// SPDX-License-Identifier: GPL-2.0 /* * This file contains common generic and tag-based KASAN code. * * Copyright (c) 2014 Samsung Electronics Co., Ltd. * Author: Andrey Ryabinin * * Some code borrowed from https://github.com/xairy/kasan-prototype by * Andrey Konovalov */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "kasan.h" #include "../slab.h" depot_stack_handle_t kasan_save_stack(gfp_t flags) { unsigned long entries[KASAN_STACK_DEPTH]; unsigned int nr_entries; nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0); nr_entries = filter_irq_stacks(entries, nr_entries); return stack_depot_save(entries, nr_entries, flags); } void kasan_set_track(struct kasan_track *track, gfp_t flags) { track->pid = current->pid; track->stack = kasan_save_stack(flags); } void kasan_enable_current(void) { current->kasan_depth++; } void kasan_disable_current(void) { current->kasan_depth--; } bool __kasan_check_read(const volatile void *p, unsigned int size) { return check_memory_region((unsigned long)p, size, false, _RET_IP_); } EXPORT_SYMBOL(__kasan_check_read); bool __kasan_check_write(const volatile void *p, unsigned int size) { return check_memory_region((unsigned long)p, size, true, _RET_IP_); } EXPORT_SYMBOL(__kasan_check_write); #undef memset void *memset(void *addr, int c, size_t len) { if (!check_memory_region((unsigned long)addr, len, true, _RET_IP_)) return NULL; return __memset(addr, c, len); } #ifdef __HAVE_ARCH_MEMMOVE #undef memmove void *memmove(void *dest, const void *src, size_t len) { if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) || !check_memory_region((unsigned long)dest, len, true, _RET_IP_)) return NULL; return __memmove(dest, src, len); } #endif #undef memcpy void *memcpy(void *dest, const void *src, size_t len) { if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) || !check_memory_region((unsigned long)dest, len, true, _RET_IP_)) return NULL; return __memcpy(dest, src, len); } /* * Poisons the shadow memory for 'size' bytes starting from 'addr'. * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE. */ void kasan_poison_shadow(const void *address, size_t size, u8 value) { void *shadow_start, *shadow_end; /* * Perform shadow offset calculation based on untagged address, as * some of the callers (e.g. kasan_poison_object_data) pass tagged * addresses to this function. */ address = reset_tag(address); shadow_start = kasan_mem_to_shadow(address); shadow_end = kasan_mem_to_shadow(address + size); __memset(shadow_start, value, shadow_end - shadow_start); } void kasan_unpoison_shadow(const void *address, size_t size) { u8 tag = get_tag(address); /* * Perform shadow offset calculation based on untagged address, as * some of the callers (e.g. kasan_unpoison_object_data) pass tagged * addresses to this function. */ address = reset_tag(address); kasan_poison_shadow(address, size, tag); if (size & KASAN_SHADOW_MASK) { u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size); if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) *shadow = tag; else *shadow = size & KASAN_SHADOW_MASK; } } static void __kasan_unpoison_stack(struct task_struct *task, const void *sp) { void *base = task_stack_page(task); size_t size = sp - base; kasan_unpoison_shadow(base, size); } /* Unpoison the entire stack for a task. */ void kasan_unpoison_task_stack(struct task_struct *task) { __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE); } /* Unpoison the stack for the current task beyond a watermark sp value. */ asmlinkage void kasan_unpoison_task_stack_below(const void *watermark) { /* * Calculate the task stack base address. Avoid using 'current' * because this function is called by early resume code which hasn't * yet set up the percpu register (%gs). */ void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1)); kasan_unpoison_shadow(base, watermark - base); } void kasan_alloc_pages(struct page *page, unsigned int order) { u8 tag; unsigned long i; if (unlikely(PageHighMem(page))) return; tag = random_tag(); for (i = 0; i < (1 << order); i++) page_kasan_tag_set(page + i, tag); kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order); } void kasan_free_pages(struct page *page, unsigned int order) { if (likely(!PageHighMem(page))) kasan_poison_shadow(page_address(page), PAGE_SIZE << order, KASAN_FREE_PAGE); } /* * Adaptive redzone policy taken from the userspace AddressSanitizer runtime. * For larger allocations larger redzones are used. */ static inline unsigned int optimal_redzone(unsigned int object_size) { if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) return 0; return object_size <= 64 - 16 ? 16 : object_size <= 128 - 32 ? 32 : object_size <= 512 - 64 ? 64 : object_size <= 4096 - 128 ? 128 : object_size <= (1 << 14) - 256 ? 256 : object_size <= (1 << 15) - 512 ? 512 : object_size <= (1 << 16) - 1024 ? 1024 : 2048; } void kasan_cache_create(struct kmem_cache *cache, unsigned int *size, slab_flags_t *flags) { unsigned int orig_size = *size; unsigned int redzone_size; int redzone_adjust; /* Add alloc meta. */ cache->kasan_info.alloc_meta_offset = *size; *size += sizeof(struct kasan_alloc_meta); /* Add free meta. */ if (IS_ENABLED(CONFIG_KASAN_GENERIC) && (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor || cache->object_size < sizeof(struct kasan_free_meta))) { cache->kasan_info.free_meta_offset = *size; *size += sizeof(struct kasan_free_meta); } redzone_size = optimal_redzone(cache->object_size); redzone_adjust = redzone_size - (*size - cache->object_size); if (redzone_adjust > 0) *size += redzone_adjust; *size = min_t(unsigned int, KMALLOC_MAX_SIZE, max(*size, cache->object_size + redzone_size)); /* * If the metadata doesn't fit, don't enable KASAN at all. */ if (*size <= cache->kasan_info.alloc_meta_offset || *size <= cache->kasan_info.free_meta_offset) { cache->kasan_info.alloc_meta_offset = 0; cache->kasan_info.free_meta_offset = 0; *size = orig_size; return; } *flags |= SLAB_KASAN; } size_t kasan_metadata_size(struct kmem_cache *cache) { return (cache->kasan_info.alloc_meta_offset ? sizeof(struct kasan_alloc_meta) : 0) + (cache->kasan_info.free_meta_offset ? sizeof(struct kasan_free_meta) : 0); } struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache, const void *object) { return (void *)object + cache->kasan_info.alloc_meta_offset; } struct kasan_free_meta *get_free_info(struct kmem_cache *cache, const void *object) { BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32); return (void *)object + cache->kasan_info.free_meta_offset; } void kasan_poison_slab(struct page *page) { unsigned long i; for (i = 0; i < compound_nr(page); i++) page_kasan_tag_reset(page + i); kasan_poison_shadow(page_address(page), page_size(page), KASAN_KMALLOC_REDZONE); } void kasan_unpoison_object_data(struct kmem_cache *cache, void *object) { kasan_unpoison_shadow(object, cache->object_size); } void kasan_poison_object_data(struct kmem_cache *cache, void *object) { kasan_poison_shadow(object, round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE), KASAN_KMALLOC_REDZONE); } /* * This function assigns a tag to an object considering the following: * 1. A cache might have a constructor, which might save a pointer to a slab * object somewhere (e.g. in the object itself). We preassign a tag for * each object in caches with constructors during slab creation and reuse * the same tag each time a particular object is allocated. * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be * accessed after being freed. We preassign tags for objects in these * caches as well. * 3. For SLAB allocator we can't preassign tags randomly since the freelist * is stored as an array of indexes instead of a linked list. Assign tags * based on objects indexes, so that objects that are next to each other * get different tags. */ static u8 assign_tag(struct kmem_cache *cache, const void *object, bool init, bool keep_tag) { /* * 1. When an object is kmalloc()'ed, two hooks are called: * kasan_slab_alloc() and kasan_kmalloc(). We assign the * tag only in the first one. * 2. We reuse the same tag for krealloc'ed objects. */ if (keep_tag) return get_tag(object); /* * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU * set, assign a tag when the object is being allocated (init == false). */ if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU)) return init ? KASAN_TAG_KERNEL : random_tag(); /* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */ #ifdef CONFIG_SLAB /* For SLAB assign tags based on the object index in the freelist. */ return (u8)obj_to_index(cache, virt_to_page(object), (void *)object); #else /* * For SLUB assign a random tag during slab creation, otherwise reuse * the already assigned tag. */ return init ? random_tag() : get_tag(object); #endif } void * __must_check kasan_init_slab_obj(struct kmem_cache *cache, const void *object) { struct kasan_alloc_meta *alloc_info; if (!(cache->flags & SLAB_KASAN)) return (void *)object; alloc_info = get_alloc_info(cache, object); __memset(alloc_info, 0, sizeof(*alloc_info)); if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) object = set_tag(object, assign_tag(cache, object, true, false)); return (void *)object; } static inline bool shadow_invalid(u8 tag, s8 shadow_byte) { if (IS_ENABLED(CONFIG_KASAN_GENERIC)) return shadow_byte < 0 || shadow_byte >= KASAN_SHADOW_SCALE_SIZE; /* else CONFIG_KASAN_SW_TAGS: */ if ((u8)shadow_byte == KASAN_TAG_INVALID) return true; if ((tag != KASAN_TAG_KERNEL) && (tag != (u8)shadow_byte)) return true; return false; } static bool __kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip, bool quarantine) { s8 shadow_byte; u8 tag; void *tagged_object; unsigned long rounded_up_size; tag = get_tag(object); tagged_object = object; object = reset_tag(object); if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) != object)) { kasan_report_invalid_free(tagged_object, ip); return true; } /* RCU slabs could be legally used after free within the RCU period */ if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU)) return false; shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object)); if (shadow_invalid(tag, shadow_byte)) { kasan_report_invalid_free(tagged_object, ip); return true; } rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE); kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE); if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine) || unlikely(!(cache->flags & SLAB_KASAN))) return false; kasan_set_free_info(cache, object, tag); quarantine_put(get_free_info(cache, object), cache); return IS_ENABLED(CONFIG_KASAN_GENERIC); } bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip) { return __kasan_slab_free(cache, object, ip, true); } static void *__kasan_kmalloc(struct kmem_cache *cache, const void *object, size_t size, gfp_t flags, bool keep_tag) { unsigned long redzone_start; unsigned long redzone_end; u8 tag = 0xff; if (gfpflags_allow_blocking(flags)) quarantine_reduce(); if (unlikely(object == NULL)) return NULL; redzone_start = round_up((unsigned long)(object + size), KASAN_SHADOW_SCALE_SIZE); redzone_end = round_up((unsigned long)object + cache->object_size, KASAN_SHADOW_SCALE_SIZE); if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) tag = assign_tag(cache, object, false, keep_tag); /* Tag is ignored in set_tag without CONFIG_KASAN_SW_TAGS */ kasan_unpoison_shadow(set_tag(object, tag), size); kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start, KASAN_KMALLOC_REDZONE); if (cache->flags & SLAB_KASAN) kasan_set_track(&get_alloc_info(cache, object)->alloc_track, flags); return set_tag(object, tag); } void * __must_check kasan_slab_alloc(struct kmem_cache *cache, void *object, gfp_t flags) { return __kasan_kmalloc(cache, object, cache->object_size, flags, false); } void * __must_check kasan_kmalloc(struct kmem_cache *cache, const void *object, size_t size, gfp_t flags) { return __kasan_kmalloc(cache, object, size, flags, true); } EXPORT_SYMBOL(kasan_kmalloc); void * __must_check kasan_kmalloc_large(const void *ptr, size_t size, gfp_t flags) { struct page *page; unsigned long redzone_start; unsigned long redzone_end; if (gfpflags_allow_blocking(flags)) quarantine_reduce(); if (unlikely(ptr == NULL)) return NULL; page = virt_to_page(ptr); redzone_start = round_up((unsigned long)(ptr + size), KASAN_SHADOW_SCALE_SIZE); redzone_end = (unsigned long)ptr + page_size(page); kasan_unpoison_shadow(ptr, size); kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start, KASAN_PAGE_REDZONE); return (void *)ptr; } void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags) { struct page *page; if (unlikely(object == ZERO_SIZE_PTR)) return (void *)object; page = virt_to_head_page(object); if (unlikely(!PageSlab(page))) return kasan_kmalloc_large(object, size, flags); else return __kasan_kmalloc(page->slab_cache, object, size, flags, true); } void kasan_poison_kfree(void *ptr, unsigned long ip) { struct page *page; page = virt_to_head_page(ptr); if (unlikely(!PageSlab(page))) { if (ptr != page_address(page)) { kasan_report_invalid_free(ptr, ip); return; } kasan_poison_shadow(ptr, page_size(page), KASAN_FREE_PAGE); } else { __kasan_slab_free(page->slab_cache, ptr, ip, false); } } void kasan_kfree_large(void *ptr, unsigned long ip) { if (ptr != page_address(virt_to_head_page(ptr))) kasan_report_invalid_free(ptr, ip); /* The object will be poisoned by page_alloc. */ } #ifdef CONFIG_MEMORY_HOTPLUG static bool shadow_mapped(unsigned long addr) { pgd_t *pgd = pgd_offset_k(addr); p4d_t *p4d; pud_t *pud; pmd_t *pmd; pte_t *pte; if (pgd_none(*pgd)) return false; p4d = p4d_offset(pgd, addr); if (p4d_none(*p4d)) return false; pud = pud_offset(p4d, addr); if (pud_none(*pud)) return false; /* * We can't use pud_large() or pud_huge(), the first one is * arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse * pud_bad(), if pud is bad then it's bad because it's huge. */ if (pud_bad(*pud)) return true; pmd = pmd_offset(pud, addr); if (pmd_none(*pmd)) return false; if (pmd_bad(*pmd)) return true; pte = pte_offset_kernel(pmd, addr); return !pte_none(*pte); } static int __meminit kasan_mem_notifier(struct notifier_block *nb, unsigned long action, void *data) { struct memory_notify *mem_data = data; unsigned long nr_shadow_pages, start_kaddr, shadow_start; unsigned long shadow_end, shadow_size; nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT; start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn); shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr); shadow_size = nr_shadow_pages << PAGE_SHIFT; shadow_end = shadow_start + shadow_size; if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) || WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT))) return NOTIFY_BAD; switch (action) { case MEM_GOING_ONLINE: { void *ret; /* * If shadow is mapped already than it must have been mapped * during the boot. This could happen if we onlining previously * offlined memory. */ if (shadow_mapped(shadow_start)) return NOTIFY_OK; ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start, shadow_end, GFP_KERNEL, PAGE_KERNEL, VM_NO_GUARD, pfn_to_nid(mem_data->start_pfn), __builtin_return_address(0)); if (!ret) return NOTIFY_BAD; kmemleak_ignore(ret); return NOTIFY_OK; } case MEM_CANCEL_ONLINE: case MEM_OFFLINE: { struct vm_struct *vm; /* * shadow_start was either mapped during boot by kasan_init() * or during memory online by __vmalloc_node_range(). * In the latter case we can use vfree() to free shadow. * Non-NULL result of the find_vm_area() will tell us if * that was the second case. * * Currently it's not possible to free shadow mapped * during boot by kasan_init(). It's because the code * to do that hasn't been written yet. So we'll just * leak the memory. */ vm = find_vm_area((void *)shadow_start); if (vm) vfree((void *)shadow_start); } } return NOTIFY_OK; } static int __init kasan_memhotplug_init(void) { hotplug_memory_notifier(kasan_mem_notifier, 0); return 0; } core_initcall(kasan_memhotplug_init); #endif #ifdef CONFIG_KASAN_VMALLOC static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr, void *unused) { unsigned long page; pte_t pte; if (likely(!pte_none(*ptep))) return 0; page = __get_free_page(GFP_KERNEL); if (!page) return -ENOMEM; memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE); pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL); spin_lock(&init_mm.page_table_lock); if (likely(pte_none(*ptep))) { set_pte_at(&init_mm, addr, ptep, pte); page = 0; } spin_unlock(&init_mm.page_table_lock); if (page) free_page(page); return 0; } int kasan_populate_vmalloc(unsigned long addr, unsigned long size) { unsigned long shadow_start, shadow_end; int ret; if (!is_vmalloc_or_module_addr((void *)addr)) return 0; shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr); shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE); shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size); shadow_end = ALIGN(shadow_end, PAGE_SIZE); ret = apply_to_page_range(&init_mm, shadow_start, shadow_end - shadow_start, kasan_populate_vmalloc_pte, NULL); if (ret) return ret; flush_cache_vmap(shadow_start, shadow_end); /* * We need to be careful about inter-cpu effects here. Consider: * * CPU#0 CPU#1 * WRITE_ONCE(p, vmalloc(100)); while (x = READ_ONCE(p)) ; * p[99] = 1; * * With compiler instrumentation, that ends up looking like this: * * CPU#0 CPU#1 * // vmalloc() allocates memory * // let a = area->addr * // we reach kasan_populate_vmalloc * // and call kasan_unpoison_shadow: * STORE shadow(a), unpoison_val * ... * STORE shadow(a+99), unpoison_val x = LOAD p * // rest of vmalloc process * STORE p, a LOAD shadow(x+99) * * If there is no barrier between the end of unpoisioning the shadow * and the store of the result to p, the stores could be committed * in a different order by CPU#0, and CPU#1 could erroneously observe * poison in the shadow. * * We need some sort of barrier between the stores. * * In the vmalloc() case, this is provided by a smp_wmb() in * clear_vm_uninitialized_flag(). In the per-cpu allocator and in * get_vm_area() and friends, the caller gets shadow allocated but * doesn't have any pages mapped into the virtual address space that * has been reserved. Mapping those pages in will involve taking and * releasing a page-table lock, which will provide the barrier. */ return 0; } /* * Poison the shadow for a vmalloc region. Called as part of the * freeing process at the time the region is freed. */ void kasan_poison_vmalloc(const void *start, unsigned long size) { if (!is_vmalloc_or_module_addr(start)) return; size = round_up(size, KASAN_SHADOW_SCALE_SIZE); kasan_poison_shadow(start, size, KASAN_VMALLOC_INVALID); } void kasan_unpoison_vmalloc(const void *start, unsigned long size) { if (!is_vmalloc_or_module_addr(start)) return; kasan_unpoison_shadow(start, size); } static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr, void *unused) { unsigned long page; page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT); spin_lock(&init_mm.page_table_lock); if (likely(!pte_none(*ptep))) { pte_clear(&init_mm, addr, ptep); free_page(page); } spin_unlock(&init_mm.page_table_lock); return 0; } /* * Release the backing for the vmalloc region [start, end), which * lies within the free region [free_region_start, free_region_end). * * This can be run lazily, long after the region was freed. It runs * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap * infrastructure. * * How does this work? * ------------------- * * We have a region that is page aligned, labelled as A. * That might not map onto the shadow in a way that is page-aligned: * * start end * v v * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc * -------- -------- -------- -------- -------- * | | | | | * | | | /-------/ | * \-------\|/------/ |/---------------/ * ||| || * |??AAAAAA|AAAAAAAA|AA??????| < shadow * (1) (2) (3) * * First we align the start upwards and the end downwards, so that the * shadow of the region aligns with shadow page boundaries. In the * example, this gives us the shadow page (2). This is the shadow entirely * covered by this allocation. * * Then we have the tricky bits. We want to know if we can free the * partially covered shadow pages - (1) and (3) in the example. For this, * we are given the start and end of the free region that contains this * allocation. Extending our previous example, we could have: * * free_region_start free_region_end * | start end | * v v v v * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc * -------- -------- -------- -------- -------- * | | | | | * | | | /-------/ | * \-------\|/------/ |/---------------/ * ||| || * |FFAAAAAA|AAAAAAAA|AAF?????| < shadow * (1) (2) (3) * * Once again, we align the start of the free region up, and the end of * the free region down so that the shadow is page aligned. So we can free * page (1) - we know no allocation currently uses anything in that page, * because all of it is in the vmalloc free region. But we cannot free * page (3), because we can't be sure that the rest of it is unused. * * We only consider pages that contain part of the original region for * freeing: we don't try to free other pages from the free region or we'd * end up trying to free huge chunks of virtual address space. * * Concurrency * ----------- * * How do we know that we're not freeing a page that is simultaneously * being used for a fresh allocation in kasan_populate_vmalloc(_pte)? * * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running * at the same time. While we run under free_vmap_area_lock, the population * code does not. * * free_vmap_area_lock instead operates to ensure that the larger range * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and * the per-cpu region-finding algorithm both run under free_vmap_area_lock, * no space identified as free will become used while we are running. This * means that so long as we are careful with alignment and only free shadow * pages entirely covered by the free region, we will not run in to any * trouble - any simultaneous allocations will be for disjoint regions. */ void kasan_release_vmalloc(unsigned long start, unsigned long end, unsigned long free_region_start, unsigned long free_region_end) { void *shadow_start, *shadow_end; unsigned long region_start, region_end; unsigned long size; region_start = ALIGN(start, PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE); region_end = ALIGN_DOWN(end, PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE); free_region_start = ALIGN(free_region_start, PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE); if (start != region_start && free_region_start < region_start) region_start -= PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE; free_region_end = ALIGN_DOWN(free_region_end, PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE); if (end != region_end && free_region_end > region_end) region_end += PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE; shadow_start = kasan_mem_to_shadow((void *)region_start); shadow_end = kasan_mem_to_shadow((void *)region_end); if (shadow_end > shadow_start) { size = shadow_end - shadow_start; apply_to_existing_page_range(&init_mm, (unsigned long)shadow_start, size, kasan_depopulate_vmalloc_pte, NULL); flush_tlb_kernel_range((unsigned long)shadow_start, (unsigned long)shadow_end); } } #else /* CONFIG_KASAN_VMALLOC */ int kasan_module_alloc(void *addr, size_t size) { void *ret; size_t scaled_size; size_t shadow_size; unsigned long shadow_start; shadow_start = (unsigned long)kasan_mem_to_shadow(addr); scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT; shadow_size = round_up(scaled_size, PAGE_SIZE); if (WARN_ON(!PAGE_ALIGNED(shadow_start))) return -EINVAL; ret = __vmalloc_node_range(shadow_size, 1, shadow_start, shadow_start + shadow_size, GFP_KERNEL, PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE, __builtin_return_address(0)); if (ret) { __memset(ret, KASAN_SHADOW_INIT, shadow_size); find_vm_area(addr)->flags |= VM_KASAN; kmemleak_ignore(ret); return 0; } return -ENOMEM; } void kasan_free_shadow(const struct vm_struct *vm) { if (vm->flags & VM_KASAN) vfree(kasan_mem_to_shadow(vm->addr)); } #endif