual_channel_lvds = { .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN, .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX }, .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX }, .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN, .max = G4X_N_DUAL_CHANNEL_LVDS_MAX }, .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN, .max = G4X_M_DUAL_CHANNEL_LVDS_MAX }, .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN, .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX }, .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN, .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX }, .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN, .max = G4X_P_DUAL_CHANNEL_LVDS_MAX }, .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN, .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX }, .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT, .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW, .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST }, .find_pll = intel_g4x_find_best_PLL, }; static const intel_limit_t intel_limits_g4x_display_port = { .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN, .max = G4X_DOT_DISPLAY_PORT_MAX }, .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX}, .n = { .min = G4X_N_DISPLAY_PORT_MIN, .max = G4X_N_DISPLAY_PORT_MAX }, .m = { .min = G4X_M_DISPLAY_PORT_MIN, .max = G4X_M_DISPLAY_PORT_MAX }, .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN, .max = G4X_M1_DISPLAY_PORT_MAX }, .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN, .max = G4X_M2_DISPLAY_PORT_MAX }, .p = { .min = G4X_P_DISPLAY_PORT_MIN, .max = G4X_P_DISPLAY_PORT_MAX }, .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN, .max = G4X_P1_DISPLAY_PORT_MAX}, .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT, .p2_slow = G4X_P2_DISPLAY_PORT_SLOW, .p2_fast = G4X_P2_DISPLAY_PORT_FAST }, .find_pll = intel_find_pll_g4x_dp, }; static const intel_limit_t intel_limits_pineview_sdvo = { .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX}, .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX }, .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX }, .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX }, .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX }, .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX }, .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX }, .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX }, .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT, .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST }, .find_pll = intel_find_best_PLL, }; static const intel_limit_t intel_limits_pineview_lvds = { .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX }, .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX }, .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX }, .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX }, .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX }, .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX }, .p = { .min = PINEVIEW_P_LVDS_MIN, .max = PINEVIEW_P_LVDS_MAX }, .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX }, /* Pineview only supports single-channel mode. */ .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT, .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW }, .find_pll = intel_find_best_PLL, }; static const intel_limit_t intel_limits_ironlake_dac = { .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX }, .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX }, .n = { .min = IRONLAKE_DAC_N_MIN, .max = IRONLAKE_DAC_N_MAX }, .m = { .min = IRONLAKE_DAC_M_MIN, .max = IRONLAKE_DAC_M_MAX }, .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX }, .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX }, .p = { .min = IRONLAKE_DAC_P_MIN, .max = IRONLAKE_DAC_P_MAX }, .p1 = { .min = IRONLAKE_DAC_P1_MIN, .max = IRONLAKE_DAC_P1_MAX }, .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT, .p2_slow = IRONLAKE_DAC_P2_SLOW, .p2_fast = IRONLAKE_DAC_P2_FAST }, .find_pll = intel_g4x_find_best_PLL, }; static const intel_limit_t intel_limits_ironlake_single_lvds = { .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX }, .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX }, .n = { .min = IRONLAKE_LVDS_S_N_MIN, .max = IRONLAKE_LVDS_S_N_MAX }, .m = { .min = IRONLAKE_LVDS_S_M_MIN, .max = IRONLAKE_LVDS_S_M_MAX }, .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX }, .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX }, .p = { .min = IRONLAKE_LVDS_S_P_MIN, .max = IRONLAKE_LVDS_S_P_MAX }, .p1 = { .min = IRONLAKE_LVDS_S_P1_MIN, .max = IRONLAKE_LVDS_S_P1_MAX }, .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT, .p2_slow = IRONLAKE_LVDS_S_P2_SLOW, .p2_fast = IRONLAKE_LVDS_S_P2_FAST }, .find_pll = intel_g4x_find_best_PLL, }; static const intel_limit_t intel_limits_ironlake_dual_lvds = { .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX }, .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX }, .n = { .min = IRONLAKE_LVDS_D_N_MIN, .max = IRONLAKE_LVDS_D_N_MAX }, .m = { .min = IRONLAKE_LVDS_D_M_MIN, .max = IRONLAKE_LVDS_D_M_MAX }, .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX }, .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX }, .p = { .min = IRONLAKE_LVDS_D_P_MIN, .max = IRONLAKE_LVDS_D_P_MAX }, .p1 = { .min = IRONLAKE_LVDS_D_P1_MIN, .max = IRONLAKE_LVDS_D_P1_MAX }, .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT, .p2_slow = IRONLAKE_LVDS_D_P2_SLOW, .p2_fast = IRONLAKE_LVDS_D_P2_FAST }, .find_pll = intel_g4x_find_best_PLL, }; static const intel_limit_t intel_limits_ironlake_single_lvds_100m = { .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX }, .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX }, .n = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX }, .m = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX }, .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX }, .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX }, .p = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX }, .p1 = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX }, .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT, .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW, .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST }, .find_pll = intel_g4x_find_best_PLL, }; static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = { .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX }, .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX }, .n = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX }, .m = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX }, .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX }, .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX }, .p = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX }, .p1 = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX }, .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT, .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW, .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST }, .find_pll = intel_g4x_find_best_PLL, }; static const intel_limit_t intel_limits_ironlake_display_port = { .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX }, .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX}, .n = { .min = IRONLAKE_DP_N_MIN, .max = IRONLAKE_DP_N_MAX }, .m = { .min = IRONLAKE_DP_M_MIN, .max = IRONLAKE_DP_M_MAX }, .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX }, .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX }, .p = { .min = IRONLAKE_DP_P_MIN, .max = IRONLAKE_DP_P_MAX }, .p1 = { .min = IRONLAKE_DP_P1_MIN, .max = IRONLAKE_DP_P1_MAX}, .p2 = { .dot_limit = IRONLAKE_DP_P2_LIMIT, .p2_slow = IRONLAKE_DP_P2_SLOW, .p2_fast = IRONLAKE_DP_P2_FAST }, .find_pll = intel_find_pll_ironlake_dp, }; static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; const intel_limit_t *limit; int refclk = 120; if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100) refclk = 100; if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP) { /* LVDS dual channel */ if (refclk == 100) limit = &intel_limits_ironlake_dual_lvds_100m; else limit = &intel_limits_ironlake_dual_lvds; } else { if (refclk == 100) limit = &intel_limits_ironlake_single_lvds_100m; else limit = &intel_limits_ironlake_single_lvds; } } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) || HAS_eDP) limit = &intel_limits_ironlake_display_port; else limit = &intel_limits_ironlake_dac; return limit; } static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; const intel_limit_t *limit; if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP) /* LVDS with dual channel */ limit = &intel_limits_g4x_dual_channel_lvds; else /* LVDS with dual channel */ limit = &intel_limits_g4x_single_channel_lvds; } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) || intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) { limit = &intel_limits_g4x_hdmi; } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) { limit = &intel_limits_g4x_sdvo; } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) { limit = &intel_limits_g4x_display_port; } else /* The option is for other outputs */ limit = &intel_limits_i9xx_sdvo; return limit; } static const intel_limit_t *intel_limit(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; const intel_limit_t *limit; if (HAS_PCH_SPLIT(dev)) limit = intel_ironlake_limit(crtc); else if (IS_G4X(dev)) { limit = intel_g4x_limit(crtc); } else if (IS_I9XX(dev) && !IS_PINEVIEW(dev)) { if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) limit = &intel_limits_i9xx_lvds; else limit = &intel_limits_i9xx_sdvo; } else if (IS_PINEVIEW(dev)) { if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) limit = &intel_limits_pineview_lvds; else limit = &intel_limits_pineview_sdvo; } else { if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) limit = &intel_limits_i8xx_lvds; else limit = &intel_limits_i8xx_dvo; } return limit; } /* m1 is reserved as 0 in Pineview, n is a ring counter */ static void pineview_clock(int refclk, intel_clock_t *clock) { clock->m = clock->m2 + 2; clock->p = clock->p1 * clock->p2; clock->vco = refclk * clock->m / clock->n; clock->dot = clock->vco / clock->p; } static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock) { if (IS_PINEVIEW(dev)) { pineview_clock(refclk, clock); return; } clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2); clock->p = clock->p1 * clock->p2; clock->vco = refclk * clock->m / (clock->n + 2); clock->dot = clock->vco / clock->p; } /** * Returns whether any output on the specified pipe is of the specified type */ bool intel_pipe_has_type(struct drm_crtc *crtc, int type) { struct drm_device *dev = crtc->dev; struct drm_mode_config *mode_config = &dev->mode_config; struct intel_encoder *encoder; list_for_each_entry(encoder, &mode_config->encoder_list, base.head) if (encoder->base.crtc == crtc && encoder->type == type) return true; return false; } #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0) /** * Returns whether the given set of divisors are valid for a given refclk with * the given connectors. */ static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock) { const intel_limit_t *limit = intel_limit (crtc); struct drm_device *dev = crtc->dev; if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1) INTELPllInvalid ("p1 out of range\n"); if (clock->p < limit->p.min || limit->p.max < clock->p) INTELPllInvalid ("p out of range\n"); if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2) INTELPllInvalid ("m2 out of range\n"); if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1) INTELPllInvalid ("m1 out of range\n"); if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev)) INTELPllInvalid ("m1 <= m2\n"); if (clock->m < limit->m.min || limit->m.max < clock->m) INTELPllInvalid ("m out of range\n"); if (clock->n < limit->n.min || limit->n.max < clock->n) INTELPllInvalid ("n out of range\n"); if (clock->vco < limit->vco.min || limit->vco.max < clock->vco) INTELPllInvalid ("vco out of range\n"); /* XXX: We may need to be checking "Dot clock" depending on the multiplier, * connector, etc., rather than just a single range. */ if (clock->dot < limit->dot.min || limit->dot.max < clock->dot) INTELPllInvalid ("dot out of range\n"); return true; } static bool intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc, int target, int refclk, intel_clock_t *best_clock) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; intel_clock_t clock; int err = target; if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) && (I915_READ(LVDS)) != 0) { /* * For LVDS, if the panel is on, just rely on its current * settings for dual-channel. We haven't figured out how to * reliably set up different single/dual channel state, if we * even can. */ if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP) clock.p2 = limit->p2.p2_fast; else clock.p2 = limit->p2.p2_slow; } else { if (target < limit->p2.dot_limit) clock.p2 = limit->p2.p2_slow; else clock.p2 = limit->p2.p2_fast; } memset (best_clock, 0, sizeof (*best_clock)); for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) { for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max; clock.m2++) { /* m1 is always 0 in Pineview */ if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev)) break; for (clock.n = limit->n.min; clock.n <= limit->n.max; clock.n++) { for (clock.p1 = limit->p1.min; clock.p1 <= limit->p1.max; clock.p1++) { int this_err; intel_clock(dev, refclk, &clock); if (!intel_PLL_is_valid(crtc, &clock)) continue; this_err = abs(clock.dot - target); if (this_err < err) { *best_clock = clock; err = this_err; } } } } } return (err != target); } static bool intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc, int target, int refclk, intel_clock_t *best_clock) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; intel_clock_t clock; int max_n; bool found; /* approximately equals target * 0.00585 */ int err_most = (target >> 8) + (target >> 9); found = false; if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { int lvds_reg; if (HAS_PCH_SPLIT(dev)) lvds_reg = PCH_LVDS; else lvds_reg = LVDS; if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP) clock.p2 = limit->p2.p2_fast; else clock.p2 = limit->p2.p2_slow; } else { if (target < limit->p2.dot_limit) clock.p2 = limit->p2.p2_slow; else clock.p2 = limit->p2.p2_fast; } memset(best_clock, 0, sizeof(*best_clock)); max_n = limit->n.max; /* based on hardware requirement, prefer smaller n to precision */ for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { /* based on hardware requirement, prefere larger m1,m2 */ for (clock.m1 = limit->m1.max; clock.m1 >= limit->m1.min; clock.m1--) { for (clock.m2 = limit->m2.max; clock.m2 >= limit->m2.min; clock.m2--) { for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { int this_err; intel_clock(dev, refclk, &clock); if (!intel_PLL_is_valid(crtc, &clock)) continue; this_err = abs(clock.dot - target) ; if (this_err < err_most) { *best_clock = clock; err_most = this_err; max_n = clock.n; found = true; } } } } } return found; } static bool intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc, int target, int refclk, intel_clock_t *best_clock) { struct drm_device *dev = crtc->dev; intel_clock_t clock; /* return directly when it is eDP */ if (HAS_eDP) return true; if (target < 200000) { clock.n = 1; clock.p1 = 2; clock.p2 = 10; clock.m1 = 12; clock.m2 = 9; } else { clock.n = 2; clock.p1 = 1; clock.p2 = 10; clock.m1 = 14; clock.m2 = 8; } intel_clock(dev, refclk, &clock); memcpy(best_clock, &clock, sizeof(intel_clock_t)); return true; } /* DisplayPort has only two frequencies, 162MHz and 270MHz */ static bool intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc, int target, int refclk, intel_clock_t *best_clock) { intel_clock_t clock; if (target < 200000) { clock.p1 = 2; clock.p2 = 10; clock.n = 2; clock.m1 = 23; clock.m2 = 8; } else { clock.p1 = 1; clock.p2 = 10; clock.n = 1; clock.m1 = 14; clock.m2 = 2; } clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2); clock.p = (clock.p1 * clock.p2); clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p; clock.vco = 0; memcpy(best_clock, &clock, sizeof(intel_clock_t)); return true; } /** * intel_wait_for_vblank - wait for vblank on a given pipe * @dev: drm device * @pipe: pipe to wait for * * Wait for vblank to occur on a given pipe. Needed for various bits of * mode setting code. */ void intel_wait_for_vblank(struct drm_device *dev, int pipe) { struct drm_i915_private *dev_priv = dev->dev_private; int pipestat_reg = (pipe == 0 ? PIPEASTAT : PIPEBSTAT); /* Clear existing vblank status. Note this will clear any other * sticky status fields as well. * * This races with i915_driver_irq_handler() with the result * that either function could miss a vblank event. Here it is not * fatal, as we will either wait upon the next vblank interrupt or * timeout. Generally speaking intel_wait_for_vblank() is only * called during modeset at which time the GPU should be idle and * should *not* be performing page flips and thus not waiting on * vblanks... * Currently, the result of us stealing a vblank from the irq * handler is that a single frame will be skipped during swapbuffers. */ I915_WRITE(pipestat_reg, I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS); /* Wait for vblank interrupt bit to set */ if (wait_for(I915_READ(pipestat_reg) & PIPE_VBLANK_INTERRUPT_STATUS, 50)) DRM_DEBUG_KMS("vblank wait timed out\n"); } /** * intel_wait_for_vblank_off - wait for vblank after disabling a pipe * @dev: drm device * @pipe: pipe to wait for * * After disabling a pipe, we can't wait for vblank in the usual way, * spinning on the vblank interrupt status bit, since we won't actually * see an interrupt when the pipe is disabled. * * So this function waits for the display line value to settle (it * usually ends up stopping at the start of the next frame). */ void intel_wait_for_vblank_off(struct drm_device *dev, int pipe) { struct drm_i915_private *dev_priv = dev->dev_private; int pipedsl_reg = (pipe == 0 ? PIPEADSL : PIPEBDSL); unsigned long timeout = jiffies + msecs_to_jiffies(100); u32 last_line; /* Wait for the display line to settle */ do { last_line = I915_READ(pipedsl_reg) & DSL_LINEMASK; mdelay(5); } while (((I915_READ(pipedsl_reg) & DSL_LINEMASK) != last_line) && time_after(timeout, jiffies)); if (time_after(jiffies, timeout)) DRM_DEBUG_KMS("vblank wait timed out\n"); } /* Parameters have changed, update FBC info */ static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_framebuffer *fb = crtc->fb; struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj); struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int plane, i; u32 fbc_ctl, fbc_ctl2; dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE; if (fb->pitch < dev_priv->cfb_pitch) dev_priv->cfb_pitch = fb->pitch; /* FBC_CTL wants 64B units */ dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1; dev_priv->cfb_fence = obj_priv->fence_reg; dev_priv->cfb_plane = intel_crtc->plane; plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB; /* Clear old tags */ for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++) I915_WRITE(FBC_TAG + (i * 4), 0); /* Set it up... */ fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane; if (obj_priv->tiling_mode != I915_TILING_NONE) fbc_ctl2 |= FBC_CTL_CPU_FENCE; I915_WRITE(FBC_CONTROL2, fbc_ctl2); I915_WRITE(FBC_FENCE_OFF, crtc->y); /* enable it... */ fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC; if (IS_I945GM(dev)) fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */ fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT; fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT; if (obj_priv->tiling_mode != I915_TILING_NONE) fbc_ctl |= dev_priv->cfb_fence; I915_WRITE(FBC_CONTROL, fbc_ctl); DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ", dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane); } void i8xx_disable_fbc(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u32 fbc_ctl; if (!I915_HAS_FBC(dev)) return; if (!(I915_READ(FBC_CONTROL) & FBC_CTL_EN)) return; /* Already off, just return */ /* Disable compression */ fbc_ctl = I915_READ(FBC_CONTROL); fbc_ctl &= ~FBC_CTL_EN; I915_WRITE(FBC_CONTROL, fbc_ctl); /* Wait for compressing bit to clear */ if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) { DRM_DEBUG_KMS("FBC idle timed out\n"); return; } DRM_DEBUG_KMS("disabled FBC\n"); } static bool i8xx_fbc_enabled(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; return I915_READ(FBC_CONTROL) & FBC_CTL_EN; } static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_framebuffer *fb = crtc->fb; struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj); struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB); unsigned long stall_watermark = 200; u32 dpfc_ctl; dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1; dev_priv->cfb_fence = obj_priv->fence_reg; dev_priv->cfb_plane = intel_crtc->plane; dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X; if (obj_priv->tiling_mode != I915_TILING_NONE) { dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence; I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY); } else { I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY); } I915_WRITE(DPFC_CONTROL, dpfc_ctl); I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN | (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) | (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT)); I915_WRITE(DPFC_FENCE_YOFF, crtc->y); /* enable it... */ I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN); DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane); } void g4x_disable_fbc(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u32 dpfc_ctl; /* Disable compression */ dpfc_ctl = I915_READ(DPFC_CONTROL); dpfc_ctl &= ~DPFC_CTL_EN; I915_WRITE(DPFC_CONTROL, dpfc_ctl); DRM_DEBUG_KMS("disabled FBC\n"); } static bool g4x_fbc_enabled(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN; } static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_framebuffer *fb = crtc->fb; struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj); struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int plane = (intel_crtc->plane == 0) ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB; unsigned long stall_watermark = 200; u32 dpfc_ctl; dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1; dev_priv->cfb_fence = obj_priv->fence_reg; dev_priv->cfb_plane = intel_crtc->plane; dpfc_ctl = I915_READ(ILK_DPFC_CONTROL); dpfc_ctl &= DPFC_RESERVED; dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X); if (obj_priv->tiling_mode != I915_TILING_NONE) { dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence); I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY); } else { I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY); } I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl); I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN | (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) | (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT)); I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y); I915_WRITE(ILK_FBC_RT_BASE, obj_priv->gtt_offset | ILK_FBC_RT_VALID); /* enable it... */ I915_WRITE(ILK_DPFC_CONTROL, I915_READ(ILK_DPFC_CONTROL) | DPFC_CTL_EN); DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane); } void ironlake_disable_fbc(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u32 dpfc_ctl; /* Disable compression */ dpfc_ctl = I915_READ(ILK_DPFC_CONTROL); dpfc_ctl &= ~DPFC_CTL_EN; I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl); DRM_DEBUG_KMS("disabled FBC\n"); } static bool ironlake_fbc_enabled(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN; } bool intel_fbc_enabled(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; if (!dev_priv->display.fbc_enabled) return false; return dev_priv->display.fbc_enabled(dev); } void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval) { struct drm_i915_private *dev_priv = crtc->dev->dev_private; if (!dev_priv->display.enable_fbc) return; dev_priv->display.enable_fbc(crtc, interval); } void intel_disable_fbc(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; if (!dev_priv->display.disable_fbc) return; dev_priv->display.disable_fbc(dev); } /** * intel_update_fbc - enable/disable FBC as needed * @crtc: CRTC to point the compressor at * @mode: mode in use * * Set up the framebuffer compression hardware at mode set time. We * enable it if possible: * - plane A only (on pre-965) * - no pixel mulitply/line duplication * - no alpha buffer discard * - no dual wide * - framebuffer <= 2048 in width, 1536 in height * * We can't assume that any compression will take place (worst case), * so the compressed buffer has to be the same size as the uncompressed * one. It also must reside (along with the line length buffer) in * stolen memory. * * We need to enable/disable FBC on a global basis. */ static void intel_update_fbc(struct drm_crtc *crtc, struct drm_display_mode *mode) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_framebuffer *fb = crtc->fb; struct intel_framebuffer *intel_fb; struct drm_i915_gem_object *obj_priv; struct drm_crtc *tmp_crtc; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int plane = intel_crtc->plane; int crtcs_enabled = 0; DRM_DEBUG_KMS("\n"); if (!i915_powersave) return; if (!I915_HAS_FBC(dev)) return; if (!crtc->fb) return; intel_fb = to_intel_framebuffer(fb); obj_priv = to_intel_bo(intel_fb->obj); /* * If FBC is already on, we just have to verify that we can * keep it that way... * Need to disable if: * - more than one pipe is active * - changing FBC params (stride, fence, mode) * - new fb is too large to fit in compressed buffer * - going to an unsupported config (interlace, pixel multiply, etc.) */ list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) { if (tmp_crtc->enabled) crtcs_enabled++; } DRM_DEBUG_KMS("%d pipes active\n", crtcs_enabled); if (crtcs_enabled > 1) { DRM_DEBUG_KMS("more than one pipe active, disabling compression\n"); dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES; goto out_disable; } if (intel_fb->obj->size > dev_priv->cfb_size) { DRM_DEBUG_KMS("framebuffer too large, disabling " "compression\n"); dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL; goto out_disable; } if ((mode->flags & DRM_MODE_FLAG_INTERLACE) || (mode->flags & DRM_MODE_FLAG_DBLSCAN)) { DRM_DEBUG_KMS("mode incompatible with compression, " "disabling\n"); dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE; goto out_disable; } if ((mode->hdisplay > 2048) || (mode->vdisplay > 1536)) { DRM_DEBUG_KMS("mode too large for compression, disabling\n"); dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE; goto out_disable; } if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) { DRM_DEBUG_KMS("plane not 0, disabling compression\n"); dev_priv->no_fbc_reason = FBC_BAD_PLANE; goto out_disable; } if (obj_priv->tiling_mode != I915_TILING_X) { DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n"); dev_priv->no_fbc_reason = FBC_NOT_TILED; goto out_disable; } /* If the kernel debugger is active, always disable compression */ if (in_dbg_master()) goto out_disable; if (intel_fbc_enabled(dev)) { /* We can re-enable it in this case, but need to update pitch */ if ((fb->pitch > dev_priv->cfb_pitch) || (obj_priv->fence_reg != dev_priv->cfb_fence) || (plane != dev_priv->cfb_plane)) intel_disable_fbc(dev); } /* Now try to turn it back on if possible */ if (!intel_fbc_enabled(dev)) intel_enable_fbc(crtc, 500); return; out_disable: /* Multiple disables should be harmless */ if (intel_fbc_enabled(dev)) { DRM_DEBUG_KMS("unsupported config, disabling FBC\n"); intel_disable_fbc(dev); } } int intel_pin_and_fence_fb_obj(struct drm_device *dev, struct drm_gem_object *obj) { struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); u32 alignment; int ret; switch (obj_priv->tiling_mode) { case I915_TILING_NONE: if (IS_BROADWATER(dev) || IS_CRESTLINE(dev)) alignment = 128 * 1024; else if (IS_I965G(dev)) alignment = 4 * 1024; else alignment = 64 * 1024; break; case I915_TILING_X: /* pin() will align the object as required by fence */ alignment = 0; break; case I915_TILING_Y: /* FIXME: Is this true? */ DRM_ERROR("Y tiled not allowed for scan out buffers\n"); return -EINVAL; default: BUG(); } ret = i915_gem_object_pin(obj, alignment); if (ret != 0) return ret; /* Install a fence for tiled scan-out. Pre-i965 always needs a * fence, whereas 965+ only requires a fence if using * framebuffer compression. For simplicity, we always install * a fence as the cost is not that onerous. */ if (obj_priv->fence_reg == I915_FENCE_REG_NONE && obj_priv->tiling_mode != I915_TILING_NONE) { ret = i915_gem_object_get_fence_reg(obj); if (ret != 0) { i915_gem_object_unpin(obj); return ret; } } return 0; } /* Assume fb object is pinned & idle & fenced and just update base pointers */ static int intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb, int x, int y) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_framebuffer *intel_fb; struct drm_i915_gem_object *obj_priv; struct drm_gem_object *obj; int plane = intel_crtc->plane; unsigned long Start, Offset; int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR); int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF); int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE; int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF); int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR; u32 dspcntr; switch (plane) { case 0: case 1: break; default: DRM_ERROR("Can't update plane %d in SAREA\n", plane); return -EINVAL; } intel_fb = to_intel_framebuffer(fb); obj = intel_fb->obj; obj_priv = to_intel_bo(obj); dspcntr = I915_READ(dspcntr_reg); /* Mask out pixel format bits in case we change it */ dspcntr &= ~DISPPLANE_PIXFORMAT_MASK; switch (fb->bits_per_pixel) { case 8: dspcntr |= DISPPLANE_8BPP; break; case 16: if (fb->depth == 15) dspcntr |= DISPPLANE_15_16BPP; else dspcntr |= DISPPLANE_16BPP; break; case 24: case 32: dspcntr |= DISPPLANE_32BPP_NO_ALPHA; break; default: DRM_ERROR("Unknown color depth\n"); return -EINVAL; } if (IS_I965G(dev)) { if (obj_priv->tiling_mode != I915_TILING_NONE) dspcntr |= DISPPLANE_TILED; else dspcntr &= ~DISPPLANE_TILED; } if (HAS_PCH_SPLIT(dev)) /* must disable */ dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE; I915_WRITE(dspcntr_reg, dspcntr); Start = obj_priv->gtt_offset; Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8); DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n", Start, Offset, x, y, fb->pitch); I915_WRITE(dspstride, fb->pitch); if (IS_I965G(dev)) { I915_WRITE(dspsurf, Start); I915_WRITE(dsptileoff, (y << 16) | x); I915_WRITE(dspbase, Offset); } else { I915_WRITE(dspbase, Start + Offset); } POSTING_READ(dspbase); if (IS_I965G(dev) || plane == 0) intel_update_fbc(crtc, &crtc->mode); intel_wait_for_vblank(dev, intel_crtc->pipe); intel_increase_pllclock(crtc); return 0; } static int intel_pipe_set_base(struct drm_crtc *crtc, int x, int y, struct drm_framebuffer *old_fb) { struct drm_device *dev = crtc->dev; struct drm_i915_master_private *master_priv; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_framebuffer *intel_fb; struct drm_i915_gem_object *obj_priv; struct drm_gem_object *obj; int pipe = intel_crtc->pipe; int plane = intel_crtc->plane; int ret; /* no fb bound */ if (!crtc->fb) { DRM_DEBUG_KMS("No FB bound\n"); return 0; } switch (plane) { case 0: case 1: break; default: DRM_ERROR("Can't update plane %d in SAREA\n", plane); return -EINVAL; } intel_fb = to_intel_framebuffer(crtc->fb); obj = intel_fb->obj; obj_priv = to_intel_bo(obj); mutex_lock(&dev->struct_mutex); ret = intel_pin_and_fence_fb_obj(dev, obj); if (ret != 0) { mutex_unlock(&dev->struct_mutex); return ret; } ret = i915_gem_object_set_to_display_plane(obj); if (ret != 0) { i915_gem_object_unpin(obj); mutex_unlock(&dev->struct_mutex); return ret; } ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y); if (ret) { i915_gem_object_unpin(obj); mutex_unlock(&dev->struct_mutex); return ret; } if (old_fb) { intel_fb = to_intel_framebuffer(old_fb); obj_priv = to_intel_bo(intel_fb->obj); i915_gem_object_unpin(intel_fb->obj); } mutex_unlock(&dev->struct_mutex); if (!dev->primary->master) return 0; master_priv = dev->primary->master->driver_priv; if (!master_priv->sarea_priv) return 0; if (pipe) { master_priv->sarea_priv->pipeB_x = x; master_priv->sarea_priv->pipeB_y = y; } else { master_priv->sarea_priv->pipeA_x = x; master_priv->sarea_priv->pipeA_y = y; } return 0; } static void ironlake_set_pll_edp (struct drm_crtc *crtc, int clock) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 dpa_ctl; DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock); dpa_ctl = I915_READ(DP_A); dpa_ctl &= ~DP_PLL_FREQ_MASK; if (clock < 200000) { u32 temp; dpa_ctl |= DP_PLL_FREQ_160MHZ; /* workaround for 160Mhz: 1) program 0x4600c bits 15:0 = 0x8124 2) program 0x46010 bit 0 = 1 3) program 0x46034 bit 24 = 1 4) program 0x64000 bit 14 = 1 */ temp = I915_READ(0x4600c); temp &= 0xffff0000; I915_WRITE(0x4600c, temp | 0x8124); temp = I915_READ(0x46010); I915_WRITE(0x46010, temp | 1); temp = I915_READ(0x46034); I915_WRITE(0x46034, temp | (1 << 24)); } else { dpa_ctl |= DP_PLL_FREQ_270MHZ; } I915_WRITE(DP_A, dpa_ctl); udelay(500); } /* The FDI link training functions for ILK/Ibexpeak. */ static void ironlake_fdi_link_train(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL; int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL; int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR; int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR; u32 temp, tries = 0; /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit for train result */ temp = I915_READ(fdi_rx_imr_reg); temp &= ~FDI_RX_SYMBOL_LOCK; temp &= ~FDI_RX_BIT_LOCK; I915_WRITE(fdi_rx_imr_reg, temp); I915_READ(fdi_rx_imr_reg); udelay(150); /* enable CPU FDI TX and PCH FDI RX */ temp = I915_READ(fdi_tx_reg); temp |= FDI_TX_ENABLE; temp &= ~(7 << 19); temp |= (intel_crtc->fdi_lanes - 1) << 19; temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_1; I915_WRITE(fdi_tx_reg, temp); I915_READ(fdi_tx_reg); temp = I915_READ(fdi_rx_reg); temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_1; I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE); I915_READ(fdi_rx_reg); udelay(150); for (tries = 0; tries < 5; tries++) { temp = I915_READ(fdi_rx_iir_reg); DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); if ((temp & FDI_RX_BIT_LOCK)) { DRM_DEBUG_KMS("FDI train 1 done.\n"); I915_WRITE(fdi_rx_iir_reg, temp | FDI_RX_BIT_LOCK); break; } } if (tries == 5) DRM_DEBUG_KMS("FDI train 1 fail!\n"); /* Train 2 */ temp = I915_READ(fdi_tx_reg); temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_2; I915_WRITE(fdi_tx_reg, temp); temp = I915_READ(fdi_rx_reg); temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_2; I915_WRITE(fdi_rx_reg, temp); udelay(150); tries = 0; for (tries = 0; tries < 5; tries++) { temp = I915_READ(fdi_rx_iir_reg); DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); if (temp & FDI_RX_SYMBOL_LOCK) { I915_WRITE(fdi_rx_iir_reg, temp | FDI_RX_SYMBOL_LOCK); DRM_DEBUG_KMS("FDI train 2 done.\n"); break; } } if (tries == 5) DRM_DEBUG_KMS("FDI train 2 fail!\n"); DRM_DEBUG_KMS("FDI train done\n"); } static int snb_b_fdi_train_param [] = { FDI_LINK_TRAIN_400MV_0DB_SNB_B, FDI_LINK_TRAIN_400MV_6DB_SNB_B, FDI_LINK_TRAIN_600MV_3_5DB_SNB_B, FDI_LINK_TRAIN_800MV_0DB_SNB_B, }; /* The FDI link training functions for SNB/Cougarpoint. */ static void gen6_fdi_link_train(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL; int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL; int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR; int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR; u32 temp, i; /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit for train result */ temp = I915_READ(fdi_rx_imr_reg); temp &= ~FDI_RX_SYMBOL_LOCK; temp &= ~FDI_RX_BIT_LOCK; I915_WRITE(fdi_rx_imr_reg, temp); I915_READ(fdi_rx_imr_reg); udelay(150); /* enable CPU FDI TX and PCH FDI RX */ temp = I915_READ(fdi_tx_reg); temp |= FDI_TX_ENABLE; temp &= ~(7 << 19); temp |= (intel_crtc->fdi_lanes - 1) << 19; temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_1; temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; /* SNB-B */ temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; I915_WRITE(fdi_tx_reg, temp); I915_READ(fdi_tx_reg); temp = I915_READ(fdi_rx_reg); if (HAS_PCH_CPT(dev)) { temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; } else { temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_1; } I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE); I915_READ(fdi_rx_reg); udelay(150); for (i = 0; i < 4; i++ ) { temp = I915_READ(fdi_tx_reg); temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; temp |= snb_b_fdi_train_param[i]; I915_WRITE(fdi_tx_reg, temp); udelay(500); temp = I915_READ(fdi_rx_iir_reg); DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); if (temp & FDI_RX_BIT_LOCK) { I915_WRITE(fdi_rx_iir_reg, temp | FDI_RX_BIT_LOCK); DRM_DEBUG_KMS("FDI train 1 done.\n"); break; } } if (i == 4) DRM_DEBUG_KMS("FDI train 1 fail!\n"); /* Train 2 */ temp = I915_READ(fdi_tx_reg); temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_2; if (IS_GEN6(dev)) { temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; /* SNB-B */ temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; } I915_WRITE(fdi_tx_reg, temp); temp = I915_READ(fdi_rx_reg); if (HAS_PCH_CPT(dev)) { temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; } else { temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_2; } I915_WRITE(fdi_rx_reg, temp); udelay(150); for (i = 0; i < 4; i++ ) { temp = I915_READ(fdi_tx_reg); temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; temp |= snb_b_fdi_train_param[i]; I915_WRITE(fdi_tx_reg, temp); udelay(500); temp = I915_READ(fdi_rx_iir_reg); DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); if (temp & FDI_RX_SYMBOL_LOCK) { I915_WRITE(fdi_rx_iir_reg, temp | FDI_RX_SYMBOL_LOCK); DRM_DEBUG_KMS("FDI train 2 done.\n"); break; } } if (i == 4) DRM_DEBUG_KMS("FDI train 2 fail!\n"); DRM_DEBUG_KMS("FDI train done.\n"); } static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; int plane = intel_crtc->plane; int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B; int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF; int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR; int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR; int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL; int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL; int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF; int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B; int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B; int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B; int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B; int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B; int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B; int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B; int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B; int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B; int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B; int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B; int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B; int trans_dpll_sel = (pipe == 0) ? 0 : 1; u32 temp; u32 pipe_bpc; temp = I915_READ(pipeconf_reg); pipe_bpc = temp & PIPE_BPC_MASK; /* XXX: When our outputs are all unaware of DPMS modes other than off * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC. */ switch (mode) { case DRM_MODE_DPMS_ON: case DRM_MODE_DPMS_STANDBY: case DRM_MODE_DPMS_SUSPEND: DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane); if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { temp = I915_READ(PCH_LVDS); if ((temp & LVDS_PORT_EN) == 0) { I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN); POSTING_READ(PCH_LVDS); } } if (!HAS_eDP) { /* enable PCH FDI RX PLL, wait warmup plus DMI latency */ temp = I915_READ(fdi_rx_reg); /* * make the BPC in FDI Rx be consistent with that in * pipeconf reg. */ temp &= ~(0x7 << 16); temp |= (pipe_bpc << 11); temp &= ~(7 << 19); temp |= (intel_crtc->fdi_lanes - 1) << 19; I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE); I915_READ(fdi_rx_reg); udelay(200); /* Switch from Rawclk to PCDclk */ temp = I915_READ(fdi_rx_reg); I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK); I915_READ(fdi_rx_reg); udelay(200); /* Enable CPU FDI TX PLL, always on for Ironlake */ temp = I915_READ(fdi_tx_reg); if ((temp & FDI_TX_PLL_ENABLE) == 0) { I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE); I915_READ(fdi_tx_reg); udelay(100); } } /* Enable panel fitting for LVDS */ if (dev_priv->pch_pf_size && (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP || intel_pch_has_edp(crtc))) { /* Force use of hard-coded filter coefficients * as some pre-programmed values are broken, * e.g. x201. */ I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1, PF_ENABLE | PF_FILTER_MED_3x3); I915_WRITE(pipe ? PFB_WIN_POS : PFA_WIN_POS, dev_priv->pch_pf_pos); I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ, dev_priv->pch_pf_size); } /* Enable CPU pipe */ temp = I915_READ(pipeconf_reg); if ((temp & PIPEACONF_ENABLE) == 0) { I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE); I915_READ(pipeconf_reg); udelay(100); } /* configure and enable CPU plane */ temp = I915_READ(dspcntr_reg); if ((temp & DISPLAY_PLANE_ENABLE) == 0) { I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE); /* Flush the plane changes */ I915_WRITE(dspbase_reg, I915_READ(dspbase_reg)); } if (!HAS_eDP) { /* For PCH output, training FDI link */ if (IS_GEN6(dev)) gen6_fdi_link_train(crtc); else ironlake_fdi_link_train(crtc); /* enable PCH DPLL */ temp = I915_READ(pch_dpll_reg); if ((temp & DPLL_VCO_ENABLE) == 0) { I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE); I915_READ(pch_dpll_reg); } udelay(200); if (HAS_PCH_CPT(dev)) { /* Be sure PCH DPLL SEL is set */ temp = I915_READ(PCH_DPLL_SEL); if (trans_dpll_sel == 0 && (temp & TRANSA_DPLL_ENABLE) == 0) temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL); else if (trans_dpll_sel == 1 && (temp & TRANSB_DPLL_ENABLE) == 0) temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL); I915_WRITE(PCH_DPLL_SEL, temp); I915_READ(PCH_DPLL_SEL); } /* set transcoder timing */ I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg)); I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg)); I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg)); I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg)); I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg)); I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg)); /* enable normal train */ temp = I915_READ(fdi_tx_reg); temp &= ~FDI_LINK_TRAIN_NONE; I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE); I915_READ(fdi_tx_reg); temp = I915_READ(fdi_rx_reg); if (HAS_PCH_CPT(dev)) { temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; temp |= FDI_LINK_TRAIN_NORMAL_CPT; } else { temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_NONE; } I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE); I915_READ(fdi_rx_reg); /* wait one idle pattern time */ udelay(100); /* For PCH DP, enable TRANS_DP_CTL */ if (HAS_PCH_CPT(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) { int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B; int reg; reg = I915_READ(trans_dp_ctl); reg &= ~(TRANS_DP_PORT_SEL_MASK | TRANS_DP_SYNC_MASK); reg |= (TRANS_DP_OUTPUT_ENABLE | TRANS_DP_ENH_FRAMING); if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC) reg |= TRANS_DP_HSYNC_ACTIVE_HIGH; if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC) reg |= TRANS_DP_VSYNC_ACTIVE_HIGH; switch (intel_trans_dp_port_sel(crtc)) { case PCH_DP_B: reg |= TRANS_DP_PORT_SEL_B; break; case PCH_DP_C: reg |= TRANS_DP_PORT_SEL_C; break; case PCH_DP_D: reg |= TRANS_DP_PORT_SEL_D; break; default: DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n"); reg |= TRANS_DP_PORT_SEL_B; break; } I915_WRITE(trans_dp_ctl, reg); POSTING_READ(trans_dp_ctl); } /* enable PCH transcoder */ temp = I915_READ(transconf_reg); /* * make the BPC in transcoder be consistent with * that in pipeconf reg. */ temp &= ~PIPE_BPC_MASK; temp |= pipe_bpc; I915_WRITE(transconf_reg, temp | TRANS_ENABLE); I915_READ(transconf_reg); if (wait_for(I915_READ(transconf_reg) & TRANS_STATE_ENABLE, 100)) DRM_ERROR("failed to enable transcoder\n"); } intel_crtc_load_lut(crtc); intel_update_fbc(crtc, &crtc->mode); break; case DRM_MODE_DPMS_OFF: DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane); drm_vblank_off(dev, pipe); /* Disable display plane */ temp = I915_READ(dspcntr_reg); if ((temp & DISPLAY_PLANE_ENABLE) != 0) { I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE); /* Flush the plane changes */ I915_WRITE(dspbase_reg, I915_READ(dspbase_reg)); I915_READ(dspbase_reg); } if (dev_priv->cfb_plane == plane && dev_priv->display.disable_fbc) dev_priv->display.disable_fbc(dev); /* disable cpu pipe, disable after all planes disabled */ temp = I915_READ(pipeconf_reg); if ((temp & PIPEACONF_ENABLE) != 0) { I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE); /* wait for cpu pipe off, pipe state */ if (wait_for((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) == 0, 50)) DRM_ERROR("failed to turn off cpu pipe\n"); } else DRM_DEBUG_KMS("crtc %d is disabled\n", pipe); udelay(100); /* Disable PF */ I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1, 0); I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ, 0); /* disable CPU FDI tx and PCH FDI rx */ temp = I915_READ(fdi_tx_reg); I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE); I915_READ(fdi_tx_reg); temp = I915_READ(fdi_rx_reg); /* BPC in FDI rx is consistent with that in pipeconf */ temp &= ~(0x07 << 16); temp |= (pipe_bpc << 11); I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE); I915_READ(fdi_rx_reg); udelay(100); /* still set train pattern 1 */ temp = I915_READ(fdi_tx_reg); temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_1; I915_WRITE(fdi_tx_reg, temp); POSTING_READ(fdi_tx_reg); temp = I915_READ(fdi_rx_reg); if (HAS_PCH_CPT(dev)) { temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; } else { temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_1; } I915_WRITE(fdi_rx_reg, temp); POSTING_READ(fdi_rx_reg); udelay(100); if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { temp = I915_READ(PCH_LVDS); I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN); I915_READ(PCH_LVDS); udelay(100); } /* disable PCH transcoder */ temp = I915_READ(transconf_reg); if ((temp & TRANS_ENABLE) != 0) { I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE); /* wait for PCH transcoder off, transcoder state */ if (wait_for((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0, 50)) DRM_ERROR("failed to disable transcoder\n"); } temp = I915_READ(transconf_reg); /* BPC in transcoder is consistent with that in pipeconf */ temp &= ~PIPE_BPC_MASK; temp |= pipe_bpc; I915_WRITE(transconf_reg, temp); I915_READ(transconf_reg); udelay(100); if (HAS_PCH_CPT(dev)) { /* disable TRANS_DP_CTL */ int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B; int reg; reg = I915_READ(trans_dp_ctl); reg &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK); I915_WRITE(trans_dp_ctl, reg); POSTING_READ(trans_dp_ctl); /* disable DPLL_SEL */ temp = I915_READ(PCH_DPLL_SEL); if (trans_dpll_sel == 0) temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL); else temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL); I915_WRITE(PCH_DPLL_SEL, temp); I915_READ(PCH_DPLL_SEL); } /* disable PCH DPLL */ temp = I915_READ(pch_dpll_reg); I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE); I915_READ(pch_dpll_reg); /* Switch from PCDclk to Rawclk */ temp = I915_READ(fdi_rx_reg); temp &= ~FDI_SEL_PCDCLK; I915_WRITE(fdi_rx_reg, temp); I915_READ(fdi_rx_reg); /* Disable CPU FDI TX PLL */ temp = I915_READ(fdi_tx_reg); I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE); I915_READ(fdi_tx_reg); udelay(100); temp = I915_READ(fdi_rx_reg); temp &= ~FDI_RX_PLL_ENABLE; I915_WRITE(fdi_rx_reg, temp); I915_READ(fdi_rx_reg); /* Wait for the clocks to turn off. */ udelay(100); break; } } static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable) { if (!enable && intel_crtc->overlay) { struct drm_device *dev = intel_crtc->base.dev; mutex_lock(&dev->struct_mutex); (void) intel_overlay_switch_off(intel_crtc->overlay, false); mutex_unlock(&dev->struct_mutex); } /* Let userspace switch the overlay on again. In most cases userspace * has to recompute where to put it anyway. */ } static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; int plane = intel_crtc->plane; int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B; int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR; int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR; int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF; u32 temp; /* XXX: When our outputs are all unaware of DPMS modes other than off * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC. */ switch (mode) { case DRM_MODE_DPMS_ON: case DRM_MODE_DPMS_STANDBY: case DRM_MODE_DPMS_SUSPEND: /* Enable the DPLL */ temp = I915_READ(dpll_reg); if ((temp & DPLL_VCO_ENABLE) == 0) { I915_WRITE(dpll_reg, temp); I915_READ(dpll_reg); /* Wait for the clocks to stabilize. */ udelay(150); I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE); I915_READ(dpll_reg); /* Wait for the clocks to stabilize. */ udelay(150); I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE); I915_READ(dpll_reg); /* Wait for the clocks to stabilize. */ udelay(150); } /* Enable the pipe */ temp = I915_READ(pipeconf_reg); if ((temp & PIPEACONF_ENABLE) == 0) I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE); /* Enable the plane */ temp = I915_READ(dspcntr_reg); if ((temp & DISPLAY_PLANE_ENABLE) == 0) { I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE); /* Flush the plane changes */ I915_WRITE(dspbase_reg, I915_READ(dspbase_reg)); } intel_crtc_load_lut(crtc); if ((IS_I965G(dev) || plane == 0)) intel_update_fbc(crtc, &crtc->mode); /* Give the overlay scaler a chance to enable if it's on this pipe */ intel_crtc_dpms_overlay(intel_crtc, true); break; case DRM_MODE_DPMS_OFF: /* Give the overlay scaler a chance to disable if it's on this pipe */ intel_crtc_dpms_overlay(intel_crtc, false); drm_vblank_off(dev, pipe); if (dev_priv->cfb_plane == plane && dev_priv->display.disable_fbc) dev_priv->display.disable_fbc(dev); /* Disable display plane */ temp = I915_READ(dspcntr_reg); if ((temp & DISPLAY_PLANE_ENABLE) != 0) { I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE); /* Flush the plane changes */ I915_WRITE(dspbase_reg, I915_READ(dspbase_reg)); I915_READ(dspbase_reg); } if (!IS_I9XX(dev)) { /* Wait for vblank for the disable to take effect */ intel_wait_for_vblank_off(dev, pipe); } /* Don't disable pipe A or pipe A PLLs if needed */ if (pipeconf_reg == PIPEACONF && (dev_priv->quirks & QUIRK_PIPEA_FORCE)) goto skip_pipe_off; /* Next, disable display pipes */ temp = I915_READ(pipeconf_reg); if ((temp & PIPEACONF_ENABLE) != 0) { I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE); I915_READ(pipeconf_reg); } /* Wait for vblank for the disable to take effect. */ intel_wait_for_vblank_off(dev, pipe); temp = I915_READ(dpll_reg); if ((temp & DPLL_VCO_ENABLE) != 0) { I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE); I915_READ(dpll_reg); } skip_pipe_off: /* Wait for the clocks to turn off. */ udelay(150); break; } } /* * When we disable a pipe, we need to clear any pending scanline wait events * to avoid hanging the ring, which we assume we are waiting on. */ static void intel_clear_scanline_wait(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u32 tmp; if (IS_GEN2(dev)) /* Can't break the hang on i8xx */ return; tmp = I915_READ(PRB0_CTL); if (tmp & RING_WAIT) { I915_WRITE(PRB0_CTL, tmp); POSTING_READ(PRB0_CTL); } } /** * Sets the power management mode of the pipe and plane. */ static void intel_crtc_dpms(struct drm_crtc *crtc, int mode) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_master_private *master_priv; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; bool enabled; if (intel_crtc->dpms_mode == mode) return; intel_crtc->dpms_mode = mode; intel_crtc->cursor_on = mode == DRM_MODE_DPMS_ON; /* When switching on the display, ensure that SR is disabled * with multiple pipes prior to enabling to new pipe. * * When switching off the display, make sure the cursor is * properly hidden and there are no pending waits prior to * disabling the pipe. */ if (mode == DRM_MODE_DPMS_ON) intel_update_watermarks(dev); else intel_crtc_update_cursor(crtc); dev_priv->display.dpms(crtc, mode); if (mode == DRM_MODE_DPMS_ON) intel_crtc_update_cursor(crtc); else { /* XXX Note that this is not a complete solution, but a hack * to avoid the most frequently hit hang. */ intel_clear_scanline_wait(dev); intel_update_watermarks(dev); } if (!dev->primary->master) return; master_priv = dev->primary->master->driver_priv; if (!master_priv->sarea_priv) return; enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF; switch (pipe) { case 0: master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0; master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0; break; case 1: master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0; master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0; break; default: DRM_ERROR("Can't update pipe %d in SAREA\n", pipe); break; } } static void intel_crtc_prepare (struct drm_crtc *crtc) { struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private; crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF); } static void intel_crtc_commit (struct drm_crtc *crtc) { struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private; crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON); } void intel_encoder_prepare (struct drm_encoder *encoder) { struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private; /* lvds has its own version of prepare see intel_lvds_prepare */ encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF); } void intel_encoder_commit (struct drm_encoder *encoder) { struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private; /* lvds has its own version of commit see intel_lvds_commit */ encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON); } void intel_encoder_destroy(struct drm_encoder *encoder) { struct intel_encoder *intel_encoder = to_intel_encoder(encoder); if (intel_encoder->ddc_bus) intel_i2c_destroy(intel_encoder->ddc_bus); if (intel_encoder->i2c_bus) intel_i2c_destroy(intel_encoder->i2c_bus); drm_encoder_cleanup(encoder); kfree(intel_encoder); } static bool intel_crtc_mode_fixup(struct drm_crtc *crtc, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct drm_device *dev = crtc->dev; if (HAS_PCH_SPLIT(dev)) { /* FDI link clock is fixed at 2.7G */ if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4) return false; } return true; } static int i945_get_display_clock_speed(struct drm_device *dev) { return 400000; } static int i915_get_display_clock_speed(struct drm_device *dev) { return 333000; } static int i9xx_misc_get_display_clock_speed(struct drm_device *dev) { return 200000; } static int i915gm_get_display_clock_speed(struct drm_device *dev) { u16 gcfgc = 0; pci_read_config_word(dev->pdev, GCFGC, &gcfgc); if (gcfgc & GC_LOW_FREQUENCY_ENABLE) return 133000; else { switch (gcfgc & GC_DISPLAY_CLOCK_MASK) { case GC_DISPLAY_CLOCK_333_MHZ: return 333000; default: case GC_DISPLAY_CLOCK_190_200_MHZ: return 190000; } } } static int i865_get_display_clock_speed(struct drm_device *dev) { return 266000; } static int i855_get_display_clock_speed(struct drm_device *dev) { u16 hpllcc = 0; /* Assume that the hardware is in the high speed state. This * should be the default. */ switch (hpllcc & GC_CLOCK_CONTROL_MASK) { case GC_CLOCK_133_200: case GC_CLOCK_100_200: return 200000; case GC_CLOCK_166_250: return 250000; case GC_CLOCK_100_133: return 133000; } /* Shouldn't happen */ return 0; } static int i830_get_display_clock_speed(struct drm_device *dev) { return 133000; } /** * Return the pipe currently connected to the panel fitter, * or -1 if the panel fitter is not present or not in use */ int intel_panel_fitter_pipe (struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u32 pfit_control; /* i830 doesn't have a panel fitter */ if (IS_I830(dev)) return -1; pfit_control = I915_READ(PFIT_CONTROL); /* See if the panel fitter is in use */ if ((pfit_control & PFIT_ENABLE) == 0) return -1; /* 965 can place panel fitter on either pipe */ if (IS_I965G(dev)) return (pfit_control >> 29) & 0x3; /* older chips can only use pipe 1 */ return 1; } struct fdi_m_n { u32 tu; u32 gmch_m; u32 gmch_n; u32 link_m; u32 link_n; }; static void fdi_reduce_ratio(u32 *num, u32 *den) { while (*num > 0xffffff || *den > 0xffffff) { *num >>= 1; *den >>= 1; } } #define DATA_N 0x800000 #define LINK_N 0x80000 static void ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock, int link_clock, struct fdi_m_n *m_n) { u64 temp; m_n->tu = 64; /* default size */ temp = (u64) DATA_N * pixel_clock; temp = div_u64(temp, link_clock); m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes); m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */ m_n->gmch_n = DATA_N; fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n); temp = (u64) LINK_N * pixel_clock; m_n->link_m = div_u64(temp, link_clock); m_n->link_n = LINK_N; fdi_reduce_ratio(&m_n->link_m, &m_n->link_n); } struct intel_watermark_params { unsigned long fifo_size; unsigned long max_wm; unsigned long default_wm; unsigned long guard_size; unsigned long cacheline_size; }; /* Pineview has different values for various configs */ static struct intel_watermark_params pineview_display_wm = { PINEVIEW_DISPLAY_FIFO, PINEVIEW_MAX_WM, PINEVIEW_DFT_WM, PINEVIEW_GUARD_WM, PINEVIEW_FIFO_LINE_SIZE }; static struct intel_watermark_params pineview_display_hplloff_wm = { PINEVIEW_DISPLAY_FIFO, PINEVIEW_MAX_WM, PINEVIEW_DFT_HPLLOFF_WM, PINEVIEW_GUARD_WM, PINEVIEW_FIFO_LINE_SIZE }; static struct intel_watermark_params pineview_cursor_wm = { PINEVIEW_CURSOR_FIFO, PINEVIEW_CURSOR_MAX_WM, PINEVIEW_CURSOR_DFT_WM, PINEVIEW_CURSOR_GUARD_WM, PINEVIEW_FIFO_LINE_SIZE, }; static struct intel_watermark_params pineview_cursor_hplloff_wm = { PINEVIEW_CURSOR_FIFO, PINEVIEW_CURSOR_MAX_WM, PINEVIEW_CURSOR_DFT_WM, PINEVIEW_CURSOR_GUARD_WM, PINEVIEW_FIFO_LINE_SIZE }; static struct intel_watermark_params g4x_wm_info = { G4X_FIFO_SIZE, G4X_MAX_WM, G4X_MAX_WM, 2, G4X_FIFO_LINE_SIZE, }; static struct intel_watermark_params g4x_cursor_wm_info = { I965_CURSOR_FIFO, I965_CURSOR_MAX_WM, I965_CURSOR_DFT_WM, 2, G4X_FIFO_LINE_SIZE, }; static struct intel_watermark_params i965_cursor_wm_info = { I965_CURSOR_FIFO, I965_CURSOR_MAX_WM, I965_CURSOR_DFT_WM, 2, I915_FIFO_LINE_SIZE, }; static struct intel_watermark_params i945_wm_info = { I945_FIFO_SIZE, I915_MAX_WM, 1, 2, I915_FIFO_LINE_SIZE }; static struct intel_watermark_params i915_wm_info = { I915_FIFO_SIZE, I915_MAX_WM, 1, 2, I915_FIFO_LINE_SIZE }; static struct intel_watermark_params i855_wm_info = { I855GM_FIFO_SIZE, I915_MAX_WM, 1, 2, I830_FIFO_LINE_SIZE }; static struct intel_watermark_params i830_wm_info = { I830_FIFO_SIZE, I915_MAX_WM, 1, 2, I830_FIFO_LINE_SIZE }; static struct intel_watermark_params ironlake_display_wm_info = { ILK_DISPLAY_FIFO, ILK_DISPLAY_MAXWM, ILK_DISPLAY_DFTWM, 2, ILK_FIFO_LINE_SIZE }; static struct intel_watermark_params ironlake_cursor_wm_info = { ILK_CURSOR_FIFO, ILK_CURSOR_MAXWM, ILK_CURSOR_DFTWM, 2, ILK_FIFO_LINE_SIZE }; static struct intel_watermark_params ironlake_display_srwm_info = { ILK_DISPLAY_SR_FIFO, ILK_DISPLAY_MAX_SRWM, ILK_DISPLAY_DFT_SRWM, 2, ILK_FIFO_LINE_SIZE }; static struct intel_watermark_params ironlake_cursor_srwm_info = { ILK_CURSOR_SR_FIFO, ILK_CURSOR_MAX_SRWM, ILK_CURSOR_DFT_SRWM, 2, ILK_FIFO_LINE_SIZE }; /** * intel_calculate_wm - calculate watermark level * @clock_in_khz: pixel clock * @wm: chip FIFO params * @pixel_size: display pixel size * @latency_ns: memory latency for the platform * * Calculate the watermark level (the level at which the display plane will * start fetching from memory again). Each chip has a different display * FIFO size and allocation, so the caller needs to figure that out and pass * in the correct intel_watermark_params structure. * * As the pixel clock runs, the FIFO will be drained at a rate that depends * on the pixel size. When it reaches the watermark level, it'll start * fetching FIFO line sized based chunks from memory until the FIFO fills * past the watermark point. If the FIFO drains completely, a FIFO underrun * will occur, and a display engine hang could result. */ static unsigned long intel_calculate_wm(unsigned long clock_in_khz, struct intel_watermark_params *wm, int pixel_size, unsigned long latency_ns) { long entries_required, wm_size; /* * Note: we need to make sure we don't overflow for various clock & * latency values. * clocks go from a few thousand to several hundred thousand. * latency is usually a few thousand */ entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) / 1000; entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size); DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required); wm_size = wm->fifo_size - (entries_required + wm->guard_size); DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size); /* Don't promote wm_size to unsigned... */ if (wm_size > (long)wm->max_wm) wm_size = wm->max_wm; if (wm_size <= 0) wm_size = wm->default_wm; return wm_size; } struct cxsr_latency { int is_desktop; int is_ddr3; unsigned long fsb_freq; unsigned long mem_freq; unsigned long display_sr; unsigned long display_hpll_disable; unsigned long cursor_sr; unsigned long cursor_hpll_disable; }; static const struct cxsr_latency cxsr_latency_table[] = { {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */ {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */ {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */ {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */ {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */ {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */ {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */ {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */ {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */ {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */ {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */ {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */ {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */ {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */ {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */ {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */ {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */ {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */ {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */ {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */ {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */ {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */ {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */ {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */ {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */ {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */ {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */ {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */ {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */ {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */ }; static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int is_ddr3, int fsb, int mem) { const struct cxsr_latency *latency; int i; if (fsb == 0 || mem == 0) return NULL; for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) { latency = &cxsr_latency_table[i]; if (is_desktop == latency->is_desktop && is_ddr3 == latency->is_ddr3 && fsb == latency->fsb_freq && mem == latency->mem_freq) return latency; } DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n"); return NULL; } static void pineview_disable_cxsr(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; /* deactivate cxsr */ I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN); } /* * Latency for FIFO fetches is dependent on several factors: * - memory configuration (speed, channels) * - chipset * - current MCH state * It can be fairly high in some situations, so here we assume a fairly * pessimal value. It's a tradeoff between extra memory fetches (if we * set this value too high, the FIFO will fetch frequently to stay full) * and power consumption (set it too low to save power and we might see * FIFO underruns and display "flicker"). * * A value of 5us seems to be a good balance; safe for very low end * platforms but not overly aggressive on lower latency configs. */ static const int latency_ns = 5000; static int i9xx_get_fifo_size(struct drm_device *dev, int plane) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t dsparb = I915_READ(DSPARB); int size; size = dsparb & 0x7f; if (plane) size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size; DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A", size); return size; } static int i85x_get_fifo_size(struct drm_device *dev, int plane) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t dsparb = I915_READ(DSPARB); int size; size = dsparb & 0x1ff; if (plane) size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size; size >>= 1; /* Convert to cachelines */ DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A", size); return size; } static int i845_get_fifo_size(struct drm_device *dev, int plane) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t dsparb = I915_READ(DSPARB); int size; size = dsparb & 0x7f; size >>= 2; /* Convert to cachelines */ DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A", size); return size; } static int i830_get_fifo_size(struct drm_device *dev, int plane) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t dsparb = I915_READ(DSPARB); int size; size = dsparb & 0x7f; size >>= 1; /* Convert to cachelines */ DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A", size); return size; } static void pineview_update_wm(struct drm_device *dev, int planea_clock, int planeb_clock, int sr_hdisplay, int unused, int pixel_size) { struct drm_i915_private *dev_priv = dev->dev_private; const struct cxsr_latency *latency; u32 reg; unsigned long wm; int sr_clock; latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3, dev_priv->fsb_freq, dev_priv->mem_freq); if (!latency) { DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n"); pineview_disable_cxsr(dev); return; } if (!planea_clock || !planeb_clock) { sr_clock = planea_clock ? planea_clock : planeb_clock; /* Display SR */ wm = intel_calculate_wm(sr_clock, &pineview_display_wm, pixel_size, latency->display_sr); reg = I915_READ(DSPFW1); reg &= ~DSPFW_SR_MASK; reg |= wm << DSPFW_SR_SHIFT; I915_WRITE(DSPFW1, reg); DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg); /* cursor SR */ wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm, pixel_size, latency->cursor_sr); reg = I915_READ(DSPFW3); reg &= ~DSPFW_CURSOR_SR_MASK; reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT; I915_WRITE(DSPFW3, reg); /* Display HPLL off SR */ wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm, pixel_size, latency->display_hpll_disable); reg = I915_READ(DSPFW3); reg &= ~DSPFW_HPLL_SR_MASK; reg |= wm & DSPFW_HPLL_SR_MASK; I915_WRITE(DSPFW3, reg); /* cursor HPLL off SR */ wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm, pixel_size, latency->cursor_hpll_disable); reg = I915_READ(DSPFW3); reg &= ~DSPFW_HPLL_CURSOR_MASK; reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT; I915_WRITE(DSPFW3, reg); DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg); /* activate cxsr */ I915_WRITE(DSPFW3, I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN); DRM_DEBUG_KMS("Self-refresh is enabled\n"); } else { pineview_disable_cxsr(dev); DRM_DEBUG_KMS("Self-refresh is disabled\n"); } } static void g4x_update_wm(struct drm_device *dev, int planea_clock, int planeb_clock, int sr_hdisplay, int sr_htotal, int pixel_size) { struct drm_i915_private *dev_priv = dev->dev_private; int total_size, cacheline_size; int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr; struct intel_watermark_params planea_params, planeb_params; unsigned long line_time_us; int sr_clock, sr_entries = 0, entries_required; /* Create copies of the base settings for each pipe */ planea_params = planeb_params = g4x_wm_info; /* Grab a couple of global values before we overwrite them */ total_size = planea_params.fifo_size; cacheline_size = planea_params.cacheline_size; /* * Note: we need to make sure we don't overflow for various clock & * latency values. * clocks go from a few thousand to several hundred thousand. * latency is usually a few thousand */ entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) / 1000; entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE); planea_wm = entries_required + planea_params.guard_size; entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) / 1000; entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE); planeb_wm = entries_required + planeb_params.guard_size; cursora_wm = cursorb_wm = 16; cursor_sr = 32; DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm); /* Calc sr entries for one plane configs */ if (sr_hdisplay && (!planea_clock || !planeb_clock)) { /* self-refresh has much higher latency */ static const int sr_latency_ns = 12000; sr_clock = planea_clock ? planea_clock : planeb_clock; line_time_us = ((sr_htotal * 1000) / sr_clock); /* Use ns/us then divide to preserve precision */ sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) * pixel_size * sr_hdisplay; sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size); entries_required = (((sr_latency_ns / line_time_us) + 1000) / 1000) * pixel_size * 64; entries_required = DIV_ROUND_UP(entries_required, g4x_cursor_wm_info.cacheline_size); cursor_sr = entries_required + g4x_cursor_wm_info.guard_size; if (cursor_sr > g4x_cursor_wm_info.max_wm) cursor_sr = g4x_cursor_wm_info.max_wm; DRM_DEBUG_KMS("self-refresh watermark: display plane %d " "cursor %d\n", sr_entries, cursor_sr); I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN); } else { /* Turn off self refresh if both pipes are enabled */ I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN); } DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n", planea_wm, planeb_wm, sr_entries); planea_wm &= 0x3f; planeb_wm &= 0x3f; I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) | (cursorb_wm << DSPFW_CURSORB_SHIFT) | (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm); I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) | (cursora_wm << DSPFW_CURSORA_SHIFT)); /* HPLL off in SR has some issues on G4x... disable it */ I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) | (cursor_sr << DSPFW_CURSOR_SR_SHIFT)); } static void i965_update_wm(struct drm_device *dev, int planea_clock, int planeb_clock, int sr_hdisplay, int sr_htotal, int pixel_size) { struct drm_i915_private *dev_priv = dev->dev_private; unsigned long line_time_us; int sr_clock, sr_entries, srwm = 1; int cursor_sr = 16; /* Calc sr entries for one plane configs */ if (sr_hdisplay && (!planea_clock || !planeb_clock)) { /* self-refresh has much higher latency */ static const int sr_latency_ns = 12000; sr_clock = planea_clock ? planea_clock : planeb_clock; line_time_us = ((sr_htotal * 1000) / sr_clock); /* Use ns/us then divide to preserve precision */ sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) * pixel_size * sr_hdisplay; sr_entries = DIV_ROUND_UP(sr_entries, I915_FIFO_LINE_SIZE); DRM_DEBUG("self-refresh entries: %d\n", sr_entries); srwm = I965_FIFO_SIZE - sr_entries; if (srwm < 0) srwm = 1; srwm &= 0x1ff; sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) * pixel_size * 64; sr_entries = DIV_ROUND_UP(sr_entries, i965_cursor_wm_info.cacheline_size); cursor_sr = i965_cursor_wm_info.fifo_size - (sr_entries + i965_cursor_wm_info.guard_size); if (cursor_sr > i965_cursor_wm_info.max_wm) cursor_sr = i965_cursor_wm_info.max_wm; DRM_DEBUG_KMS("self-refresh watermark: display plane %d " "cursor %d\n", srwm, cursor_sr); if (IS_I965GM(dev)) I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN); } else { /* Turn off self refresh if both pipes are enabled */ if (IS_I965GM(dev)) I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN); } DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n", srwm); /* 965 has limitations... */ I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) | (8 << 0)); I915_WRITE(DSPFW2, (8 << 8) | (8 << 0)); /* update cursor SR watermark */ I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT)); } static void i9xx_update_wm(struct drm_device *dev, int planea_clock, int planeb_clock, int sr_hdisplay, int sr_htotal, int pixel_size) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t fwater_lo; uint32_t fwater_hi; int total_size, cacheline_size, cwm, srwm = 1; int planea_wm, planeb_wm; struct intel_watermark_params planea_params, planeb_params; unsigned long line_time_us; int sr_clock, sr_entries = 0; /* Create copies of the base settings for each pipe */ if (IS_I965GM(dev) || IS_I945GM(dev)) planea_params = planeb_params = i945_wm_info; else if (IS_I9XX(dev)) planea_params = planeb_params = i915_wm_info; else planea_params = planeb_params = i855_wm_info; /* Grab a couple of global values before we overwrite them */ total_size = planea_params.fifo_size; cacheline_size = planea_params.cacheline_size; /* Update per-plane FIFO sizes */ planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0); planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1); planea_wm = intel_calculate_wm(planea_clock, &planea_params, pixel_size, latency_ns); planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params, pixel_size, latency_ns); DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm); /* * Overlay gets an aggressive default since video jitter is bad. */ cwm = 2; /* Calc sr entries for one plane configs */ if (HAS_FW_BLC(dev) && sr_hdisplay && (!planea_clock || !planeb_clock)) { /* self-refresh has much higher latency */ static const int sr_latency_ns = 6000; sr_clock = planea_clock ? planea_clock : planeb_clock; line_time_us = ((sr_htotal * 1000) / sr_clock); /* Use ns/us then divide to preserve precision */ sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) * pixel_size * sr_hdisplay; sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size); DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries); srwm = total_size - sr_entries; if (srwm < 0) srwm = 1; if (IS_I945G(dev) || IS_I945GM(dev)) I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff)); else if (IS_I915GM(dev)) { /* 915M has a smaller SRWM field */ I915_WRITE(FW_BLC_SELF, srwm & 0x3f); I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN); } } else { /* Turn off self refresh if both pipes are enabled */ if (IS_I945G(dev) || IS_I945GM(dev)) { I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN); } else if (IS_I915GM(dev)) { I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN); } } DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n", planea_wm, planeb_wm, cwm, srwm); fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f); fwater_hi = (cwm & 0x1f); /* Set request length to 8 cachelines per fetch */ fwater_lo = fwater_lo | (1 << 24) | (1 << 8); fwater_hi = fwater_hi | (1 << 8); I915_WRITE(FW_BLC, fwater_lo); I915_WRITE(FW_BLC2, fwater_hi); } static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused, int unused2, int unused3, int pixel_size) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff; int planea_wm; i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0); planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info, pixel_size, latency_ns); fwater_lo |= (3<<8) | planea_wm; DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm); I915_WRITE(FW_BLC, fwater_lo); } #define ILK_LP0_PLANE_LATENCY 700 #define ILK_LP0_CURSOR_LATENCY 1300 static void ironlake_update_wm(struct drm_device *dev, int planea_clock, int planeb_clock, int sr_hdisplay, int sr_htotal, int pixel_size) { struct drm_i915_private *dev_priv = dev->dev_private; int planea_wm, planeb_wm, cursora_wm, cursorb_wm; int sr_wm, cursor_wm; unsigned long line_time_us; int sr_clock, entries_required; u32 reg_value; int line_count; int planea_htotal = 0, planeb_htotal = 0; struct drm_crtc *crtc; /* Need htotal for all active display plane */ list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc); if (intel_crtc->dpms_mode == DRM_MODE_DPMS_ON) { if (intel_crtc->plane == 0) planea_htotal = crtc->mode.htotal; else planeb_htotal = crtc->mode.htotal; } } /* Calculate and update the watermark for plane A */ if (planea_clock) { entries_required = ((planea_clock / 1000) * pixel_size * ILK_LP0_PLANE_LATENCY) / 1000; entries_required = DIV_ROUND_UP(entries_required, ironlake_display_wm_info.cacheline_size); planea_wm = entries_required + ironlake_display_wm_info.guard_size; if (planea_wm > (int)ironlake_display_wm_info.max_wm) planea_wm = ironlake_display_wm_info.max_wm; /* Use the large buffer method to calculate cursor watermark */ line_time_us = (planea_htotal * 1000) / planea_clock; /* Use ns/us then divide to preserve precision */ line_count = (ILK_LP0_CURSOR_LATENCY / line_time_us + 1000) / 1000; /* calculate the cursor watermark for cursor A */ entries_required = line_count * 64 * pixel_size; entries_required = DIV_ROUND_UP(entries_required, ironlake_cursor_wm_info.cacheline_size); cursora_wm = entries_required + ironlake_cursor_wm_info.guard_size; if (cursora_wm > ironlake_cursor_wm_info.max_wm) cursora_wm = ironlake_cursor_wm_info.max_wm; reg_value = I915_READ(WM0_PIPEA_ILK); reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK); reg_value |= (planea_wm << WM0_PIPE_PLANE_SHIFT) | (cursora_wm & WM0_PIPE_CURSOR_MASK); I915_WRITE(WM0_PIPEA_ILK, reg_value); DRM_DEBUG_KMS("FIFO watermarks For pipe A - plane %d, " "cursor: %d\n", planea_wm, cursora_wm); } /* Calculate and update the watermark for plane B */ if (planeb_clock) { entries_required = ((planeb_clock / 1000) * pixel_size * ILK_LP0_PLANE_LATENCY) / 1000; entries_required = DIV_ROUND_UP(entries_required, ironlake_display_wm_info.cacheline_size); planeb_wm = entries_required + ironlake_display_wm_info.guard_size; if (planeb_wm > (int)ironlake_display_wm_info.max_wm) planeb_wm = ironlake_display_wm_info.max_wm; /* Use the large buffer method to calculate cursor watermark */ line_time_us = (planeb_htotal * 1000) / planeb_clock; /* Use ns/us then divide to preserve precision */ line_count = (ILK_LP0_CURSOR_LATENCY / line_time_us + 1000) / 1000; /* calculate the cursor watermark for cursor B */ entries_required = line_count * 64 * pixel_size; entries_required = DIV_ROUND_UP(entries_required, ironlake_cursor_wm_info.cacheline_size); cursorb_wm = entries_required + ironlake_cursor_wm_info.guard_size; if (cursorb_wm > ironlake_cursor_wm_info.max_wm) cursorb_wm = ironlake_cursor_wm_info.max_wm; reg_value = I915_READ(WM0_PIPEB_ILK); reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK); reg_value |= (planeb_wm << WM0_PIPE_PLANE_SHIFT) | (cursorb_wm & WM0_PIPE_CURSOR_MASK); I915_WRITE(WM0_PIPEB_ILK, reg_value); DRM_DEBUG_KMS("FIFO watermarks For pipe B - plane %d, " "cursor: %d\n", planeb_wm, cursorb_wm); } /* * Calculate and update the self-refresh watermark only when one * display plane is used. */ if (!planea_clock || !planeb_clock) { /* Read the self-refresh latency. The unit is 0.5us */ int ilk_sr_latency = I915_READ(MLTR_ILK) & ILK_SRLT_MASK; sr_clock = planea_clock ? planea_clock : planeb_clock; line_time_us = ((sr_htotal * 1000) / sr_clock); /* Use ns/us then divide to preserve precision */ line_count = ((ilk_sr_latency * 500) / line_time_us + 1000) / 1000; /* calculate the self-refresh watermark for display plane */ entries_required = line_count * sr_hdisplay * pixel_size; entries_required = DIV_ROUND_UP(entries_required, ironlake_display_srwm_info.cacheline_size); sr_wm = entries_required + ironlake_display_srwm_info.guard_size; /* calculate the self-refresh watermark for display cursor */ entries_required = line_count * pixel_size * 64; entries_required = DIV_ROUND_UP(entries_required, ironlake_cursor_srwm_info.cacheline_size); cursor_wm = entries_required + ironlake_cursor_srwm_info.guard_size; /* configure watermark and enable self-refresh */ reg_value = I915_READ(WM1_LP_ILK); reg_value &= ~(WM1_LP_LATENCY_MASK | WM1_LP_SR_MASK | WM1_LP_CURSOR_MASK); reg_value |= WM1_LP_SR_EN | (ilk_sr_latency << WM1_LP_LATENCY_SHIFT) | (sr_wm << WM1_LP_SR_SHIFT) | cursor_wm; I915_WRITE(WM1_LP_ILK, reg_value); DRM_DEBUG_KMS("self-refresh watermark: display plane %d " "cursor %d\n", sr_wm, cursor_wm); } else { /* Turn off self refresh if both pipes are enabled */ I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN); } } /** * intel_update_watermarks - update FIFO watermark values based on current modes * * Calculate watermark values for the various WM regs based on current mode * and plane configuration. * * There are several cases to deal with here: * - normal (i.e. non-self-refresh) * - self-refresh (SR) mode * - lines are large relative to FIFO size (buffer can hold up to 2) * - lines are small relative to FIFO size (buffer can hold more than 2 * lines), so need to account for TLB latency * * The normal calculation is: * watermark = dotclock * bytes per pixel * latency * where latency is platform & configuration dependent (we assume pessimal * values here). * * The SR calculation is: * watermark = (trunc(latency/line time)+1) * surface width * * bytes per pixel * where * line time = htotal / dotclock * surface width = hdisplay for normal plane and 64 for cursor * and latency is assumed to be high, as above. * * The final value programmed to the register should always be rounded up, * and include an extra 2 entries to account for clock crossings. * * We don't use the sprite, so we can ignore that. And on Crestline we have * to set the non-SR watermarks to 8. */ static void intel_update_watermarks(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_crtc *crtc; int sr_hdisplay = 0; unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0; int enabled = 0, pixel_size = 0; int sr_htotal = 0; if (!dev_priv->display.update_wm) return; /* Get the clock config from both planes */ list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc); if (intel_crtc->dpms_mode == DRM_MODE_DPMS_ON) { enabled++; if (intel_crtc->plane == 0) { DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n", intel_crtc->pipe, crtc->mode.clock); planea_clock = crtc->mode.clock; } else { DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n", intel_crtc->pipe, crtc->mode.clock); planeb_clock = crtc->mode.clock; } sr_hdisplay = crtc->mode.hdisplay; sr_clock = crtc->mode.clock; sr_htotal = crtc->mode.htotal; if (crtc->fb) pixel_size = crtc->fb->bits_per_pixel / 8; else pixel_size = 4; /* by default */ } } if (enabled <= 0) return; dev_priv->display.update_wm(dev, planea_clock, planeb_clock, sr_hdisplay, sr_htotal, pixel_size); } static int intel_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode, int x, int y, struct drm_framebuffer *old_fb) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; int plane = intel_crtc->plane; int fp_reg = (pipe == 0) ? FPA0 : FPB0; int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B; int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD; int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR; int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF; int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B; int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B; int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B; int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B; int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B; int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B; int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE; int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS; int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC; int refclk, num_connectors = 0; intel_clock_t clock, reduced_clock; u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf; bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false; bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false; struct intel_encoder *has_edp_encoder = NULL; struct drm_mode_config *mode_config = &dev->mode_config; struct drm_encoder *encoder; const intel_limit_t *limit; int ret; struct fdi_m_n m_n = {0}; int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1; int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1; int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1; int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1; int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0; int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B; int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL; int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL; int trans_dpll_sel = (pipe == 0) ? 0 : 1; int lvds_reg = LVDS; u32 temp; int target_clock; drm_vblank_pre_modeset(dev, pipe); list_for_each_entry(encoder, &mode_config->encoder_list, head) { struct intel_encoder *intel_encoder; if (encoder->crtc != crtc) continue; intel_encoder = to_intel_encoder(encoder); switch (intel_encoder->type) { case INTEL_OUTPUT_LVDS: is_lvds = true; break; case INTEL_OUTPUT_SDVO: case INTEL_OUTPUT_HDMI: is_sdvo = true; if (intel_encoder->needs_tv_clock) is_tv = true; break; case INTEL_OUTPUT_DVO: is_dvo = true; break; case INTEL_OUTPUT_TVOUT: is_tv = true; break; case INTEL_OUTPUT_ANALOG: is_crt = true; break; case INTEL_OUTPUT_DISPLAYPORT: is_dp = true; break; case INTEL_OUTPUT_EDP: has_edp_encoder = intel_encoder; break; } num_connectors++; } if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) { refclk = dev_priv->lvds_ssc_freq * 1000; DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n", refclk / 1000); } else if (IS_I9XX(dev)) { refclk = 96000; if (HAS_PCH_SPLIT(dev)) refclk = 120000; /* 120Mhz refclk */ } else { refclk = 48000; } /* * Returns a set of divisors for the desired target clock with the given * refclk, or FALSE. The returned values represent the clock equation: * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. */ limit = intel_limit(crtc); ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock); if (!ok) { DRM_ERROR("Couldn't find PLL settings for mode!\n"); drm_vblank_post_modeset(dev, pipe); return -EINVAL; } /* Ensure that the cursor is valid for the new mode before changing... */ intel_crtc_update_cursor(crtc); if (is_lvds && dev_priv->lvds_downclock_avail) { has_reduced_clock = limit->find_pll(limit, crtc, dev_priv->lvds_downclock, refclk, &reduced_clock); if (has_reduced_clock && (clock.p != reduced_clock.p)) { /* * If the different P is found, it means that we can't * switch the display clock by using the FP0/FP1. * In such case we will disable the LVDS downclock * feature. */ DRM_DEBUG_KMS("Different P is found for " "LVDS clock/downclock\n"); has_reduced_clock = 0; } } /* SDVO TV has fixed PLL values depend on its clock range, this mirrors vbios setting. */ if (is_sdvo && is_tv) { if (adjusted_mode->clock >= 100000 && adjusted_mode->clock < 140500) { clock.p1 = 2; clock.p2 = 10; clock.n = 3; clock.m1 = 16; clock.m2 = 8; } else if (adjusted_mode->clock >= 140500 && adjusted_mode->clock <= 200000) { clock.p1 = 1; clock.p2 = 10; clock.n = 6; clock.m1 = 12; clock.m2 = 8; } } /* FDI link */ if (HAS_PCH_SPLIT(dev)) { int lane = 0, link_bw, bpp; /* eDP doesn't require FDI link, so just set DP M/N according to current link config */ if (has_edp_encoder) { target_clock = mode->clock; intel_edp_link_config(has_edp_encoder, &lane, &link_bw); } else { /* DP over FDI requires target mode clock instead of link clock */ if (is_dp) target_clock = mode->clock; else target_clock = adjusted_mode->clock; link_bw = 270000; } /* determine panel color depth */ temp = I915_READ(pipeconf_reg); temp &= ~PIPE_BPC_MASK; if (is_lvds) { int lvds_reg = I915_READ(PCH_LVDS); /* the BPC will be 6 if it is 18-bit LVDS panel */ if ((lvds_reg & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP) temp |= PIPE_8BPC; else temp |= PIPE_6BPC; } else if (has_edp_encoder || (is_dp && intel_pch_has_edp(crtc))) { switch (dev_priv->edp_bpp/3) { case 8: temp |= PIPE_8BPC; break; case 10: temp |= PIPE_10BPC; break; case 6: temp |= PIPE_6BPC; break; case 12: temp |= PIPE_12BPC; break; } } else temp |= PIPE_8BPC; I915_WRITE(pipeconf_reg, temp); I915_READ(pipeconf_reg); switch (temp & PIPE_BPC_MASK) { case PIPE_8BPC: bpp = 24; break; case PIPE_10BPC: bpp = 30; break; case PIPE_6BPC: bpp = 18; break; case PIPE_12BPC: bpp = 36; break; default: DRM_ERROR("unknown pipe bpc value\n"); bpp = 24; } if (!lane) { /* * Account for spread spectrum to avoid * oversubscribing the link. Max center spread * is 2.5%; use 5% for safety's sake. */ u32 bps = target_clock * bpp * 21 / 20; lane = bps / (link_bw * 8) + 1; } intel_crtc->fdi_lanes = lane; ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n); } /* Ironlake: try to setup display ref clock before DPLL * enabling. This is only under driver's control after * PCH B stepping, previous chipset stepping should be * ignoring this setting. */ if (HAS_PCH_SPLIT(dev)) { temp = I915_READ(PCH_DREF_CONTROL); /* Always enable nonspread source */ temp &= ~DREF_NONSPREAD_SOURCE_MASK; temp |= DREF_NONSPREAD_SOURCE_ENABLE; I915_WRITE(PCH_DREF_CONTROL, temp); POSTING_READ(PCH_DREF_CONTROL); temp &= ~DREF_SSC_SOURCE_MASK; temp |= DREF_SSC_SOURCE_ENABLE; I915_WRITE(PCH_DREF_CONTROL, temp); POSTING_READ(PCH_DREF_CONTROL); udelay(200); if (has_edp_encoder) { if (dev_priv->lvds_use_ssc) { temp |= DREF_SSC1_ENABLE; I915_WRITE(PCH_DREF_CONTROL, temp); POSTING_READ(PCH_DREF_CONTROL); udelay(200); temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK; temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; I915_WRITE(PCH_DREF_CONTROL, temp); POSTING_READ(PCH_DREF_CONTROL); } else { temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; I915_WRITE(PCH_DREF_CONTROL, temp); POSTING_READ(PCH_DREF_CONTROL); } } } if (IS_PINEVIEW(dev)) { fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2; if (has_reduced_clock) fp2 = (1 << reduced_clock.n) << 16 | reduced_clock.m1 << 8 | reduced_clock.m2; } else { fp = clock.n << 16 | clock.m1 << 8 | clock.m2; if (has_reduced_clock) fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 | reduced_clock.m2; } if (!HAS_PCH_SPLIT(dev)) dpll = DPLL_VGA_MODE_DIS; if (IS_I9XX(dev)) { if (is_lvds) dpll |= DPLLB_MODE_LVDS; else dpll |= DPLLB_MODE_DAC_SERIAL; if (is_sdvo) { int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode); if (pixel_multiplier > 1) { if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES; else if (HAS_PCH_SPLIT(dev)) dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT; } dpll |= DPLL_DVO_HIGH_SPEED; } if (is_dp) dpll |= DPLL_DVO_HIGH_SPEED; /* compute bitmask from p1 value */ if (IS_PINEVIEW(dev)) dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW; else { dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; /* also FPA1 */ if (HAS_PCH_SPLIT(dev)) dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; if (IS_G4X(dev) && has_reduced_clock) dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; } switch (clock.p2) { case 5: dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; break; case 7: dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; break; case 10: dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; break; case 14: dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; break; } if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev)) dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT); } else { if (is_lvds) { dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; } else { if (clock.p1 == 2) dpll |= PLL_P1_DIVIDE_BY_TWO; else dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT; if (clock.p2 == 4) dpll |= PLL_P2_DIVIDE_BY_4; } } if (is_sdvo && is_tv) dpll |= PLL_REF_INPUT_TVCLKINBC; else if (is_tv) /* XXX: just matching BIOS for now */ /* dpll |= PLL_REF_INPUT_TVCLKINBC; */ dpll |= 3; else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; else dpll |= PLL_REF_INPUT_DREFCLK; /* setup pipeconf */ pipeconf = I915_READ(pipeconf_reg); /* Set up the display plane register */ dspcntr = DISPPLANE_GAMMA_ENABLE; /* Ironlake's plane is forced to pipe, bit 24 is to enable color space conversion */ if (!HAS_PCH_SPLIT(dev)) { if (pipe == 0) dspcntr &= ~DISPPLANE_SEL_PIPE_MASK; else dspcntr |= DISPPLANE_SEL_PIPE_B; } if (pipe == 0 && !IS_I965G(dev)) { /* Enable pixel doubling when the dot clock is > 90% of the (display) * core speed. * * XXX: No double-wide on 915GM pipe B. Is that the only reason for the * pipe == 0 check? */ if (mode->clock > dev_priv->display.get_display_clock_speed(dev) * 9 / 10) pipeconf |= PIPEACONF_DOUBLE_WIDE; else pipeconf &= ~PIPEACONF_DOUBLE_WIDE; } dspcntr |= DISPLAY_PLANE_ENABLE; pipeconf |= PIPEACONF_ENABLE; dpll |= DPLL_VCO_ENABLE; /* Disable the panel fitter if it was on our pipe */ if (!HAS_PCH_SPLIT(dev) && intel_panel_fitter_pipe(dev) == pipe) I915_WRITE(PFIT_CONTROL, 0); DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B'); drm_mode_debug_printmodeline(mode); /* assign to Ironlake registers */ if (HAS_PCH_SPLIT(dev)) { fp_reg = pch_fp_reg; dpll_reg = pch_dpll_reg; } if (!has_edp_encoder) { I915_WRITE(fp_reg, fp); I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE); I915_READ(dpll_reg); udelay(150); } /* enable transcoder DPLL */ if (HAS_PCH_CPT(dev)) { temp = I915_READ(PCH_DPLL_SEL); if (trans_dpll_sel == 0) temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL); else temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL); I915_WRITE(PCH_DPLL_SEL, temp); I915_READ(PCH_DPLL_SEL); udelay(150); } /* The LVDS pin pair needs to be on before the DPLLs are enabled. * This is an exception to the general rule that mode_set doesn't turn * things on. */ if (is_lvds) { u32 lvds; if (HAS_PCH_SPLIT(dev)) lvds_reg = PCH_LVDS; lvds = I915_READ(lvds_reg); lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP; if (pipe == 1) { if (HAS_PCH_CPT(dev)) lvds |= PORT_TRANS_B_SEL_CPT; else lvds |= LVDS_PIPEB_SELECT; } else { if (HAS_PCH_CPT(dev)) lvds &= ~PORT_TRANS_SEL_MASK; else lvds &= ~LVDS_PIPEB_SELECT; } /* set the corresponsding LVDS_BORDER bit */ lvds |= dev_priv->lvds_border_bits; /* Set the B0-B3 data pairs corresponding to whether we're going to * set the DPLLs for dual-channel mode or not. */ if (clock.p2 == 7) lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP; else lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP); /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP) * appropriately here, but we need to look more thoroughly into how * panels behave in the two modes. */ /* set the dithering flag on non-PCH LVDS as needed */ if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev)) { if (dev_priv->lvds_dither) lvds |= LVDS_ENABLE_DITHER; else lvds &= ~LVDS_ENABLE_DITHER; } I915_WRITE(lvds_reg, lvds); I915_READ(lvds_reg); } /* set the dithering flag and clear for anything other than a panel. */ if (HAS_PCH_SPLIT(dev)) { pipeconf &= ~PIPECONF_DITHER_EN; pipeconf &= ~PIPECONF_DITHER_TYPE_MASK; if (dev_priv->lvds_dither && (is_lvds || has_edp_encoder)) { pipeconf |= PIPECONF_DITHER_EN; pipeconf |= PIPECONF_DITHER_TYPE_ST1; } } if (is_dp) intel_dp_set_m_n(crtc, mode, adjusted_mode); else if (HAS_PCH_SPLIT(dev)) { /* For non-DP output, clear any trans DP clock recovery setting.*/ if (pipe == 0) { I915_WRITE(TRANSA_DATA_M1, 0); I915_WRITE(TRANSA_DATA_N1, 0); I915_WRITE(TRANSA_DP_LINK_M1, 0); I915_WRITE(TRANSA_DP_LINK_N1, 0); } else { I915_WRITE(TRANSB_DATA_M1, 0); I915_WRITE(TRANSB_DATA_N1, 0); I915_WRITE(TRANSB_DP_LINK_M1, 0); I915_WRITE(TRANSB_DP_LINK_N1, 0); } } if (!has_edp_encoder) { I915_WRITE(fp_reg, fp); I915_WRITE(dpll_reg, dpll); I915_READ(dpll_reg); /* Wait for the clocks to stabilize. */ udelay(150); if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev)) { if (is_sdvo) { int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode); if (pixel_multiplier > 1) pixel_multiplier = (pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; else pixel_multiplier = 0; I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) | pixel_multiplier); } else I915_WRITE(dpll_md_reg, 0); } else { /* write it again -- the BIOS does, after all */ I915_WRITE(dpll_reg, dpll); } I915_READ(dpll_reg); /* Wait for the clocks to stabilize. */ udelay(150); } if (is_lvds && has_reduced_clock && i915_powersave) { I915_WRITE(fp_reg + 4, fp2); intel_crtc->lowfreq_avail = true; if (HAS_PIPE_CXSR(dev)) { DRM_DEBUG_KMS("enabling CxSR downclocking\n"); pipeconf |= PIPECONF_CXSR_DOWNCLOCK; } } else { I915_WRITE(fp_reg + 4, fp); intel_crtc->lowfreq_avail = false; if (HAS_PIPE_CXSR(dev)) { DRM_DEBUG_KMS("disabling CxSR downclocking\n"); pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK; } } if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION; /* the chip adds 2 halflines automatically */ adjusted_mode->crtc_vdisplay -= 1; adjusted_mode->crtc_vtotal -= 1; adjusted_mode->crtc_vblank_start -= 1; adjusted_mode->crtc_vblank_end -= 1; adjusted_mode->crtc_vsync_end -= 1; adjusted_mode->crtc_vsync_start -= 1; } else pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */ I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) | ((adjusted_mode->crtc_htotal - 1) << 16)); I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) | ((adjusted_mode->crtc_hblank_end - 1) << 16)); I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) | ((adjusted_mode->crtc_hsync_end - 1) << 16)); I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) | ((adjusted_mode->crtc_vtotal - 1) << 16)); I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) | ((adjusted_mode->crtc_vblank_end - 1) << 16)); I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) | ((adjusted_mode->crtc_vsync_end - 1) << 16)); /* pipesrc and dspsize control the size that is scaled from, which should * always be the user's requested size. */ if (!HAS_PCH_SPLIT(dev)) { I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1)); I915_WRITE(dsppos_reg, 0); } I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1)); if (HAS_PCH_SPLIT(dev)) { I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m); I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n); I915_WRITE(link_m1_reg, m_n.link_m); I915_WRITE(link_n1_reg, m_n.link_n); if (has_edp_encoder) { ironlake_set_pll_edp(crtc, adjusted_mode->clock); } else { /* enable FDI RX PLL too */ temp = I915_READ(fdi_rx_reg); I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE); I915_READ(fdi_rx_reg); udelay(200); /* enable FDI TX PLL too */ temp = I915_READ(fdi_tx_reg); I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE); I915_READ(fdi_tx_reg); /* enable FDI RX PCDCLK */ temp = I915_READ(fdi_rx_reg); I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK); I915_READ(fdi_rx_reg); udelay(200); } } I915_WRITE(pipeconf_reg, pipeconf); I915_READ(pipeconf_reg); intel_wait_for_vblank(dev, pipe); if (IS_IRONLAKE(dev)) { /* enable address swizzle for tiling buffer */ temp = I915_READ(DISP_ARB_CTL); I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING); } I915_WRITE(dspcntr_reg, dspcntr); /* Flush the plane changes */ ret = intel_pipe_set_base(crtc, x, y, old_fb); intel_update_watermarks(dev); drm_vblank_post_modeset(dev, pipe); return ret; } /** Loads the palette/gamma unit for the CRTC with the prepared values */ void intel_crtc_load_lut(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B; int i; /* The clocks have to be on to load the palette. */ if (!crtc->enabled) return; /* use legacy palette for Ironlake */ if (HAS_PCH_SPLIT(dev)) palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A : LGC_PALETTE_B; for (i = 0; i < 256; i++) { I915_WRITE(palreg + 4 * i, (intel_crtc->lut_r[i] << 16) | (intel_crtc->lut_g[i] << 8) | intel_crtc->lut_b[i]); } } static void i845_update_cursor(struct drm_crtc *crtc, u32 base) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); bool visible = base != 0; u32 cntl; if (intel_crtc->cursor_visible == visible) return; cntl = I915_READ(CURACNTR); if (visible) { /* On these chipsets we can only modify the base whilst * the cursor is disabled. */ I915_WRITE(CURABASE, base); cntl &= ~(CURSOR_FORMAT_MASK); /* XXX width must be 64, stride 256 => 0x00 << 28 */ cntl |= CURSOR_ENABLE | CURSOR_GAMMA_ENABLE | CURSOR_FORMAT_ARGB; } else cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE); I915_WRITE(CURACNTR, cntl); intel_crtc->cursor_visible = visible; } static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; bool visible = base != 0; if (intel_crtc->cursor_visible != visible) { uint32_t cntl = I915_READ(pipe == 0 ? CURACNTR : CURBCNTR); if (base) { cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT); cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE; cntl |= pipe << 28; /* Connect to correct pipe */ } else { cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE); cntl |= CURSOR_MODE_DISABLE; } I915_WRITE(pipe == 0 ? CURACNTR : CURBCNTR, cntl); intel_crtc->cursor_visible = visible; } /* and commit changes on next vblank */ I915_WRITE(pipe == 0 ? CURABASE : CURBBASE, base); } /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */ static void intel_crtc_update_cursor(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; int x = intel_crtc->cursor_x; int y = intel_crtc->cursor_y; u32 base, pos; bool visible; pos = 0; if (intel_crtc->cursor_on && crtc->fb) { base = intel_crtc->cursor_addr; if (x > (int) crtc->fb->width) base = 0; if (y > (int) crtc->fb->height) base = 0; } else base = 0; if (x < 0) { if (x + intel_crtc->cursor_width < 0) base = 0; pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT; x = -x; } pos |= x << CURSOR_X_SHIFT; if (y < 0) { if (y + intel_crtc->cursor_height < 0) base = 0; pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT; y = -y; } pos |= y << CURSOR_Y_SHIFT; visible = base != 0; if (!visible && !intel_crtc->cursor_visible) return; I915_WRITE(pipe == 0 ? CURAPOS : CURBPOS, pos); if (IS_845G(dev) || IS_I865G(dev)) i845_update_cursor(crtc, base); else i9xx_update_cursor(crtc, base); if (visible) intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj); } static int intel_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv, uint32_t handle, uint32_t width, uint32_t height) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct drm_gem_object *bo; struct drm_i915_gem_object *obj_priv; uint32_t addr; int ret; DRM_DEBUG_KMS("\n"); /* if we want to turn off the cursor ignore width and height */ if (!handle) { DRM_DEBUG_KMS("cursor off\n"); addr = 0; bo = NULL; mutex_lock(&dev->struct_mutex); goto finish; } /* Currently we only support 64x64 cursors */ if (width != 64 || height != 64) { DRM_ERROR("we currently only support 64x64 cursors\n"); return -EINVAL; } bo = drm_gem_object_lookup(dev, file_priv, handle); if (!bo) return -ENOENT; obj_priv = to_intel_bo(bo); if (bo->size < width * height * 4) { DRM_ERROR("buffer is to small\n"); ret = -ENOMEM; goto fail; } /* we only need to pin inside GTT if cursor is non-phy */ mutex_lock(&dev->struct_mutex); if (!dev_priv->info->cursor_needs_physical) { ret = i915_gem_object_pin(bo, PAGE_SIZE); if (ret) { DRM_ERROR("failed to pin cursor bo\n"); goto fail_locked; } ret = i915_gem_object_set_to_gtt_domain(bo, 0); if (ret) { DRM_ERROR("failed to move cursor bo into the GTT\n"); goto fail_unpin; } addr = obj_priv->gtt_offset; } else { int align = IS_I830(dev) ? 16 * 1024 : 256; ret = i915_gem_attach_phys_object(dev, bo, (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1, align); if (ret) { DRM_ERROR("failed to attach phys object\n"); goto fail_locked; } addr = obj_priv->phys_obj->handle->busaddr; } if (!IS_I9XX(dev)) I915_WRITE(CURSIZE, (height << 12) | width); finish: if (intel_crtc->cursor_bo) { if (dev_priv->info->cursor_needs_physical) { if (intel_crtc->cursor_bo != bo) i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo); } else i915_gem_object_unpin(intel_crtc->cursor_bo); drm_gem_object_unreference(intel_crtc->cursor_bo); } mutex_unlock(&dev->struct_mutex); intel_crtc->cursor_addr = addr; intel_crtc->cursor_bo = bo; intel_crtc->cursor_width = width; intel_crtc->cursor_height = height; intel_crtc_update_cursor(crtc); return 0; fail_unpin: i915_gem_object_unpin(bo); fail_locked: mutex_unlock(&dev->struct_mutex); fail: drm_gem_object_unreference_unlocked(bo); return ret; } static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc); intel_crtc->cursor_x = x; intel_crtc->cursor_y = y; intel_crtc_update_cursor(crtc); return 0; } /** Sets the color ramps on behalf of RandR */ void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green, u16 blue, int regno) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc); intel_crtc->lut_r[regno] = red >> 8; intel_crtc->lut_g[regno] = green >> 8; intel_crtc->lut_b[regno] = blue >> 8; } void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green, u16 *blue, int regno) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc); *red = intel_crtc->lut_r[regno] << 8; *green = intel_crtc->lut_g[regno] << 8; *blue = intel_crtc->lut_b[regno] << 8; } static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green, u16 *blue, uint32_t start, uint32_t size) { int end = (start + size > 256) ? 256 : start + size, i; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); for (i = start; i < end; i++) { intel_crtc->lut_r[i] = red[i] >> 8; intel_crtc->lut_g[i] = green[i] >> 8; intel_crtc->lut_b[i] = blue[i] >> 8; } intel_crtc_load_lut(crtc); } /** * Get a pipe with a simple mode set on it for doing load-based monitor * detection. * * It will be up to the load-detect code to adjust the pipe as appropriate for * its requirements. The pipe will be connected to no other encoders. * * Currently this code will only succeed if there is a pipe with no encoders * configured for it. In the future, it could choose to temporarily disable * some outputs to free up a pipe for its use. * * \return crtc, or NULL if no pipes are available. */ /* VESA 640x480x72Hz mode to set on the pipe */ static struct drm_display_mode load_detect_mode = { DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664, 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), }; struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder, struct drm_connector *connector, struct drm_display_mode *mode, int *dpms_mode) { struct intel_crtc *intel_crtc; struct drm_crtc *possible_crtc; struct drm_crtc *supported_crtc =NULL; struct drm_encoder *encoder = &intel_encoder->base; struct drm_crtc *crtc = NULL; struct drm_device *dev = encoder->dev; struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private; struct drm_crtc_helper_funcs *crtc_funcs; int i = -1; /* * Algorithm gets a little messy: * - if the connector already has an assigned crtc, use it (but make * sure it's on first) * - try to find the first unused crtc that can drive this connector, * and use that if we find one * - if there are no unused crtcs available, try to use the first * one we found that supports the connector */ /* See if we already have a CRTC for this connector */ if (encoder->crtc) { crtc = encoder->crtc; /* Make sure the crtc and connector are running */ intel_crtc = to_intel_crtc(crtc); *dpms_mode = intel_crtc->dpms_mode; if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) { crtc_funcs = crtc->helper_private; crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON); encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON); } return crtc; } /* Find an unused one (if possible) */ list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) { i++; if (!(encoder->possible_crtcs & (1 << i))) continue; if (!possible_crtc->enabled) { crtc = possible_crtc; break; } if (!supported_crtc) supported_crtc = possible_crtc; } /* * If we didn't find an unused CRTC, don't use any. */ if (!crtc) { return NULL; } encoder->crtc = crtc; connector->encoder = encoder; intel_encoder->load_detect_temp = true; intel_crtc = to_intel_crtc(crtc); *dpms_mode = intel_crtc->dpms_mode; if (!crtc->enabled) { if (!mode) mode = &load_detect_mode; drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb); } else { if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) { crtc_funcs = crtc->helper_private; crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON); } /* Add this connector to the crtc */ encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode); encoder_funcs->commit(encoder); } /* let the connector get through one full cycle before testing */ intel_wait_for_vblank(dev, intel_crtc->pipe); return crtc; } void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder, struct drm_connector *connector, int dpms_mode) { struct drm_encoder *encoder = &intel_encoder->base; struct drm_device *dev = encoder->dev; struct drm_crtc *crtc = encoder->crtc; struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private; struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private; if (intel_encoder->load_detect_temp) { encoder->crtc = NULL; connector->encoder = NULL; intel_encoder->load_detect_temp = false; crtc->enabled = drm_helper_crtc_in_use(crtc); drm_helper_disable_unused_functions(dev); } /* Switch crtc and encoder back off if necessary */ if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) { if (encoder->crtc == crtc) encoder_funcs->dpms(encoder, dpms_mode); crtc_funcs->dpms(crtc, dpms_mode); } } /* Returns the clock of the currently programmed mode of the given pipe. */ static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B); u32 fp; intel_clock_t clock; if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) fp = I915_READ((pipe == 0) ? FPA0 : FPB0); else fp = I915_READ((pipe == 0) ? FPA1 : FPB1); clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; if (IS_PINEVIEW(dev)) { clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; } else { clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; } if (IS_I9XX(dev)) { if (IS_PINEVIEW(dev)) clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); else clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> DPLL_FPA01_P1_POST_DIV_SHIFT); switch (dpll & DPLL_MODE_MASK) { case DPLLB_MODE_DAC_SERIAL: clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? 5 : 10; break; case DPLLB_MODE_LVDS: clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? 7 : 14; break; default: DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed " "mode\n", (int)(dpll & DPLL_MODE_MASK)); return 0; } /* XXX: Handle the 100Mhz refclk */ intel_clock(dev, 96000, &clock); } else { bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN); if (is_lvds) { clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> DPLL_FPA01_P1_POST_DIV_SHIFT); clock.p2 = 14; if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) { /* XXX: might not be 66MHz */ intel_clock(dev, 66000, &clock); } else intel_clock(dev, 48000, &clock); } else { if (dpll & PLL_P1_DIVIDE_BY_TWO) clock.p1 = 2; else { clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; } if (dpll & PLL_P2_DIVIDE_BY_4) clock.p2 = 4; else clock.p2 = 2; intel_clock(dev, 48000, &clock); } } /* XXX: It would be nice to validate the clocks, but we can't reuse * i830PllIsValid() because it relies on the xf86_config connector * configuration being accurate, which it isn't necessarily. */ return clock.dot; } /** Returns the currently programmed mode of the given pipe. */ struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev, struct drm_crtc *crtc) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; struct drm_display_mode *mode; int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B); int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B); int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B); int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B); mode = kzalloc(sizeof(*mode), GFP_KERNEL); if (!mode) return NULL; mode->clock = intel_crtc_clock_get(dev, crtc); mode->hdisplay = (htot & 0xffff) + 1; mode->htotal = ((htot & 0xffff0000) >> 16) + 1; mode->hsync_start = (hsync & 0xffff) + 1; mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1; mode->vdisplay = (vtot & 0xffff) + 1; mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1; mode->vsync_start = (vsync & 0xffff) + 1; mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1; drm_mode_set_name(mode); drm_mode_set_crtcinfo(mode, 0); return mode; } #define GPU_IDLE_TIMEOUT 500 /* ms */ /* When this timer fires, we've been idle for awhile */ static void intel_gpu_idle_timer(unsigned long arg) { struct drm_device *dev = (struct drm_device *)arg; drm_i915_private_t *dev_priv = dev->dev_private; DRM_DEBUG_DRIVER("idle timer fired, downclocking\n"); dev_priv->busy = false; queue_work(dev_priv->wq, &dev_priv->idle_work); } #define CRTC_IDLE_TIMEOUT 1000 /* ms */ static void intel_crtc_idle_timer(unsigned long arg) { struct intel_crtc *intel_crtc = (struct intel_crtc *)arg; struct drm_crtc *crtc = &intel_crtc->base; drm_i915_private_t *dev_priv = crtc->dev->dev_private; DRM_DEBUG_DRIVER("idle timer fired, downclocking\n"); intel_crtc->busy = false; queue_work(dev_priv->wq, &dev_priv->idle_work); } static void intel_increase_pllclock(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B; int dpll = I915_READ(dpll_reg); if (HAS_PCH_SPLIT(dev)) return; if (!dev_priv->lvds_downclock_avail) return; if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) { DRM_DEBUG_DRIVER("upclocking LVDS\n"); /* Unlock panel regs */ I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS); dpll &= ~DISPLAY_RATE_SELECT_FPA1; I915_WRITE(dpll_reg, dpll); dpll = I915_READ(dpll_reg); intel_wait_for_vblank(dev, pipe); dpll = I915_READ(dpll_reg); if (dpll & DISPLAY_RATE_SELECT_FPA1) DRM_DEBUG_DRIVER("failed to upclock LVDS!\n"); /* ...and lock them again */ I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3); } /* Schedule downclock */ mod_timer(&intel_crtc->idle_timer, jiffies + msecs_to_jiffies(CRTC_IDLE_TIMEOUT)); } static void intel_decrease_pllclock(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B; int dpll = I915_READ(dpll_reg); if (HAS_PCH_SPLIT(dev)) return; if (!dev_priv->lvds_downclock_avail) return; /* * Since this is called by a timer, we should never get here in * the manual case. */ if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) { DRM_DEBUG_DRIVER("downclocking LVDS\n"); /* Unlock panel regs */ I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS); dpll |= DISPLAY_RATE_SELECT_FPA1; I915_WRITE(dpll_reg, dpll); dpll = I915_READ(dpll_reg); intel_wait_for_vblank(dev, pipe); dpll = I915_READ(dpll_reg); if (!(dpll & DISPLAY_RATE_SELECT_FPA1)) DRM_DEBUG_DRIVER("failed to downclock LVDS!\n"); /* ...and lock them again */ I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3); } } /** * intel_idle_update - adjust clocks for idleness * @work: work struct * * Either the GPU or display (or both) went idle. Check the busy status * here and adjust the CRTC and GPU clocks as necessary. */ static void intel_idle_update(struct work_struct *work) { drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t, idle_work); struct drm_device *dev = dev_priv->dev; struct drm_crtc *crtc; struct intel_crtc *intel_crtc; int enabled = 0; if (!i915_powersave) return; mutex_lock(&dev->struct_mutex); i915_update_gfx_val(dev_priv); list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { /* Skip inactive CRTCs */ if (!crtc->fb) continue; enabled++; intel_crtc = to_intel_crtc(crtc); if (!intel_crtc->busy) intel_decrease_pllclock(crtc); } if ((enabled == 1) && (IS_I945G(dev) || IS_I945GM(dev))) { DRM_DEBUG_DRIVER("enable memory self refresh on 945\n"); I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN); } mutex_unlock(&dev->struct_mutex); } /** * intel_mark_busy - mark the GPU and possibly the display busy * @dev: drm device * @obj: object we're operating on * * Callers can use this function to indicate that the GPU is busy processing * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout * buffer), we'll also mark the display as busy, so we know to increase its * clock frequency. */ void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj) { drm_i915_private_t *dev_priv = dev->dev_private; struct drm_crtc *crtc = NULL; struct intel_framebuffer *intel_fb; struct intel_crtc *intel_crtc; if (!drm_core_check_feature(dev, DRIVER_MODESET)) return; if (!dev_priv->busy) { if (IS_I945G(dev) || IS_I945GM(dev)) { u32 fw_blc_self; DRM_DEBUG_DRIVER("disable memory self refresh on 945\n"); fw_blc_self = I915_READ(FW_BLC_SELF); fw_blc_self &= ~FW_BLC_SELF_EN; I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK); } dev_priv->busy = true; } else mod_timer(&dev_priv->idle_timer, jiffies + msecs_to_jiffies(GPU_IDLE_TIMEOUT)); list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { if (!crtc->fb) continue; intel_crtc = to_intel_crtc(crtc); intel_fb = to_intel_framebuffer(crtc->fb); if (intel_fb->obj == obj) { if (!intel_crtc->busy) { if (IS_I945G(dev) || IS_I945GM(dev)) { u32 fw_blc_self; DRM_DEBUG_DRIVER("disable memory self refresh on 945\n"); fw_blc_self = I915_READ(FW_BLC_SELF); fw_blc_self &= ~FW_BLC_SELF_EN; I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK); } /* Non-busy -> busy, upclock */ intel_increase_pllclock(crtc); intel_crtc->busy = true; } else { /* Busy -> busy, put off timer */ mod_timer(&intel_crtc->idle_timer, jiffies + msecs_to_jiffies(CRTC_IDLE_TIMEOUT)); } } } } static void intel_crtc_destroy(struct drm_crtc *crtc) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct drm_device *dev = crtc->dev; struct intel_unpin_work *work; unsigned long flags; spin_lock_irqsave(&dev->event_lock, flags); work = intel_crtc->unpin_work; intel_crtc->unpin_work = NULL; spin_unlock_irqrestore(&dev->event_lock, flags); if (work) { cancel_work_sync(&work->work); kfree(work); } drm_crtc_cleanup(crtc); kfree(intel_crtc); } static void intel_unpin_work_fn(struct work_struct *__work) { struct intel_unpin_work *work = container_of(__work, struct intel_unpin_work, work); mutex_lock(&work->dev->struct_mutex); i915_gem_object_unpin(work->old_fb_obj); drm_gem_object_unreference(work->pending_flip_obj); drm_gem_object_unreference(work->old_fb_obj); mutex_unlock(&work->dev->struct_mutex); kfree(work); } static void do_intel_finish_page_flip(struct drm_device *dev, struct drm_crtc *crtc) { drm_i915_private_t *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_unpin_work *work; struct drm_i915_gem_object *obj_priv; struct drm_pending_vblank_event *e; struct timeval now; unsigned long flags; /* Ignore early vblank irqs */ if (intel_crtc == NULL) return; spin_lock_irqsave(&dev->event_lock, flags); work = intel_crtc->unpin_work; if (work == NULL || !work->pending) { spin_unlock_irqrestore(&dev->event_lock, flags); return; } intel_crtc->unpin_work = NULL; drm_vblank_put(dev, intel_crtc->pipe); if (work->event) { e = work->event; do_gettimeofday(&now); e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe); e->event.tv_sec = now.tv_sec; e->event.tv_usec = now.tv_usec; list_add_tail(&e->base.link, &e->base.file_priv->event_list); wake_up_interruptible(&e->base.file_priv->event_wait); } spin_unlock_irqrestore(&dev->event_lock, flags); obj_priv = to_intel_bo(work->pending_flip_obj); /* Initial scanout buffer will have a 0 pending flip count */ if ((atomic_read(&obj_priv->pending_flip) == 0) || atomic_dec_and_test(&obj_priv->pending_flip)) DRM_WAKEUP(&dev_priv->pending_flip_queue); schedule_work(&work->work); trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj); } void intel_finish_page_flip(struct drm_device *dev, int pipe) { drm_i915_private_t *dev_priv = dev->dev_private; struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; do_intel_finish_page_flip(dev, crtc); } void intel_finish_page_flip_plane(struct drm_device *dev, int plane) { drm_i915_private_t *dev_priv = dev->dev_private; struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane]; do_intel_finish_page_flip(dev, crtc); } void intel_prepare_page_flip(struct drm_device *dev, int plane) { drm_i915_private_t *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]); unsigned long flags; spin_lock_irqsave(&dev->event_lock, flags); if (intel_crtc->unpin_work) { if ((++intel_crtc->unpin_work->pending) > 1) DRM_ERROR("Prepared flip multiple times\n"); } else { DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n"); } spin_unlock_irqrestore(&dev->event_lock, flags); } static int intel_crtc_page_flip(struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_pending_vblank_event *event) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_framebuffer *intel_fb; struct drm_i915_gem_object *obj_priv; struct drm_gem_object *obj; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_unpin_work *work; unsigned long flags, offset; int pipe = intel_crtc->pipe; u32 pf, pipesrc; int ret; work = kzalloc(sizeof *work, GFP_KERNEL); if (work == NULL) return -ENOMEM; work->event = event; work->dev = crtc->dev; intel_fb = to_intel_framebuffer(crtc->fb); work->old_fb_obj = intel_fb->obj; INIT_WORK(&work->work, intel_unpin_work_fn); /* We borrow the event spin lock for protecting unpin_work */ spin_lock_irqsave(&dev->event_lock, flags); if (intel_crtc->unpin_work) { spin_unlock_irqrestore(&dev->event_lock, flags); kfree(work); DRM_DEBUG_DRIVER("flip queue: crtc already busy\n"); return -EBUSY; } intel_crtc->unpin_work = work; spin_unlock_irqrestore(&dev->event_lock, flags); intel_fb = to_intel_framebuffer(fb); obj = intel_fb->obj; mutex_lock(&dev->struct_mutex); ret = intel_pin_and_fence_fb_obj(dev, obj); if (ret) goto cleanup_work; /* Reference the objects for the scheduled work. */ drm_gem_object_reference(work->old_fb_obj); drm_gem_object_reference(obj); crtc->fb = fb; ret = i915_gem_object_flush_write_domain(obj); if (ret) goto cleanup_objs; ret = drm_vblank_get(dev, intel_crtc->pipe); if (ret) goto cleanup_objs; obj_priv = to_intel_bo(obj); atomic_inc(&obj_priv->pending_flip); work->pending_flip_obj = obj; if (IS_GEN3(dev) || IS_GEN2(dev)) { u32 flip_mask; if (intel_crtc->plane) flip_mask = MI_WAIT_FOR_PLANE_B_FLIP; else flip_mask = MI_WAIT_FOR_PLANE_A_FLIP; BEGIN_LP_RING(2); OUT_RING(MI_WAIT_FOR_EVENT | flip_mask); OUT_RING(0); ADVANCE_LP_RING(); } work->enable_stall_check = true; /* Offset into the new buffer for cases of shared fbs between CRTCs */ offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8; BEGIN_LP_RING(4); switch(INTEL_INFO(dev)->gen) { case 2: OUT_RING(MI_DISPLAY_FLIP | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); OUT_RING(fb->pitch); OUT_RING(obj_priv->gtt_offset + offset); OUT_RING(MI_NOOP); break; case 3: OUT_RING(MI_DISPLAY_FLIP_I915 | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); OUT_RING(fb->pitch); OUT_RING(obj_priv->gtt_offset + offset); OUT_RING(MI_NOOP); break; case 4: case 5: /* i965+ uses the linear or tiled offsets from the * Display Registers (which do not change across a page-flip) * so we need only reprogram the base address. */ OUT_RING(MI_DISPLAY_FLIP | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); OUT_RING(fb->pitch); OUT_RING(obj_priv->gtt_offset | obj_priv->tiling_mode); /* XXX Enabling the panel-fitter across page-flip is so far * untested on non-native modes, so ignore it for now. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE; */ pf = 0; pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff; OUT_RING(pf | pipesrc); break; case 6: OUT_RING(MI_DISPLAY_FLIP | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); OUT_RING(fb->pitch | obj_priv->tiling_mode); OUT_RING(obj_priv->gtt_offset); pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE; pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff; OUT_RING(pf | pipesrc); break; } ADVANCE_LP_RING(); mutex_unlock(&dev->struct_mutex); trace_i915_flip_request(intel_crtc->plane, obj); return 0; cleanup_objs: drm_gem_object_unreference(work->old_fb_obj); drm_gem_object_unreference(obj); cleanup_work: mutex_unlock(&dev->struct_mutex); spin_lock_irqsave(&dev->event_lock, flags); intel_crtc->unpin_work = NULL; spin_unlock_irqrestore(&dev->event_lock, flags); kfree(work); return ret; } static const struct drm_crtc_helper_funcs intel_helper_funcs = { .dpms = intel_crtc_dpms, .mode_fixup = intel_crtc_mode_fixup, .mode_set = intel_crtc_mode_set, .mode_set_base = intel_pipe_set_base, .mode_set_base_atomic = intel_pipe_set_base_atomic, .prepare = intel_crtc_prepare, .commit = intel_crtc_commit, .load_lut = intel_crtc_load_lut, }; static const struct drm_crtc_funcs intel_crtc_funcs = { .cursor_set = intel_crtc_cursor_set, .cursor_move = intel_crtc_cursor_move, .gamma_set = intel_crtc_gamma_set, .set_config = drm_crtc_helper_set_config, .destroy = intel_crtc_destroy, .page_flip = intel_crtc_page_flip, }; static void intel_crtc_init(struct drm_device *dev, int pipe) { drm_i915_private_t *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc; int i; intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL); if (intel_crtc == NULL) return; drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs); drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256); intel_crtc->pipe = pipe; intel_crtc->plane = pipe; for (i = 0; i < 256; i++) { intel_crtc->lut_r[i] = i; intel_crtc->lut_g[i] = i; intel_crtc->lut_b[i] = i; } /* Swap pipes & planes for FBC on pre-965 */ intel_crtc->pipe = pipe; intel_crtc->plane = pipe; if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) { DRM_DEBUG_KMS("swapping pipes & planes for FBC\n"); intel_crtc->plane = ((pipe == 0) ? 1 : 0); } BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) || dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL); dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base; dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base; intel_crtc->cursor_addr = 0; intel_crtc->dpms_mode = -1; drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs); intel_crtc->busy = false; setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer, (unsigned long)intel_crtc); } int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data, struct drm_file *file_priv) { drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data; struct drm_mode_object *drmmode_obj; struct intel_crtc *crtc; if (!dev_priv) { DRM_ERROR("called with no initialization\n"); return -EINVAL; } drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id, DRM_MODE_OBJECT_CRTC); if (!drmmode_obj) { DRM_ERROR("no such CRTC id\n"); return -EINVAL; } crtc = to_intel_crtc(obj_to_crtc(drmmode_obj)); pipe_from_crtc_id->pipe = crtc->pipe; return 0; } static int intel_encoder_clones(struct drm_device *dev, int type_mask) { struct intel_encoder *encoder; int index_mask = 0; int entry = 0; list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) { if (type_mask & encoder->clone_mask) index_mask |= (1 << entry); entry++; } return index_mask; } static void intel_setup_outputs(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_encoder *encoder; bool dpd_is_edp = false; if (IS_MOBILE(dev) && !IS_I830(dev)) intel_lvds_init(dev); if (HAS_PCH_SPLIT(dev)) { dpd_is_edp = intel_dpd_is_edp(dev); if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED)) intel_dp_init(dev, DP_A); if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED)) intel_dp_init(dev, PCH_DP_D); } intel_crt_init(dev); if (HAS_PCH_SPLIT(dev)) { int found; if (I915_READ(HDMIB) & PORT_DETECTED) { /* PCH SDVOB multiplex with HDMIB */ found = intel_sdvo_init(dev, PCH_SDVOB); if (!found) intel_hdmi_init(dev, HDMIB); if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED)) intel_dp_init(dev, PCH_DP_B); } if (I915_READ(HDMIC) & PORT_DETECTED) intel_hdmi_init(dev, HDMIC); if (I915_READ(HDMID) & PORT_DETECTED) intel_hdmi_init(dev, HDMID); if (I915_READ(PCH_DP_C) & DP_DETECTED) intel_dp_init(dev, PCH_DP_C); if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED)) intel_dp_init(dev, PCH_DP_D); } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) { bool found = false; if (I915_READ(SDVOB) & SDVO_DETECTED) { DRM_DEBUG_KMS("probing SDVOB\n"); found = intel_sdvo_init(dev, SDVOB); if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) { DRM_DEBUG_KMS("probing HDMI on SDVOB\n"); intel_hdmi_init(dev, SDVOB); } if (!found && SUPPORTS_INTEGRATED_DP(dev)) { DRM_DEBUG_KMS("probing DP_B\n"); intel_dp_init(dev, DP_B); } } /* Before G4X SDVOC doesn't have its own detect register */ if (I915_READ(SDVOB) & SDVO_DETECTED) { DRM_DEBUG_KMS("probing SDVOC\n"); found = intel_sdvo_init(dev, SDVOC); } if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) { if (SUPPORTS_INTEGRATED_HDMI(dev)) { DRM_DEBUG_KMS("probing HDMI on SDVOC\n"); intel_hdmi_init(dev, SDVOC); } if (SUPPORTS_INTEGRATED_DP(dev)) { DRM_DEBUG_KMS("probing DP_C\n"); intel_dp_init(dev, DP_C); } } if (SUPPORTS_INTEGRATED_DP(dev) && (I915_READ(DP_D) & DP_DETECTED)) { DRM_DEBUG_KMS("probing DP_D\n"); intel_dp_init(dev, DP_D); } } else if (IS_GEN2(dev)) intel_dvo_init(dev); if (SUPPORTS_TV(dev)) intel_tv_init(dev); list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) { encoder->base.possible_crtcs = encoder->crtc_mask; encoder->base.possible_clones = intel_encoder_clones(dev, encoder->clone_mask); } } static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb) { struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); drm_framebuffer_cleanup(fb); drm_gem_object_unreference_unlocked(intel_fb->obj); kfree(intel_fb); } static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb, struct drm_file *file_priv, unsigned int *handle) { struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); struct drm_gem_object *object = intel_fb->obj; return drm_gem_handle_create(file_priv, object, handle); } static const struct drm_framebuffer_funcs intel_fb_funcs = { .destroy = intel_user_framebuffer_destroy, .create_handle = intel_user_framebuffer_create_handle, }; int intel_framebuffer_init(struct drm_device *dev, struct intel_framebuffer *intel_fb, struct drm_mode_fb_cmd *mode_cmd, struct drm_gem_object *obj) { struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); int ret; if (obj_priv->tiling_mode == I915_TILING_Y) return -EINVAL; if (mode_cmd->pitch & 63) return -EINVAL; switch (mode_cmd->bpp) { case 8: case 16: case 24: case 32: break; default: return -EINVAL; } ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs); if (ret) { DRM_ERROR("framebuffer init failed %d\n", ret); return ret; } drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd); intel_fb->obj = obj; return 0; } static struct drm_framebuffer * intel_user_framebuffer_create(struct drm_device *dev, struct drm_file *filp, struct drm_mode_fb_cmd *mode_cmd) { struct drm_gem_object *obj; struct intel_framebuffer *intel_fb; int ret; obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle); if (!obj) return ERR_PTR(-ENOENT); intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); if (!intel_fb) return ERR_PTR(-ENOMEM); ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj); if (ret) { drm_gem_object_unreference_unlocked(obj); kfree(intel_fb); return ERR_PTR(ret); } return &intel_fb->base; } static const struct drm_mode_config_funcs intel_mode_funcs = { .fb_create = intel_user_framebuffer_create, .output_poll_changed = intel_fb_output_poll_changed, }; static struct drm_gem_object * intel_alloc_context_page(struct drm_device *dev) { struct drm_gem_object *ctx; int ret; ctx = i915_gem_alloc_object(dev, 4096); if (!ctx) { DRM_DEBUG("failed to alloc power context, RC6 disabled\n"); return NULL; } mutex_lock(&dev->struct_mutex); ret = i915_gem_object_pin(ctx, 4096); if (ret) { DRM_ERROR("failed to pin power context: %d\n", ret); goto err_unref; } ret = i915_gem_object_set_to_gtt_domain(ctx, 1); if (ret) { DRM_ERROR("failed to set-domain on power context: %d\n", ret); goto err_unpin; } mutex_unlock(&dev->struct_mutex); return ctx; err_unpin: i915_gem_object_unpin(ctx); err_unref: drm_gem_object_unreference(ctx); mutex_unlock(&dev->struct_mutex); return NULL; } bool ironlake_set_drps(struct drm_device *dev, u8 val) { struct drm_i915_private *dev_priv = dev->dev_private; u16 rgvswctl; rgvswctl = I915_READ16(MEMSWCTL); if (rgvswctl & MEMCTL_CMD_STS) { DRM_DEBUG("gpu busy, RCS change rejected\n"); return false; /* still busy with another command */ } rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) | (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM; I915_WRITE16(MEMSWCTL, rgvswctl); POSTING_READ16(MEMSWCTL); rgvswctl |= MEMCTL_CMD_STS; I915_WRITE16(MEMSWCTL, rgvswctl); return true; } void ironlake_enable_drps(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u32 rgvmodectl = I915_READ(MEMMODECTL); u8 fmax, fmin, fstart, vstart; /* 100ms RC evaluation intervals */ I915_WRITE(RCUPEI, 100000); I915_WRITE(RCDNEI, 100000); /* Set max/min thresholds to 90ms and 80ms respectively */ I915_WRITE(RCBMAXAVG, 90000); I915_WRITE(RCBMINAVG, 80000); I915_WRITE(MEMIHYST, 1); /* Set up min, max, and cur for interrupt handling */ fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT; fmin = (rgvmodectl & MEMMODE_FMIN_MASK); fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT; fstart = fmax; vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT; dev_priv->fmax = fstart; /* IPS callback will increase this */ dev_priv->fstart = fstart; dev_priv->max_delay = fmax; dev_priv->min_delay = fmin; dev_priv->cur_delay = fstart; DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n", fmax, fmin, fstart); I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN); /* * Interrupts will be enabled in ironlake_irq_postinstall */ I915_WRITE(VIDSTART, vstart); POSTING_READ(VIDSTART); rgvmodectl |= MEMMODE_SWMODE_EN; I915_WRITE(MEMMODECTL, rgvmodectl); if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10)) DRM_ERROR("stuck trying to change perf mode\n"); msleep(1); ironlake_set_drps(dev, fstart); dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) + I915_READ(0x112e0); dev_priv->last_time1 = jiffies_to_msecs(jiffies); dev_priv->last_count2 = I915_READ(0x112f4); getrawmonotonic(&dev_priv->last_time2); } void ironlake_disable_drps(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u16 rgvswctl = I915_READ16(MEMSWCTL); /* Ack interrupts, disable EFC interrupt */ I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN); I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG); I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT); I915_WRITE(DEIIR, DE_PCU_EVENT); I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT); /* Go back to the starting frequency */ ironlake_set_drps(dev, dev_priv->fstart); msleep(1); rgvswctl |= MEMCTL_CMD_STS; I915_WRITE(MEMSWCTL, rgvswctl); msleep(1); } static unsigned long intel_pxfreq(u32 vidfreq) { unsigned long freq; int div = (vidfreq & 0x3f0000) >> 16; int post = (vidfreq & 0x3000) >> 12; int pre = (vidfreq & 0x7); if (!pre) return 0; freq = ((div * 133333) / ((1<dev_private; u32 lcfuse; u8 pxw[16]; int i; /* Disable to program */ I915_WRITE(ECR, 0); POSTING_READ(ECR); /* Program energy weights for various events */ I915_WRITE(SDEW, 0x15040d00); I915_WRITE(CSIEW0, 0x007f0000); I915_WRITE(CSIEW1, 0x1e220004); I915_WRITE(CSIEW2, 0x04000004); for (i = 0; i < 5; i++) I915_WRITE(PEW + (i * 4), 0); for (i = 0; i < 3; i++) I915_WRITE(DEW + (i * 4), 0); /* Program P-state weights to account for frequency power adjustment */ for (i = 0; i < 16; i++) { u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4)); unsigned long freq = intel_pxfreq(pxvidfreq); unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT; unsigned long val; val = vid * vid; val *= (freq / 1000); val *= 255; val /= (127*127*900); if (val > 0xff) DRM_ERROR("bad pxval: %ld\n", val); pxw[i] = val; } /* Render standby states get 0 weight */ pxw[14] = 0; pxw[15] = 0; for (i = 0; i < 4; i++) { u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) | (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]); I915_WRITE(PXW + (i * 4), val); } /* Adjust magic regs to magic values (more experimental results) */ I915_WRITE(OGW0, 0); I915_WRITE(OGW1, 0); I915_WRITE(EG0, 0x00007f00); I915_WRITE(EG1, 0x0000000e); I915_WRITE(EG2, 0x000e0000); I915_WRITE(EG3, 0x68000300); I915_WRITE(EG4, 0x42000000); I915_WRITE(EG5, 0x00140031); I915_WRITE(EG6, 0); I915_WRITE(EG7, 0); for (i = 0; i < 8; i++) I915_WRITE(PXWL + (i * 4), 0); /* Enable PMON + select events */ I915_WRITE(ECR, 0x80000019); lcfuse = I915_READ(LCFUSE02); dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK); } void intel_init_clock_gating(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; /* * Disable clock gating reported to work incorrectly according to the * specs, but enable as much else as we can. */ if (HAS_PCH_SPLIT(dev)) { uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE; if (IS_IRONLAKE(dev)) { /* Required for FBC */ dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE; /* Required for CxSR */ dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE; I915_WRITE(PCH_3DCGDIS0, MARIUNIT_CLOCK_GATE_DISABLE | SVSMUNIT_CLOCK_GATE_DISABLE); } I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate); /* * According to the spec the following bits should be set in * order to enable memory self-refresh * The bit 22/21 of 0x42004 * The bit 5 of 0x42020 * The bit 15 of 0x45000 */ if (IS_IRONLAKE(dev)) { I915_WRITE(ILK_DISPLAY_CHICKEN2, (I915_READ(ILK_DISPLAY_CHICKEN2) | ILK_DPARB_GATE | ILK_VSDPFD_FULL)); I915_WRITE(ILK_DSPCLK_GATE, (I915_READ(ILK_DSPCLK_GATE) | ILK_DPARB_CLK_GATE)); I915_WRITE(DISP_ARB_CTL, (I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS)); } /* * Based on the document from hardware guys the following bits * should be set unconditionally in order to enable FBC. * The bit 22 of 0x42000 * The bit 22 of 0x42004 * The bit 7,8,9 of 0x42020. */ if (IS_IRONLAKE_M(dev)) { I915_WRITE(ILK_DISPLAY_CHICKEN1, I915_READ(ILK_DISPLAY_CHICKEN1) | ILK_FBCQ_DIS); I915_WRITE(ILK_DISPLAY_CHICKEN2, I915_READ(ILK_DISPLAY_CHICKEN2) | ILK_DPARB_GATE); I915_WRITE(ILK_DSPCLK_GATE, I915_READ(ILK_DSPCLK_GATE) | ILK_DPFC_DIS1 | ILK_DPFC_DIS2 | ILK_CLK_FBC); } return; } else if (IS_G4X(dev)) { uint32_t dspclk_gate; I915_WRITE(RENCLK_GATE_D1, 0); I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE | GS_UNIT_CLOCK_GATE_DISABLE | CL_UNIT_CLOCK_GATE_DISABLE); I915_WRITE(RAMCLK_GATE_D, 0); dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE | OVRUNIT_CLOCK_GATE_DISABLE | OVCUNIT_CLOCK_GATE_DISABLE; if (IS_GM45(dev)) dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE; I915_WRITE(DSPCLK_GATE_D, dspclk_gate); } else if (IS_I965GM(dev)) { I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE); I915_WRITE(RENCLK_GATE_D2, 0); I915_WRITE(DSPCLK_GATE_D, 0); I915_WRITE(RAMCLK_GATE_D, 0); I915_WRITE16(DEUC, 0); } else if (IS_I965G(dev)) { I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE | I965_RCC_CLOCK_GATE_DISABLE | I965_RCPB_CLOCK_GATE_DISABLE | I965_ISC_CLOCK_GATE_DISABLE | I965_FBC_CLOCK_GATE_DISABLE); I915_WRITE(RENCLK_GATE_D2, 0); } else if (IS_I9XX(dev)) { u32 dstate = I915_READ(D_STATE); dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING | DSTATE_DOT_CLOCK_GATING; I915_WRITE(D_STATE, dstate); } else if (IS_I85X(dev) || IS_I865G(dev)) { I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE); } else if (IS_I830(dev)) { I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE); } /* * GPU can automatically power down the render unit if given a page * to save state. */ if (IS_IRONLAKE_M(dev)) { if (dev_priv->renderctx == NULL) dev_priv->renderctx = intel_alloc_context_page(dev); if (dev_priv->renderctx) { struct drm_i915_gem_object *obj_priv; obj_priv = to_intel_bo(dev_priv->renderctx); if (obj_priv) { BEGIN_LP_RING(4); OUT_RING(MI_SET_CONTEXT); OUT_RING(obj_priv->gtt_offset | MI_MM_SPACE_GTT | MI_SAVE_EXT_STATE_EN | MI_RESTORE_EXT_STATE_EN | MI_RESTORE_INHIBIT); OUT_RING(MI_NOOP); OUT_RING(MI_FLUSH); ADVANCE_LP_RING(); } } else DRM_DEBUG_KMS("Failed to allocate render context." "Disable RC6\n"); } if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) { struct drm_i915_gem_object *obj_priv = NULL; if (dev_priv->pwrctx) { obj_priv = to_intel_bo(dev_priv->pwrctx); } else { struct drm_gem_object *pwrctx; pwrctx = intel_alloc_context_page(dev); if (pwrctx) { dev_priv->pwrctx = pwrctx; obj_priv = to_intel_bo(pwrctx); } } if (obj_priv) { I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN); I915_WRITE(MCHBAR_RENDER_STANDBY, I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT); } } } /* Set up chip specific display functions */ static void intel_init_display(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; /* We always want a DPMS function */ if (HAS_PCH_SPLIT(dev)) dev_priv->display.dpms = ironlake_crtc_dpms; else dev_priv->display.dpms = i9xx_crtc_dpms; if (I915_HAS_FBC(dev)) { if (IS_IRONLAKE_M(dev)) { dev_priv->display.fbc_enabled = ironlake_fbc_enabled; dev_priv->display.enable_fbc = ironlake_enable_fbc; dev_priv->display.disable_fbc = ironlake_disable_fbc; } else if (IS_GM45(dev)) { dev_priv->display.fbc_enabled = g4x_fbc_enabled; dev_priv->display.enable_fbc = g4x_enable_fbc; dev_priv->display.disable_fbc = g4x_disable_fbc; } else if (IS_I965GM(dev)) { dev_priv->display.fbc_enabled = i8xx_fbc_enabled; dev_priv->display.enable_fbc = i8xx_enable_fbc; dev_priv->display.disable_fbc = i8xx_disable_fbc; } /* 855GM needs testing */ } /* Returns the core display clock speed */ if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev))) dev_priv->display.get_display_clock_speed = i945_get_display_clock_speed; else if (IS_I915G(dev)) dev_priv->display.get_display_clock_speed = i915_get_display_clock_speed; else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev)) dev_priv->display.get_display_clock_speed = i9xx_misc_get_display_clock_speed; else if (IS_I915GM(dev)) dev_priv->display.get_display_clock_speed = i915gm_get_display_clock_speed; else if (IS_I865G(dev)) dev_priv->display.get_display_clock_speed = i865_get_display_clock_speed; else if (IS_I85X(dev)) dev_priv->display.get_display_clock_speed = i855_get_display_clock_speed; else /* 852, 830 */ dev_priv->display.get_display_clock_speed = i830_get_display_clock_speed; /* For FIFO watermark updates */ if (HAS_PCH_SPLIT(dev)) { if (IS_IRONLAKE(dev)) { if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK) dev_priv->display.update_wm = ironlake_update_wm; else { DRM_DEBUG_KMS("Failed to get proper latency. " "Disable CxSR\n"); dev_priv->display.update_wm = NULL; } } else dev_priv->display.update_wm = NULL; } else if (IS_PINEVIEW(dev)) { if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3, dev_priv->fsb_freq, dev_priv->mem_freq)) { DRM_INFO("failed to find known CxSR latency " "(found ddr%s fsb freq %d, mem freq %d), " "disabling CxSR\n", (dev_priv->is_ddr3 == 1) ? "3": "2", dev_priv->fsb_freq, dev_priv->mem_freq); /* Disable CxSR and never update its watermark again */ pineview_disable_cxsr(dev); dev_priv->display.update_wm = NULL; } else dev_priv->display.update_wm = pineview_update_wm; } else if (IS_G4X(dev)) dev_priv->display.update_wm = g4x_update_wm; else if (IS_I965G(dev)) dev_priv->display.update_wm = i965_update_wm; else if (IS_I9XX(dev)) { dev_priv->display.update_wm = i9xx_update_wm; dev_priv->display.get_fifo_size = i9xx_get_fifo_size; } else if (IS_I85X(dev)) { dev_priv->display.update_wm = i9xx_update_wm; dev_priv->display.get_fifo_size = i85x_get_fifo_size; } else { dev_priv->display.update_wm = i830_update_wm; if (IS_845G(dev)) dev_priv->display.get_fifo_size = i845_get_fifo_size; else dev_priv->display.get_fifo_size = i830_get_fifo_size; } } /* * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend, * resume, or other times. This quirk makes sure that's the case for * affected systems. */ static void quirk_pipea_force (struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; dev_priv->quirks |= QUIRK_PIPEA_FORCE; DRM_DEBUG_DRIVER("applying pipe a force quirk\n"); } struct intel_quirk { int device; int subsystem_vendor; int subsystem_device; void (*hook)(struct drm_device *dev); }; struct intel_quirk intel_quirks[] = { /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */ { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force }, /* HP Mini needs pipe A force quirk (LP: #322104) */ { 0x27ae,0x103c, 0x361a, quirk_pipea_force }, /* Thinkpad R31 needs pipe A force quirk */ { 0x3577, 0x1014, 0x0505, quirk_pipea_force }, /* Toshiba Protege R-205, S-209 needs pipe A force quirk */ { 0x2592, 0x1179, 0x0001, quirk_pipea_force }, /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */ { 0x3577, 0x1014, 0x0513, quirk_pipea_force }, /* ThinkPad X40 needs pipe A force quirk */ /* ThinkPad T60 needs pipe A force quirk (bug #16494) */ { 0x2782, 0x17aa, 0x201a, quirk_pipea_force }, /* 855 & before need to leave pipe A & dpll A up */ { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force }, { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force }, }; static void intel_init_quirks(struct drm_device *dev) { struct pci_dev *d = dev->pdev; int i; for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) { struct intel_quirk *q = &intel_quirks[i]; if (d->device == q->device && (d->subsystem_vendor == q->subsystem_vendor || q->subsystem_vendor == PCI_ANY_ID) && (d->subsystem_device == q->subsystem_device || q->subsystem_device == PCI_ANY_ID)) q->hook(dev); } } /* Disable the VGA plane that we never use */ static void i915_disable_vga(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u8 sr1; u32 vga_reg; if (HAS_PCH_SPLIT(dev)) vga_reg = CPU_VGACNTRL; else vga_reg = VGACNTRL; vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO); outb(1, VGA_SR_INDEX); sr1 = inb(VGA_SR_DATA); outb(sr1 | 1<<5, VGA_SR_DATA); vga_put(dev->pdev, VGA_RSRC_LEGACY_IO); udelay(300); I915_WRITE(vga_reg, VGA_DISP_DISABLE); POSTING_READ(vga_reg); } void intel_modeset_init(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; int i; drm_mode_config_init(dev); dev->mode_config.min_width = 0; dev->mode_config.min_height = 0; dev->mode_config.funcs = (void *)&intel_mode_funcs; intel_init_quirks(dev); intel_init_display(dev); if (IS_I965G(dev)) { dev->mode_config.max_width = 8192; dev->mode_config.max_height = 8192; } else if (IS_I9XX(dev)) { dev->mode_config.max_width = 4096; dev->mode_config.max_height = 4096; } else { dev->mode_config.max_width = 2048; dev->mode_config.max_height = 2048; } /* set memory base */ if (IS_I9XX(dev)) dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2); else dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0); if (IS_MOBILE(dev) || IS_I9XX(dev)) dev_priv->num_pipe = 2; else dev_priv->num_pipe = 1; DRM_DEBUG_KMS("%d display pipe%s available.\n", dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : ""); for (i = 0; i < dev_priv->num_pipe; i++) { intel_crtc_init(dev, i); } intel_setup_outputs(dev); intel_init_clock_gating(dev); /* Just disable it once at startup */ i915_disable_vga(dev); if (IS_IRONLAKE_M(dev)) { ironlake_enable_drps(dev); intel_init_emon(dev); } INIT_WORK(&dev_priv->idle_work, intel_idle_update); setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer, (unsigned long)dev); intel_setup_overlay(dev); } void intel_modeset_cleanup(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_crtc *crtc; struct intel_crtc *intel_crtc; mutex_lock(&dev->struct_mutex); drm_kms_helper_poll_fini(dev); intel_fbdev_fini(dev); list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { /* Skip inactive CRTCs */ if (!crtc->fb) continue; intel_crtc = to_intel_crtc(crtc); intel_increase_pllclock(crtc); } if (dev_priv->display.disable_fbc) dev_priv->display.disable_fbc(dev); if (dev_priv->renderctx) { struct drm_i915_gem_object *obj_priv; obj_priv = to_intel_bo(dev_priv->renderctx); I915_WRITE(CCID, obj_priv->gtt_offset &~ CCID_EN); I915_READ(CCID); i915_gem_object_unpin(dev_priv->renderctx); drm_gem_object_unreference(dev_priv->renderctx); } if (dev_priv->pwrctx) { struct drm_i915_gem_object *obj_priv; obj_priv = to_intel_bo(dev_priv->pwrctx); I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN); I915_READ(PWRCTXA); i915_gem_object_unpin(dev_priv->pwrctx); drm_gem_object_unreference(dev_priv->pwrctx); } if (IS_IRONLAKE_M(dev)) ironlake_disable_drps(dev); mutex_unlock(&dev->struct_mutex); /* Disable the irq before mode object teardown, for the irq might * enqueue unpin/hotplug work. */ drm_irq_uninstall(dev); cancel_work_sync(&dev_priv->hotplug_work); /* Shut off idle work before the crtcs get freed. */ list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { intel_crtc = to_intel_crtc(crtc); del_timer_sync(&intel_crtc->idle_timer); } del_timer_sync(&dev_priv->idle_timer); cancel_work_sync(&dev_priv->idle_work); drm_mode_config_cleanup(dev); } /* * Return which encoder is currently attached for connector. */ struct drm_encoder *intel_best_encoder(struct drm_connector *connector) { return &intel_attached_encoder(connector)->base; } void intel_connector_attach_encoder(struct intel_connector *connector, struct intel_encoder *encoder) { connector->encoder = encoder; drm_mode_connector_attach_encoder(&connector->base, &encoder->base); } /* * set vga decode state - true == enable VGA decode */ int intel_modeset_vga_set_state(struct drm_device *dev, bool state) { struct drm_i915_private *dev_priv = dev->dev_private; u16 gmch_ctrl; pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl); if (state) gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE; else gmch_ctrl |= INTEL_GMCH_VGA_DISABLE; pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl); return 0; }