/*
* AMD 10Gb Ethernet driver
*
* This file is available to you under your choice of the following two
* licenses:
*
* License 1: GPLv2
*
* Copyright (c) 2014-2016 Advanced Micro Devices, Inc.
*
* This file is free software; you may copy, redistribute and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or (at
* your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
* This file incorporates work covered by the following copyright and
* permission notice:
* The Synopsys DWC ETHER XGMAC Software Driver and documentation
* (hereinafter "Software") is an unsupported proprietary work of Synopsys,
* Inc. unless otherwise expressly agreed to in writing between Synopsys
* and you.
*
* The Software IS NOT an item of Licensed Software or Licensed Product
* under any End User Software License Agreement or Agreement for Licensed
* Product with Synopsys or any supplement thereto. Permission is hereby
* granted, free of charge, to any person obtaining a copy of this software
* annotated with this license and the Software, to deal in the Software
* without restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is furnished
* to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
* BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
*
* License 2: Modified BSD
*
* Copyright (c) 2014-2016 Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Advanced Micro Devices, Inc. nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* This file incorporates work covered by the following copyright and
* permission notice:
* The Synopsys DWC ETHER XGMAC Software Driver and documentation
* (hereinafter "Software") is an unsupported proprietary work of Synopsys,
* Inc. unless otherwise expressly agreed to in writing between Synopsys
* and you.
*
* The Software IS NOT an item of Licensed Software or Licensed Product
* under any End User Software License Agreement or Agreement for Licensed
* Product with Synopsys or any supplement thereto. Permission is hereby
* granted, free of charge, to any person obtaining a copy of this software
* annotated with this license and the Software, to deal in the Software
* without restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is furnished
* to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
* BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "xgbe.h"
#include "xgbe-common.h"
static unsigned int ecc_sec_info_threshold = 10;
static unsigned int ecc_sec_warn_threshold = 10000;
static unsigned int ecc_sec_period = 600;
static unsigned int ecc_ded_threshold = 2;
static unsigned int ecc_ded_period = 600;
#ifdef CONFIG_AMD_XGBE_HAVE_ECC
/* Only expose the ECC parameters if supported */
module_param(ecc_sec_info_threshold, uint, S_IWUSR | S_IRUGO);
MODULE_PARM_DESC(ecc_sec_info_threshold,
" ECC corrected error informational threshold setting");
module_param(ecc_sec_warn_threshold, uint, S_IWUSR | S_IRUGO);
MODULE_PARM_DESC(ecc_sec_warn_threshold,
" ECC corrected error warning threshold setting");
module_param(ecc_sec_period, uint, S_IWUSR | S_IRUGO);
MODULE_PARM_DESC(ecc_sec_period, " ECC corrected error period (in seconds)");
module_param(ecc_ded_threshold, uint, S_IWUSR | S_IRUGO);
MODULE_PARM_DESC(ecc_ded_threshold, " ECC detected error threshold setting");
module_param(ecc_ded_period, uint, S_IWUSR | S_IRUGO);
MODULE_PARM_DESC(ecc_ded_period, " ECC detected error period (in seconds)");
#endif
static int xgbe_one_poll(struct napi_struct *, int);
static int xgbe_all_poll(struct napi_struct *, int);
static void xgbe_stop(struct xgbe_prv_data *);
static void *xgbe_alloc_node(size_t size, int node)
{
void *mem;
mem = kzalloc_node(size, GFP_KERNEL, node);
if (!mem)
mem = kzalloc(size, GFP_KERNEL);
return mem;
}
static void xgbe_free_channels(struct xgbe_prv_data *pdata)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(pdata->channel); i++) {
if (!pdata->channel[i])
continue;
kfree(pdata->channel[i]->rx_ring);
kfree(pdata->channel[i]->tx_ring);
kfree(pdata->channel[i]);
pdata->channel[i] = NULL;
}
pdata->channel_count = 0;
}
static int xgbe_alloc_channels(struct xgbe_prv_data *pdata)
{
struct xgbe_channel *channel;
struct xgbe_ring *ring;
unsigned int count, i;
unsigned int cpu;
int node;
count = max_t(unsigned int, pdata->tx_ring_count, pdata->rx_ring_count);
for (i = 0; i < count; i++) {
/* Attempt to use a CPU on the node the device is on */
cpu = cpumask_local_spread(i, dev_to_node(pdata->dev));
/* Set the allocation node based on the returned CPU */
node = cpu_to_node(cpu);
channel = xgbe_alloc_node(sizeof(*channel), node);
if (!channel)
goto err_mem;
pdata->channel[i] = channel;
snprintf(channel->name, sizeof(channel->name), "channel-%u", i);
channel->pdata = pdata;
channel->queue_index = i;
channel->dma_regs = pdata->xgmac_regs + DMA_CH_BASE +
(DMA_CH_INC * i);
channel->node = node;
cpumask_set_cpu(cpu, &channel->affinity_mask);
if (pdata->per_channel_irq)
channel->dma_irq = pdata->channel_irq[i];
if (i < pdata->tx_ring_count) {
ring = xgbe_alloc_node(sizeof(*ring), node);
if (!ring)
goto err_mem;
spin_lock_init(&ring->lock);
ring->node = node;
channel->tx_ring = ring;
}
if (i < pdata->rx_ring_count) {
ring = xgbe_alloc_node(sizeof(*ring), node);
if (!ring)
goto err_mem;
spin_lock_init(&ring->lock);
ring->node = node;
channel->rx_ring = ring;
}
netif_dbg(pdata, drv, pdata->netdev,
"%s: cpu=%u, node=%d\n", channel->name, cpu, node);
netif_dbg(pdata, drv, pdata->netdev,
"%s: dma_regs=%p, dma_irq=%d, tx=%p, rx=%p\n",
channel->name, channel->dma_regs, channel->dma_irq,
channel->tx_ring, channel->rx_ring);
}
pdata->channel_count = count;
return 0;
err_mem:
xgbe_free_channels(pdata);
return -ENOMEM;
}
static inline unsigned int xgbe_tx_avail_desc(struct xgbe_ring *ring)
{
return (ring->rdesc_count - (ring->cur - ring->dirty));
}
static inline unsigned int xgbe_rx_dirty_desc(struct xgbe_ring *ring)
{
return (ring->cur - ring->dirty);
}
static int xgbe_maybe_stop_tx_queue(struct xgbe_channel *channel,
struct xgbe_ring *ring, unsigned int count)
{
struct xgbe_prv_data *pdata = channel->pdata;
if (count > xgbe_tx_avail_desc(ring)) {
netif_info(pdata, drv, pdata->netdev,
"Tx queue stopped, not enough descriptors available\n");
netif_stop_subqueue(pdata->netdev, channel->queue_index);
ring->tx.queue_stopped = 1;
/* If we haven't notified the hardware because of xmit_more
* support, tell it now
*/
if (ring->tx.xmit_more)
pdata->hw_if.tx_start_xmit(channel, ring);
return NETDEV_TX_BUSY;
}
return 0;
}
static int xgbe_calc_rx_buf_size(struct net_device *netdev, unsigned int mtu)
{
unsigned int rx_buf_size;
rx_buf_size = mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
rx_buf_size = clamp_val(rx_buf_size, XGBE_RX_MIN_BUF_SIZE, PAGE_SIZE);
rx_buf_size = (rx_buf_size + XGBE_RX_BUF_ALIGN - 1) &
~(XGBE_RX_BUF_ALIGN - 1);
return rx_buf_size;
}
static void xgbe_enable_rx_tx_int(struct xgbe_prv_data *pdata,
struct xgbe_channel *channel)
{
struct xgbe_hw_if *hw_if = &pdata->hw_if;
enum xgbe_int int_id;
if (channel->tx_ring && channel->rx_ring)
int_id = XGMAC_INT_DMA_CH_SR_TI_RI;
else if (channel->tx_ring)
int_id = XGMAC_INT_DMA_CH_SR_TI;
else if (channel->rx_ring)
int_id = XGMAC_INT_DMA_CH_SR_RI;
else
return;
hw_if->enable_int(channel, int_id);
}
static void xgbe_enable_rx_tx_ints(struct xgbe_prv_data *pdata)
{
unsigned int i;
for (i = 0; i < pdata->channel_count; i++)
xgbe_enable_rx_tx_int(pdata, pdata->channel[i]);
}
static void xgbe_disable_rx_tx_int(struct xgbe_prv_data *pdata,
struct xgbe_channel *channel)
{
struct xgbe_hw_if *hw_if = &pdata->hw_if;
enum xgbe_int int_id;
if (channel->tx_ring && channel->rx_ring)
int_id = XGMAC_INT_DMA_CH_SR_TI_RI;
else if (channel->tx_ring)
int_id = XGMAC_INT_DMA_CH_SR_TI;
else if (channel->rx_ring)
int_id = XGMAC_INT_DMA_CH_SR_RI;
else
return;
hw_if->disable_int(channel, int_id);
}
static void xgbe_disable_rx_tx_ints(struct xgbe_prv_data *pdata)
{
unsigned int i;
for (i = 0; i < pdata->channel_count; i++)
xgbe_disable_rx_tx_int(pdata, pdata->channel[i]);
}
static bool xgbe_ecc_sec(struct xgbe_prv_data *pdata, unsigned long *period,
unsigned int *count, const char *area)
{
if (time_before(jiffies, *period)) {
(*count)++;
} else {
*period = jiffies + (ecc_sec_period * HZ);
*count = 1;
}
if (*count > ecc_sec_info_threshold)
dev_warn_once(pdata->dev,
"%s ECC corrected errors exceed informational threshold\n",
area);
if (*count > ecc_sec_warn_threshold) {
dev_warn_once(pdata->dev,
"%s ECC corrected errors exceed warning threshold\n",
area);
return true;
}
return false;
}
static bool xgbe_ecc_ded(struct xgbe_prv_data *pdata, unsigned long *period,
unsigned int *count, const char *area)
{
if (time_before(jiffies, *period)) {
(*count)++;
} else {
*period = jiffies + (ecc_ded_period * HZ);
*count = 1;
}
if (*count > ecc_ded_threshold) {
netdev_alert(pdata->netdev,
"%s ECC detected errors exceed threshold\n",
area);
return true;
}
return false;
}
static void xgbe_ecc_isr_task(unsigned long data)
{
struct xgbe_prv_data *pdata = (struct xgbe_prv_data *)data;
unsigned int ecc_isr;
bool stop = false;
/* Mask status with only the interrupts we care about */
ecc_isr = XP_IOREAD(pdata, XP_ECC_ISR);
ecc_isr &= XP_IOREAD(pdata, XP_ECC_IER);
netif_dbg(pdata, intr, pdata->netdev, "ECC_ISR=%#010x\n", ecc_isr);
if (XP_GET_BITS(ecc_isr, XP_ECC_ISR, TX_DED)) {
stop |= xgbe_ecc_ded(pdata, &pdata->tx_ded_period,
&pdata->tx_ded_count, "TX fifo");
}
if (XP_GET_BITS(ecc_isr, XP_ECC_ISR, RX_DED)) {
stop |= xgbe_ecc_ded(pdata, &pdata->rx_ded_period,
&pdata->rx_ded_count, "RX fifo");
}
if (XP_GET_BITS(ecc_isr, XP_ECC_ISR, DESC_DED)) {
stop |= xgbe_ecc_ded(pdata, &pdata->desc_ded_period,
&pdata->desc_ded_count,
"descriptor cache");
}
if (stop) {
pdata->hw_if.disable_ecc_ded(pdata);
schedule_work(&pdata->stopdev_work);
goto out;
}
if (XP_GET_BITS(ecc_isr, XP_ECC_ISR, TX_SEC)) {
if (xgbe_ecc_sec(pdata, &pdata->tx_sec_period,
&pdata->tx_sec_count, "TX fifo"))
pdata->hw_if.disable_ecc_sec(pdata, XGBE_ECC_SEC_TX);
}
if (XP_GET_BITS(ecc_isr, XP_ECC_ISR, RX_SEC))
if (xgbe_ecc_sec(pdata, &pdata->rx_sec_period,
&pdata->rx_sec_count, "RX fifo"))
pdata->hw_if.disable_ecc_sec(pdata, XGBE_ECC_SEC_RX);
if (XP_GET_BITS(ecc_isr, XP_ECC_ISR, DESC_SEC))
if (xgbe_ecc_sec(pdata, &pdata->desc_sec_period,
&pdata->desc_sec_count, "descriptor cache"))
pdata->hw_if.disable_ecc_sec(pdata, XGBE_ECC_SEC_DESC);
out:
/* Clear all ECC interrupts */
XP_IOWRITE(pdata, XP_ECC_ISR, ecc_isr);
/* Reissue interrupt if status is not clear */
if (pdata->vdata->irq_reissue_support)
XP_IOWRITE(pdata, XP_INT_REISSUE_EN, 1 << 1);
}
static irqreturn_t xgbe_ecc_isr(int irq, void *data)
{
struct xgbe_prv_data *pdata = data;
if (pdata->isr_as_tasklet)
tasklet_schedule(&pdata->tasklet_ecc);
else
xgbe_ecc_isr_task((unsigned long)pdata);
return IRQ_HANDLED;
}
static void xgbe_isr_task(unsigned long data)
{
struct xgbe_prv_data *pdata = (struct xgbe_prv_data *)data;
struct xgbe_hw_if *hw_if = &pdata->hw_if;
struct xgbe_channel *channel;
unsigned int dma_isr, dma_ch_isr;
unsigned int mac_isr, mac_tssr, mac_mdioisr;
unsigned int i;
/* The DMA interrupt status register also reports MAC and MTL
* interrupts. So for polling mode, we just need to check for
* this register to be non-zero
*/
dma_isr = XGMAC_IOREAD(pdata, DMA_ISR);
if (!dma_isr)
goto isr_done;
netif_dbg(pdata, intr, pdata->netdev, "DMA_ISR=%#010x\n", dma_isr);
for (i = 0; i < pdata->channel_count; i++) {
if (!(dma_isr & (1 << i)))
continue;
channel = pdata->channel[i];
dma_ch_isr = XGMAC_DMA_IOREAD(channel, DMA_CH_SR);
netif_dbg(pdata, intr, pdata->netdev, "DMA_CH%u_ISR=%#010x\n",
i, dma_ch_isr);
/* The TI or RI interrupt bits may still be set even if using
* per channel DMA interrupts. Check to be sure those are not
* enabled before using the private data napi structure.
*/
if (!pdata->per_channel_irq &&
(XGMAC_GET_BITS(dma_ch_isr, DMA_CH_SR, TI) ||
XGMAC_GET_BITS(dma_ch_isr, DMA_CH_SR, RI))) {
if (napi_schedule_prep(&pdata->napi)) {
/* Disable Tx and Rx interrupts */
xgbe_disable_rx_tx_ints(pdata);
/* Turn on polling */
__napi_schedule_irqoff(&pdata->napi);
}
} else {
/* Don't clear Rx/Tx status if doing per channel DMA
* interrupts, these will be cleared by the ISR for
* per channel DMA interrupts.
*/
XGMAC_SET_BITS(dma_ch_isr, DMA_CH_SR, TI, 0);
XGMAC_SET_BITS(dma_ch_isr, DMA_CH_SR, RI, 0);
}
if (XGMAC_GET_BITS(dma_ch_isr, DMA_CH_SR, RBU))
pdata->ext_stats.rx_buffer_unavailable++;
/* Restart the device on a Fatal Bus Error */
if (XGMAC_GET_BITS(dma_ch_isr, DMA_CH_SR, FBE))
schedule_work(&pdata->restart_work);
/* Clear interrupt signals */
XGMAC_DMA_IOWRITE(channel, DMA_CH_SR, dma_ch_isr);
}
if (XGMAC_GET_BITS(dma_isr, DMA_ISR, MACIS)) {
mac_isr = XGMAC_IOREAD(pdata, MAC_ISR);
netif_dbg(pdata, intr, pdata->netdev, "MAC_ISR=%#010x\n",
mac_isr);
if (XGMAC_GET_BITS(mac_isr, MAC_ISR, MMCTXIS))
hw_if->tx_mmc_int(pdata);
if (XGMAC_GET_BITS(mac_isr, MAC_ISR, MMCRXIS))
hw_if->rx_mmc_int(pdata);
if (XGMAC_GET_BITS(mac_isr, MAC_ISR, TSIS)) {
mac_tssr = XGMAC_IOREAD(pdata, MAC_TSSR);
netif_dbg(pdata, intr, pdata->netdev,
"MAC_TSSR=%#010x\n", mac_tssr);
if (XGMAC_GET_BITS(mac_tssr, MAC_TSSR, TXTSC)) {
/* Read Tx Timestamp to clear interrupt */
pdata->tx_tstamp =
hw_if->get_tx_tstamp(pdata);
queue_work(pdata->dev_workqueue,
&pdata->tx_tstamp_work);
}
}
if (XGMAC_GET_BITS(mac_isr, MAC_ISR, SMI)) {
mac_mdioisr = XGMAC_IOREAD(pdata, MAC_MDIOISR);
netif_dbg(pdata, intr, pdata->netdev,
"MAC_MDIOISR=%#010x\n", mac_mdioisr);
if (XGMAC_GET_BITS(mac_mdioisr, MAC_MDIOISR,
SNGLCOMPINT))
complete(&pdata->mdio_complete);
}
}
isr_done:
/* If there is not a separate AN irq, handle it here */
if (pdata->dev_irq == pdata->an_irq)
pdata->phy_if.an_isr(pdata);
/* If there is not a separate ECC irq, handle it here */
if (pdata->vdata->ecc_support && (pdata->dev_irq == pdata->ecc_irq))
xgbe_ecc_isr_task((unsigned long)pdata);
/* If there is not a separate I2C irq, handle it here */
if (pdata->vdata->i2c_support && (pdata->dev_irq == pdata->i2c_irq))
pdata->i2c_if.i2c_isr(pdata);
/* Reissue interrupt if status is not clear */
if (pdata->vdata->irq_reissue_support) {
unsigned int reissue_mask;
reissue_mask = 1 << 0;
if (!pdata->per_channel_irq)
reissue_mask |= 0xffff < 4;
XP_IOWRITE(pdata, XP_INT_REISSUE_EN, reissue_mask);
}
}
static irqreturn_t xgbe_isr(int irq, void *data)
{
struct xgbe_prv_data *pdata = data;
if (pdata->isr_as_tasklet)
tasklet_schedule(&pdata->tasklet_dev);
else
xgbe_isr_task((unsigned long)pdata);
return IRQ_HANDLED;
}
static irqreturn_t xgbe_dma_isr(int irq, void *data)
{
struct xgbe_channel *channel = data;
struct xgbe_prv_data *pdata = channel->pdata;
unsigned int dma_status;
/* Per channel DMA interrupts are enabled, so we use the per
* channel napi structure and not the private data napi structure
*/
if (napi_schedule_prep(&channel->napi)) {
/* Disable Tx and Rx interrupts */
if (pdata->channel_irq_mode)
xgbe_disable_rx_tx_int(pdata, channel);
else
disable_irq_nosync(channel->dma_irq);
/* Turn on polling */
__napi_schedule_irqoff(&channel->napi);
}
/* Clear Tx/Rx signals */
dma_status = 0;
XGMAC_SET_BITS(dma_status, DMA_CH_SR, TI, 1);
XGMAC_SET_BITS(dma_status, DMA_CH_SR, RI, 1);
XGMAC_DMA_IOWRITE(channel, DMA_CH_SR, dma_status);
return IRQ_HANDLED;
}
static void xgbe_tx_timer(unsigned long data)
{
struct xgbe_channel *channel = (struct xgbe_channel *)data;
struct xgbe_prv_data *pdata = channel->pdata;
struct napi_struct *napi;
DBGPR("-->xgbe_tx_timer\n");
napi = (pdata->per_channel_irq) ? &channel->napi : &pdata->napi;
if (napi_schedule_prep(napi)) {
/* Disable Tx and Rx interrupts */
if (pdata->per_channel_irq)
if (pdata->channel_irq_mode)
xgbe_disable_rx_tx_int(pdata, channel);
else
disable_irq_nosync(channel->dma_irq);
else
xgbe_disable_rx_tx_ints(pdata);
/* Turn on polling */
__napi_schedule(napi);
}
channel->tx_timer_active = 0;
DBGPR("<--xgbe_tx_timer\n");
}
static void xgbe_service(struct work_struct *work)
{
struct xgbe_prv_data *pdata = container_of(work,
struct xgbe_prv_data,
service_work);
pdata->phy_if.phy_status(pdata);
}
static void xgbe_service_timer(unsigned long data)
{
struct xgbe_prv_data *pdata = (struct xgbe_prv_data *)data;
queue_work(pdata->dev_workqueue, &pdata->service_work);
mod_timer(&pdata->service_timer, jiffies + HZ);
}
static void xgbe_init_timers(struct xgbe_prv_data *pdata)
{
struct xgbe_channel *channel;
unsigned int i;
setup_timer(&pdata->service_timer, xgbe_service_timer,
(unsigned long)pdata);
for (i = 0; i < pdata->channel_count; i++) {
channel = pdata->channel[i];
if (!channel->tx_ring)
break;
setup_timer(&channel->tx_timer, xgbe_tx_timer,
(unsigned long)channel);
}
}
static void xgbe_start_timers(struct xgbe_prv_data *pdata)
{
mod_timer(&pdata->service_timer, jiffies + HZ);
}
static void xgbe_stop_timers(struct xgbe_prv_data *pdata)
{
struct xgbe_channel *channel;
unsigned int i;
del_timer_sync(&pdata->service_timer);
for (i = 0; i < pdata->channel_count; i++) {
channel = pdata->channel[i];
if (!channel->tx_ring)
break;
del_timer_sync(&channel->tx_timer);
}
}
void xgbe_get_all_hw_features(struct xgbe_prv_data *pdata)
{
unsigned int mac_hfr0, mac_hfr1, mac_hfr2;
struct xgbe_hw_features *hw_feat = &pdata->hw_feat;
DBGPR("-->xgbe_get_all_hw_features\n");
mac_hfr0 = XGMAC_IOREAD(pdata, MAC_HWF0R);
mac_hfr1 = XGMAC_IOREAD(pdata, MAC_HWF1R);
mac_hfr2 = XGMAC_IOREAD(pdata, MAC_HWF2R);
memset(hw_feat, 0, sizeof(*hw_feat));
hw_feat->version = XGMAC_IOREAD(pdata, MAC_VR);
/* Hardware feature register 0 */
hw_feat->gmii = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, GMIISEL);
hw_feat->vlhash = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, VLHASH);
hw_feat->sma = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, SMASEL);
hw_feat->rwk = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, RWKSEL);
hw_feat->mgk = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, MGKSEL);
hw_feat->mmc = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, MMCSEL);
hw_feat->aoe = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, ARPOFFSEL);
hw_feat->ts = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, TSSEL);
hw_feat->eee = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, EEESEL);
hw_feat->tx_coe = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, TXCOESEL);
hw_feat->rx_coe = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, RXCOESEL);
hw_feat->addn_mac = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R,
ADDMACADRSEL);
hw_feat->ts_src = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, TSSTSSEL);
hw_feat->sa_vlan_ins = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, SAVLANINS);
/* Hardware feature register 1 */
hw_feat->rx_fifo_size = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R,
RXFIFOSIZE);
hw_feat->tx_fifo_size = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R,
TXFIFOSIZE);
hw_feat->adv_ts_hi = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, ADVTHWORD);
hw_feat->dma_width = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, ADDR64);
hw_feat->dcb = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, DCBEN);
hw_feat->sph = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, SPHEN);
hw_feat->tso = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, TSOEN);
hw_feat->dma_debug = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, DBGMEMA);
hw_feat->rss = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, RSSEN);
hw_feat->tc_cnt = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, NUMTC);
hw_feat->hash_table_size = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R,
HASHTBLSZ);
hw_feat->l3l4_filter_num = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R,
L3L4FNUM);
/* Hardware feature register 2 */
hw_feat->rx_q_cnt = XGMAC_GET_BITS(mac_hfr2, MAC_HWF2R, RXQCNT);
hw_feat->tx_q_cnt = XGMAC_GET_BITS(mac_hfr2, MAC_HWF2R, TXQCNT);
hw_feat->rx_ch_cnt = XGMAC_GET_BITS(mac_hfr2, MAC_HWF2R, RXCHCNT);
hw_feat->tx_ch_cnt = XGMAC_GET_BITS(mac_hfr2, MAC_HWF2R, TXCHCNT);
hw_feat->pps_out_num = XGMAC_GET_BITS(mac_hfr2, MAC_HWF2R, PPSOUTNUM);
hw_feat->aux_snap_num = XGMAC_GET_BITS(mac_hfr2, MAC_HWF2R, AUXSNAPNUM);
/* Translate the Hash Table size into actual number */
switch (hw_feat->hash_table_size) {
case 0:
break;
case 1:
hw_feat->hash_table_size = 64;
break;
case 2:
hw_feat->hash_table_size = 128;
break;
case 3:
hw_feat->hash_table_size = 256;
break;
}
/* Translate the address width setting into actual number */
switch (hw_feat->dma_width) {
case 0:
hw_feat->dma_width = 32;
break;
case 1:
hw_feat->dma_width = 40;
break;
case 2:
hw_feat->dma_width = 48;
break;
default:
hw_feat->dma_width = 32;
}
/* The Queue, Channel and TC counts are zero based so increment them
* to get the actual number
*/
hw_feat->rx_q_cnt++;
hw_feat->tx_q_cnt++;
hw_feat->rx_ch_cnt++;
hw_feat->tx_ch_cnt++;
hw_feat->tc_cnt++;
/* Translate the fifo sizes into actual numbers */
hw_feat->rx_fifo_size = 1 << (hw_feat->rx_fifo_size + 7);
hw_feat->tx_fifo_size = 1 << (hw_feat->tx_fifo_size + 7);
DBGPR("<--xgbe_get_all_hw_features\n");
}
static void xgbe_napi_enable(struct xgbe_prv_data *pdata, unsigned int add)
{
struct xgbe_channel *channel;
unsigned int i;
if (pdata->per_channel_irq) {
for (i = 0; i < pdata->channel_count; i++) {
channel = pdata->channel[i];
if (add)
netif_napi_add(pdata->netdev, &channel->napi,
xgbe_one_poll, NAPI_POLL_WEIGHT);
napi_enable(&channel->napi);
}
} else {
if (add)
netif_napi_add(pdata->netdev, &pdata->napi,
xgbe_all_poll, NAPI_POLL_WEIGHT);
napi_enable(&pdata->napi);
}
}
static void xgbe_napi_disable(struct xgbe_prv_data *pdata, unsigned int del)
{
struct xgbe_channel *channel;
unsigned int i;
if (pdata->per_channel_irq) {
for (i = 0; i < pdata->channel_count; i++) {
channel = pdata->channel[i];
napi_disable(&channel->napi);
if (del)
netif_napi_del(&channel->napi);
}
} else {
napi_disable(&pdata->napi);
if (del)
netif_napi_del(&pdata->napi);
}
}
static int xgbe_request_irqs(struct xgbe_prv_data *pdata)
{
struct xgbe_channel *channel;
struct net_device *netdev = pdata->netdev;
unsigned int i;
int ret;
tasklet_init(&pdata->tasklet_dev, xgbe_isr_task, (unsigned long)pdata);
tasklet_init(&pdata->tasklet_ecc, xgbe_ecc_isr_task,
(unsigned long)pdata);
ret = devm_request_irq(pdata->dev, pdata->dev_irq, xgbe_isr, 0,
netdev->name, pdata);
if (ret) {
netdev_alert(netdev, "error requesting irq %d\n",
pdata->dev_irq);
return ret;
}
if (pdata->vdata->ecc_support && (pdata->dev_irq != pdata->ecc_irq)) {
ret = devm_request_irq(pdata->dev, pdata->ecc_irq, xgbe_ecc_isr,
0, pdata->ecc_name, pdata);
if (ret) {
netdev_alert(netdev, "error requesting ecc irq %d\n",
pdata->ecc_irq);
goto err_dev_irq;
}
}
if (!pdata->per_channel_irq)
return 0;
for (i = 0; i < pdata->channel_count; i++) {
channel = pdata->channel[i];
snprintf(channel->dma_irq_name,
sizeof(channel->dma_irq_name) - 1,
"%s-TxRx-%u", netdev_name(netdev),
channel->queue_index);
ret = devm_request_irq(pdata->dev, channel->dma_irq,
xgbe_dma_isr, 0,
channel->dma_irq_name, channel);
if (ret) {
netdev_alert(netdev, "error requesting irq %d\n",
channel->dma_irq);
goto err_dma_irq;
}
irq_set_affinity_hint(channel->dma_irq,
&channel->affinity_mask);
}
return 0;
err_dma_irq:
/* Using an unsigned int, 'i' will go to UINT_MAX and exit */
for (i--; i < pdata->channel_count; i--) {
channel = pdata->channel[i];
irq_set_affinity_hint(channel->dma_irq, NULL);
devm_free_irq(pdata->dev, channel->dma_irq, channel);
}
if (pdata->vdata->ecc_support && (pdata->dev_irq != pdata->ecc_irq))
devm_free_irq(pdata->dev, pdata->ecc_irq, pdata);
err_dev_irq:
devm_free_irq(pdata->dev, pdata->dev_irq, pdata);
return ret;
}
static void xgbe_free_irqs(struct xgbe_prv_data *pdata)
{
struct xgbe_channel *channel;
unsigned int i;
devm_free_irq(pdata->dev, pdata->dev_irq, pdata);
if (pdata->vdata->ecc_support && (pdata->dev_irq != pdata->ecc_irq))
devm_free_irq(pdata->dev, pdata->ecc_irq, pdata);
if (!pdata->per_channel_irq)
return;
for (i = 0; i < pdata->channel_count; i++) {
channel = pdata->channel[i];
irq_set_affinity_hint(channel->dma_irq, NULL);
devm_free_irq(pdata->dev, channel->dma_irq, channel);
}
}
void xgbe_init_tx_coalesce(struct xgbe_prv_data *pdata)
{
struct xgbe_hw_if *hw_if = &pdata->hw_if;
DBGPR("-->xgbe_init_tx_coalesce\n");
pdata->tx_usecs = XGMAC_INIT_DMA_TX_USECS;
pdata->tx_frames = XGMAC_INIT_DMA_TX_FRAMES;
hw_if->config_tx_coalesce(pdata);
DBGPR("<--xgbe_init_tx_coalesce\n");
}
void xgbe_init_rx_coalesce(struct xgbe_prv_data *pdata)
{
struct xgbe_hw_if *hw_if = &pdata->hw_if;
DBGPR("-->xgbe_init_rx_coalesce\n");
pdata->rx_riwt = hw_if->usec_to_riwt(pdata, XGMAC_INIT_DMA_RX_USECS);
pdata->rx_usecs = XGMAC_INIT_DMA_RX_USECS;
pdata->rx_frames = XGMAC_INIT_DMA_RX_FRAMES;
hw_if->config_rx_coalesce(pdata);
DBGPR("<--xgbe_init_rx_coalesce\n");
}
static void xgbe_free_tx_data(struct xgbe_prv_data *pdata)
{
struct xgbe_desc_if *desc_if = &pdata->desc_if;
struct xgbe_ring *ring;
struct xgbe_ring_data *rdata;
unsigned int i, j;
DBGPR("-->xgbe_free_tx_data\n");
for (i = 0; i < pdata->channel_count; i++) {
ring = pdata->channel[i]->tx_ring;
if (!ring)
break;
for (j = 0; j < ring->rdesc_count; j++) {
rdata = XGBE_GET_DESC_DATA(ring, j);
desc_if->unmap_rdata(pdata, rdata);
}
}
DBGPR("<--xgbe_free_tx_data\n");
}
static void xgbe_free_rx_data(struct xgbe_prv_data *pdata)
{
struct xgbe_desc_if *desc_if = &pdata->desc_if;
struct xgbe_ring *ring;
struct xgbe_ring_data *rdata;
unsigned int i, j;
DBGPR("-->xgbe_free_rx_data\n");
for (i = 0; i < pdata->channel_count; i++) {
ring = pdata->channel[i]->rx_ring;
if (!ring)
break;
for (j = 0; j < ring->rdesc_count; j++) {
rdata = XGBE_GET_DESC_DATA(ring, j);
desc_if->unmap_rdata(pdata, rdata);
}
}
DBGPR("<--xgbe_free_rx_data\n");
}
static int xgbe_phy_reset(struct xgbe_prv_data *pdata)
{
pdata->phy_link = -1;
pdata->phy_speed = SPEED_UNKNOWN;
return pdata->phy_if.phy_reset(pdata);
}
int xgbe_powerdown(struct net_device *netdev, unsigned int caller)
{
struct xgbe_prv_data *pdata = netdev_priv(netdev);
struct xgbe_hw_if *hw_if = &pdata->hw_if;
unsigned long flags;
DBGPR("-->xgbe_powerdown\n");
if (!netif_running(netdev) ||
(caller == XGMAC_IOCTL_CONTEXT && pdata->power_down)) {
netdev_alert(netdev, "Device is already powered down\n");
DBGPR("<--xgbe_powerdown\n");
return -EINVAL;
}
spin_lock_irqsave(&pdata->lock, flags);
if (caller == XGMAC_DRIVER_CONTEXT)
netif_device_detach(netdev);
netif_tx_stop_all_queues(netdev);
xgbe_stop_timers(pdata);
flush_workqueue(pdata->dev_workqueue);
hw_if->powerdown_tx(pdata);
hw_if->powerdown_rx(pdata);
xgbe_napi_disable(pdata, 0);
pdata->power_down = 1;
spin_unlock_irqrestore(&pdata->lock, flags);
DBGPR("<--xgbe_powerdown\n");
return 0;
}
int xgbe_powerup(struct net_device *netdev, unsigned int caller)
{
struct xgbe_prv_data *pdata = netdev_priv(netdev);
struct xgbe_hw_if *hw_if = &pdata->hw_if;
unsigned long flags;
DBGPR("-->xgbe_powerup\n");
if (!netif_running(netdev) ||
(caller == XGMAC_IOCTL_CONTEXT && !pdata->power_down)) {
netdev_alert(netdev, "Device is already powered up\n");
DBGPR("<--xgbe_powerup\n");
return -EINVAL;
}
spin_lock_irqsave(&pdata->lock, flags);
pdata->power_down = 0;
xgbe_napi_enable(pdata, 0);
hw_if->powerup_tx(pdata);
hw_if->powerup_rx(pdata);
if (caller == XGMAC_DRIVER_CONTEXT)
netif_device_attach(netdev);
netif_tx_start_all_queues(netdev);
xgbe_start_timers(pdata);
spin_unlock_irqrestore(&pdata->lock, flags);
DBGPR("<--xgbe_powerup\n");
return 0;
}
static int xgbe_start(struct xgbe_prv_data *pdata)
{
struct xgbe_hw_if *hw_if = &pdata->hw_if;
struct xgbe_phy_if *phy_if = &pdata->phy_if;
struct net_device *netdev = pdata->netdev;
int ret;
DBGPR("-->xgbe_start\n");
ret = hw_if->init(pdata);
if (ret)
return ret;
xgbe_napi_enable(pdata, 1);
ret = xgbe_request_irqs(pdata);
if (ret)
goto err_napi;
ret = phy_if->phy_start(pdata);
if (ret)
goto err_irqs;
hw_if->enable_tx(pdata);
hw_if->enable_rx(pdata);
netif_tx_start_all_queues(netdev);
xgbe_start_timers(pdata);
queue_work(pdata->dev_workqueue, &pdata->service_work);
clear_bit(XGBE_STOPPED, &pdata->dev_state);
DBGPR("<--xgbe_start\n");
return 0;
err_irqs:
xgbe_free_irqs(pdata);
err_napi:
xgbe_napi_disable(pdata, 1);
hw_if->exit(pdata);
return ret;
}
static void xgbe_stop(struct xgbe_prv_data *pdata)
{
struct xgbe_hw_if *hw_if = &pdata->hw_if;
struct xgbe_phy_if *phy_if = &pdata->phy_if;
struct xgbe_channel *channel;
struct net_device *netdev = pdata->netdev;
struct netdev_queue *txq;
unsigned int i;
DBGPR("-->xgbe_stop\n");
if (test_bit(XGBE_STOPPED, &pdata->dev_state))
return;
netif_tx_stop_all_queues(netdev);
xgbe_stop_timers(pdata);
flush_workqueue(pdata->dev_workqueue);
hw_if->disable_tx(pdata);
hw_if->disable_rx(pdata);
phy_if->phy_stop(pdata);
xgbe_free_irqs(pdata);
xgbe_napi_disable(pdata, 1);
hw_if->exit(pdata);
for (i = 0; i < pdata->channel_count; i++) {
channel = pdata->channel[i];
if (!channel->tx_ring)
continue;
txq = netdev_get_tx_queue(netdev, channel->queue_index);
netdev_tx_reset_queue(txq);
}
set_bit(XGBE_STOPPED, &pdata->dev_state);
DBGPR("<--xgbe_stop\n");
}
static void xgbe_stopdev(struct work_struct *work)
{
struct xgbe_prv_data *pdata = container_of(work,
struct xgbe_prv_data,
stopdev_work);
rtnl_lock();
xgbe_stop(pdata);
xgbe_free_tx_data(pdata);
xgbe_free_rx_data(pdata);
rtnl_unlock();
netdev_alert(pdata->netdev, "device stopped\n");
}
static void xgbe_restart_dev(struct xgbe_prv_data *pdata)
{
DBGPR("-->xgbe_restart_dev\n");
/* If not running, "restart" will happen on open */
if (!netif_running(pdata->netdev))
return;
xgbe_stop(pdata);
xgbe_free_tx_data(pdata);
xgbe_free_rx_data(pdata);
xgbe_start(pdata);
DBGPR("<--xgbe_restart_dev\n");
}
static void xgbe_restart(struct work_struct *work)
{
struct xgbe_prv_data *pdata = container_of(work,
struct xgbe_prv_data,
restart_work);
rtnl_lock();
xgbe_restart_dev(pdata);
rtnl_unlock();
}
static void xgbe_tx_tstamp(struct work_struct *work)
{
struct xgbe_prv_data *pdata = container_of(work,
struct xgbe_prv_data,
tx_tstamp_work);
struct skb_shared_hwtstamps hwtstamps;
u64 nsec;
unsigned long flags;
spin_lock_irqsave(&pdata->tstamp_lock, flags);
if (!pdata->tx_tstamp_skb)
goto unlock;
if (pdata->tx_tstamp) {
nsec = timecounter_cyc2time(&pdata->tstamp_tc,
pdata->tx_tstamp);
memset(&hwtstamps, 0, sizeof(hwtstamps));
hwtstamps.hwtstamp = ns_to_ktime(nsec);
skb_tstamp_tx(pdata->tx_tstamp_skb, &hwtstamps);
}
dev_kfree_skb_any(pdata->tx_tstamp_skb);
pdata->tx_tstamp_skb = NULL;
unlock:
spin_unlock_irqrestore(&pdata->tstamp_lock, flags);
}
static int xgbe_get_hwtstamp_settings(struct xgbe_prv_data *pdata,
struct ifreq *ifreq)
{
if (copy_to_user(ifreq->ifr_data, &pdata->tstamp_config,
sizeof(pdata->tstamp_config)))
return -EFAULT;
return 0;
}
static int xgbe_set_hwtstamp_settings(struct xgbe_prv_data *pdata,
struct ifreq *ifreq)
{
struct hwtstamp_config config;
unsigned int mac_tscr;
if (copy_from_user(&config, ifreq->ifr_data, sizeof(config)))
return -EFAULT;
if (config.flags)
return -EINVAL;
mac_tscr = 0;
switch (config.tx_type) {
case HWTSTAMP_TX_OFF:
break;
case HWTSTAMP_TX_ON:
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1);
break;
default:
return -ERANGE;
}
switch (config.rx_filter) {
case HWTSTAMP_FILTER_NONE:
break;
case HWTSTAMP_FILTER_NTP_ALL:
case HWTSTAMP_FILTER_ALL:
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENALL, 1);
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1);
break;
/* PTP v2, UDP, any kind of event packet */
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSVER2ENA, 1);
/* PTP v1, UDP, any kind of event packet */
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV4ENA, 1);
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV6ENA, 1);
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, SNAPTYPSEL, 1);
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1);
break;
/* PTP v2, UDP, Sync packet */
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSVER2ENA, 1);
/* PTP v1, UDP, Sync packet */
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV4ENA, 1);
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV6ENA, 1);
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSEVNTENA, 1);
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1);
break;
/* PTP v2, UDP, Delay_req packet */
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSVER2ENA, 1);
/* PTP v1, UDP, Delay_req packet */
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV4ENA, 1);
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV6ENA, 1);
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSEVNTENA, 1);
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSMSTRENA, 1);
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1);
break;
/* 802.AS1, Ethernet, any kind of event packet */
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, AV8021ASMEN, 1);
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, SNAPTYPSEL, 1);
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1);
break;
/* 802.AS1, Ethernet, Sync packet */
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, AV8021ASMEN, 1);
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSEVNTENA, 1);
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1);
break;
/* 802.AS1, Ethernet, Delay_req packet */
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, AV8021ASMEN, 1);
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSMSTRENA, 1);
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSEVNTENA, 1);
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1);
break;
/* PTP v2/802.AS1, any layer, any kind of event packet */
case HWTSTAMP_FILTER_PTP_V2_EVENT:
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSVER2ENA, 1);
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPENA, 1);
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV4ENA, 1);
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV6ENA, 1);
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, SNAPTYPSEL, 1);
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1);
break;
/* PTP v2/802.AS1, any layer, Sync packet */
case HWTSTAMP_FILTER_PTP_V2_SYNC:
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSVER2ENA, 1);
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPENA, 1);
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV4ENA, 1);
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV6ENA, 1);
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSEVNTENA, 1);
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1);
break;
/* PTP v2/802.AS1, any layer, Delay_req packet */
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSVER2ENA, 1);
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPENA, 1);
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV4ENA, 1);
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV6ENA, 1);
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSMSTRENA, 1);
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSEVNTENA, 1);
XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1);
break;
default:
return -ERANGE;
}
pdata->hw_if.config_tstamp(pdata, mac_tscr);
memcpy(&pdata->tstamp_config, &config, sizeof(config));
return 0;
}
static void xgbe_prep_tx_tstamp(struct xgbe_prv_data *pdata,
struct sk_buff *skb,
struct xgbe_packet_data *packet)
{
unsigned long flags;
if (XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, PTP)) {
spin_lock_irqsave(&pdata->tstamp_lock, flags);
if (pdata->tx_tstamp_skb) {
/* Another timestamp in progress, ignore this one */
XGMAC_SET_BITS(packet->attributes,
TX_PACKET_ATTRIBUTES, PTP, 0);
} else {
pdata->tx_tstamp_skb = skb_get(skb);
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
}
spin_unlock_irqrestore(&pdata->tstamp_lock, flags);
}
skb_tx_timestamp(skb);
}
static void xgbe_prep_vlan(struct sk_buff *skb, struct xgbe_packet_data *packet)
{
if (skb_vlan_tag_present(skb))
packet->vlan_ctag = skb_vlan_tag_get(skb);
}
static int xgbe_prep_tso(struct sk_buff *skb, struct xgbe_packet_data *packet)
{
int ret;
if (!XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
TSO_ENABLE))
return 0;
ret = skb_cow_head(skb, 0);
if (ret)
return ret;
packet->header_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
packet->tcp_header_len = tcp_hdrlen(skb);
packet->tcp_payload_len = skb->len - packet->header_len;
packet->mss = skb_shinfo(skb)->gso_size;
DBGPR(" packet->header_len=%u\n", packet->header_len);
DBGPR(" packet->tcp_header_len=%u, packet->tcp_payload_len=%u\n",
packet->tcp_header_len, packet->tcp_payload_len);
DBGPR(" packet->mss=%u\n", packet->mss);
/* Update the number of packets that will ultimately be transmitted
* along with the extra bytes for each extra packet
*/
packet->tx_packets = skb_shinfo(skb)->gso_segs;
packet->tx_bytes += (packet->tx_packets - 1) * packet->header_len;
return 0;
}
static int xgbe_is_tso(struct sk_buff *skb)
{
if (skb->ip_summed != CHECKSUM_PARTIAL)
return 0;
if (!skb_is_gso(skb))
return 0;
DBGPR(" TSO packet to be processed\n");
return 1;
}
static void xgbe_packet_info(struct xgbe_prv_data *pdata,
struct xgbe_ring *ring, struct sk_buff *skb,
struct xgbe_packet_data *packet)
{
struct skb_frag_struct *frag;
unsigned int context_desc;
unsigned int len;
unsigned int i;
packet->skb = skb;
context_desc = 0;
packet->rdesc_count = 0;
packet->tx_packets = 1;
packet->tx_bytes = skb->len;
if (xgbe_is_tso(skb)) {
/* TSO requires an extra descriptor if mss is different */
if (skb_shinfo(skb)->gso_size != ring->tx.cur_mss) {
context_desc = 1;
packet->rdesc_count++;
}
/* TSO requires an extra descriptor for TSO header */
packet->rdesc_count++;
XGMAC_SET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
TSO_ENABLE, 1);
XGMAC_SET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
CSUM_ENABLE, 1);
} else if (skb->ip_summed == CHECKSUM_PARTIAL)
XGMAC_SET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
CSUM_ENABLE, 1);
if (skb_vlan_tag_present(skb)) {
/* VLAN requires an extra descriptor if tag is different */
if (skb_vlan_tag_get(skb) != ring->tx.cur_vlan_ctag)
/* We can share with the TSO context descriptor */
if (!context_desc) {
context_desc = 1;
packet->rdesc_count++;
}
XGMAC_SET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
VLAN_CTAG, 1);
}
if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
(pdata->tstamp_config.tx_type == HWTSTAMP_TX_ON))
XGMAC_SET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
PTP, 1);
for (len = skb_headlen(skb); len;) {
packet->rdesc_count++;
len -= min_t(unsigned int, len, XGBE_TX_MAX_BUF_SIZE);
}
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
frag = &skb_shinfo(skb)->frags[i];
for (len = skb_frag_size(frag); len; ) {
packet->rdesc_count++;
len -= min_t(unsigned int, len, XGBE_TX_MAX_BUF_SIZE);
}
}
}
static int xgbe_open(struct net_device *netdev)
{
struct xgbe_prv_data *pdata = netdev_priv(netdev);
struct xgbe_desc_if *desc_if = &pdata->desc_if;
int ret;
DBGPR("-->xgbe_open\n");
/* Reset the phy settings */
ret = xgbe_phy_reset(pdata);
if (ret)
return ret;
/* Enable the clocks */
ret = clk_prepare_enable(pdata->sysclk);
if (ret) {
netdev_alert(netdev, "dma clk_prepare_enable failed\n");
return ret;
}
ret = clk_prepare_enable(pdata->ptpclk);
if (ret) {
netdev_alert(netdev, "ptp clk_prepare_enable failed\n");
goto err_sysclk;
}
/* Calculate the Rx buffer size before allocating rings */
ret = xgbe_calc_rx_buf_size(netdev, netdev->mtu);
if (ret < 0)
goto err_ptpclk;
pdata->rx_buf_size = ret;
/* Allocate the channel and ring structures */
ret = xgbe_alloc_channels(pdata);
if (ret)
goto err_ptpclk;
/* Allocate the ring descriptors and buffers */
ret = desc_if->alloc_ring_resources(pdata);
if (ret)
goto err_channels;
INIT_WORK(&pdata->service_work, xgbe_service);
INIT_WORK(&pdata->restart_work, xgbe_restart);
INIT_WORK(&pdata->stopdev_work, xgbe_stopdev);
INIT_WORK(&pdata->tx_tstamp_work, xgbe_tx_tstamp);
xgbe_init_timers(pdata);
ret = xgbe_start(pdata);
if (ret)
goto err_rings;
clear_bit(XGBE_DOWN, &pdata->dev_state);
DBGPR("<--xgbe_open\n");
return 0;
err_rings:
desc_if->free_ring_resources(pdata);
err_channels:
xgbe_free_channels(pdata);
err_ptpclk:
clk_disable_unprepare(pdata->ptpclk);
err_sysclk:
clk_disable_unprepare(pdata->sysclk);
return ret;
}
static int xgbe_close(struct net_device *netdev)
{
struct xgbe_prv_data *pdata = netdev_priv(netdev);
struct xgbe_desc_if *desc_if = &pdata->desc_if;
DBGPR("-->xgbe_close\n");
/* Stop the device */
xgbe_stop(pdata);
/* Free the ring descriptors and buffers */
desc_if->free_ring_resources(pdata);
/* Free the channel and ring structures */
xgbe_free_channels(pdata);
/* Disable the clocks */
clk_disable_unprepare(pdata->ptpclk);
clk_disable_unprepare(pdata->sysclk);
set_bit(XGBE_DOWN, &pdata->dev_state);
DBGPR("<--xgbe_close\n");
return 0;
}
static int xgbe_xmit(struct sk_buff *skb, struct net_device *netdev)
{
struct xgbe_prv_data *pdata = netdev_priv(netdev);
struct xgbe_hw_if *hw_if = &pdata->hw_if;
struct xgbe_desc_if *desc_if = &pdata->desc_if;
struct xgbe_channel *channel;
struct xgbe_ring *ring;
struct xgbe_packet_data *packet;
struct netdev_queue *txq;
int ret;
DBGPR("-->xgbe_xmit: skb->len = %d\n", skb->len);
channel = pdata->channel[skb->queue_mapping];
txq = netdev_get_tx_queue(netdev, channel->queue_index);
ring = channel->tx_ring;
packet = &ring->packet_data;
ret = NETDEV_TX_OK;
if (skb->len == 0) {
netif_err(pdata, tx_err, netdev,
"empty skb received from stack\n");
dev_kfree_skb_any(skb);
goto tx_netdev_return;
}
/* Calculate preliminary packet info */
memset(packet, 0, sizeof(*packet));
xgbe_packet_info(pdata, ring, skb, packet);
/* Check that there are enough descriptors available */
ret = xgbe_maybe_stop_tx_queue(channel, ring, packet->rdesc_count);
if (ret)
goto tx_netdev_return;
ret = xgbe_prep_tso(skb, packet);
if (ret) {
netif_err(pdata, tx_err, netdev,
"error processing TSO packet\n");
dev_kfree_skb_any(skb);
goto tx_netdev_return;
}
xgbe_prep_vlan(skb, packet);
if (!desc_if->map_tx_skb(channel, skb)) {
dev_kfree_skb_any(skb);
goto tx_netdev_return;
}
xgbe_prep_tx_tstamp(pdata, skb, packet);
/* Report on the actual number of bytes (to be) sent */
netdev_tx_sent_queue(txq, packet->tx_bytes);
/* Configure required descriptor fields for transmission */
hw_if->dev_xmit(channel);
if (netif_msg_pktdata(pdata))
xgbe_print_pkt(netdev, skb, true);
/* Stop the queue in advance if there may not be enough descriptors */
xgbe_maybe_stop_tx_queue(channel, ring, XGBE_TX_MAX_DESCS);
ret = NETDEV_TX_OK;
tx_netdev_return:
return ret;
}
static void xgbe_set_rx_mode(struct net_device *netdev)
{
struct xgbe_prv_data *pdata = netdev_priv(netdev);
struct xgbe_hw_if *hw_if = &pdata->hw_if;
DBGPR("-->xgbe_set_rx_mode\n");
hw_if->config_rx_mode(pdata);
DBGPR("<--xgbe_set_rx_mode\n");
}
static int xgbe_set_mac_address(struct net_device *netdev, void *addr)
{
struct xgbe_prv_data *pdata = netdev_priv(netdev);
struct xgbe_hw_if *hw_if = &pdata->hw_if;
struct sockaddr *saddr = addr;
DBGPR("-->xgbe_set_mac_address\n");
if (!is_valid_ether_addr(saddr->sa_data))
return -EADDRNOTAVAIL;
memcpy(netdev->dev_addr, saddr->sa_data, netdev->addr_len);
hw_if->set_mac_address(pdata, netdev->dev_addr);
DBGPR("<--xgbe_set_mac_address\n");
return 0;
}
static int xgbe_ioctl(struct net_device *netdev, struct ifreq *ifreq, int cmd)
{
struct xgbe_prv_data *pdata = netdev_priv(netdev);
int ret;
switch (cmd) {
case SIOCGHWTSTAMP:
ret = xgbe_get_hwtstamp_settings(pdata, ifreq);
break;
case SIOCSHWTSTAMP:
ret = xgbe_set_hwtstamp_settings(pdata, ifreq);
break;
default:
ret = -EOPNOTSUPP;
}
return ret;
}
static int xgbe_change_mtu(struct net_device *netdev, int mtu)
{
struct xgbe_prv_data *pdata = netdev_priv(netdev);
int ret;
DBGPR("-->xgbe_change_mtu\n");
ret = xgbe_calc_rx_buf_size(netdev, mtu);
if (ret < 0)
return ret;
pdata->rx_buf_size = ret;
netdev->mtu = mtu;
xgbe_restart_dev(pdata);
DBGPR("<--xgbe_change_mtu\n");
return 0;
}
static void xgbe_tx_timeout(struct net_device *netdev)
{
struct xgbe_prv_data *pdata = netdev_priv(netdev);
netdev_warn(netdev, "tx timeout, device restarting\n");
schedule_work(&pdata->restart_work);
}
static void xgbe_get_stats64(struct net_device *netdev,
struct rtnl_link_stats64 *s)
{
struct xgbe_prv_data *pdata = netdev_priv(netdev);
struct xgbe_mmc_stats *pstats = &pdata->mmc_stats;
DBGPR("-->%s\n", __func__);
pdata->hw_if.read_mmc_stats(pdata);
s->rx_packets = pstats->rxframecount_gb;
s->rx_bytes = pstats->rxoctetcount_gb;
s->rx_errors = pstats->rxframecount_gb -
pstats->rxbroadcastframes_g -
pstats->rxmulticastframes_g -
pstats->rxunicastframes_g;
s->multicast = pstats->rxmulticastframes_g;
s->rx_length_errors = pstats->rxlengtherror;
s->rx_crc_errors = pstats->rxcrcerror;
s->rx_fifo_errors = pstats->rxfifooverflow;
s->tx_packets = pstats->txframecount_gb;
s->tx_bytes = pstats->txoctetcount_gb;
s->tx_errors = pstats->txframecount_gb - pstats->txframecount_g;
s->tx_dropped = netdev->stats.tx_dropped;
DBGPR("<--%s\n", __func__);
}
static int xgbe_vlan_rx_add_vid(struct net_device *netdev, __be16 proto,
u16 vid)
{
struct xgbe_prv_data *pdata = netdev_priv(netdev);
struct xgbe_hw_if *hw_if = &pdata->hw_if;
DBGPR("-->%s\n", __func__);
set_bit(vid, pdata->active_vlans);
hw_if->update_vlan_hash_table(pdata);
DBGPR("<--%s\n", __func__);
return 0;
}
static int xgbe_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto,
u16 vid)
{
struct xgbe_prv_data *pdata = netdev_priv(netdev);
struct xgbe_hw_if *hw_if = &pdata->hw_if;
DBGPR("-->%s\n", __func__);
clear_bit(vid, pdata->active_vlans);
hw_if->update_vlan_hash_table(pdata);
DBGPR("<--%s\n", __func__);
return 0;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void xgbe_poll_controller(struct net_device *netdev)
{
struct xgbe_prv_data *pdata = netdev_priv(netdev);
struct xgbe_channel *channel;
unsigned int i;
DBGPR("-->xgbe_poll_controller\n");
if (pdata->per_channel_irq) {
for (i = 0; i < pdata->channel_count; i++) {
channel = pdata->channel[i];
xgbe_dma_isr(channel->dma_irq, channel);
}
} else {
disable_irq(pdata->dev_irq);
xgbe_isr(pdata->dev_irq, pdata);
enable_irq(pdata->dev_irq);
}
DBGPR("<--xgbe_poll_controller\n");
}
#endif /* End CONFIG_NET_POLL_CONTROLLER */
static int xgbe_setup_tc(struct net_device *netdev, enum tc_setup_type type,
struct tc_to_netdev *tc_to_netdev)
{
struct xgbe_prv_data *pdata = netdev_priv(netdev);
u8 tc;
if (type != TC_SETUP_MQPRIO)
return -EINVAL;
tc_to_netdev->mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
tc = tc_to_netdev->mqprio->num_tc;
if (tc > pdata->hw_feat.tc_cnt)
return -EINVAL;
pdata->num_tcs = tc;
pdata->hw_if.config_tc(pdata);
return 0;
}
static int xgbe_set_features(struct net_device *netdev,
netdev_features_t features)
{
struct xgbe_prv_data *pdata = netdev_priv(netdev);
struct xgbe_hw_if *hw_if = &pdata->hw_if;
netdev_features_t rxhash, rxcsum, rxvlan, rxvlan_filter;
int ret = 0;
rxhash = pdata->netdev_features & NETIF_F_RXHASH;
rxcsum = pdata->netdev_features & NETIF_F_RXCSUM;
rxvlan = pdata->netdev_features & NETIF_F_HW_VLAN_CTAG_RX;
rxvlan_filter = pdata->netdev_features & NETIF_F_HW_VLAN_CTAG_FILTER;
if ((features & NETIF_F_RXHASH) && !rxhash)
ret = hw_if->enable_rss(pdata);
else if (!(features & NETIF_F_RXHASH) && rxhash)
ret = hw_if->disable_rss(pdata);
if (ret)
return ret;
if ((features & NETIF_F_RXCSUM) && !rxcsum)
hw_if->enable_rx_csum(pdata);
else if (!(features & NETIF_F_RXCSUM) && rxcsum)
hw_if->disable_rx_csum(pdata);
if ((features & NETIF_F_HW_VLAN_CTAG_RX) && !rxvlan)
hw_if->enable_rx_vlan_stripping(pdata);
else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) && rxvlan)
hw_if->disable_rx_vlan_stripping(pdata);
if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) && !rxvlan_filter)
hw_if->enable_rx_vlan_filtering(pdata);
else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) && rxvlan_filter)
hw_if->disable_rx_vlan_filtering(pdata);
pdata->netdev_features = features;
DBGPR("<--xgbe_set_features\n");
return 0;
}
static const struct net_device_ops xgbe_netdev_ops = {
.ndo_open = xgbe_open,
.ndo_stop = xgbe_close,
.ndo_start_xmit = xgbe_xmit,
.ndo_set_rx_mode = xgbe_set_rx_mode,
.ndo_set_mac_address = xgbe_set_mac_address,
.ndo_validate_addr = eth_validate_addr,
.ndo_do_ioctl = xgbe_ioctl,
.ndo_change_mtu = xgbe_change_mtu,
.ndo_tx_timeout = xgbe_tx_timeout,
.ndo_get_stats64 = xgbe_get_stats64,
.ndo_vlan_rx_add_vid = xgbe_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = xgbe_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = xgbe_poll_controller,
#endif
.ndo_setup_tc = xgbe_setup_tc,
.ndo_set_features = xgbe_set_features,
};
const struct net_device_ops *xgbe_get_netdev_ops(void)
{
return &xgbe_netdev_ops;
}
static void xgbe_rx_refresh(struct xgbe_channel *channel)
{
struct xgbe_prv_data *pdata = channel->pdata;
struct xgbe_hw_if *hw_if = &pdata->hw_if;
struct xgbe_desc_if *desc_if = &pdata->desc_if;
struct xgbe_ring *ring = channel->rx_ring;
struct xgbe_ring_data *rdata;
while (ring->dirty != ring->cur) {
rdata = XGBE_GET_DESC_DATA(ring, ring->dirty);
/* Reset rdata values */
desc_if->unmap_rdata(pdata, rdata);
if (desc_if->map_rx_buffer(pdata, ring, rdata))
break;
hw_if->rx_desc_reset(pdata, rdata, ring->dirty);
ring->dirty++;
}
/* Make sure everything is written before the register write */
wmb();
/* Update the Rx Tail Pointer Register with address of
* the last cleaned entry */
rdata = XGBE_GET_DESC_DATA(ring, ring->dirty - 1);
XGMAC_DMA_IOWRITE(channel, DMA_CH_RDTR_LO,
lower_32_bits(rdata->rdesc_dma));
}
static struct sk_buff *xgbe_create_skb(struct xgbe_prv_data *pdata,
struct napi_struct *napi,
struct xgbe_ring_data *rdata,
unsigned int len)
{
struct sk_buff *skb;
u8 *packet;
skb = napi_alloc_skb(napi, rdata->rx.hdr.dma_len);
if (!skb)
return NULL;
/* Pull in the header buffer which may contain just the header
* or the header plus data
*/
dma_sync_single_range_for_cpu(pdata->dev, rdata->rx.hdr.dma_base,
rdata->rx.hdr.dma_off,
rdata->rx.hdr.dma_len, DMA_FROM_DEVICE);
packet = page_address(rdata->rx.hdr.pa.pages) +
rdata->rx.hdr.pa.pages_offset;
skb_copy_to_linear_data(skb, packet, len);
skb_put(skb, len);
return skb;
}
static unsigned int xgbe_rx_buf1_len(struct xgbe_ring_data *rdata,
struct xgbe_packet_data *packet)
{
/* Always zero if not the first descriptor */
if (!XGMAC_GET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, FIRST))
return 0;
/* First descriptor with split header, return header length */
if (rdata->rx.hdr_len)
return rdata->rx.hdr_len;
/* First descriptor but not the last descriptor and no split header,
* so the full buffer was used
*/
if (!XGMAC_GET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, LAST))
return rdata->rx.hdr.dma_len;
/* First descriptor and last descriptor and no split header, so
* calculate how much of the buffer was used
*/
return min_t(unsigned int, rdata->rx.hdr.dma_len, rdata->rx.len);
}
static unsigned int xgbe_rx_buf2_len(struct xgbe_ring_data *rdata,
struct xgbe_packet_data *packet,
unsigned int len)
{
/* Always the full buffer if not the last descriptor */
if (!XGMAC_GET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, LAST))
return rdata->rx.buf.dma_len;
/* Last descriptor so calculate how much of the buffer was used
* for the last bit of data
*/
return rdata->rx.len - len;
}
static int xgbe_tx_poll(struct xgbe_channel *channel)
{
struct xgbe_prv_data *pdata = channel->pdata;
struct xgbe_hw_if *hw_if = &pdata->hw_if;
struct xgbe_desc_if *desc_if = &pdata->desc_if;
struct xgbe_ring *ring = channel->tx_ring;
struct xgbe_ring_data *rdata;
struct xgbe_ring_desc *rdesc;
struct net_device *netdev = pdata->netdev;
struct netdev_queue *txq;
int processed = 0;
unsigned int tx_packets = 0, tx_bytes = 0;
unsigned int cur;
DBGPR("-->xgbe_tx_poll\n");
/* Nothing to do if there isn't a Tx ring for this channel */
if (!ring)
return 0;
cur = ring->cur;
/* Be sure we get ring->cur before accessing descriptor data */
smp_rmb();
txq = netdev_get_tx_queue(netdev, channel->queue_index);
while ((processed < XGBE_TX_DESC_MAX_PROC) &&
(ring->dirty != cur)) {
rdata = XGBE_GET_DESC_DATA(ring, ring->dirty);
rdesc = rdata->rdesc;
if (!hw_if->tx_complete(rdesc))
break;
/* Make sure descriptor fields are read after reading the OWN
* bit */
dma_rmb();
if (netif_msg_tx_done(pdata))
xgbe_dump_tx_desc(pdata, ring, ring->dirty, 1, 0);
if (hw_if->is_last_desc(rdesc)) {
tx_packets += rdata->tx.packets;
tx_bytes += rdata->tx.bytes;
}
/* Free the SKB and reset the descriptor for re-use */
desc_if->unmap_rdata(pdata, rdata);
hw_if->tx_desc_reset(rdata);
processed++;
ring->dirty++;
}
if (!processed)
return 0;
netdev_tx_completed_queue(txq, tx_packets, tx_bytes);
if ((ring->tx.queue_stopped == 1) &&
(xgbe_tx_avail_desc(ring) > XGBE_TX_DESC_MIN_FREE)) {
ring->tx.queue_stopped = 0;
netif_tx_wake_queue(txq);
}
DBGPR("<--xgbe_tx_poll: processed=%d\n", processed);
return processed;
}
static int xgbe_rx_poll(struct xgbe_channel *channel, int budget)
{
struct xgbe_prv_data *pdata = channel->pdata;
struct xgbe_hw_if *hw_if = &pdata->hw_if;
struct xgbe_ring *ring = channel->rx_ring;
struct xgbe_ring_data *rdata;
struct xgbe_packet_data *packet;
struct net_device *netdev = pdata->netdev;
struct napi_struct *napi;
struct sk_buff *skb;
struct skb_shared_hwtstamps *hwtstamps;
unsigned int last, error, context_next, context;
unsigned int len, buf1_len, buf2_len, max_len;
unsigned int received = 0;
int packet_count = 0;
DBGPR("-->xgbe_rx_poll: budget=%d\n", budget);
/* Nothing to do if there isn't a Rx ring for this channel */
if (!ring)
return 0;
last = 0;
context_next = 0;
napi = (pdata->per_channel_irq) ? &channel->napi : &pdata->napi;
rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
packet = &ring->packet_data;
while (packet_count < budget) {
DBGPR(" cur = %d\n", ring->cur);
/* First time in loop see if we need to restore state */
if (!received && rdata->state_saved) {
skb = rdata->state.skb;
error = rdata->state.error;
len = rdata->state.len;
} else {
memset(packet, 0, sizeof(*packet));
skb = NULL;
error = 0;
len = 0;
}
read_again:
rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
if (xgbe_rx_dirty_desc(ring) > (XGBE_RX_DESC_CNT >> 3))
xgbe_rx_refresh(channel);
if (hw_if->dev_read(channel))
break;
received++;
ring->cur++;
last = XGMAC_GET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
LAST);
context_next = XGMAC_GET_BITS(packet->attributes,
RX_PACKET_ATTRIBUTES,
CONTEXT_NEXT);
context = XGMAC_GET_BITS(packet->attributes,
RX_PACKET_ATTRIBUTES,
CONTEXT);
/* Earlier error, just drain the remaining data */
if ((!last || context_next) && error)
goto read_again;
if (error || packet->errors) {
if (packet->errors)
netif_err(pdata, rx_err, netdev,
"error in received packet\n");
dev_kfree_skb(skb);
goto next_packet;
}
if (!context) {
/* Get the data length in the descriptor buffers */
buf1_len = xgbe_rx_buf1_len(rdata, packet);
len += buf1_len;
buf2_len = xgbe_rx_buf2_len(rdata, packet, len);
len += buf2_len;
if (!skb) {
skb = xgbe_create_skb(pdata, napi, rdata,
buf1_len);
if (!skb) {
error = 1;
goto skip_data;
}
}
if (buf2_len) {
dma_sync_single_range_for_cpu(pdata->dev,
rdata->rx.buf.dma_base,
rdata->rx.buf.dma_off,
rdata->rx.buf.dma_len,
DMA_FROM_DEVICE);
skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
rdata->rx.buf.pa.pages,
rdata->rx.buf.pa.pages_offset,
buf2_len,
rdata->rx.buf.dma_len);
rdata->rx.buf.pa.pages = NULL;
}
}
skip_data:
if (!last || context_next)
goto read_again;
if (!skb)
goto next_packet;
/* Be sure we don't exceed the configured MTU */
max_len = netdev->mtu + ETH_HLEN;
if (!(netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
(skb->protocol == htons(ETH_P_8021Q)))
max_len += VLAN_HLEN;
if (skb->len > max_len) {
netif_err(pdata, rx_err, netdev,
"packet length exceeds configured MTU\n");
dev_kfree_skb(skb);
goto next_packet;
}
if (netif_msg_pktdata(pdata))
xgbe_print_pkt(netdev, skb, false);
skb_checksum_none_assert(skb);
if (XGMAC_GET_BITS(packet->attributes,
RX_PACKET_ATTRIBUTES, CSUM_DONE))
skb->ip_summed = CHECKSUM_UNNECESSARY;
if (XGMAC_GET_BITS(packet->attributes,
RX_PACKET_ATTRIBUTES, VLAN_CTAG))
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
packet->vlan_ctag);
if (XGMAC_GET_BITS(packet->attributes,
RX_PACKET_ATTRIBUTES, RX_TSTAMP)) {
u64 nsec;
nsec = timecounter_cyc2time(&pdata->tstamp_tc,
packet->rx_tstamp);
hwtstamps = skb_hwtstamps(skb);
hwtstamps->hwtstamp = ns_to_ktime(nsec);
}
if (XGMAC_GET_BITS(packet->attributes,
RX_PACKET_ATTRIBUTES, RSS_HASH))
skb_set_hash(skb, packet->rss_hash,
packet->rss_hash_type);
skb->dev = netdev;
skb->protocol = eth_type_trans(skb, netdev);
skb_record_rx_queue(skb, channel->queue_index);
napi_gro_receive(napi, skb);
next_packet:
packet_count++;
}
/* Check if we need to save state before leaving */
if (received && (!last || context_next)) {
rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
rdata->state_saved = 1;
rdata->state.skb = skb;
rdata->state.len = len;
rdata->state.error = error;
}
DBGPR("<--xgbe_rx_poll: packet_count = %d\n", packet_count);
return packet_count;
}
static int xgbe_one_poll(struct napi_struct *napi, int budget)
{
struct xgbe_channel *channel = container_of(napi, struct xgbe_channel,
napi);
struct xgbe_prv_data *pdata = channel->pdata;
int processed = 0;
DBGPR("-->xgbe_one_poll: budget=%d\n", budget);
/* Cleanup Tx ring first */
xgbe_tx_poll(channel);
/* Process Rx ring next */
processed = xgbe_rx_poll(channel, budget);
/* If we processed everything, we are done */
if ((processed < budget) && napi_complete_done(napi, processed)) {
/* Enable Tx and Rx interrupts */
if (pdata->channel_irq_mode)
xgbe_enable_rx_tx_int(pdata, channel);
else
enable_irq(channel->dma_irq);
}
DBGPR("<--xgbe_one_poll: received = %d\n", processed);
return processed;
}
static int xgbe_all_poll(struct napi_struct *napi, int budget)
{
struct xgbe_prv_data *pdata = container_of(napi, struct xgbe_prv_data,
napi);
struct xgbe_channel *channel;
int ring_budget;
int processed, last_processed;
unsigned int i;
DBGPR("-->xgbe_all_poll: budget=%d\n", budget);
processed = 0;
ring_budget = budget / pdata->rx_ring_count;
do {
last_processed = processed;
for (i = 0; i < pdata->channel_count; i++) {
channel = pdata->channel[i];
/* Cleanup Tx ring first */
xgbe_tx_poll(channel);
/* Process Rx ring next */
if (ring_budget > (budget - processed))
ring_budget = budget - processed;
processed += xgbe_rx_poll(channel, ring_budget);
}
} while ((processed < budget) && (processed != last_processed));
/* If we processed everything, we are done */
if ((processed < budget) && napi_complete_done(napi, processed)) {
/* Enable Tx and Rx interrupts */
xgbe_enable_rx_tx_ints(pdata);
}
DBGPR("<--xgbe_all_poll: received = %d\n", processed);
return processed;
}
void xgbe_dump_tx_desc(struct xgbe_prv_data *pdata, struct xgbe_ring *ring,
unsigned int idx, unsigned int count, unsigned int flag)
{
struct xgbe_ring_data *rdata;
struct xgbe_ring_desc *rdesc;
while (count--) {
rdata = XGBE_GET_DESC_DATA(ring, idx);
rdesc = rdata->rdesc;
netdev_dbg(pdata->netdev,
"TX_NORMAL_DESC[%d %s] = %08x:%08x:%08x:%08x\n", idx,
(flag == 1) ? "QUEUED FOR TX" : "TX BY DEVICE",
le32_to_cpu(rdesc->desc0),
le32_to_cpu(rdesc->desc1),
le32_to_cpu(rdesc->desc2),
le32_to_cpu(rdesc->desc3));
idx++;
}
}
void xgbe_dump_rx_desc(struct xgbe_prv_data *pdata, struct xgbe_ring *ring,
unsigned int idx)
{
struct xgbe_ring_data *rdata;
struct xgbe_ring_desc *rdesc;
rdata = XGBE_GET_DESC_DATA(ring, idx);
rdesc = rdata->rdesc;
netdev_dbg(pdata->netdev,
"RX_NORMAL_DESC[%d RX BY DEVICE] = %08x:%08x:%08x:%08x\n",
idx, le32_to_cpu(rdesc->desc0), le32_to_cpu(rdesc->desc1),
le32_to_cpu(rdesc->desc2), le32_to_cpu(rdesc->desc3));
}
void xgbe_print_pkt(struct net_device *netdev, struct sk_buff *skb, bool tx_rx)
{
struct ethhdr *eth = (struct ethhdr *)skb->data;
unsigned char *buf = skb->data;
unsigned char buffer[128];
unsigned int i, j;
netdev_dbg(netdev, "\n************** SKB dump ****************\n");
netdev_dbg(netdev, "%s packet of %d bytes\n",
(tx_rx ? "TX" : "RX"), skb->len);
netdev_dbg(netdev, "Dst MAC addr: %pM\n", eth->h_dest);
netdev_dbg(netdev, "Src MAC addr: %pM\n", eth->h_source);
netdev_dbg(netdev, "Protocol: %#06hx\n", ntohs(eth->h_proto));
for (i = 0, j = 0; i < skb->len;) {
j += snprintf(buffer + j, sizeof(buffer) - j, "%02hhx",
buf[i++]);
if ((i % 32) == 0) {
netdev_dbg(netdev, " %#06x: %s\n", i - 32, buffer);
j = 0;
} else if ((i % 16) == 0) {
buffer[j++] = ' ';
buffer[j++] = ' ';
} else if ((i % 4) == 0) {
buffer[j++] = ' ';
}
}
if (i % 32)
netdev_dbg(netdev, " %#06x: %s\n", i - (i % 32), buffer);
netdev_dbg(netdev, "\n************** SKB dump ****************\n");
}