// SPDX-License-Identifier: GPL-2.0-or-later /* * sun4i-ss-hash.c - hardware cryptographic accelerator for Allwinner A20 SoC * * Copyright (C) 2013-2015 Corentin LABBE <clabbe.montjoie@gmail.com> * * This file add support for MD5 and SHA1. * * You could find the datasheet in Documentation/arm/sunxi.rst */ #include "sun4i-ss.h" #include <linux/scatterlist.h> /* This is a totally arbitrary value */ #define SS_TIMEOUT 100 int sun4i_hash_crainit(struct crypto_tfm *tfm) { struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm); struct ahash_alg *alg = __crypto_ahash_alg(tfm->__crt_alg); struct sun4i_ss_alg_template *algt; memset(op, 0, sizeof(struct sun4i_tfm_ctx)); algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash); op->ss = algt->ss; crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), sizeof(struct sun4i_req_ctx)); return 0; } /* sun4i_hash_init: initialize request context */ int sun4i_hash_init(struct ahash_request *areq) { struct sun4i_req_ctx *op = ahash_request_ctx(areq); struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq); struct ahash_alg *alg = __crypto_ahash_alg(tfm->base.__crt_alg); struct sun4i_ss_alg_template *algt; memset(op, 0, sizeof(struct sun4i_req_ctx)); algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash); op->mode = algt->mode; return 0; } int sun4i_hash_export_md5(struct ahash_request *areq, void *out) { struct sun4i_req_ctx *op = ahash_request_ctx(areq); struct md5_state *octx = out; int i; octx->byte_count = op->byte_count + op->len; memcpy(octx->block, op->buf, op->len); if (op->byte_count) { for (i = 0; i < 4; i++) octx->hash[i] = op->hash[i]; } else { octx->hash[0] = SHA1_H0; octx->hash[1] = SHA1_H1; octx->hash[2] = SHA1_H2; octx->hash[3] = SHA1_H3; } return 0; } int sun4i_hash_import_md5(struct ahash_request *areq, const void *in) { struct sun4i_req_ctx *op = ahash_request_ctx(areq); const struct md5_state *ictx = in; int i; sun4i_hash_init(areq); op->byte_count = ictx->byte_count & ~0x3F; op->len = ictx->byte_count & 0x3F; memcpy(op->buf, ictx->block, op->len); for (i = 0; i < 4; i++) op->hash[i] = ictx->hash[i]; return 0; } int sun4i_hash_export_sha1(struct ahash_request *areq, void *out) { struct sun4i_req_ctx *op = ahash_request_ctx(areq); struct sha1_state *octx = out; int i; octx->count = op->byte_count + op->len; memcpy(octx->buffer, op->buf, op->len); if (op->byte_count) { for (i = 0; i < 5; i++) octx->state[i] = op->hash[i]; } else { octx->state[0] = SHA1_H0; octx->state[1] = SHA1_H1; octx->state[2] = SHA1_H2; octx->state[3] = SHA1_H3; octx->state[4] = SHA1_H4; } return 0; } int sun4i_hash_import_sha1(struct ahash_request *areq, const void *in) { struct sun4i_req_ctx *op = ahash_request_ctx(areq); const struct sha1_state *ictx = in; int i; sun4i_hash_init(areq); op->byte_count = ictx->count & ~0x3F; op->len = ictx->count & 0x3F; memcpy(op->buf, ictx->buffer, op->len); for (i = 0; i < 5; i++) op->hash[i] = ictx->state[i]; return 0; } #define SS_HASH_UPDATE 1 #define SS_HASH_FINAL 2 /* * sun4i_hash_update: update hash engine * * Could be used for both SHA1 and MD5 * Write data by step of 32bits and put then in the SS. * * Since we cannot leave partial data and hash state in the engine, * we need to get the hash state at the end of this function. * We can get the hash state every 64 bytes * * So the first work is to get the number of bytes to write to SS modulo 64 * The extra bytes will go to a temporary buffer op->buf storing op->len bytes * * So at the begin of update() * if op->len + areq->nbytes < 64 * => all data will be written to wait buffer (op->buf) and end=0 * if not, write all data from op->buf to the device and position end to * complete to 64bytes * * example 1: * update1 60o => op->len=60 * update2 60o => need one more word to have 64 bytes * end=4 * so write all data from op->buf and one word of SGs * write remaining data in op->buf * final state op->len=56 */ static int sun4i_hash(struct ahash_request *areq) { /* * i is the total bytes read from SGs, to be compared to areq->nbytes * i is important because we cannot rely on SG length since the sum of * SG->length could be greater than areq->nbytes * * end is the position when we need to stop writing to the device, * to be compared to i * * in_i: advancement in the current SG */ unsigned int i = 0, end, fill, min_fill, nwait, nbw = 0, j = 0, todo; unsigned int in_i = 0; u32 spaces, rx_cnt = SS_RX_DEFAULT, bf[32] = {0}, wb = 0, v, ivmode = 0; struct sun4i_req_ctx *op = ahash_request_ctx(areq); struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq); struct sun4i_tfm_ctx *tfmctx = crypto_ahash_ctx(tfm); struct sun4i_ss_ctx *ss = tfmctx->ss; struct scatterlist *in_sg = areq->src; struct sg_mapping_iter mi; int in_r, err = 0; size_t copied = 0; dev_dbg(ss->dev, "%s %s bc=%llu len=%u mode=%x wl=%u h0=%0x", __func__, crypto_tfm_alg_name(areq->base.tfm), op->byte_count, areq->nbytes, op->mode, op->len, op->hash[0]); if (unlikely(!areq->nbytes) && !(op->flags & SS_HASH_FINAL)) return 0; /* protect against overflow */ if (unlikely(areq->nbytes > UINT_MAX - op->len)) { dev_err(ss->dev, "Cannot process too large request\n"); return -EINVAL; } if (op->len + areq->nbytes < 64 && !(op->flags & SS_HASH_FINAL)) { /* linearize data to op->buf */ copied = sg_pcopy_to_buffer(areq->src, sg_nents(areq->src), op->buf + op->len, areq->nbytes, 0); op->len += copied; return 0; } spin_lock_bh(&ss->slock); /* * if some data have been processed before, * we need to restore the partial hash state */ if (op->byte_count) { ivmode = SS_IV_ARBITRARY; for (i = 0; i < 5; i++) writel(op->hash[i], ss->base + SS_IV0 + i * 4); } /* Enable the device */ writel(op->mode | SS_ENABLED | ivmode, ss->base + SS_CTL); if (!(op->flags & SS_HASH_UPDATE)) goto hash_final; /* start of handling data */ if (!(op->flags & SS_HASH_FINAL)) { end = ((areq->nbytes + op->len) / 64) * 64 - op->len; if (end > areq->nbytes || areq->nbytes - end > 63) { dev_err(ss->dev, "ERROR: Bound error %u %u\n", end, areq->nbytes); err = -EINVAL; goto release_ss; } } else { /* Since we have the flag final, we can go up to modulo 4 */ if (areq->nbytes < 4) end = 0; else end = ((areq->nbytes + op->len) / 4) * 4 - op->len; } /* TODO if SGlen % 4 and !op->len then DMA */ i = 1; while (in_sg && i == 1) { if (in_sg->length % 4) i = 0; in_sg = sg_next(in_sg); } if (i == 1 && !op->len && areq->nbytes) dev_dbg(ss->dev, "We can DMA\n"); i = 0; sg_miter_start(&mi, areq->src, sg_nents(areq->src), SG_MITER_FROM_SG | SG_MITER_ATOMIC); sg_miter_next(&mi); in_i = 0; do { /* * we need to linearize in two case: * - the buffer is already used * - the SG does not have enough byte remaining ( < 4) */ if (op->len || (mi.length - in_i) < 4) { /* * if we have entered here we have two reason to stop * - the buffer is full * - reach the end */ while (op->len < 64 && i < end) { /* how many bytes we can read from current SG */ in_r = min3(mi.length - in_i, end - i, 64 - op->len); memcpy(op->buf + op->len, mi.addr + in_i, in_r); op->len += in_r; i += in_r; in_i += in_r; if (in_i == mi.length) { sg_miter_next(&mi); in_i = 0; } } if (op->len > 3 && !(op->len % 4)) { /* write buf to the device */ writesl(ss->base + SS_RXFIFO, op->buf, op->len / 4); op->byte_count += op->len; op->len = 0; } } if (mi.length - in_i > 3 && i < end) { /* how many bytes we can read from current SG */ in_r = min3(mi.length - in_i, areq->nbytes - i, ((mi.length - in_i) / 4) * 4); /* how many bytes we can write in the device*/ todo = min3((u32)(end - i) / 4, rx_cnt, (u32)in_r / 4); writesl(ss->base + SS_RXFIFO, mi.addr + in_i, todo); op->byte_count += todo * 4; i += todo * 4; in_i += todo * 4; rx_cnt -= todo; if (!rx_cnt) { spaces = readl(ss->base + SS_FCSR); rx_cnt = SS_RXFIFO_SPACES(spaces); } if (in_i == mi.length) { sg_miter_next(&mi); in_i = 0; } } } while (i < end); /* * Now we have written to the device all that we can, * store the remaining bytes in op->buf */ if ((areq->nbytes - i) < 64) { while (i < areq->nbytes && in_i < mi.length && op->len < 64) { /* how many bytes we can read from current SG */ in_r = min3(mi.length - in_i, areq->nbytes - i, 64 - op->len); memcpy(op->buf + op->len, mi.addr + in_i, in_r); op->len += in_r; i += in_r; in_i += in_r; if (in_i == mi.length) { sg_miter_next(&mi); in_i = 0; } } } sg_miter_stop(&mi); /* * End of data process * Now if we have the flag final go to finalize part * If not, store the partial hash */ if (op->flags & SS_HASH_FINAL) goto hash_final; writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL); i = 0; do { v = readl(ss->base + SS_CTL); i++; } while (i < SS_TIMEOUT && (v & SS_DATA_END)); if (unlikely(i >= SS_TIMEOUT)) { dev_err_ratelimited(ss->dev, "ERROR: hash end timeout %d>%d ctl=%x len=%u\n", i, SS_TIMEOUT, v, areq->nbytes); err = -EIO; goto release_ss; } /* * The datasheet isn't very clear about when to retrieve the digest. The * bit SS_DATA_END is cleared when the engine has processed the data and * when the digest is computed *but* it doesn't mean the digest is * available in the digest registers. Hence the delay to be sure we can * read it. */ ndelay(1); for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++) op->hash[i] = readl(ss->base + SS_MD0 + i * 4); goto release_ss; /* * hash_final: finalize hashing operation * * If we have some remaining bytes, we write them. * Then ask the SS for finalizing the hashing operation * * I do not check RX FIFO size in this function since the size is 32 * after each enabling and this function neither write more than 32 words. * If we come from the update part, we cannot have more than * 3 remaining bytes to write and SS is fast enough to not care about it. */ hash_final: /* write the remaining words of the wait buffer */ if (op->len) { nwait = op->len / 4; if (nwait) { writesl(ss->base + SS_RXFIFO, op->buf, nwait); op->byte_count += 4 * nwait; } nbw = op->len - 4 * nwait; if (nbw) { wb = *(u32 *)(op->buf + nwait * 4); wb &= GENMASK((nbw * 8) - 1, 0); op->byte_count += nbw; } } /* write the remaining bytes of the nbw buffer */ wb |= ((1 << 7) << (nbw * 8)); bf[j++] = wb; /* * number of space to pad to obtain 64o minus 8(size) minus 4 (final 1) * I take the operations from other MD5/SHA1 implementations */ /* last block size */ fill = 64 - (op->byte_count % 64); min_fill = 2 * sizeof(u32) + (nbw ? 0 : sizeof(u32)); /* if we can't fill all data, jump to the next 64 block */ if (fill < min_fill) fill += 64; j += (fill - min_fill) / sizeof(u32); /* write the length of data */ if (op->mode == SS_OP_SHA1) { __be64 bits = cpu_to_be64(op->byte_count << 3); bf[j++] = lower_32_bits(bits); bf[j++] = upper_32_bits(bits); } else { __le64 bits = op->byte_count << 3; bf[j++] = lower_32_bits(bits); bf[j++] = upper_32_bits(bits); } writesl(ss->base + SS_RXFIFO, bf, j); /* Tell the SS to stop the hashing */ writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL); /* * Wait for SS to finish the hash. * The timeout could happen only in case of bad overclocking * or driver bug. */ i = 0; do { v = readl(ss->base + SS_CTL); i++; } while (i < SS_TIMEOUT && (v & SS_DATA_END)); if (unlikely(i >= SS_TIMEOUT)) { dev_err_ratelimited(ss->dev, "ERROR: hash end timeout %d>%d ctl=%x len=%u\n", i, SS_TIMEOUT, v, areq->nbytes); err = -EIO; goto release_ss; } /* * The datasheet isn't very clear about when to retrieve the digest. The * bit SS_DATA_END is cleared when the engine has processed the data and * when the digest is computed *but* it doesn't mean the digest is * available in the digest registers. Hence the delay to be sure we can * read it. */ ndelay(1); /* Get the hash from the device */ if (op->mode == SS_OP_SHA1) { for (i = 0; i < 5; i++) { v = cpu_to_be32(readl(ss->base + SS_MD0 + i * 4)); memcpy(areq->result + i * 4, &v, 4); } } else { for (i = 0; i < 4; i++) { v = readl(ss->base + SS_MD0 + i * 4); memcpy(areq->result + i * 4, &v, 4); } } release_ss: writel(0, ss->base + SS_CTL); spin_unlock_bh(&ss->slock); return err; } int sun4i_hash_final(struct ahash_request *areq) { struct sun4i_req_ctx *op = ahash_request_ctx(areq); op->flags = SS_HASH_FINAL; return sun4i_hash(areq); } int sun4i_hash_update(struct ahash_request *areq) { struct sun4i_req_ctx *op = ahash_request_ctx(areq); op->flags = SS_HASH_UPDATE; return sun4i_hash(areq); } /* sun4i_hash_finup: finalize hashing operation after an update */ int sun4i_hash_finup(struct ahash_request *areq) { struct sun4i_req_ctx *op = ahash_request_ctx(areq); op->flags = SS_HASH_UPDATE | SS_HASH_FINAL; return sun4i_hash(areq); } /* combo of init/update/final functions */ int sun4i_hash_digest(struct ahash_request *areq) { int err; struct sun4i_req_ctx *op = ahash_request_ctx(areq); err = sun4i_hash_init(areq); if (err) return err; op->flags = SS_HASH_UPDATE | SS_HASH_FINAL; return sun4i_hash(areq); }