/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_POWERPC_BOOK3S_32_PGTABLE_H #define _ASM_POWERPC_BOOK3S_32_PGTABLE_H #define __ARCH_USE_5LEVEL_HACK #include #include /* And here we include common definitions */ #include #define PTE_INDEX_SIZE PTE_SHIFT #define PMD_INDEX_SIZE 0 #define PUD_INDEX_SIZE 0 #define PGD_INDEX_SIZE (32 - PGDIR_SHIFT) #define PMD_CACHE_INDEX PMD_INDEX_SIZE #define PUD_CACHE_INDEX PUD_INDEX_SIZE #ifndef __ASSEMBLY__ #define PTE_TABLE_SIZE (sizeof(pte_t) << PTE_INDEX_SIZE) #define PMD_TABLE_SIZE 0 #define PUD_TABLE_SIZE 0 #define PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE) #endif /* __ASSEMBLY__ */ #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE) #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE) /* * The normal case is that PTEs are 32-bits and we have a 1-page * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus * * For any >32-bit physical address platform, we can use the following * two level page table layout where the pgdir is 8KB and the MS 13 bits * are an index to the second level table. The combined pgdir/pmd first * level has 2048 entries and the second level has 512 64-bit PTE entries. * -Matt */ /* PGDIR_SHIFT determines what a top-level page table entry can map */ #define PGDIR_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE) #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) /* * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary * value (for now) on others, from where we can start layout kernel * virtual space that goes below PKMAP and FIXMAP */ #ifdef CONFIG_HIGHMEM #define KVIRT_TOP PKMAP_BASE #else #define KVIRT_TOP (0xfe000000UL) /* for now, could be FIXMAP_BASE ? */ #endif /* * ioremap_bot starts at that address. Early ioremaps move down from there, * until mem_init() at which point this becomes the top of the vmalloc * and ioremap space */ #ifdef CONFIG_NOT_COHERENT_CACHE #define IOREMAP_TOP ((KVIRT_TOP - CONFIG_CONSISTENT_SIZE) & PAGE_MASK) #else #define IOREMAP_TOP KVIRT_TOP #endif /* * Just any arbitrary offset to the start of the vmalloc VM area: the * current 16MB value just means that there will be a 64MB "hole" after the * physical memory until the kernel virtual memory starts. That means that * any out-of-bounds memory accesses will hopefully be caught. * The vmalloc() routines leaves a hole of 4kB between each vmalloced * area for the same reason. ;) * * We no longer map larger than phys RAM with the BATs so we don't have * to worry about the VMALLOC_OFFSET causing problems. We do have to worry * about clashes between our early calls to ioremap() that start growing down * from ioremap_base being run into the VM area allocations (growing upwards * from VMALLOC_START). For this reason we have ioremap_bot to check when * we actually run into our mappings setup in the early boot with the VM * system. This really does become a problem for machines with good amounts * of RAM. -- Cort */ #define VMALLOC_OFFSET (0x1000000) /* 16M */ #define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))) #define VMALLOC_END ioremap_bot #ifndef __ASSEMBLY__ #include #include extern unsigned long ioremap_bot; /* Bits to mask out from a PGD to get to the PUD page */ #define PGD_MASKED_BITS 0 #define pte_ERROR(e) \ pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \ (unsigned long long)pte_val(e)) #define pgd_ERROR(e) \ pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) /* * Bits in a linux-style PTE. These match the bits in the * (hardware-defined) PowerPC PTE as closely as possible. */ #define pte_clear(mm, addr, ptep) \ do { pte_update(ptep, ~_PAGE_HASHPTE, 0); } while (0) #define pmd_none(pmd) (!pmd_val(pmd)) #define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD) #define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK) static inline void pmd_clear(pmd_t *pmdp) { *pmdp = __pmd(0); } /* * When flushing the tlb entry for a page, we also need to flush the hash * table entry. flush_hash_pages is assembler (for speed) in hashtable.S. */ extern int flush_hash_pages(unsigned context, unsigned long va, unsigned long pmdval, int count); /* Add an HPTE to the hash table */ extern void add_hash_page(unsigned context, unsigned long va, unsigned long pmdval); /* Flush an entry from the TLB/hash table */ extern void flush_hash_entry(struct mm_struct *mm, pte_t *ptep, unsigned long address); /* * PTE updates. This function is called whenever an existing * valid PTE is updated. This does -not- include set_pte_at() * which nowadays only sets a new PTE. * * Depending on the type of MMU, we may need to use atomic updates * and the PTE may be either 32 or 64 bit wide. In the later case, * when using atomic updates, only the low part of the PTE is * accessed atomically. * * In addition, on 44x, we also maintain a global flag indicating * that an executable user mapping was modified, which is needed * to properly flush the virtually tagged instruction cache of * those implementations. */ #ifndef CONFIG_PTE_64BIT static inline unsigned long pte_update(pte_t *p, unsigned long clr, unsigned long set) { unsigned long old, tmp; __asm__ __volatile__("\ 1: lwarx %0,0,%3\n\ andc %1,%0,%4\n\ or %1,%1,%5\n" " stwcx. %1,0,%3\n\ bne- 1b" : "=&r" (old), "=&r" (tmp), "=m" (*p) : "r" (p), "r" (clr), "r" (set), "m" (*p) : "cc" ); return old; } #else /* CONFIG_PTE_64BIT */ static inline unsigned long long pte_update(pte_t *p, unsigned long clr, unsigned long set) { unsigned long long old; unsigned long tmp; __asm__ __volatile__("\ 1: lwarx %L0,0,%4\n\ lwzx %0,0,%3\n\ andc %1,%L0,%5\n\ or %1,%1,%6\n" " stwcx. %1,0,%4\n\ bne- 1b" : "=&r" (old), "=&r" (tmp), "=m" (*p) : "r" (p), "r" ((unsigned long)(p) + 4), "r" (clr), "r" (set), "m" (*p) : "cc" ); return old; } #endif /* CONFIG_PTE_64BIT */ /* * 2.6 calls this without flushing the TLB entry; this is wrong * for our hash-based implementation, we fix that up here. */ #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG static inline int __ptep_test_and_clear_young(unsigned int context, unsigned long addr, pte_t *ptep) { unsigned long old; old = pte_update(ptep, _PAGE_ACCESSED, 0); if (old & _PAGE_HASHPTE) { unsigned long ptephys = __pa(ptep) & PAGE_MASK; flush_hash_pages(context, addr, ptephys, 1); } return (old & _PAGE_ACCESSED) != 0; } #define ptep_test_and_clear_young(__vma, __addr, __ptep) \ __ptep_test_and_clear_young((__vma)->vm_mm->context.id, __addr, __ptep) #define __HAVE_ARCH_PTEP_GET_AND_CLEAR static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0)); } #define __HAVE_ARCH_PTEP_SET_WRPROTECT static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), _PAGE_RO); } static inline void huge_ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { ptep_set_wrprotect(mm, addr, ptep); } static inline void __ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep, pte_t entry, unsigned long address, int psize) { unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW); unsigned long clr = ~pte_val(entry) & _PAGE_RO; pte_update(ptep, clr, set); flush_tlb_page(vma, address); } #define __HAVE_ARCH_PTE_SAME #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0) /* * Note that on Book E processors, the pmd contains the kernel virtual * (lowmem) address of the pte page. The physical address is less useful * because everything runs with translation enabled (even the TLB miss * handler). On everything else the pmd contains the physical address * of the pte page. -- paulus */ #ifndef CONFIG_BOOKE #define pmd_page_vaddr(pmd) \ ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) #define pmd_page(pmd) \ pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT) #else #define pmd_page_vaddr(pmd) \ ((unsigned long) (pmd_val(pmd) & PAGE_MASK)) #define pmd_page(pmd) \ pfn_to_page((__pa(pmd_val(pmd)) >> PAGE_SHIFT)) #endif /* to find an entry in a kernel page-table-directory */ #define pgd_offset_k(address) pgd_offset(&init_mm, address) /* to find an entry in a page-table-directory */ #define pgd_index(address) ((address) >> PGDIR_SHIFT) #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) /* Find an entry in the third-level page table.. */ #define pte_index(address) \ (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) #define pte_offset_kernel(dir, addr) \ ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr)) #define pte_offset_map(dir, addr) \ ((pte_t *) kmap_atomic(pmd_page(*(dir))) + pte_index(addr)) #define pte_unmap(pte) kunmap_atomic(pte) /* * Encode and decode a swap entry. * Note that the bits we use in a PTE for representing a swap entry * must not include the _PAGE_PRESENT bit or the _PAGE_HASHPTE bit (if used). * -- paulus */ #define __swp_type(entry) ((entry).val & 0x1f) #define __swp_offset(entry) ((entry).val >> 5) #define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) }) #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 }) #define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 }) int map_kernel_page(unsigned long va, phys_addr_t pa, pgprot_t prot); /* Generic accessors to PTE bits */ static inline int pte_write(pte_t pte) { return !!(pte_val(pte) & _PAGE_RW);} static inline int pte_read(pte_t pte) { return 1; } static inline int pte_dirty(pte_t pte) { return !!(pte_val(pte) & _PAGE_DIRTY); } static inline int pte_young(pte_t pte) { return !!(pte_val(pte) & _PAGE_ACCESSED); } static inline int pte_special(pte_t pte) { return !!(pte_val(pte) & _PAGE_SPECIAL); } static inline int pte_none(pte_t pte) { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; } static inline pgprot_t pte_pgprot(pte_t pte) { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); } static inline int pte_present(pte_t pte) { return pte_val(pte) & _PAGE_PRESENT; } /* * We only find page table entry in the last level * Hence no need for other accessors */ #define pte_access_permitted pte_access_permitted static inline bool pte_access_permitted(pte_t pte, bool write) { unsigned long pteval = pte_val(pte); /* * A read-only access is controlled by _PAGE_USER bit. * We have _PAGE_READ set for WRITE and EXECUTE */ unsigned long need_pte_bits = _PAGE_PRESENT | _PAGE_USER; if (write) need_pte_bits |= _PAGE_WRITE; if ((pteval & need_pte_bits) != need_pte_bits) return false; return true; } /* Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. * * Even if PTEs can be unsigned long long, a PFN is always an unsigned * long for now. */ static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) { return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) | pgprot_val(pgprot)); } static inline unsigned long pte_pfn(pte_t pte) { return pte_val(pte) >> PTE_RPN_SHIFT; } /* Generic modifiers for PTE bits */ static inline pte_t pte_wrprotect(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_RW); } static inline pte_t pte_mkclean(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_DIRTY); } static inline pte_t pte_mkold(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_ACCESSED); } static inline pte_t pte_mkwrite(pte_t pte) { return __pte(pte_val(pte) | _PAGE_RW); } static inline pte_t pte_mkdirty(pte_t pte) { return __pte(pte_val(pte) | _PAGE_DIRTY); } static inline pte_t pte_mkyoung(pte_t pte) { return __pte(pte_val(pte) | _PAGE_ACCESSED); } static inline pte_t pte_mkspecial(pte_t pte) { return __pte(pte_val(pte) | _PAGE_SPECIAL); } static inline pte_t pte_mkhuge(pte_t pte) { return pte; } static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)); } /* This low level function performs the actual PTE insertion * Setting the PTE depends on the MMU type and other factors. It's * an horrible mess that I'm not going to try to clean up now but * I'm keeping it in one place rather than spread around */ static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte, int percpu) { #if defined(CONFIG_PPC_STD_MMU_32) && defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT) /* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the * helper pte_update() which does an atomic update. We need to do that * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a * per-CPU PTE such as a kmap_atomic, we do a simple update preserving * the hash bits instead (ie, same as the non-SMP case) */ if (percpu) *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) | (pte_val(pte) & ~_PAGE_HASHPTE)); else pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte)); #elif defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT) /* Second case is 32-bit with 64-bit PTE. In this case, we * can just store as long as we do the two halves in the right order * with a barrier in between. This is possible because we take care, * in the hash code, to pre-invalidate if the PTE was already hashed, * which synchronizes us with any concurrent invalidation. * In the percpu case, we also fallback to the simple update preserving * the hash bits */ if (percpu) { *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) | (pte_val(pte) & ~_PAGE_HASHPTE)); return; } if (pte_val(*ptep) & _PAGE_HASHPTE) flush_hash_entry(mm, ptep, addr); __asm__ __volatile__("\ stw%U0%X0 %2,%0\n\ eieio\n\ stw%U0%X0 %L2,%1" : "=m" (*ptep), "=m" (*((unsigned char *)ptep+4)) : "r" (pte) : "memory"); #elif defined(CONFIG_PPC_STD_MMU_32) /* Third case is 32-bit hash table in UP mode, we need to preserve * the _PAGE_HASHPTE bit since we may not have invalidated the previous * translation in the hash yet (done in a subsequent flush_tlb_xxx()) * and see we need to keep track that this PTE needs invalidating */ *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) | (pte_val(pte) & ~_PAGE_HASHPTE)); #else #error "Not supported " #endif } /* * Macro to mark a page protection value as "uncacheable". */ #define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \ _PAGE_WRITETHRU) #define pgprot_noncached pgprot_noncached static inline pgprot_t pgprot_noncached(pgprot_t prot) { return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | _PAGE_NO_CACHE | _PAGE_GUARDED); } #define pgprot_noncached_wc pgprot_noncached_wc static inline pgprot_t pgprot_noncached_wc(pgprot_t prot) { return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | _PAGE_NO_CACHE); } #define pgprot_cached pgprot_cached static inline pgprot_t pgprot_cached(pgprot_t prot) { return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | _PAGE_COHERENT); } #define pgprot_cached_wthru pgprot_cached_wthru static inline pgprot_t pgprot_cached_wthru(pgprot_t prot) { return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | _PAGE_COHERENT | _PAGE_WRITETHRU); } #define pgprot_cached_noncoherent pgprot_cached_noncoherent static inline pgprot_t pgprot_cached_noncoherent(pgprot_t prot) { return __pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL); } #define pgprot_writecombine pgprot_writecombine static inline pgprot_t pgprot_writecombine(pgprot_t prot) { return pgprot_noncached_wc(prot); } #endif /* !__ASSEMBLY__ */ #endif /* _ASM_POWERPC_BOOK3S_32_PGTABLE_H */