/* * Copyright (c) 2010 Broadcom Corporation * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sdio_host.h" #include "sdio_chip.h" #define DCMD_RESP_TIMEOUT 2000 /* In milli second */ #ifdef BCMDBG #define BRCMF_TRAP_INFO_SIZE 80 #define CBUF_LEN (128) struct rte_log_le { __le32 buf; /* Can't be pointer on (64-bit) hosts */ __le32 buf_size; __le32 idx; char *_buf_compat; /* Redundant pointer for backward compat. */ }; struct rte_console { /* Virtual UART * When there is no UART (e.g. Quickturn), * the host should write a complete * input line directly into cbuf and then write * the length into vcons_in. * This may also be used when there is a real UART * (at risk of conflicting with * the real UART). vcons_out is currently unused. */ uint vcons_in; uint vcons_out; /* Output (logging) buffer * Console output is written to a ring buffer log_buf at index log_idx. * The host may read the output when it sees log_idx advance. * Output will be lost if the output wraps around faster than the host * polls. */ struct rte_log_le log_le; /* Console input line buffer * Characters are read one at a time into cbuf * until is received, then * the buffer is processed as a command line. * Also used for virtual UART. */ uint cbuf_idx; char cbuf[CBUF_LEN]; }; #endif /* BCMDBG */ #include #include "dhd.h" #include "dhd_bus.h" #include "dhd_proto.h" #include "dhd_dbg.h" #define TXQLEN 2048 /* bulk tx queue length */ #define TXHI (TXQLEN - 256) /* turn on flow control above TXHI */ #define TXLOW (TXHI - 256) /* turn off flow control below TXLOW */ #define PRIOMASK 7 #define TXRETRIES 2 /* # of retries for tx frames */ #define BRCMF_RXBOUND 50 /* Default for max rx frames in one scheduling */ #define BRCMF_TXBOUND 20 /* Default for max tx frames in one scheduling */ #define BRCMF_TXMINMAX 1 /* Max tx frames if rx still pending */ #define MEMBLOCK 2048 /* Block size used for downloading of dongle image */ #define MAX_DATA_BUF (32 * 1024) /* Must be large enough to hold biggest possible glom */ #define BRCMF_FIRSTREAD (1 << 6) /* SBSDIO_DEVICE_CTL */ /* 1: device will assert busy signal when receiving CMD53 */ #define SBSDIO_DEVCTL_SETBUSY 0x01 /* 1: assertion of sdio interrupt is synchronous to the sdio clock */ #define SBSDIO_DEVCTL_SPI_INTR_SYNC 0x02 /* 1: mask all interrupts to host except the chipActive (rev 8) */ #define SBSDIO_DEVCTL_CA_INT_ONLY 0x04 /* 1: isolate internal sdio signals, put external pads in tri-state; requires * sdio bus power cycle to clear (rev 9) */ #define SBSDIO_DEVCTL_PADS_ISO 0x08 /* Force SD->SB reset mapping (rev 11) */ #define SBSDIO_DEVCTL_SB_RST_CTL 0x30 /* Determined by CoreControl bit */ #define SBSDIO_DEVCTL_RST_CORECTL 0x00 /* Force backplane reset */ #define SBSDIO_DEVCTL_RST_BPRESET 0x10 /* Force no backplane reset */ #define SBSDIO_DEVCTL_RST_NOBPRESET 0x20 /* direct(mapped) cis space */ /* MAPPED common CIS address */ #define SBSDIO_CIS_BASE_COMMON 0x1000 /* maximum bytes in one CIS */ #define SBSDIO_CIS_SIZE_LIMIT 0x200 /* cis offset addr is < 17 bits */ #define SBSDIO_CIS_OFT_ADDR_MASK 0x1FFFF /* manfid tuple length, include tuple, link bytes */ #define SBSDIO_CIS_MANFID_TUPLE_LEN 6 /* intstatus */ #define I_SMB_SW0 (1 << 0) /* To SB Mail S/W interrupt 0 */ #define I_SMB_SW1 (1 << 1) /* To SB Mail S/W interrupt 1 */ #define I_SMB_SW2 (1 << 2) /* To SB Mail S/W interrupt 2 */ #define I_SMB_SW3 (1 << 3) /* To SB Mail S/W interrupt 3 */ #define I_SMB_SW_MASK 0x0000000f /* To SB Mail S/W interrupts mask */ #define I_SMB_SW_SHIFT 0 /* To SB Mail S/W interrupts shift */ #define I_HMB_SW0 (1 << 4) /* To Host Mail S/W interrupt 0 */ #define I_HMB_SW1 (1 << 5) /* To Host Mail S/W interrupt 1 */ #define I_HMB_SW2 (1 << 6) /* To Host Mail S/W interrupt 2 */ #define I_HMB_SW3 (1 << 7) /* To Host Mail S/W interrupt 3 */ #define I_HMB_SW_MASK 0x000000f0 /* To Host Mail S/W interrupts mask */ #define I_HMB_SW_SHIFT 4 /* To Host Mail S/W interrupts shift */ #define I_WR_OOSYNC (1 << 8) /* Write Frame Out Of Sync */ #define I_RD_OOSYNC (1 << 9) /* Read Frame Out Of Sync */ #define I_PC (1 << 10) /* descriptor error */ #define I_PD (1 << 11) /* data error */ #define I_DE (1 << 12) /* Descriptor protocol Error */ #define I_RU (1 << 13) /* Receive descriptor Underflow */ #define I_RO (1 << 14) /* Receive fifo Overflow */ #define I_XU (1 << 15) /* Transmit fifo Underflow */ #define I_RI (1 << 16) /* Receive Interrupt */ #define I_BUSPWR (1 << 17) /* SDIO Bus Power Change (rev 9) */ #define I_XMTDATA_AVAIL (1 << 23) /* bits in fifo */ #define I_XI (1 << 24) /* Transmit Interrupt */ #define I_RF_TERM (1 << 25) /* Read Frame Terminate */ #define I_WF_TERM (1 << 26) /* Write Frame Terminate */ #define I_PCMCIA_XU (1 << 27) /* PCMCIA Transmit FIFO Underflow */ #define I_SBINT (1 << 28) /* sbintstatus Interrupt */ #define I_CHIPACTIVE (1 << 29) /* chip from doze to active state */ #define I_SRESET (1 << 30) /* CCCR RES interrupt */ #define I_IOE2 (1U << 31) /* CCCR IOE2 Bit Changed */ #define I_ERRORS (I_PC | I_PD | I_DE | I_RU | I_RO | I_XU) #define I_DMA (I_RI | I_XI | I_ERRORS) /* corecontrol */ #define CC_CISRDY (1 << 0) /* CIS Ready */ #define CC_BPRESEN (1 << 1) /* CCCR RES signal */ #define CC_F2RDY (1 << 2) /* set CCCR IOR2 bit */ #define CC_CLRPADSISO (1 << 3) /* clear SDIO pads isolation */ #define CC_XMTDATAAVAIL_MODE (1 << 4) #define CC_XMTDATAAVAIL_CTRL (1 << 5) /* SDA_FRAMECTRL */ #define SFC_RF_TERM (1 << 0) /* Read Frame Terminate */ #define SFC_WF_TERM (1 << 1) /* Write Frame Terminate */ #define SFC_CRC4WOOS (1 << 2) /* CRC error for write out of sync */ #define SFC_ABORTALL (1 << 3) /* Abort all in-progress frames */ /* HW frame tag */ #define SDPCM_FRAMETAG_LEN 4 /* 2 bytes len, 2 bytes check val */ /* Total length of frame header for dongle protocol */ #define SDPCM_HDRLEN (SDPCM_FRAMETAG_LEN + SDPCM_SWHEADER_LEN) #define SDPCM_RESERVE (SDPCM_HDRLEN + BRCMF_SDALIGN) /* * Software allocation of To SB Mailbox resources */ /* tosbmailbox bits corresponding to intstatus bits */ #define SMB_NAK (1 << 0) /* Frame NAK */ #define SMB_INT_ACK (1 << 1) /* Host Interrupt ACK */ #define SMB_USE_OOB (1 << 2) /* Use OOB Wakeup */ #define SMB_DEV_INT (1 << 3) /* Miscellaneous Interrupt */ /* tosbmailboxdata */ #define SMB_DATA_VERSION_SHIFT 16 /* host protocol version */ /* * Software allocation of To Host Mailbox resources */ /* intstatus bits */ #define I_HMB_FC_STATE I_HMB_SW0 /* Flow Control State */ #define I_HMB_FC_CHANGE I_HMB_SW1 /* Flow Control State Changed */ #define I_HMB_FRAME_IND I_HMB_SW2 /* Frame Indication */ #define I_HMB_HOST_INT I_HMB_SW3 /* Miscellaneous Interrupt */ /* tohostmailboxdata */ #define HMB_DATA_NAKHANDLED 1 /* retransmit NAK'd frame */ #define HMB_DATA_DEVREADY 2 /* talk to host after enable */ #define HMB_DATA_FC 4 /* per prio flowcontrol update flag */ #define HMB_DATA_FWREADY 8 /* fw ready for protocol activity */ #define HMB_DATA_FCDATA_MASK 0xff000000 #define HMB_DATA_FCDATA_SHIFT 24 #define HMB_DATA_VERSION_MASK 0x00ff0000 #define HMB_DATA_VERSION_SHIFT 16 /* * Software-defined protocol header */ /* Current protocol version */ #define SDPCM_PROT_VERSION 4 /* SW frame header */ #define SDPCM_PACKET_SEQUENCE(p) (((u8 *)p)[0] & 0xff) #define SDPCM_CHANNEL_MASK 0x00000f00 #define SDPCM_CHANNEL_SHIFT 8 #define SDPCM_PACKET_CHANNEL(p) (((u8 *)p)[1] & 0x0f) #define SDPCM_NEXTLEN_OFFSET 2 /* Data Offset from SOF (HW Tag, SW Tag, Pad) */ #define SDPCM_DOFFSET_OFFSET 3 /* Data Offset */ #define SDPCM_DOFFSET_VALUE(p) (((u8 *)p)[SDPCM_DOFFSET_OFFSET] & 0xff) #define SDPCM_DOFFSET_MASK 0xff000000 #define SDPCM_DOFFSET_SHIFT 24 #define SDPCM_FCMASK_OFFSET 4 /* Flow control */ #define SDPCM_FCMASK_VALUE(p) (((u8 *)p)[SDPCM_FCMASK_OFFSET] & 0xff) #define SDPCM_WINDOW_OFFSET 5 /* Credit based fc */ #define SDPCM_WINDOW_VALUE(p) (((u8 *)p)[SDPCM_WINDOW_OFFSET] & 0xff) #define SDPCM_SWHEADER_LEN 8 /* SW header is 64 bits */ /* logical channel numbers */ #define SDPCM_CONTROL_CHANNEL 0 /* Control channel Id */ #define SDPCM_EVENT_CHANNEL 1 /* Asyc Event Indication Channel Id */ #define SDPCM_DATA_CHANNEL 2 /* Data Xmit/Recv Channel Id */ #define SDPCM_GLOM_CHANNEL 3 /* For coalesced packets */ #define SDPCM_TEST_CHANNEL 15 /* Reserved for test/debug packets */ #define SDPCM_SEQUENCE_WRAP 256 /* wrap-around val for 8bit frame seq */ #define SDPCM_GLOMDESC(p) (((u8 *)p)[1] & 0x80) /* * Shared structure between dongle and the host. * The structure contains pointers to trap or assert information. */ #define SDPCM_SHARED_VERSION 0x0002 #define SDPCM_SHARED_VERSION_MASK 0x00FF #define SDPCM_SHARED_ASSERT_BUILT 0x0100 #define SDPCM_SHARED_ASSERT 0x0200 #define SDPCM_SHARED_TRAP 0x0400 /* Space for header read, limit for data packets */ #define MAX_HDR_READ (1 << 6) #define MAX_RX_DATASZ 2048 /* Maximum milliseconds to wait for F2 to come up */ #define BRCMF_WAIT_F2RDY 3000 /* Bump up limit on waiting for HT to account for first startup; * if the image is doing a CRC calculation before programming the PMU * for HT availability, it could take a couple hundred ms more, so * max out at a 1 second (1000000us). */ #undef PMU_MAX_TRANSITION_DLY #define PMU_MAX_TRANSITION_DLY 1000000 /* Value for ChipClockCSR during initial setup */ #define BRCMF_INIT_CLKCTL1 (SBSDIO_FORCE_HW_CLKREQ_OFF | \ SBSDIO_ALP_AVAIL_REQ) /* Flags for SDH calls */ #define F2SYNC (SDIO_REQ_4BYTE | SDIO_REQ_FIXED) #define BRCMFMAC_FW_NAME "brcm/brcmfmac.bin" #define BRCMFMAC_NV_NAME "brcm/brcmfmac.txt" MODULE_FIRMWARE(BRCMFMAC_FW_NAME); MODULE_FIRMWARE(BRCMFMAC_NV_NAME); /* * Conversion of 802.1D priority to precedence level */ static uint prio2prec(u32 prio) { return (prio == PRIO_8021D_NONE || prio == PRIO_8021D_BE) ? (prio^2) : prio; } /* core registers */ struct sdpcmd_regs { u32 corecontrol; /* 0x00, rev8 */ u32 corestatus; /* rev8 */ u32 PAD[1]; u32 biststatus; /* rev8 */ /* PCMCIA access */ u16 pcmciamesportaladdr; /* 0x010, rev8 */ u16 PAD[1]; u16 pcmciamesportalmask; /* rev8 */ u16 PAD[1]; u16 pcmciawrframebc; /* rev8 */ u16 PAD[1]; u16 pcmciaunderflowtimer; /* rev8 */ u16 PAD[1]; /* interrupt */ u32 intstatus; /* 0x020, rev8 */ u32 hostintmask; /* rev8 */ u32 intmask; /* rev8 */ u32 sbintstatus; /* rev8 */ u32 sbintmask; /* rev8 */ u32 funcintmask; /* rev4 */ u32 PAD[2]; u32 tosbmailbox; /* 0x040, rev8 */ u32 tohostmailbox; /* rev8 */ u32 tosbmailboxdata; /* rev8 */ u32 tohostmailboxdata; /* rev8 */ /* synchronized access to registers in SDIO clock domain */ u32 sdioaccess; /* 0x050, rev8 */ u32 PAD[3]; /* PCMCIA frame control */ u8 pcmciaframectrl; /* 0x060, rev8 */ u8 PAD[3]; u8 pcmciawatermark; /* rev8 */ u8 PAD[155]; /* interrupt batching control */ u32 intrcvlazy; /* 0x100, rev8 */ u32 PAD[3]; /* counters */ u32 cmd52rd; /* 0x110, rev8 */ u32 cmd52wr; /* rev8 */ u32 cmd53rd; /* rev8 */ u32 cmd53wr; /* rev8 */ u32 abort; /* rev8 */ u32 datacrcerror; /* rev8 */ u32 rdoutofsync; /* rev8 */ u32 wroutofsync; /* rev8 */ u32 writebusy; /* rev8 */ u32 readwait; /* rev8 */ u32 readterm; /* rev8 */ u32 writeterm; /* rev8 */ u32 PAD[40]; u32 clockctlstatus; /* rev8 */ u32 PAD[7]; u32 PAD[128]; /* DMA engines */ /* SDIO/PCMCIA CIS region */ char cis[512]; /* 0x400-0x5ff, rev6 */ /* PCMCIA function control registers */ char pcmciafcr[256]; /* 0x600-6ff, rev6 */ u16 PAD[55]; /* PCMCIA backplane access */ u16 backplanecsr; /* 0x76E, rev6 */ u16 backplaneaddr0; /* rev6 */ u16 backplaneaddr1; /* rev6 */ u16 backplaneaddr2; /* rev6 */ u16 backplaneaddr3; /* rev6 */ u16 backplanedata0; /* rev6 */ u16 backplanedata1; /* rev6 */ u16 backplanedata2; /* rev6 */ u16 backplanedata3; /* rev6 */ u16 PAD[31]; /* sprom "size" & "blank" info */ u16 spromstatus; /* 0x7BE, rev2 */ u32 PAD[464]; u16 PAD[0x80]; }; #ifdef BCMDBG /* Device console log buffer state */ struct brcmf_console { uint count; /* Poll interval msec counter */ uint log_addr; /* Log struct address (fixed) */ struct rte_log_le log_le; /* Log struct (host copy) */ uint bufsize; /* Size of log buffer */ u8 *buf; /* Log buffer (host copy) */ uint last; /* Last buffer read index */ }; #endif /* BCMDBG */ struct sdpcm_shared { u32 flags; u32 trap_addr; u32 assert_exp_addr; u32 assert_file_addr; u32 assert_line; u32 console_addr; /* Address of struct rte_console */ u32 msgtrace_addr; u8 tag[32]; }; struct sdpcm_shared_le { __le32 flags; __le32 trap_addr; __le32 assert_exp_addr; __le32 assert_file_addr; __le32 assert_line; __le32 console_addr; /* Address of struct rte_console */ __le32 msgtrace_addr; u8 tag[32]; }; /* misc chip info needed by some of the routines */ /* Private data for SDIO bus interaction */ struct brcmf_sdio { struct brcmf_pub *drvr; struct brcmf_sdio_dev *sdiodev; /* sdio device handler */ struct chip_info *ci; /* Chip info struct */ char *vars; /* Variables (from CIS and/or other) */ uint varsz; /* Size of variables buffer */ u32 ramsize; /* Size of RAM in SOCRAM (bytes) */ u32 hostintmask; /* Copy of Host Interrupt Mask */ u32 intstatus; /* Intstatus bits (events) pending */ bool dpc_sched; /* Indicates DPC schedule (intrpt rcvd) */ bool fcstate; /* State of dongle flow-control */ uint blocksize; /* Block size of SDIO transfers */ uint roundup; /* Max roundup limit */ struct pktq txq; /* Queue length used for flow-control */ u8 flowcontrol; /* per prio flow control bitmask */ u8 tx_seq; /* Transmit sequence number (next) */ u8 tx_max; /* Maximum transmit sequence allowed */ u8 hdrbuf[MAX_HDR_READ + BRCMF_SDALIGN]; u8 *rxhdr; /* Header of current rx frame (in hdrbuf) */ u16 nextlen; /* Next Read Len from last header */ u8 rx_seq; /* Receive sequence number (expected) */ bool rxskip; /* Skip receive (awaiting NAK ACK) */ uint rxbound; /* Rx frames to read before resched */ uint txbound; /* Tx frames to send before resched */ uint txminmax; struct sk_buff *glomd; /* Packet containing glomming descriptor */ struct sk_buff_head glom; /* Packet list for glommed superframe */ uint glomerr; /* Glom packet read errors */ u8 *rxbuf; /* Buffer for receiving control packets */ uint rxblen; /* Allocated length of rxbuf */ u8 *rxctl; /* Aligned pointer into rxbuf */ u8 *databuf; /* Buffer for receiving big glom packet */ u8 *dataptr; /* Aligned pointer into databuf */ uint rxlen; /* Length of valid data in buffer */ u8 sdpcm_ver; /* Bus protocol reported by dongle */ bool intr; /* Use interrupts */ bool poll; /* Use polling */ bool ipend; /* Device interrupt is pending */ uint intrcount; /* Count of device interrupt callbacks */ uint lastintrs; /* Count as of last watchdog timer */ uint spurious; /* Count of spurious interrupts */ uint pollrate; /* Ticks between device polls */ uint polltick; /* Tick counter */ uint pollcnt; /* Count of active polls */ #ifdef BCMDBG uint console_interval; struct brcmf_console console; /* Console output polling support */ uint console_addr; /* Console address from shared struct */ #endif /* BCMDBG */ uint regfails; /* Count of R_REG failures */ uint clkstate; /* State of sd and backplane clock(s) */ bool activity; /* Activity flag for clock down */ s32 idletime; /* Control for activity timeout */ s32 idlecount; /* Activity timeout counter */ s32 idleclock; /* How to set bus driver when idle */ s32 sd_rxchain; bool use_rxchain; /* If brcmf should use PKT chains */ bool sleeping; /* Is SDIO bus sleeping? */ bool rxflow_mode; /* Rx flow control mode */ bool rxflow; /* Is rx flow control on */ bool alp_only; /* Don't use HT clock (ALP only) */ /* Field to decide if rx of control frames happen in rxbuf or lb-pool */ bool usebufpool; /* Some additional counters */ uint tx_sderrs; /* Count of tx attempts with sd errors */ uint fcqueued; /* Tx packets that got queued */ uint rxrtx; /* Count of rtx requests (NAK to dongle) */ uint rx_toolong; /* Receive frames too long to receive */ uint rxc_errors; /* SDIO errors when reading control frames */ uint rx_hdrfail; /* SDIO errors on header reads */ uint rx_badhdr; /* Bad received headers (roosync?) */ uint rx_badseq; /* Mismatched rx sequence number */ uint fc_rcvd; /* Number of flow-control events received */ uint fc_xoff; /* Number which turned on flow-control */ uint fc_xon; /* Number which turned off flow-control */ uint rxglomfail; /* Failed deglom attempts */ uint rxglomframes; /* Number of glom frames (superframes) */ uint rxglompkts; /* Number of packets from glom frames */ uint f2rxhdrs; /* Number of header reads */ uint f2rxdata; /* Number of frame data reads */ uint f2txdata; /* Number of f2 frame writes */ uint f1regdata; /* Number of f1 register accesses */ u8 *ctrl_frame_buf; u32 ctrl_frame_len; bool ctrl_frame_stat; spinlock_t txqlock; wait_queue_head_t ctrl_wait; wait_queue_head_t dcmd_resp_wait; struct timer_list timer; struct completion watchdog_wait; struct task_struct *watchdog_tsk; bool wd_timer_valid; uint save_ms; struct task_struct *dpc_tsk; struct completion dpc_wait; struct semaphore sdsem; const struct firmware *firmware; u32 fw_ptr; }; /* clkstate */ #define CLK_NONE 0 #define CLK_SDONLY 1 #define CLK_PENDING 2 /* Not used yet */ #define CLK_AVAIL 3 #ifdef BCMDBG static int qcount[NUMPRIO]; static int tx_packets[NUMPRIO]; #endif /* BCMDBG */ #define SDIO_DRIVE_STRENGTH 6 /* in milliamps */ #define RETRYCHAN(chan) ((chan) == SDPCM_EVENT_CHANNEL) /* Retry count for register access failures */ static const uint retry_limit = 2; /* Limit on rounding up frames */ static const uint max_roundup = 512; #define ALIGNMENT 4 static void pkt_align(struct sk_buff *p, int len, int align) { uint datalign; datalign = (unsigned long)(p->data); datalign = roundup(datalign, (align)) - datalign; if (datalign) skb_pull(p, datalign); __skb_trim(p, len); } /* To check if there's window offered */ static bool data_ok(struct brcmf_sdio *bus) { return (u8)(bus->tx_max - bus->tx_seq) != 0 && ((u8)(bus->tx_max - bus->tx_seq) & 0x80) == 0; } /* * Reads a register in the SDIO hardware block. This block occupies a series of * adresses on the 32 bit backplane bus. */ static void r_sdreg32(struct brcmf_sdio *bus, u32 *regvar, u32 reg_offset, u32 *retryvar) { u8 idx = brcmf_sdio_chip_getinfidx(bus->ci, BCMA_CORE_SDIO_DEV); *retryvar = 0; do { *regvar = brcmf_sdcard_reg_read(bus->sdiodev, bus->ci->c_inf[idx].base + reg_offset, sizeof(u32)); } while (brcmf_sdcard_regfail(bus->sdiodev) && (++(*retryvar) <= retry_limit)); if (*retryvar) { bus->regfails += (*retryvar-1); if (*retryvar > retry_limit) { brcmf_dbg(ERROR, "FAILED READ %Xh\n", reg_offset); *regvar = 0; } } } static void w_sdreg32(struct brcmf_sdio *bus, u32 regval, u32 reg_offset, u32 *retryvar) { u8 idx = brcmf_sdio_chip_getinfidx(bus->ci, BCMA_CORE_SDIO_DEV); *retryvar = 0; do { brcmf_sdcard_reg_write(bus->sdiodev, bus->ci->c_inf[idx].base + reg_offset, sizeof(u32), regval); } while (brcmf_sdcard_regfail(bus->sdiodev) && (++(*retryvar) <= retry_limit)); if (*retryvar) { bus->regfails += (*retryvar-1); if (*retryvar > retry_limit) brcmf_dbg(ERROR, "FAILED REGISTER WRITE %Xh\n", reg_offset); } } #define PKT_AVAILABLE() (intstatus & I_HMB_FRAME_IND) #define HOSTINTMASK (I_HMB_SW_MASK | I_CHIPACTIVE) /* Packet free applicable unconditionally for sdio and sdspi. * Conditional if bufpool was present for gspi bus. */ static void brcmf_sdbrcm_pktfree2(struct brcmf_sdio *bus, struct sk_buff *pkt) { if (bus->usebufpool) brcmu_pkt_buf_free_skb(pkt); } /* Turn backplane clock on or off */ static int brcmf_sdbrcm_htclk(struct brcmf_sdio *bus, bool on, bool pendok) { int err; u8 clkctl, clkreq, devctl; unsigned long timeout; brcmf_dbg(TRACE, "Enter\n"); clkctl = 0; if (on) { /* Request HT Avail */ clkreq = bus->alp_only ? SBSDIO_ALP_AVAIL_REQ : SBSDIO_HT_AVAIL_REQ; brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, clkreq, &err); if (err) { brcmf_dbg(ERROR, "HT Avail request error: %d\n", err); return -EBADE; } /* Check current status */ clkctl = brcmf_sdcard_cfg_read(bus->sdiodev, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, &err); if (err) { brcmf_dbg(ERROR, "HT Avail read error: %d\n", err); return -EBADE; } /* Go to pending and await interrupt if appropriate */ if (!SBSDIO_CLKAV(clkctl, bus->alp_only) && pendok) { /* Allow only clock-available interrupt */ devctl = brcmf_sdcard_cfg_read(bus->sdiodev, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, &err); if (err) { brcmf_dbg(ERROR, "Devctl error setting CA: %d\n", err); return -EBADE; } devctl |= SBSDIO_DEVCTL_CA_INT_ONLY; brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, devctl, &err); brcmf_dbg(INFO, "CLKCTL: set PENDING\n"); bus->clkstate = CLK_PENDING; return 0; } else if (bus->clkstate == CLK_PENDING) { /* Cancel CA-only interrupt filter */ devctl = brcmf_sdcard_cfg_read(bus->sdiodev, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, &err); devctl &= ~SBSDIO_DEVCTL_CA_INT_ONLY; brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, devctl, &err); } /* Otherwise, wait here (polling) for HT Avail */ timeout = jiffies + msecs_to_jiffies(PMU_MAX_TRANSITION_DLY/1000); while (!SBSDIO_CLKAV(clkctl, bus->alp_only)) { clkctl = brcmf_sdcard_cfg_read(bus->sdiodev, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, &err); if (time_after(jiffies, timeout)) break; else usleep_range(5000, 10000); } if (err) { brcmf_dbg(ERROR, "HT Avail request error: %d\n", err); return -EBADE; } if (!SBSDIO_CLKAV(clkctl, bus->alp_only)) { brcmf_dbg(ERROR, "HT Avail timeout (%d): clkctl 0x%02x\n", PMU_MAX_TRANSITION_DLY, clkctl); return -EBADE; } /* Mark clock available */ bus->clkstate = CLK_AVAIL; brcmf_dbg(INFO, "CLKCTL: turned ON\n"); #if defined(BCMDBG) if (bus->alp_only != true) { if (SBSDIO_ALPONLY(clkctl)) brcmf_dbg(ERROR, "HT Clock should be on\n"); } #endif /* defined (BCMDBG) */ bus->activity = true; } else { clkreq = 0; if (bus->clkstate == CLK_PENDING) { /* Cancel CA-only interrupt filter */ devctl = brcmf_sdcard_cfg_read(bus->sdiodev, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, &err); devctl &= ~SBSDIO_DEVCTL_CA_INT_ONLY; brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, devctl, &err); } bus->clkstate = CLK_SDONLY; brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, clkreq, &err); brcmf_dbg(INFO, "CLKCTL: turned OFF\n"); if (err) { brcmf_dbg(ERROR, "Failed access turning clock off: %d\n", err); return -EBADE; } } return 0; } /* Change idle/active SD state */ static int brcmf_sdbrcm_sdclk(struct brcmf_sdio *bus, bool on) { brcmf_dbg(TRACE, "Enter\n"); if (on) bus->clkstate = CLK_SDONLY; else bus->clkstate = CLK_NONE; return 0; } /* Transition SD and backplane clock readiness */ static int brcmf_sdbrcm_clkctl(struct brcmf_sdio *bus, uint target, bool pendok) { #ifdef BCMDBG uint oldstate = bus->clkstate; #endif /* BCMDBG */ brcmf_dbg(TRACE, "Enter\n"); /* Early exit if we're already there */ if (bus->clkstate == target) { if (target == CLK_AVAIL) { brcmf_sdbrcm_wd_timer(bus, BRCMF_WD_POLL_MS); bus->activity = true; } return 0; } switch (target) { case CLK_AVAIL: /* Make sure SD clock is available */ if (bus->clkstate == CLK_NONE) brcmf_sdbrcm_sdclk(bus, true); /* Now request HT Avail on the backplane */ brcmf_sdbrcm_htclk(bus, true, pendok); brcmf_sdbrcm_wd_timer(bus, BRCMF_WD_POLL_MS); bus->activity = true; break; case CLK_SDONLY: /* Remove HT request, or bring up SD clock */ if (bus->clkstate == CLK_NONE) brcmf_sdbrcm_sdclk(bus, true); else if (bus->clkstate == CLK_AVAIL) brcmf_sdbrcm_htclk(bus, false, false); else brcmf_dbg(ERROR, "request for %d -> %d\n", bus->clkstate, target); brcmf_sdbrcm_wd_timer(bus, BRCMF_WD_POLL_MS); break; case CLK_NONE: /* Make sure to remove HT request */ if (bus->clkstate == CLK_AVAIL) brcmf_sdbrcm_htclk(bus, false, false); /* Now remove the SD clock */ brcmf_sdbrcm_sdclk(bus, false); brcmf_sdbrcm_wd_timer(bus, 0); break; } #ifdef BCMDBG brcmf_dbg(INFO, "%d -> %d\n", oldstate, bus->clkstate); #endif /* BCMDBG */ return 0; } static int brcmf_sdbrcm_bussleep(struct brcmf_sdio *bus, bool sleep) { uint retries = 0; brcmf_dbg(INFO, "request %s (currently %s)\n", sleep ? "SLEEP" : "WAKE", bus->sleeping ? "SLEEP" : "WAKE"); /* Done if we're already in the requested state */ if (sleep == bus->sleeping) return 0; /* Going to sleep: set the alarm and turn off the lights... */ if (sleep) { /* Don't sleep if something is pending */ if (bus->dpc_sched || bus->rxskip || pktq_len(&bus->txq)) return -EBUSY; /* Make sure the controller has the bus up */ brcmf_sdbrcm_clkctl(bus, CLK_AVAIL, false); /* Tell device to start using OOB wakeup */ w_sdreg32(bus, SMB_USE_OOB, offsetof(struct sdpcmd_regs, tosbmailbox), &retries); if (retries > retry_limit) brcmf_dbg(ERROR, "CANNOT SIGNAL CHIP, WILL NOT WAKE UP!!\n"); /* Turn off our contribution to the HT clock request */ brcmf_sdbrcm_clkctl(bus, CLK_SDONLY, false); brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, SBSDIO_FORCE_HW_CLKREQ_OFF, NULL); /* Isolate the bus */ brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, SBSDIO_DEVCTL_PADS_ISO, NULL); /* Change state */ bus->sleeping = true; } else { /* Waking up: bus power up is ok, set local state */ brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, 0, NULL); /* Make sure the controller has the bus up */ brcmf_sdbrcm_clkctl(bus, CLK_AVAIL, false); /* Send misc interrupt to indicate OOB not needed */ w_sdreg32(bus, 0, offsetof(struct sdpcmd_regs, tosbmailboxdata), &retries); if (retries <= retry_limit) w_sdreg32(bus, SMB_DEV_INT, offsetof(struct sdpcmd_regs, tosbmailbox), &retries); if (retries > retry_limit) brcmf_dbg(ERROR, "CANNOT SIGNAL CHIP TO CLEAR OOB!!\n"); /* Make sure we have SD bus access */ brcmf_sdbrcm_clkctl(bus, CLK_SDONLY, false); /* Change state */ bus->sleeping = false; } return 0; } static void bus_wake(struct brcmf_sdio *bus) { if (bus->sleeping) brcmf_sdbrcm_bussleep(bus, false); } static u32 brcmf_sdbrcm_hostmail(struct brcmf_sdio *bus) { u32 intstatus = 0; u32 hmb_data; u8 fcbits; uint retries = 0; brcmf_dbg(TRACE, "Enter\n"); /* Read mailbox data and ack that we did so */ r_sdreg32(bus, &hmb_data, offsetof(struct sdpcmd_regs, tohostmailboxdata), &retries); if (retries <= retry_limit) w_sdreg32(bus, SMB_INT_ACK, offsetof(struct sdpcmd_regs, tosbmailbox), &retries); bus->f1regdata += 2; /* Dongle recomposed rx frames, accept them again */ if (hmb_data & HMB_DATA_NAKHANDLED) { brcmf_dbg(INFO, "Dongle reports NAK handled, expect rtx of %d\n", bus->rx_seq); if (!bus->rxskip) brcmf_dbg(ERROR, "unexpected NAKHANDLED!\n"); bus->rxskip = false; intstatus |= I_HMB_FRAME_IND; } /* * DEVREADY does not occur with gSPI. */ if (hmb_data & (HMB_DATA_DEVREADY | HMB_DATA_FWREADY)) { bus->sdpcm_ver = (hmb_data & HMB_DATA_VERSION_MASK) >> HMB_DATA_VERSION_SHIFT; if (bus->sdpcm_ver != SDPCM_PROT_VERSION) brcmf_dbg(ERROR, "Version mismatch, dongle reports %d, " "expecting %d\n", bus->sdpcm_ver, SDPCM_PROT_VERSION); else brcmf_dbg(INFO, "Dongle ready, protocol version %d\n", bus->sdpcm_ver); } /* * Flow Control has been moved into the RX headers and this out of band * method isn't used any more. * remaining backward compatible with older dongles. */ if (hmb_data & HMB_DATA_FC) { fcbits = (hmb_data & HMB_DATA_FCDATA_MASK) >> HMB_DATA_FCDATA_SHIFT; if (fcbits & ~bus->flowcontrol) bus->fc_xoff++; if (bus->flowcontrol & ~fcbits) bus->fc_xon++; bus->fc_rcvd++; bus->flowcontrol = fcbits; } /* Shouldn't be any others */ if (hmb_data & ~(HMB_DATA_DEVREADY | HMB_DATA_NAKHANDLED | HMB_DATA_FC | HMB_DATA_FWREADY | HMB_DATA_FCDATA_MASK | HMB_DATA_VERSION_MASK)) brcmf_dbg(ERROR, "Unknown mailbox data content: 0x%02x\n", hmb_data); return intstatus; } static void brcmf_sdbrcm_rxfail(struct brcmf_sdio *bus, bool abort, bool rtx) { uint retries = 0; u16 lastrbc; u8 hi, lo; int err; brcmf_dbg(ERROR, "%sterminate frame%s\n", abort ? "abort command, " : "", rtx ? ", send NAK" : ""); if (abort) brcmf_sdcard_abort(bus->sdiodev, SDIO_FUNC_2); brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_1, SBSDIO_FUNC1_FRAMECTRL, SFC_RF_TERM, &err); bus->f1regdata++; /* Wait until the packet has been flushed (device/FIFO stable) */ for (lastrbc = retries = 0xffff; retries > 0; retries--) { hi = brcmf_sdcard_cfg_read(bus->sdiodev, SDIO_FUNC_1, SBSDIO_FUNC1_RFRAMEBCHI, NULL); lo = brcmf_sdcard_cfg_read(bus->sdiodev, SDIO_FUNC_1, SBSDIO_FUNC1_RFRAMEBCLO, NULL); bus->f1regdata += 2; if ((hi == 0) && (lo == 0)) break; if ((hi > (lastrbc >> 8)) && (lo > (lastrbc & 0x00ff))) { brcmf_dbg(ERROR, "count growing: last 0x%04x now 0x%04x\n", lastrbc, (hi << 8) + lo); } lastrbc = (hi << 8) + lo; } if (!retries) brcmf_dbg(ERROR, "count never zeroed: last 0x%04x\n", lastrbc); else brcmf_dbg(INFO, "flush took %d iterations\n", 0xffff - retries); if (rtx) { bus->rxrtx++; w_sdreg32(bus, SMB_NAK, offsetof(struct sdpcmd_regs, tosbmailbox), &retries); bus->f1regdata++; if (retries <= retry_limit) bus->rxskip = true; } /* Clear partial in any case */ bus->nextlen = 0; /* If we can't reach the device, signal failure */ if (err || brcmf_sdcard_regfail(bus->sdiodev)) bus->drvr->bus_if->state = BRCMF_BUS_DOWN; } /* copy a buffer into a pkt buffer chain */ static uint brcmf_sdbrcm_glom_from_buf(struct brcmf_sdio *bus, uint len) { uint n, ret = 0; struct sk_buff *p; u8 *buf; buf = bus->dataptr; /* copy the data */ skb_queue_walk(&bus->glom, p) { n = min_t(uint, p->len, len); memcpy(p->data, buf, n); buf += n; len -= n; ret += n; if (!len) break; } return ret; } /* return total length of buffer chain */ static uint brcmf_sdbrcm_glom_len(struct brcmf_sdio *bus) { struct sk_buff *p; uint total; total = 0; skb_queue_walk(&bus->glom, p) total += p->len; return total; } static void brcmf_sdbrcm_free_glom(struct brcmf_sdio *bus) { struct sk_buff *cur, *next; skb_queue_walk_safe(&bus->glom, cur, next) { skb_unlink(cur, &bus->glom); brcmu_pkt_buf_free_skb(cur); } } static u8 brcmf_sdbrcm_rxglom(struct brcmf_sdio *bus, u8 rxseq) { u16 dlen, totlen; u8 *dptr, num = 0; u16 sublen, check; struct sk_buff *pfirst, *pnext; int errcode; u8 chan, seq, doff, sfdoff; u8 txmax; int ifidx = 0; bool usechain = bus->use_rxchain; /* If packets, issue read(s) and send up packet chain */ /* Return sequence numbers consumed? */ brcmf_dbg(TRACE, "start: glomd %p glom %p\n", bus->glomd, skb_peek(&bus->glom)); /* If there's a descriptor, generate the packet chain */ if (bus->glomd) { pfirst = pnext = NULL; dlen = (u16) (bus->glomd->len); dptr = bus->glomd->data; if (!dlen || (dlen & 1)) { brcmf_dbg(ERROR, "bad glomd len(%d), ignore descriptor\n", dlen); dlen = 0; } for (totlen = num = 0; dlen; num++) { /* Get (and move past) next length */ sublen = get_unaligned_le16(dptr); dlen -= sizeof(u16); dptr += sizeof(u16); if ((sublen < SDPCM_HDRLEN) || ((num == 0) && (sublen < (2 * SDPCM_HDRLEN)))) { brcmf_dbg(ERROR, "descriptor len %d bad: %d\n", num, sublen); pnext = NULL; break; } if (sublen % BRCMF_SDALIGN) { brcmf_dbg(ERROR, "sublen %d not multiple of %d\n", sublen, BRCMF_SDALIGN); usechain = false; } totlen += sublen; /* For last frame, adjust read len so total is a block multiple */ if (!dlen) { sublen += (roundup(totlen, bus->blocksize) - totlen); totlen = roundup(totlen, bus->blocksize); } /* Allocate/chain packet for next subframe */ pnext = brcmu_pkt_buf_get_skb(sublen + BRCMF_SDALIGN); if (pnext == NULL) { brcmf_dbg(ERROR, "bcm_pkt_buf_get_skb failed, num %d len %d\n", num, sublen); break; } skb_queue_tail(&bus->glom, pnext); /* Adhere to start alignment requirements */ pkt_align(pnext, sublen, BRCMF_SDALIGN); } /* If all allocations succeeded, save packet chain in bus structure */ if (pnext) { brcmf_dbg(GLOM, "allocated %d-byte packet chain for %d subframes\n", totlen, num); if (BRCMF_GLOM_ON() && bus->nextlen && totlen != bus->nextlen) { brcmf_dbg(GLOM, "glomdesc mismatch: nextlen %d glomdesc %d rxseq %d\n", bus->nextlen, totlen, rxseq); } pfirst = pnext = NULL; } else { brcmf_sdbrcm_free_glom(bus); num = 0; } /* Done with descriptor packet */ brcmu_pkt_buf_free_skb(bus->glomd); bus->glomd = NULL; bus->nextlen = 0; } /* Ok -- either we just generated a packet chain, or had one from before */ if (!skb_queue_empty(&bus->glom)) { if (BRCMF_GLOM_ON()) { brcmf_dbg(GLOM, "try superframe read, packet chain:\n"); skb_queue_walk(&bus->glom, pnext) { brcmf_dbg(GLOM, " %p: %p len 0x%04x (%d)\n", pnext, (u8 *) (pnext->data), pnext->len, pnext->len); } } pfirst = skb_peek(&bus->glom); dlen = (u16) brcmf_sdbrcm_glom_len(bus); /* Do an SDIO read for the superframe. Configurable iovar to * read directly into the chained packet, or allocate a large * packet and and copy into the chain. */ if (usechain) { errcode = brcmf_sdcard_recv_chain(bus->sdiodev, bus->sdiodev->sbwad, SDIO_FUNC_2, F2SYNC, &bus->glom); } else if (bus->dataptr) { errcode = brcmf_sdcard_recv_buf(bus->sdiodev, bus->sdiodev->sbwad, SDIO_FUNC_2, F2SYNC, bus->dataptr, dlen); sublen = (u16) brcmf_sdbrcm_glom_from_buf(bus, dlen); if (sublen != dlen) { brcmf_dbg(ERROR, "FAILED TO COPY, dlen %d sublen %d\n", dlen, sublen); errcode = -1; } pnext = NULL; } else { brcmf_dbg(ERROR, "COULDN'T ALLOC %d-BYTE GLOM, FORCE FAILURE\n", dlen); errcode = -1; } bus->f2rxdata++; /* On failure, kill the superframe, allow a couple retries */ if (errcode < 0) { brcmf_dbg(ERROR, "glom read of %d bytes failed: %d\n", dlen, errcode); bus->drvr->rx_errors++; if (bus->glomerr++ < 3) { brcmf_sdbrcm_rxfail(bus, true, true); } else { bus->glomerr = 0; brcmf_sdbrcm_rxfail(bus, true, false); bus->rxglomfail++; brcmf_sdbrcm_free_glom(bus); } return 0; } #ifdef BCMDBG if (BRCMF_GLOM_ON()) { printk(KERN_DEBUG "SUPERFRAME:\n"); print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, pfirst->data, min_t(int, pfirst->len, 48)); } #endif /* Validate the superframe header */ dptr = (u8 *) (pfirst->data); sublen = get_unaligned_le16(dptr); check = get_unaligned_le16(dptr + sizeof(u16)); chan = SDPCM_PACKET_CHANNEL(&dptr[SDPCM_FRAMETAG_LEN]); seq = SDPCM_PACKET_SEQUENCE(&dptr[SDPCM_FRAMETAG_LEN]); bus->nextlen = dptr[SDPCM_FRAMETAG_LEN + SDPCM_NEXTLEN_OFFSET]; if ((bus->nextlen << 4) > MAX_RX_DATASZ) { brcmf_dbg(INFO, "nextlen too large (%d) seq %d\n", bus->nextlen, seq); bus->nextlen = 0; } doff = SDPCM_DOFFSET_VALUE(&dptr[SDPCM_FRAMETAG_LEN]); txmax = SDPCM_WINDOW_VALUE(&dptr[SDPCM_FRAMETAG_LEN]); errcode = 0; if ((u16)~(sublen ^ check)) { brcmf_dbg(ERROR, "(superframe): HW hdr error: len/check 0x%04x/0x%04x\n", sublen, check); errcode = -1; } else if (roundup(sublen, bus->blocksize) != dlen) { brcmf_dbg(ERROR, "(superframe): len 0x%04x, rounded 0x%04x, expect 0x%04x\n", sublen, roundup(sublen, bus->blocksize), dlen); errcode = -1; } else if (SDPCM_PACKET_CHANNEL(&dptr[SDPCM_FRAMETAG_LEN]) != SDPCM_GLOM_CHANNEL) { brcmf_dbg(ERROR, "(superframe): bad channel %d\n", SDPCM_PACKET_CHANNEL( &dptr[SDPCM_FRAMETAG_LEN])); errcode = -1; } else if (SDPCM_GLOMDESC(&dptr[SDPCM_FRAMETAG_LEN])) { brcmf_dbg(ERROR, "(superframe): got 2nd descriptor?\n"); errcode = -1; } else if ((doff < SDPCM_HDRLEN) || (doff > (pfirst->len - SDPCM_HDRLEN))) { brcmf_dbg(ERROR, "(superframe): Bad data offset %d: HW %d pkt %d min %d\n", doff, sublen, pfirst->len, SDPCM_HDRLEN); errcode = -1; } /* Check sequence number of superframe SW header */ if (rxseq != seq) { brcmf_dbg(INFO, "(superframe) rx_seq %d, expected %d\n", seq, rxseq); bus->rx_badseq++; rxseq = seq; } /* Check window for sanity */ if ((u8) (txmax - bus->tx_seq) > 0x40) { brcmf_dbg(ERROR, "unlikely tx max %d with tx_seq %d\n", txmax, bus->tx_seq); txmax = bus->tx_seq + 2; } bus->tx_max = txmax; /* Remove superframe header, remember offset */ skb_pull(pfirst, doff); sfdoff = doff; num = 0; /* Validate all the subframe headers */ skb_queue_walk(&bus->glom, pnext) { /* leave when invalid subframe is found */ if (errcode) break; dptr = (u8 *) (pnext->data); dlen = (u16) (pnext->len); sublen = get_unaligned_le16(dptr); check = get_unaligned_le16(dptr + sizeof(u16)); chan = SDPCM_PACKET_CHANNEL(&dptr[SDPCM_FRAMETAG_LEN]); doff = SDPCM_DOFFSET_VALUE(&dptr[SDPCM_FRAMETAG_LEN]); #ifdef BCMDBG if (BRCMF_GLOM_ON()) { printk(KERN_DEBUG "subframe:\n"); print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, dptr, 32); } #endif if ((u16)~(sublen ^ check)) { brcmf_dbg(ERROR, "(subframe %d): HW hdr error: len/check 0x%04x/0x%04x\n", num, sublen, check); errcode = -1; } else if ((sublen > dlen) || (sublen < SDPCM_HDRLEN)) { brcmf_dbg(ERROR, "(subframe %d): length mismatch: len 0x%04x, expect 0x%04x\n", num, sublen, dlen); errcode = -1; } else if ((chan != SDPCM_DATA_CHANNEL) && (chan != SDPCM_EVENT_CHANNEL)) { brcmf_dbg(ERROR, "(subframe %d): bad channel %d\n", num, chan); errcode = -1; } else if ((doff < SDPCM_HDRLEN) || (doff > sublen)) { brcmf_dbg(ERROR, "(subframe %d): Bad data offset %d: HW %d min %d\n", num, doff, sublen, SDPCM_HDRLEN); errcode = -1; } /* increase the subframe count */ num++; } if (errcode) { /* Terminate frame on error, request a couple retries */ if (bus->glomerr++ < 3) { /* Restore superframe header space */ skb_push(pfirst, sfdoff); brcmf_sdbrcm_rxfail(bus, true, true); } else { bus->glomerr = 0; brcmf_sdbrcm_rxfail(bus, true, false); bus->rxglomfail++; brcmf_sdbrcm_free_glom(bus); } bus->nextlen = 0; return 0; } /* Basic SD framing looks ok - process each packet (header) */ skb_queue_walk_safe(&bus->glom, pfirst, pnext) { dptr = (u8 *) (pfirst->data); sublen = get_unaligned_le16(dptr); chan = SDPCM_PACKET_CHANNEL(&dptr[SDPCM_FRAMETAG_LEN]); seq = SDPCM_PACKET_SEQUENCE(&dptr[SDPCM_FRAMETAG_LEN]); doff = SDPCM_DOFFSET_VALUE(&dptr[SDPCM_FRAMETAG_LEN]); brcmf_dbg(GLOM, "Get subframe %d, %p(%p/%d), sublen %d chan %d seq %d\n", num, pfirst, pfirst->data, pfirst->len, sublen, chan, seq); /* precondition: chan == SDPCM_DATA_CHANNEL || chan == SDPCM_EVENT_CHANNEL */ if (rxseq != seq) { brcmf_dbg(GLOM, "rx_seq %d, expected %d\n", seq, rxseq); bus->rx_badseq++; rxseq = seq; } rxseq++; #ifdef BCMDBG if (BRCMF_BYTES_ON() && BRCMF_DATA_ON()) { printk(KERN_DEBUG "Rx Subframe Data:\n"); print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, dptr, dlen); } #endif __skb_trim(pfirst, sublen); skb_pull(pfirst, doff); if (pfirst->len == 0) { skb_unlink(pfirst, &bus->glom); brcmu_pkt_buf_free_skb(pfirst); continue; } else if (brcmf_proto_hdrpull(bus->sdiodev->dev, &ifidx, pfirst) != 0) { brcmf_dbg(ERROR, "rx protocol error\n"); bus->drvr->rx_errors++; skb_unlink(pfirst, &bus->glom); brcmu_pkt_buf_free_skb(pfirst); continue; } #ifdef BCMDBG if (BRCMF_GLOM_ON()) { brcmf_dbg(GLOM, "subframe %d to stack, %p (%p/%d) nxt/lnk %p/%p\n", bus->glom.qlen, pfirst, pfirst->data, pfirst->len, pfirst->next, pfirst->prev); print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, pfirst->data, min_t(int, pfirst->len, 32)); } #endif /* BCMDBG */ } /* sent any remaining packets up */ if (bus->glom.qlen) { up(&bus->sdsem); brcmf_rx_frame(bus->sdiodev->dev, ifidx, &bus->glom); down(&bus->sdsem); } bus->rxglomframes++; bus->rxglompkts += bus->glom.qlen; } return num; } static int brcmf_sdbrcm_dcmd_resp_wait(struct brcmf_sdio *bus, uint *condition, bool *pending) { DECLARE_WAITQUEUE(wait, current); int timeout = msecs_to_jiffies(DCMD_RESP_TIMEOUT); /* Wait until control frame is available */ add_wait_queue(&bus->dcmd_resp_wait, &wait); set_current_state(TASK_INTERRUPTIBLE); while (!(*condition) && (!signal_pending(current) && timeout)) timeout = schedule_timeout(timeout); if (signal_pending(current)) *pending = true; set_current_state(TASK_RUNNING); remove_wait_queue(&bus->dcmd_resp_wait, &wait); return timeout; } static int brcmf_sdbrcm_dcmd_resp_wake(struct brcmf_sdio *bus) { if (waitqueue_active(&bus->dcmd_resp_wait)) wake_up_interruptible(&bus->dcmd_resp_wait); return 0; } static void brcmf_sdbrcm_read_control(struct brcmf_sdio *bus, u8 *hdr, uint len, uint doff) { uint rdlen, pad; int sdret; brcmf_dbg(TRACE, "Enter\n"); /* Set rxctl for frame (w/optional alignment) */ bus->rxctl = bus->rxbuf; bus->rxctl += BRCMF_FIRSTREAD; pad = ((unsigned long)bus->rxctl % BRCMF_SDALIGN); if (pad) bus->rxctl += (BRCMF_SDALIGN - pad); bus->rxctl -= BRCMF_FIRSTREAD; /* Copy the already-read portion over */ memcpy(bus->rxctl, hdr, BRCMF_FIRSTREAD); if (len <= BRCMF_FIRSTREAD) goto gotpkt; /* Raise rdlen to next SDIO block to avoid tail command */ rdlen = len - BRCMF_FIRSTREAD; if (bus->roundup && bus->blocksize && (rdlen > bus->blocksize)) { pad = bus->blocksize - (rdlen % bus->blocksize); if ((pad <= bus->roundup) && (pad < bus->blocksize) && ((len + pad) < bus->drvr->maxctl)) rdlen += pad; } else if (rdlen % BRCMF_SDALIGN) { rdlen += BRCMF_SDALIGN - (rdlen % BRCMF_SDALIGN); } /* Satisfy length-alignment requirements */ if (rdlen & (ALIGNMENT - 1)) rdlen = roundup(rdlen, ALIGNMENT); /* Drop if the read is too big or it exceeds our maximum */ if ((rdlen + BRCMF_FIRSTREAD) > bus->drvr->maxctl) { brcmf_dbg(ERROR, "%d-byte control read exceeds %d-byte buffer\n", rdlen, bus->drvr->maxctl); bus->drvr->rx_errors++; brcmf_sdbrcm_rxfail(bus, false, false); goto done; } if ((len - doff) > bus->drvr->maxctl) { brcmf_dbg(ERROR, "%d-byte ctl frame (%d-byte ctl data) exceeds %d-byte limit\n", len, len - doff, bus->drvr->maxctl); bus->drvr->rx_errors++; bus->rx_toolong++; brcmf_sdbrcm_rxfail(bus, false, false); goto done; } /* Read remainder of frame body into the rxctl buffer */ sdret = brcmf_sdcard_recv_buf(bus->sdiodev, bus->sdiodev->sbwad, SDIO_FUNC_2, F2SYNC, (bus->rxctl + BRCMF_FIRSTREAD), rdlen); bus->f2rxdata++; /* Control frame failures need retransmission */ if (sdret < 0) { brcmf_dbg(ERROR, "read %d control bytes failed: %d\n", rdlen, sdret); bus->rxc_errors++; brcmf_sdbrcm_rxfail(bus, true, true); goto done; } gotpkt: #ifdef BCMDBG if (BRCMF_BYTES_ON() && BRCMF_CTL_ON()) { printk(KERN_DEBUG "RxCtrl:\n"); print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, bus->rxctl, len); } #endif /* Point to valid data and indicate its length */ bus->rxctl += doff; bus->rxlen = len - doff; done: /* Awake any waiters */ brcmf_sdbrcm_dcmd_resp_wake(bus); } /* Pad read to blocksize for efficiency */ static void brcmf_pad(struct brcmf_sdio *bus, u16 *pad, u16 *rdlen) { if (bus->roundup && bus->blocksize && *rdlen > bus->blocksize) { *pad = bus->blocksize - (*rdlen % bus->blocksize); if (*pad <= bus->roundup && *pad < bus->blocksize && *rdlen + *pad + BRCMF_FIRSTREAD < MAX_RX_DATASZ) *rdlen += *pad; } else if (*rdlen % BRCMF_SDALIGN) { *rdlen += BRCMF_SDALIGN - (*rdlen % BRCMF_SDALIGN); } } static void brcmf_alloc_pkt_and_read(struct brcmf_sdio *bus, u16 rdlen, struct sk_buff **pkt, u8 **rxbuf) { int sdret; /* Return code from calls */ *pkt = brcmu_pkt_buf_get_skb(rdlen + BRCMF_SDALIGN); if (*pkt == NULL) return; pkt_align(*pkt, rdlen, BRCMF_SDALIGN); *rxbuf = (u8 *) ((*pkt)->data); /* Read the entire frame */ sdret = brcmf_sdcard_recv_pkt(bus->sdiodev, bus->sdiodev->sbwad, SDIO_FUNC_2, F2SYNC, *pkt); bus->f2rxdata++; if (sdret < 0) { brcmf_dbg(ERROR, "(nextlen): read %d bytes failed: %d\n", rdlen, sdret); brcmu_pkt_buf_free_skb(*pkt); bus->drvr->rx_errors++; /* Force retry w/normal header read. * Don't attempt NAK for * gSPI */ brcmf_sdbrcm_rxfail(bus, true, true); *pkt = NULL; } } /* Checks the header */ static int brcmf_check_rxbuf(struct brcmf_sdio *bus, struct sk_buff *pkt, u8 *rxbuf, u8 rxseq, u16 nextlen, u16 *len) { u16 check; bool len_consistent; /* Result of comparing readahead len and len from hw-hdr */ memcpy(bus->rxhdr, rxbuf, SDPCM_HDRLEN); /* Extract hardware header fields */ *len = get_unaligned_le16(bus->rxhdr); check = get_unaligned_le16(bus->rxhdr + sizeof(u16)); /* All zeros means readahead info was bad */ if (!(*len | check)) { brcmf_dbg(INFO, "(nextlen): read zeros in HW header???\n"); goto fail; } /* Validate check bytes */ if ((u16)~(*len ^ check)) { brcmf_dbg(ERROR, "(nextlen): HW hdr error: nextlen/len/check 0x%04x/0x%04x/0x%04x\n", nextlen, *len, check); bus->rx_badhdr++; brcmf_sdbrcm_rxfail(bus, false, false); goto fail; } /* Validate frame length */ if (*len < SDPCM_HDRLEN) { brcmf_dbg(ERROR, "(nextlen): HW hdr length invalid: %d\n", *len); goto fail; } /* Check for consistency with readahead info */ len_consistent = (nextlen != (roundup(*len, 16) >> 4)); if (len_consistent) { /* Mismatch, force retry w/normal header (may be >4K) */ brcmf_dbg(ERROR, "(nextlen): mismatch, nextlen %d len %d rnd %d; expected rxseq %d\n", nextlen, *len, roundup(*len, 16), rxseq); brcmf_sdbrcm_rxfail(bus, true, true); goto fail; } return 0; fail: brcmf_sdbrcm_pktfree2(bus, pkt); return -EINVAL; } /* Return true if there may be more frames to read */ static uint brcmf_sdbrcm_readframes(struct brcmf_sdio *bus, uint maxframes, bool *finished) { u16 len, check; /* Extracted hardware header fields */ u8 chan, seq, doff; /* Extracted software header fields */ u8 fcbits; /* Extracted fcbits from software header */ struct sk_buff *pkt; /* Packet for event or data frames */ u16 pad; /* Number of pad bytes to read */ u16 rdlen; /* Total number of bytes to read */ u8 rxseq; /* Next sequence number to expect */ uint rxleft = 0; /* Remaining number of frames allowed */ int sdret; /* Return code from calls */ u8 txmax; /* Maximum tx sequence offered */ u8 *rxbuf; int ifidx = 0; uint rxcount = 0; /* Total frames read */ brcmf_dbg(TRACE, "Enter\n"); /* Not finished unless we encounter no more frames indication */ *finished = false; for (rxseq = bus->rx_seq, rxleft = maxframes; !bus->rxskip && rxleft && bus->drvr->bus_if->state != BRCMF_BUS_DOWN; rxseq++, rxleft--) { /* Handle glomming separately */ if (bus->glomd || !skb_queue_empty(&bus->glom)) { u8 cnt; brcmf_dbg(GLOM, "calling rxglom: glomd %p, glom %p\n", bus->glomd, skb_peek(&bus->glom)); cnt = brcmf_sdbrcm_rxglom(bus, rxseq); brcmf_dbg(GLOM, "rxglom returned %d\n", cnt); rxseq += cnt - 1; rxleft = (rxleft > cnt) ? (rxleft - cnt) : 1; continue; } /* Try doing single read if we can */ if (bus->nextlen) { u16 nextlen = bus->nextlen; bus->nextlen = 0; rdlen = len = nextlen << 4; brcmf_pad(bus, &pad, &rdlen); /* * After the frame is received we have to * distinguish whether it is data * or non-data frame. */ brcmf_alloc_pkt_and_read(bus, rdlen, &pkt, &rxbuf); if (pkt == NULL) { /* Give up on data, request rtx of events */ brcmf_dbg(ERROR, "(nextlen): brcmf_alloc_pkt_and_read failed: len %d rdlen %d expected rxseq %d\n", len, rdlen, rxseq); continue; } if (brcmf_check_rxbuf(bus, pkt, rxbuf, rxseq, nextlen, &len) < 0) continue; /* Extract software header fields */ chan = SDPCM_PACKET_CHANNEL( &bus->rxhdr[SDPCM_FRAMETAG_LEN]); seq = SDPCM_PACKET_SEQUENCE( &bus->rxhdr[SDPCM_FRAMETAG_LEN]); doff = SDPCM_DOFFSET_VALUE( &bus->rxhdr[SDPCM_FRAMETAG_LEN]); txmax = SDPCM_WINDOW_VALUE( &bus->rxhdr[SDPCM_FRAMETAG_LEN]); bus->nextlen = bus->rxhdr[SDPCM_FRAMETAG_LEN + SDPCM_NEXTLEN_OFFSET]; if ((bus->nextlen << 4) > MAX_RX_DATASZ) { brcmf_dbg(INFO, "(nextlen): got frame w/nextlen too large (%d), seq %d\n", bus->nextlen, seq); bus->nextlen = 0; } bus->drvr->rx_readahead_cnt++; /* Handle Flow Control */ fcbits = SDPCM_FCMASK_VALUE( &bus->rxhdr[SDPCM_FRAMETAG_LEN]); if (bus->flowcontrol != fcbits) { if (~bus->flowcontrol & fcbits) bus->fc_xoff++; if (bus->flowcontrol & ~fcbits) bus->fc_xon++; bus->fc_rcvd++; bus->flowcontrol = fcbits; } /* Check and update sequence number */ if (rxseq != seq) { brcmf_dbg(INFO, "(nextlen): rx_seq %d, expected %d\n", seq, rxseq); bus->rx_badseq++; rxseq = seq; } /* Check window for sanity */ if ((u8) (txmax - bus->tx_seq) > 0x40) { brcmf_dbg(ERROR, "got unlikely tx max %d with tx_seq %d\n", txmax, bus->tx_seq); txmax = bus->tx_seq + 2; } bus->tx_max = txmax; #ifdef BCMDBG if (BRCMF_BYTES_ON() && BRCMF_DATA_ON()) { printk(KERN_DEBUG "Rx Data:\n"); print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, rxbuf, len); } else if (BRCMF_HDRS_ON()) { printk(KERN_DEBUG "RxHdr:\n"); print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, bus->rxhdr, SDPCM_HDRLEN); } #endif if (chan == SDPCM_CONTROL_CHANNEL) { brcmf_dbg(ERROR, "(nextlen): readahead on control packet %d?\n", seq); /* Force retry w/normal header read */ bus->nextlen = 0; brcmf_sdbrcm_rxfail(bus, false, true); brcmf_sdbrcm_pktfree2(bus, pkt); continue; } /* Validate data offset */ if ((doff < SDPCM_HDRLEN) || (doff > len)) { brcmf_dbg(ERROR, "(nextlen): bad data offset %d: HW len %d min %d\n", doff, len, SDPCM_HDRLEN); brcmf_sdbrcm_rxfail(bus, false, false); brcmf_sdbrcm_pktfree2(bus, pkt); continue; } /* All done with this one -- now deliver the packet */ goto deliver; } /* Read frame header (hardware and software) */ sdret = brcmf_sdcard_recv_buf(bus->sdiodev, bus->sdiodev->sbwad, SDIO_FUNC_2, F2SYNC, bus->rxhdr, BRCMF_FIRSTREAD); bus->f2rxhdrs++; if (sdret < 0) { brcmf_dbg(ERROR, "RXHEADER FAILED: %d\n", sdret); bus->rx_hdrfail++; brcmf_sdbrcm_rxfail(bus, true, true); continue; } #ifdef BCMDBG if (BRCMF_BYTES_ON() || BRCMF_HDRS_ON()) { printk(KERN_DEBUG "RxHdr:\n"); print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, bus->rxhdr, SDPCM_HDRLEN); } #endif /* Extract hardware header fields */ len = get_unaligned_le16(bus->rxhdr); check = get_unaligned_le16(bus->rxhdr + sizeof(u16)); /* All zeros means no more frames */ if (!(len | check)) { *finished = true; break; } /* Validate check bytes */ if ((u16) ~(len ^ check)) { brcmf_dbg(ERROR, "HW hdr err: len/check 0x%04x/0x%04x\n", len, check); bus->rx_badhdr++; brcmf_sdbrcm_rxfail(bus, false, false); continue; } /* Validate frame length */ if (len < SDPCM_HDRLEN) { brcmf_dbg(ERROR, "HW hdr length invalid: %d\n", len); continue; } /* Extract software header fields */ chan = SDPCM_PACKET_CHANNEL(&bus->rxhdr[SDPCM_FRAMETAG_LEN]); seq = SDPCM_PACKET_SEQUENCE(&bus->rxhdr[SDPCM_FRAMETAG_LEN]); doff = SDPCM_DOFFSET_VALUE(&bus->rxhdr[SDPCM_FRAMETAG_LEN]); txmax = SDPCM_WINDOW_VALUE(&bus->rxhdr[SDPCM_FRAMETAG_LEN]); /* Validate data offset */ if ((doff < SDPCM_HDRLEN) || (doff > len)) { brcmf_dbg(ERROR, "Bad data offset %d: HW len %d, min %d seq %d\n", doff, len, SDPCM_HDRLEN, seq); bus->rx_badhdr++; brcmf_sdbrcm_rxfail(bus, false, false); continue; } /* Save the readahead length if there is one */ bus->nextlen = bus->rxhdr[SDPCM_FRAMETAG_LEN + SDPCM_NEXTLEN_OFFSET]; if ((bus->nextlen << 4) > MAX_RX_DATASZ) { brcmf_dbg(INFO, "(nextlen): got frame w/nextlen too large (%d), seq %d\n", bus->nextlen, seq); bus->nextlen = 0; } /* Handle Flow Control */ fcbits = SDPCM_FCMASK_VALUE(&bus->rxhdr[SDPCM_FRAMETAG_LEN]); if (bus->flowcontrol != fcbits) { if (~bus->flowcontrol & fcbits) bus->fc_xoff++; if (bus->flowcontrol & ~fcbits) bus->fc_xon++; bus->fc_rcvd++; bus->flowcontrol = fcbits; } /* Check and update sequence number */ if (rxseq != seq) { brcmf_dbg(INFO, "rx_seq %d, expected %d\n", seq, rxseq); bus->rx_badseq++; rxseq = seq; } /* Check window for sanity */ if ((u8) (txmax - bus->tx_seq) > 0x40) { brcmf_dbg(ERROR, "unlikely tx max %d with tx_seq %d\n", txmax, bus->tx_seq); txmax = bus->tx_seq + 2; } bus->tx_max = txmax; /* Call a separate function for control frames */ if (chan == SDPCM_CONTROL_CHANNEL) { brcmf_sdbrcm_read_control(bus, bus->rxhdr, len, doff); continue; } /* precondition: chan is either SDPCM_DATA_CHANNEL, SDPCM_EVENT_CHANNEL, SDPCM_TEST_CHANNEL or SDPCM_GLOM_CHANNEL */ /* Length to read */ rdlen = (len > BRCMF_FIRSTREAD) ? (len - BRCMF_FIRSTREAD) : 0; /* May pad read to blocksize for efficiency */ if (bus->roundup && bus->blocksize && (rdlen > bus->blocksize)) { pad = bus->blocksize - (rdlen % bus->blocksize); if ((pad <= bus->roundup) && (pad < bus->blocksize) && ((rdlen + pad + BRCMF_FIRSTREAD) < MAX_RX_DATASZ)) rdlen += pad; } else if (rdlen % BRCMF_SDALIGN) { rdlen += BRCMF_SDALIGN - (rdlen % BRCMF_SDALIGN); } /* Satisfy length-alignment requirements */ if (rdlen & (ALIGNMENT - 1)) rdlen = roundup(rdlen, ALIGNMENT); if ((rdlen + BRCMF_FIRSTREAD) > MAX_RX_DATASZ) { /* Too long -- skip this frame */ brcmf_dbg(ERROR, "too long: len %d rdlen %d\n", len, rdlen); bus->drvr->rx_errors++; bus->rx_toolong++; brcmf_sdbrcm_rxfail(bus, false, false); continue; } pkt = brcmu_pkt_buf_get_skb(rdlen + BRCMF_FIRSTREAD + BRCMF_SDALIGN); if (!pkt) { /* Give up on data, request rtx of events */ brcmf_dbg(ERROR, "brcmu_pkt_buf_get_skb failed: rdlen %d chan %d\n", rdlen, chan); bus->drvr->rx_dropped++; brcmf_sdbrcm_rxfail(bus, false, RETRYCHAN(chan)); continue; } /* Leave room for what we already read, and align remainder */ skb_pull(pkt, BRCMF_FIRSTREAD); pkt_align(pkt, rdlen, BRCMF_SDALIGN); /* Read the remaining frame data */ sdret = brcmf_sdcard_recv_pkt(bus->sdiodev, bus->sdiodev->sbwad, SDIO_FUNC_2, F2SYNC, pkt); bus->f2rxdata++; if (sdret < 0) { brcmf_dbg(ERROR, "read %d %s bytes failed: %d\n", rdlen, ((chan == SDPCM_EVENT_CHANNEL) ? "event" : ((chan == SDPCM_DATA_CHANNEL) ? "data" : "test")), sdret); brcmu_pkt_buf_free_skb(pkt); bus->drvr->rx_errors++; brcmf_sdbrcm_rxfail(bus, true, RETRYCHAN(chan)); continue; } /* Copy the already-read portion */ skb_push(pkt, BRCMF_FIRSTREAD); memcpy(pkt->data, bus->rxhdr, BRCMF_FIRSTREAD); #ifdef BCMDBG if (BRCMF_BYTES_ON() && BRCMF_DATA_ON()) { printk(KERN_DEBUG "Rx Data:\n"); print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, pkt->data, len); } #endif deliver: /* Save superframe descriptor and allocate packet frame */ if (chan == SDPCM_GLOM_CHANNEL) { if (SDPCM_GLOMDESC(&bus->rxhdr[SDPCM_FRAMETAG_LEN])) { brcmf_dbg(GLOM, "glom descriptor, %d bytes:\n", len); #ifdef BCMDBG if (BRCMF_GLOM_ON()) { printk(KERN_DEBUG "Glom Data:\n"); print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, pkt->data, len); } #endif __skb_trim(pkt, len); skb_pull(pkt, SDPCM_HDRLEN); bus->glomd = pkt; } else { brcmf_dbg(ERROR, "%s: glom superframe w/o " "descriptor!\n", __func__); brcmf_sdbrcm_rxfail(bus, false, false); } continue; } /* Fill in packet len and prio, deliver upward */ __skb_trim(pkt, len); skb_pull(pkt, doff); if (pkt->len == 0) { brcmu_pkt_buf_free_skb(pkt); continue; } else if (brcmf_proto_hdrpull(bus->sdiodev->dev, &ifidx, pkt) != 0) { brcmf_dbg(ERROR, "rx protocol error\n"); brcmu_pkt_buf_free_skb(pkt); bus->drvr->rx_errors++; continue; } /* Unlock during rx call */ up(&bus->sdsem); brcmf_rx_packet(bus->sdiodev->dev, ifidx, pkt); down(&bus->sdsem); } rxcount = maxframes - rxleft; #ifdef BCMDBG /* Message if we hit the limit */ if (!rxleft) brcmf_dbg(DATA, "hit rx limit of %d frames\n", maxframes); else #endif /* BCMDBG */ brcmf_dbg(DATA, "processed %d frames\n", rxcount); /* Back off rxseq if awaiting rtx, update rx_seq */ if (bus->rxskip) rxseq--; bus->rx_seq = rxseq; return rxcount; } static void brcmf_sdbrcm_wait_for_event(struct brcmf_sdio *bus, bool *lockvar) { up(&bus->sdsem); wait_event_interruptible_timeout(bus->ctrl_wait, (*lockvar == false), HZ * 2); down(&bus->sdsem); return; } static void brcmf_sdbrcm_wait_event_wakeup(struct brcmf_sdio *bus) { if (waitqueue_active(&bus->ctrl_wait)) wake_up_interruptible(&bus->ctrl_wait); return; } /* Writes a HW/SW header into the packet and sends it. */ /* Assumes: (a) header space already there, (b) caller holds lock */ static int brcmf_sdbrcm_txpkt(struct brcmf_sdio *bus, struct sk_buff *pkt, uint chan, bool free_pkt) { int ret; u8 *frame; u16 len, pad = 0; u32 swheader; struct sk_buff *new; int i; brcmf_dbg(TRACE, "Enter\n"); frame = (u8 *) (pkt->data); /* Add alignment padding, allocate new packet if needed */ pad = ((unsigned long)frame % BRCMF_SDALIGN); if (pad) { if (skb_headroom(pkt) < pad) { brcmf_dbg(INFO, "insufficient headroom %d for %d pad\n", skb_headroom(pkt), pad); bus->drvr->tx_realloc++; new = brcmu_pkt_buf_get_skb(pkt->len + BRCMF_SDALIGN); if (!new) { brcmf_dbg(ERROR, "couldn't allocate new %d-byte packet\n", pkt->len + BRCMF_SDALIGN); ret = -ENOMEM; goto done; } pkt_align(new, pkt->len, BRCMF_SDALIGN); memcpy(new->data, pkt->data, pkt->len); if (free_pkt) brcmu_pkt_buf_free_skb(pkt); /* free the pkt if canned one is not used */ free_pkt = true; pkt = new; frame = (u8 *) (pkt->data); /* precondition: (frame % BRCMF_SDALIGN) == 0) */ pad = 0; } else { skb_push(pkt, pad); frame = (u8 *) (pkt->data); /* precondition: pad + SDPCM_HDRLEN <= pkt->len */ memset(frame, 0, pad + SDPCM_HDRLEN); } } /* precondition: pad < BRCMF_SDALIGN */ /* Hardware tag: 2 byte len followed by 2 byte ~len check (all LE) */ len = (u16) (pkt->len); *(__le16 *) frame = cpu_to_le16(len); *(((__le16 *) frame) + 1) = cpu_to_le16(~len); /* Software tag: channel, sequence number, data offset */ swheader = ((chan << SDPCM_CHANNEL_SHIFT) & SDPCM_CHANNEL_MASK) | bus->tx_seq | (((pad + SDPCM_HDRLEN) << SDPCM_DOFFSET_SHIFT) & SDPCM_DOFFSET_MASK); put_unaligned_le32(swheader, frame + SDPCM_FRAMETAG_LEN); put_unaligned_le32(0, frame + SDPCM_FRAMETAG_LEN + sizeof(swheader)); #ifdef BCMDBG tx_packets[pkt->priority]++; if (BRCMF_BYTES_ON() && (((BRCMF_CTL_ON() && (chan == SDPCM_CONTROL_CHANNEL)) || (BRCMF_DATA_ON() && (chan != SDPCM_CONTROL_CHANNEL))))) { printk(KERN_DEBUG "Tx Frame:\n"); print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, frame, len); } else if (BRCMF_HDRS_ON()) { printk(KERN_DEBUG "TxHdr:\n"); print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, frame, min_t(u16, len, 16)); } #endif /* Raise len to next SDIO block to eliminate tail command */ if (bus->roundup && bus->blocksize && (len > bus->blocksize)) { u16 pad = bus->blocksize - (len % bus->blocksize); if ((pad <= bus->roundup) && (pad < bus->blocksize)) len += pad; } else if (len % BRCMF_SDALIGN) { len += BRCMF_SDALIGN - (len % BRCMF_SDALIGN); } /* Some controllers have trouble with odd bytes -- round to even */ if (len & (ALIGNMENT - 1)) len = roundup(len, ALIGNMENT); ret = brcmf_sdcard_send_pkt(bus->sdiodev, bus->sdiodev->sbwad, SDIO_FUNC_2, F2SYNC, pkt); bus->f2txdata++; if (ret < 0) { /* On failure, abort the command and terminate the frame */ brcmf_dbg(INFO, "sdio error %d, abort command and terminate frame\n", ret); bus->tx_sderrs++; brcmf_sdcard_abort(bus->sdiodev, SDIO_FUNC_2); brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_1, SBSDIO_FUNC1_FRAMECTRL, SFC_WF_TERM, NULL); bus->f1regdata++; for (i = 0; i < 3; i++) { u8 hi, lo; hi = brcmf_sdcard_cfg_read(bus->sdiodev, SDIO_FUNC_1, SBSDIO_FUNC1_WFRAMEBCHI, NULL); lo = brcmf_sdcard_cfg_read(bus->sdiodev, SDIO_FUNC_1, SBSDIO_FUNC1_WFRAMEBCLO, NULL); bus->f1regdata += 2; if ((hi == 0) && (lo == 0)) break; } } if (ret == 0) bus->tx_seq = (bus->tx_seq + 1) % SDPCM_SEQUENCE_WRAP; done: /* restore pkt buffer pointer before calling tx complete routine */ skb_pull(pkt, SDPCM_HDRLEN + pad); up(&bus->sdsem); brcmf_txcomplete(bus->sdiodev->dev, pkt, ret != 0); down(&bus->sdsem); if (free_pkt) brcmu_pkt_buf_free_skb(pkt); return ret; } static uint brcmf_sdbrcm_sendfromq(struct brcmf_sdio *bus, uint maxframes) { struct sk_buff *pkt; u32 intstatus = 0; uint retries = 0; int ret = 0, prec_out; uint cnt = 0; uint datalen; u8 tx_prec_map; struct brcmf_pub *drvr = bus->drvr; brcmf_dbg(TRACE, "Enter\n"); tx_prec_map = ~bus->flowcontrol; /* Send frames until the limit or some other event */ for (cnt = 0; (cnt < maxframes) && data_ok(bus); cnt++) { spin_lock_bh(&bus->txqlock); pkt = brcmu_pktq_mdeq(&bus->txq, tx_prec_map, &prec_out); if (pkt == NULL) { spin_unlock_bh(&bus->txqlock); break; } spin_unlock_bh(&bus->txqlock); datalen = pkt->len - SDPCM_HDRLEN; ret = brcmf_sdbrcm_txpkt(bus, pkt, SDPCM_DATA_CHANNEL, true); if (ret) bus->drvr->tx_errors++; else bus->drvr->dstats.tx_bytes += datalen; /* In poll mode, need to check for other events */ if (!bus->intr && cnt) { /* Check device status, signal pending interrupt */ r_sdreg32(bus, &intstatus, offsetof(struct sdpcmd_regs, intstatus), &retries); bus->f2txdata++; if (brcmf_sdcard_regfail(bus->sdiodev)) break; if (intstatus & bus->hostintmask) bus->ipend = true; } } /* Deflow-control stack if needed */ if (drvr->up && (drvr->bus_if->state == BRCMF_BUS_DATA) && drvr->txoff && (pktq_len(&bus->txq) < TXLOW)) brcmf_txflowcontrol(bus->sdiodev->dev, 0, OFF); return cnt; } static bool brcmf_sdbrcm_dpc(struct brcmf_sdio *bus) { u32 intstatus, newstatus = 0; uint retries = 0; uint rxlimit = bus->rxbound; /* Rx frames to read before resched */ uint txlimit = bus->txbound; /* Tx frames to send before resched */ uint framecnt = 0; /* Temporary counter of tx/rx frames */ bool rxdone = true; /* Flag for no more read data */ bool resched = false; /* Flag indicating resched wanted */ brcmf_dbg(TRACE, "Enter\n"); /* Start with leftover status bits */ intstatus = bus->intstatus; down(&bus->sdsem); /* If waiting for HTAVAIL, check status */ if (bus->clkstate == CLK_PENDING) { int err; u8 clkctl, devctl = 0; #ifdef BCMDBG /* Check for inconsistent device control */ devctl = brcmf_sdcard_cfg_read(bus->sdiodev, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, &err); if (err) { brcmf_dbg(ERROR, "error reading DEVCTL: %d\n", err); bus->drvr->bus_if->state = BRCMF_BUS_DOWN; } #endif /* BCMDBG */ /* Read CSR, if clock on switch to AVAIL, else ignore */ clkctl = brcmf_sdcard_cfg_read(bus->sdiodev, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, &err); if (err) { brcmf_dbg(ERROR, "error reading CSR: %d\n", err); bus->drvr->bus_if->state = BRCMF_BUS_DOWN; } brcmf_dbg(INFO, "DPC: PENDING, devctl 0x%02x clkctl 0x%02x\n", devctl, clkctl); if (SBSDIO_HTAV(clkctl)) { devctl = brcmf_sdcard_cfg_read(bus->sdiodev, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, &err); if (err) { brcmf_dbg(ERROR, "error reading DEVCTL: %d\n", err); bus->drvr->bus_if->state = BRCMF_BUS_DOWN; } devctl &= ~SBSDIO_DEVCTL_CA_INT_ONLY; brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, devctl, &err); if (err) { brcmf_dbg(ERROR, "error writing DEVCTL: %d\n", err); bus->drvr->bus_if->state = BRCMF_BUS_DOWN; } bus->clkstate = CLK_AVAIL; } else { goto clkwait; } } bus_wake(bus); /* Make sure backplane clock is on */ brcmf_sdbrcm_clkctl(bus, CLK_AVAIL, true); if (bus->clkstate == CLK_PENDING) goto clkwait; /* Pending interrupt indicates new device status */ if (bus->ipend) { bus->ipend = false; r_sdreg32(bus, &newstatus, offsetof(struct sdpcmd_regs, intstatus), &retries); bus->f1regdata++; if (brcmf_sdcard_regfail(bus->sdiodev)) newstatus = 0; newstatus &= bus->hostintmask; bus->fcstate = !!(newstatus & I_HMB_FC_STATE); if (newstatus) { w_sdreg32(bus, newstatus, offsetof(struct sdpcmd_regs, intstatus), &retries); bus->f1regdata++; } } /* Merge new bits with previous */ intstatus |= newstatus; bus->intstatus = 0; /* Handle flow-control change: read new state in case our ack * crossed another change interrupt. If change still set, assume * FC ON for safety, let next loop through do the debounce. */ if (intstatus & I_HMB_FC_CHANGE) { intstatus &= ~I_HMB_FC_CHANGE; w_sdreg32(bus, I_HMB_FC_CHANGE, offsetof(struct sdpcmd_regs, intstatus), &retries); r_sdreg32(bus, &newstatus, offsetof(struct sdpcmd_regs, intstatus), &retries); bus->f1regdata += 2; bus->fcstate = !!(newstatus & (I_HMB_FC_STATE | I_HMB_FC_CHANGE)); intstatus |= (newstatus & bus->hostintmask); } /* Handle host mailbox indication */ if (intstatus & I_HMB_HOST_INT) { intstatus &= ~I_HMB_HOST_INT; intstatus |= brcmf_sdbrcm_hostmail(bus); } /* Generally don't ask for these, can get CRC errors... */ if (intstatus & I_WR_OOSYNC) { brcmf_dbg(ERROR, "Dongle reports WR_OOSYNC\n"); intstatus &= ~I_WR_OOSYNC; } if (intstatus & I_RD_OOSYNC) { brcmf_dbg(ERROR, "Dongle reports RD_OOSYNC\n"); intstatus &= ~I_RD_OOSYNC; } if (intstatus & I_SBINT) { brcmf_dbg(ERROR, "Dongle reports SBINT\n"); intstatus &= ~I_SBINT; } /* Would be active due to wake-wlan in gSPI */ if (intstatus & I_CHIPACTIVE) { brcmf_dbg(INFO, "Dongle reports CHIPACTIVE\n"); intstatus &= ~I_CHIPACTIVE; } /* Ignore frame indications if rxskip is set */ if (bus->rxskip) intstatus &= ~I_HMB_FRAME_IND; /* On frame indication, read available frames */ if (PKT_AVAILABLE()) { framecnt = brcmf_sdbrcm_readframes(bus, rxlimit, &rxdone); if (rxdone || bus->rxskip) intstatus &= ~I_HMB_FRAME_IND; rxlimit -= min(framecnt, rxlimit); } /* Keep still-pending events for next scheduling */ bus->intstatus = intstatus; clkwait: if (data_ok(bus) && bus->ctrl_frame_stat && (bus->clkstate == CLK_AVAIL)) { int ret, i; ret = brcmf_sdcard_send_buf(bus->sdiodev, bus->sdiodev->sbwad, SDIO_FUNC_2, F2SYNC, (u8 *) bus->ctrl_frame_buf, (u32) bus->ctrl_frame_len); if (ret < 0) { /* On failure, abort the command and terminate the frame */ brcmf_dbg(INFO, "sdio error %d, abort command and terminate frame\n", ret); bus->tx_sderrs++; brcmf_sdcard_abort(bus->sdiodev, SDIO_FUNC_2); brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_1, SBSDIO_FUNC1_FRAMECTRL, SFC_WF_TERM, NULL); bus->f1regdata++; for (i = 0; i < 3; i++) { u8 hi, lo; hi = brcmf_sdcard_cfg_read(bus->sdiodev, SDIO_FUNC_1, SBSDIO_FUNC1_WFRAMEBCHI, NULL); lo = brcmf_sdcard_cfg_read(bus->sdiodev, SDIO_FUNC_1, SBSDIO_FUNC1_WFRAMEBCLO, NULL); bus->f1regdata += 2; if ((hi == 0) && (lo == 0)) break; } } if (ret == 0) bus->tx_seq = (bus->tx_seq + 1) % SDPCM_SEQUENCE_WRAP; brcmf_dbg(INFO, "Return_dpc value is : %d\n", ret); bus->ctrl_frame_stat = false; brcmf_sdbrcm_wait_event_wakeup(bus); } /* Send queued frames (limit 1 if rx may still be pending) */ else if ((bus->clkstate == CLK_AVAIL) && !bus->fcstate && brcmu_pktq_mlen(&bus->txq, ~bus->flowcontrol) && txlimit && data_ok(bus)) { framecnt = rxdone ? txlimit : min(txlimit, bus->txminmax); framecnt = brcmf_sdbrcm_sendfromq(bus, framecnt); txlimit -= framecnt; } /* Resched if events or tx frames are pending, else await next interrupt */ /* On failed register access, all bets are off: no resched or interrupts */ if ((bus->drvr->bus_if->state == BRCMF_BUS_DOWN) || brcmf_sdcard_regfail(bus->sdiodev)) { brcmf_dbg(ERROR, "failed backplane access over SDIO, halting operation %d\n", brcmf_sdcard_regfail(bus->sdiodev)); bus->drvr->bus_if->state = BRCMF_BUS_DOWN; bus->intstatus = 0; } else if (bus->clkstate == CLK_PENDING) { brcmf_dbg(INFO, "rescheduled due to CLK_PENDING awaiting I_CHIPACTIVE interrupt\n"); resched = true; } else if (bus->intstatus || bus->ipend || (!bus->fcstate && brcmu_pktq_mlen(&bus->txq, ~bus->flowcontrol) && data_ok(bus)) || PKT_AVAILABLE()) { resched = true; } bus->dpc_sched = resched; /* If we're done for now, turn off clock request. */ if ((bus->clkstate != CLK_PENDING) && bus->idletime == BRCMF_IDLE_IMMEDIATE) { bus->activity = false; brcmf_sdbrcm_clkctl(bus, CLK_NONE, false); } up(&bus->sdsem); return resched; } static int brcmf_sdbrcm_dpc_thread(void *data) { struct brcmf_sdio *bus = (struct brcmf_sdio *) data; allow_signal(SIGTERM); /* Run until signal received */ while (1) { if (kthread_should_stop()) break; if (!wait_for_completion_interruptible(&bus->dpc_wait)) { /* Call bus dpc unless it indicated down (then clean stop) */ if (bus->drvr->bus_if->state != BRCMF_BUS_DOWN) { if (brcmf_sdbrcm_dpc(bus)) complete(&bus->dpc_wait); } else { /* after stopping the bus, exit thread */ brcmf_sdbrcm_bus_stop(bus->sdiodev->dev); bus->dpc_tsk = NULL; break; } } else break; } return 0; } int brcmf_sdbrcm_bus_txdata(struct device *dev, struct sk_buff *pkt) { int ret = -EBADE; uint datalen, prec; struct brcmf_bus *bus_if = dev_get_drvdata(dev); struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv; struct brcmf_sdio *bus = sdiodev->bus; brcmf_dbg(TRACE, "Enter\n"); datalen = pkt->len; /* Add space for the header */ skb_push(pkt, SDPCM_HDRLEN); /* precondition: IS_ALIGNED((unsigned long)(pkt->data), 2) */ prec = prio2prec((pkt->priority & PRIOMASK)); /* Check for existing queue, current flow-control, pending event, or pending clock */ brcmf_dbg(TRACE, "deferring pktq len %d\n", pktq_len(&bus->txq)); bus->fcqueued++; /* Priority based enq */ spin_lock_bh(&bus->txqlock); if (brcmf_c_prec_enq(bus->sdiodev->dev, &bus->txq, pkt, prec) == false) { skb_pull(pkt, SDPCM_HDRLEN); brcmf_txcomplete(bus->sdiodev->dev, pkt, false); brcmu_pkt_buf_free_skb(pkt); brcmf_dbg(ERROR, "out of bus->txq !!!\n"); ret = -ENOSR; } else { ret = 0; } spin_unlock_bh(&bus->txqlock); if (pktq_len(&bus->txq) >= TXHI) brcmf_txflowcontrol(bus->sdiodev->dev, 0, ON); #ifdef BCMDBG if (pktq_plen(&bus->txq, prec) > qcount[prec]) qcount[prec] = pktq_plen(&bus->txq, prec); #endif /* Schedule DPC if needed to send queued packet(s) */ if (!bus->dpc_sched) { bus->dpc_sched = true; if (bus->dpc_tsk) complete(&bus->dpc_wait); } return ret; } static int brcmf_sdbrcm_membytes(struct brcmf_sdio *bus, bool write, u32 address, u8 *data, uint size) { int bcmerror = 0; u32 sdaddr; uint dsize; /* Determine initial transfer parameters */ sdaddr = address & SBSDIO_SB_OFT_ADDR_MASK; if ((sdaddr + size) & SBSDIO_SBWINDOW_MASK) dsize = (SBSDIO_SB_OFT_ADDR_LIMIT - sdaddr); else dsize = size; /* Set the backplane window to include the start address */ bcmerror = brcmf_sdcard_set_sbaddr_window(bus->sdiodev, address); if (bcmerror) { brcmf_dbg(ERROR, "window change failed\n"); goto xfer_done; } /* Do the transfer(s) */ while (size) { brcmf_dbg(INFO, "%s %d bytes at offset 0x%08x in window 0x%08x\n", write ? "write" : "read", dsize, sdaddr, address & SBSDIO_SBWINDOW_MASK); bcmerror = brcmf_sdcard_rwdata(bus->sdiodev, write, sdaddr, data, dsize); if (bcmerror) { brcmf_dbg(ERROR, "membytes transfer failed\n"); break; } /* Adjust for next transfer (if any) */ size -= dsize; if (size) { data += dsize; address += dsize; bcmerror = brcmf_sdcard_set_sbaddr_window(bus->sdiodev, address); if (bcmerror) { brcmf_dbg(ERROR, "window change failed\n"); break; } sdaddr = 0; dsize = min_t(uint, SBSDIO_SB_OFT_ADDR_LIMIT, size); } } xfer_done: /* Return the window to backplane enumeration space for core access */ if (brcmf_sdcard_set_sbaddr_window(bus->sdiodev, bus->sdiodev->sbwad)) brcmf_dbg(ERROR, "FAILED to set window back to 0x%x\n", bus->sdiodev->sbwad); return bcmerror; } #ifdef BCMDBG #define CONSOLE_LINE_MAX 192 static int brcmf_sdbrcm_readconsole(struct brcmf_sdio *bus) { struct brcmf_console *c = &bus->console; u8 line[CONSOLE_LINE_MAX], ch; u32 n, idx, addr; int rv; /* Don't do anything until FWREADY updates console address */ if (bus->console_addr == 0) return 0; /* Read console log struct */ addr = bus->console_addr + offsetof(struct rte_console, log_le); rv = brcmf_sdbrcm_membytes(bus, false, addr, (u8 *)&c->log_le, sizeof(c->log_le)); if (rv < 0) return rv; /* Allocate console buffer (one time only) */ if (c->buf == NULL) { c->bufsize = le32_to_cpu(c->log_le.buf_size); c->buf = kmalloc(c->bufsize, GFP_ATOMIC); if (c->buf == NULL) return -ENOMEM; } idx = le32_to_cpu(c->log_le.idx); /* Protect against corrupt value */ if (idx > c->bufsize) return -EBADE; /* Skip reading the console buffer if the index pointer has not moved */ if (idx == c->last) return 0; /* Read the console buffer */ addr = le32_to_cpu(c->log_le.buf); rv = brcmf_sdbrcm_membytes(bus, false, addr, c->buf, c->bufsize); if (rv < 0) return rv; while (c->last != idx) { for (n = 0; n < CONSOLE_LINE_MAX - 2; n++) { if (c->last == idx) { /* This would output a partial line. * Instead, back up * the buffer pointer and output this * line next time around. */ if (c->last >= n) c->last -= n; else c->last = c->bufsize - n; goto break2; } ch = c->buf[c->last]; c->last = (c->last + 1) % c->bufsize; if (ch == '\n') break; line[n] = ch; } if (n > 0) { if (line[n - 1] == '\r') n--; line[n] = 0; printk(KERN_DEBUG "CONSOLE: %s\n", line); } } break2: return 0; } #endif /* BCMDBG */ static int brcmf_tx_frame(struct brcmf_sdio *bus, u8 *frame, u16 len) { int i; int ret; bus->ctrl_frame_stat = false; ret = brcmf_sdcard_send_buf(bus->sdiodev, bus->sdiodev->sbwad, SDIO_FUNC_2, F2SYNC, frame, len); if (ret < 0) { /* On failure, abort the command and terminate the frame */ brcmf_dbg(INFO, "sdio error %d, abort command and terminate frame\n", ret); bus->tx_sderrs++; brcmf_sdcard_abort(bus->sdiodev, SDIO_FUNC_2); brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_1, SBSDIO_FUNC1_FRAMECTRL, SFC_WF_TERM, NULL); bus->f1regdata++; for (i = 0; i < 3; i++) { u8 hi, lo; hi = brcmf_sdcard_cfg_read(bus->sdiodev, SDIO_FUNC_1, SBSDIO_FUNC1_WFRAMEBCHI, NULL); lo = brcmf_sdcard_cfg_read(bus->sdiodev, SDIO_FUNC_1, SBSDIO_FUNC1_WFRAMEBCLO, NULL); bus->f1regdata += 2; if (hi == 0 && lo == 0) break; } return ret; } bus->tx_seq = (bus->tx_seq + 1) % SDPCM_SEQUENCE_WRAP; return ret; } int brcmf_sdbrcm_bus_txctl(struct device *dev, unsigned char *msg, uint msglen) { u8 *frame; u16 len; u32 swheader; uint retries = 0; u8 doff = 0; int ret = -1; struct brcmf_bus *bus_if = dev_get_drvdata(dev); struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv; struct brcmf_sdio *bus = sdiodev->bus; brcmf_dbg(TRACE, "Enter\n"); /* Back the pointer to make a room for bus header */ frame = msg - SDPCM_HDRLEN; len = (msglen += SDPCM_HDRLEN); /* Add alignment padding (optional for ctl frames) */ doff = ((unsigned long)frame % BRCMF_SDALIGN); if (doff) { frame -= doff; len += doff; msglen += doff; memset(frame, 0, doff + SDPCM_HDRLEN); } /* precondition: doff < BRCMF_SDALIGN */ doff += SDPCM_HDRLEN; /* Round send length to next SDIO block */ if (bus->roundup && bus->blocksize && (len > bus->blocksize)) { u16 pad = bus->blocksize - (len % bus->blocksize); if ((pad <= bus->roundup) && (pad < bus->blocksize)) len += pad; } else if (len % BRCMF_SDALIGN) { len += BRCMF_SDALIGN - (len % BRCMF_SDALIGN); } /* Satisfy length-alignment requirements */ if (len & (ALIGNMENT - 1)) len = roundup(len, ALIGNMENT); /* precondition: IS_ALIGNED((unsigned long)frame, 2) */ /* Need to lock here to protect txseq and SDIO tx calls */ down(&bus->sdsem); bus_wake(bus); /* Make sure backplane clock is on */ brcmf_sdbrcm_clkctl(bus, CLK_AVAIL, false); /* Hardware tag: 2 byte len followed by 2 byte ~len check (all LE) */ *(__le16 *) frame = cpu_to_le16((u16) msglen); *(((__le16 *) frame) + 1) = cpu_to_le16(~msglen); /* Software tag: channel, sequence number, data offset */ swheader = ((SDPCM_CONTROL_CHANNEL << SDPCM_CHANNEL_SHIFT) & SDPCM_CHANNEL_MASK) | bus->tx_seq | ((doff << SDPCM_DOFFSET_SHIFT) & SDPCM_DOFFSET_MASK); put_unaligned_le32(swheader, frame + SDPCM_FRAMETAG_LEN); put_unaligned_le32(0, frame + SDPCM_FRAMETAG_LEN + sizeof(swheader)); if (!data_ok(bus)) { brcmf_dbg(INFO, "No bus credit bus->tx_max %d, bus->tx_seq %d\n", bus->tx_max, bus->tx_seq); bus->ctrl_frame_stat = true; /* Send from dpc */ bus->ctrl_frame_buf = frame; bus->ctrl_frame_len = len; brcmf_sdbrcm_wait_for_event(bus, &bus->ctrl_frame_stat); if (bus->ctrl_frame_stat == false) { brcmf_dbg(INFO, "ctrl_frame_stat == false\n"); ret = 0; } else { brcmf_dbg(INFO, "ctrl_frame_stat == true\n"); ret = -1; } } if (ret == -1) { #ifdef BCMDBG if (BRCMF_BYTES_ON() && BRCMF_CTL_ON()) { printk(KERN_DEBUG "Tx Frame:\n"); print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, frame, len); } else if (BRCMF_HDRS_ON()) { printk(KERN_DEBUG "TxHdr:\n"); print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, frame, min_t(u16, len, 16)); } #endif do { ret = brcmf_tx_frame(bus, frame, len); } while (ret < 0 && retries++ < TXRETRIES); } if ((bus->idletime == BRCMF_IDLE_IMMEDIATE) && !bus->dpc_sched) { bus->activity = false; brcmf_sdbrcm_clkctl(bus, CLK_NONE, true); } up(&bus->sdsem); if (ret) bus->drvr->tx_ctlerrs++; else bus->drvr->tx_ctlpkts++; return ret ? -EIO : 0; } int brcmf_sdbrcm_bus_rxctl(struct device *dev, unsigned char *msg, uint msglen) { int timeleft; uint rxlen = 0; bool pending; struct brcmf_bus *bus_if = dev_get_drvdata(dev); struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv; struct brcmf_sdio *bus = sdiodev->bus; brcmf_dbg(TRACE, "Enter\n"); /* Wait until control frame is available */ timeleft = brcmf_sdbrcm_dcmd_resp_wait(bus, &bus->rxlen, &pending); down(&bus->sdsem); rxlen = bus->rxlen; memcpy(msg, bus->rxctl, min(msglen, rxlen)); bus->rxlen = 0; up(&bus->sdsem); if (rxlen) { brcmf_dbg(CTL, "resumed on rxctl frame, got %d expected %d\n", rxlen, msglen); } else if (timeleft == 0) { brcmf_dbg(ERROR, "resumed on timeout\n"); } else if (pending == true) { brcmf_dbg(CTL, "cancelled\n"); return -ERESTARTSYS; } else { brcmf_dbg(CTL, "resumed for unknown reason?\n"); } if (rxlen) bus->drvr->rx_ctlpkts++; else bus->drvr->rx_ctlerrs++; return rxlen ? (int)rxlen : -ETIMEDOUT; } static int brcmf_sdbrcm_downloadvars(struct brcmf_sdio *bus, void *arg, int len) { int bcmerror = 0; brcmf_dbg(TRACE, "Enter\n"); /* Basic sanity checks */ if (bus->drvr->up) { bcmerror = -EISCONN; goto err; } if (!len) { bcmerror = -EOVERFLOW; goto err; } /* Free the old ones and replace with passed variables */ kfree(bus->vars); bus->vars = kmalloc(len, GFP_ATOMIC); bus->varsz = bus->vars ? len : 0; if (bus->vars == NULL) { bcmerror = -ENOMEM; goto err; } /* Copy the passed variables, which should include the terminating double-null */ memcpy(bus->vars, arg, bus->varsz); err: return bcmerror; } static int brcmf_sdbrcm_write_vars(struct brcmf_sdio *bus) { int bcmerror = 0; u32 varsize; u32 varaddr; u8 *vbuffer; u32 varsizew; __le32 varsizew_le; #ifdef BCMDBG char *nvram_ularray; #endif /* BCMDBG */ /* Even if there are no vars are to be written, we still need to set the ramsize. */ varsize = bus->varsz ? roundup(bus->varsz, 4) : 0; varaddr = (bus->ramsize - 4) - varsize; if (bus->vars) { vbuffer = kzalloc(varsize, GFP_ATOMIC); if (!vbuffer) return -ENOMEM; memcpy(vbuffer, bus->vars, bus->varsz); /* Write the vars list */ bcmerror = brcmf_sdbrcm_membytes(bus, true, varaddr, vbuffer, varsize); #ifdef BCMDBG /* Verify NVRAM bytes */ brcmf_dbg(INFO, "Compare NVRAM dl & ul; varsize=%d\n", varsize); nvram_ularray = kmalloc(varsize, GFP_ATOMIC); if (!nvram_ularray) return -ENOMEM; /* Upload image to verify downloaded contents. */ memset(nvram_ularray, 0xaa, varsize); /* Read the vars list to temp buffer for comparison */ bcmerror = brcmf_sdbrcm_membytes(bus, false, varaddr, nvram_ularray, varsize); if (bcmerror) { brcmf_dbg(ERROR, "error %d on reading %d nvram bytes at 0x%08x\n", bcmerror, varsize, varaddr); } /* Compare the org NVRAM with the one read from RAM */ if (memcmp(vbuffer, nvram_ularray, varsize)) brcmf_dbg(ERROR, "Downloaded NVRAM image is corrupted\n"); else brcmf_dbg(ERROR, "Download/Upload/Compare of NVRAM ok\n"); kfree(nvram_ularray); #endif /* BCMDBG */ kfree(vbuffer); } /* adjust to the user specified RAM */ brcmf_dbg(INFO, "Physical memory size: %d\n", bus->ramsize); brcmf_dbg(INFO, "Vars are at %d, orig varsize is %d\n", varaddr, varsize); varsize = ((bus->ramsize - 4) - varaddr); /* * Determine the length token: * Varsize, converted to words, in lower 16-bits, checksum * in upper 16-bits. */ if (bcmerror) { varsizew = 0; varsizew_le = cpu_to_le32(0); } else { varsizew = varsize / 4; varsizew = (~varsizew << 16) | (varsizew & 0x0000FFFF); varsizew_le = cpu_to_le32(varsizew); } brcmf_dbg(INFO, "New varsize is %d, length token=0x%08x\n", varsize, varsizew); /* Write the length token to the last word */ bcmerror = brcmf_sdbrcm_membytes(bus, true, (bus->ramsize - 4), (u8 *)&varsizew_le, 4); return bcmerror; } static int brcmf_sdbrcm_download_state(struct brcmf_sdio *bus, bool enter) { uint retries; int bcmerror = 0; struct chip_info *ci = bus->ci; /* To enter download state, disable ARM and reset SOCRAM. * To exit download state, simply reset ARM (default is RAM boot). */ if (enter) { bus->alp_only = true; ci->coredisable(bus->sdiodev, ci, BCMA_CORE_ARM_CM3); ci->resetcore(bus->sdiodev, ci, BCMA_CORE_INTERNAL_MEM); /* Clear the top bit of memory */ if (bus->ramsize) { u32 zeros = 0; brcmf_sdbrcm_membytes(bus, true, bus->ramsize - 4, (u8 *)&zeros, 4); } } else { if (!ci->iscoreup(bus->sdiodev, ci, BCMA_CORE_INTERNAL_MEM)) { brcmf_dbg(ERROR, "SOCRAM core is down after reset?\n"); bcmerror = -EBADE; goto fail; } bcmerror = brcmf_sdbrcm_write_vars(bus); if (bcmerror) { brcmf_dbg(ERROR, "no vars written to RAM\n"); bcmerror = 0; } w_sdreg32(bus, 0xFFFFFFFF, offsetof(struct sdpcmd_regs, intstatus), &retries); ci->resetcore(bus->sdiodev, ci, BCMA_CORE_ARM_CM3); /* Allow HT Clock now that the ARM is running. */ bus->alp_only = false; bus->drvr->bus_if->state = BRCMF_BUS_LOAD; } fail: return bcmerror; } static int brcmf_sdbrcm_get_image(char *buf, int len, struct brcmf_sdio *bus) { if (bus->firmware->size < bus->fw_ptr + len) len = bus->firmware->size - bus->fw_ptr; memcpy(buf, &bus->firmware->data[bus->fw_ptr], len); bus->fw_ptr += len; return len; } static int brcmf_sdbrcm_download_code_file(struct brcmf_sdio *bus) { int offset = 0; uint len; u8 *memblock = NULL, *memptr; int ret; brcmf_dbg(INFO, "Enter\n"); ret = request_firmware(&bus->firmware, BRCMFMAC_FW_NAME, &bus->sdiodev->func[2]->dev); if (ret) { brcmf_dbg(ERROR, "Fail to request firmware %d\n", ret); return ret; } bus->fw_ptr = 0; memptr = memblock = kmalloc(MEMBLOCK + BRCMF_SDALIGN, GFP_ATOMIC); if (memblock == NULL) { ret = -ENOMEM; goto err; } if ((u32)(unsigned long)memblock % BRCMF_SDALIGN) memptr += (BRCMF_SDALIGN - ((u32)(unsigned long)memblock % BRCMF_SDALIGN)); /* Download image */ while ((len = brcmf_sdbrcm_get_image((char *)memptr, MEMBLOCK, bus))) { ret = brcmf_sdbrcm_membytes(bus, true, offset, memptr, len); if (ret) { brcmf_dbg(ERROR, "error %d on writing %d membytes at 0x%08x\n", ret, MEMBLOCK, offset); goto err; } offset += MEMBLOCK; } err: kfree(memblock); release_firmware(bus->firmware); bus->fw_ptr = 0; return ret; } /* * ProcessVars:Takes a buffer of "=\n" lines read from a file * and ending in a NUL. * Removes carriage returns, empty lines, comment lines, and converts * newlines to NULs. * Shortens buffer as needed and pads with NULs. End of buffer is marked * by two NULs. */ static uint brcmf_process_nvram_vars(char *varbuf, uint len) { char *dp; bool findNewline; int column; uint buf_len, n; dp = varbuf; findNewline = false; column = 0; for (n = 0; n < len; n++) { if (varbuf[n] == 0) break; if (varbuf[n] == '\r') continue; if (findNewline && varbuf[n] != '\n') continue; findNewline = false; if (varbuf[n] == '#') { findNewline = true; continue; } if (varbuf[n] == '\n') { if (column == 0) continue; *dp++ = 0; column = 0; continue; } *dp++ = varbuf[n]; column++; } buf_len = dp - varbuf; while (dp < varbuf + n) *dp++ = 0; return buf_len; } static int brcmf_sdbrcm_download_nvram(struct brcmf_sdio *bus) { uint len; char *memblock = NULL; char *bufp; int ret; ret = request_firmware(&bus->firmware, BRCMFMAC_NV_NAME, &bus->sdiodev->func[2]->dev); if (ret) { brcmf_dbg(ERROR, "Fail to request nvram %d\n", ret); return ret; } bus->fw_ptr = 0; memblock = kmalloc(MEMBLOCK, GFP_ATOMIC); if (memblock == NULL) { ret = -ENOMEM; goto err; } len = brcmf_sdbrcm_get_image(memblock, MEMBLOCK, bus); if (len > 0 && len < MEMBLOCK) { bufp = (char *)memblock; bufp[len] = 0; len = brcmf_process_nvram_vars(bufp, len); bufp += len; *bufp++ = 0; if (len) ret = brcmf_sdbrcm_downloadvars(bus, memblock, len + 1); if (ret) brcmf_dbg(ERROR, "error downloading vars: %d\n", ret); } else { brcmf_dbg(ERROR, "error reading nvram file: %d\n", len); ret = -EIO; } err: kfree(memblock); release_firmware(bus->firmware); bus->fw_ptr = 0; return ret; } static int _brcmf_sdbrcm_download_firmware(struct brcmf_sdio *bus) { int bcmerror = -1; /* Keep arm in reset */ if (brcmf_sdbrcm_download_state(bus, true)) { brcmf_dbg(ERROR, "error placing ARM core in reset\n"); goto err; } /* External image takes precedence if specified */ if (brcmf_sdbrcm_download_code_file(bus)) { brcmf_dbg(ERROR, "dongle image file download failed\n"); goto err; } /* External nvram takes precedence if specified */ if (brcmf_sdbrcm_download_nvram(bus)) brcmf_dbg(ERROR, "dongle nvram file download failed\n"); /* Take arm out of reset */ if (brcmf_sdbrcm_download_state(bus, false)) { brcmf_dbg(ERROR, "error getting out of ARM core reset\n"); goto err; } bcmerror = 0; err: return bcmerror; } static bool brcmf_sdbrcm_download_firmware(struct brcmf_sdio *bus) { bool ret; /* Download the firmware */ brcmf_sdbrcm_clkctl(bus, CLK_AVAIL, false); ret = _brcmf_sdbrcm_download_firmware(bus) == 0; brcmf_sdbrcm_clkctl(bus, CLK_SDONLY, false); return ret; } void brcmf_sdbrcm_bus_stop(struct device *dev) { u32 local_hostintmask; u8 saveclk; uint retries; int err; struct brcmf_bus *bus_if = dev_get_drvdata(dev); struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv; struct brcmf_sdio *bus = sdiodev->bus; brcmf_dbg(TRACE, "Enter\n"); if (bus->watchdog_tsk) { send_sig(SIGTERM, bus->watchdog_tsk, 1); kthread_stop(bus->watchdog_tsk); bus->watchdog_tsk = NULL; } if (bus->dpc_tsk && bus->dpc_tsk != current) { send_sig(SIGTERM, bus->dpc_tsk, 1); kthread_stop(bus->dpc_tsk); bus->dpc_tsk = NULL; } down(&bus->sdsem); bus_wake(bus); /* Enable clock for device interrupts */ brcmf_sdbrcm_clkctl(bus, CLK_AVAIL, false); /* Disable and clear interrupts at the chip level also */ w_sdreg32(bus, 0, offsetof(struct sdpcmd_regs, hostintmask), &retries); local_hostintmask = bus->hostintmask; bus->hostintmask = 0; /* Change our idea of bus state */ bus->drvr->bus_if->state = BRCMF_BUS_DOWN; /* Force clocks on backplane to be sure F2 interrupt propagates */ saveclk = brcmf_sdcard_cfg_read(bus->sdiodev, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, &err); if (!err) { brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, (saveclk | SBSDIO_FORCE_HT), &err); } if (err) brcmf_dbg(ERROR, "Failed to force clock for F2: err %d\n", err); /* Turn off the bus (F2), free any pending packets */ brcmf_dbg(INTR, "disable SDIO interrupts\n"); brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_0, SDIO_CCCR_IOEx, SDIO_FUNC_ENABLE_1, NULL); /* Clear any pending interrupts now that F2 is disabled */ w_sdreg32(bus, local_hostintmask, offsetof(struct sdpcmd_regs, intstatus), &retries); /* Turn off the backplane clock (only) */ brcmf_sdbrcm_clkctl(bus, CLK_SDONLY, false); /* Clear the data packet queues */ brcmu_pktq_flush(&bus->txq, true, NULL, NULL); /* Clear any held glomming stuff */ if (bus->glomd) brcmu_pkt_buf_free_skb(bus->glomd); brcmf_sdbrcm_free_glom(bus); /* Clear rx control and wake any waiters */ bus->rxlen = 0; brcmf_sdbrcm_dcmd_resp_wake(bus); /* Reset some F2 state stuff */ bus->rxskip = false; bus->tx_seq = bus->rx_seq = 0; up(&bus->sdsem); } int brcmf_sdbrcm_bus_init(struct device *dev) { struct brcmf_bus *bus_if = dev_get_drvdata(dev); struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv; struct brcmf_sdio *bus = sdiodev->bus; unsigned long timeout; uint retries = 0; u8 ready, enable; int err, ret = 0; u8 saveclk; brcmf_dbg(TRACE, "Enter\n"); /* try to download image and nvram to the dongle */ if (bus_if->state == BRCMF_BUS_DOWN) { if (!(brcmf_sdbrcm_download_firmware(bus))) return -1; } if (!bus->drvr) return 0; /* Start the watchdog timer */ bus->drvr->tickcnt = 0; brcmf_sdbrcm_wd_timer(bus, BRCMF_WD_POLL_MS); down(&bus->sdsem); /* Make sure backplane clock is on, needed to generate F2 interrupt */ brcmf_sdbrcm_clkctl(bus, CLK_AVAIL, false); if (bus->clkstate != CLK_AVAIL) goto exit; /* Force clocks on backplane to be sure F2 interrupt propagates */ saveclk = brcmf_sdcard_cfg_read(bus->sdiodev, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, &err); if (!err) { brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, (saveclk | SBSDIO_FORCE_HT), &err); } if (err) { brcmf_dbg(ERROR, "Failed to force clock for F2: err %d\n", err); goto exit; } /* Enable function 2 (frame transfers) */ w_sdreg32(bus, SDPCM_PROT_VERSION << SMB_DATA_VERSION_SHIFT, offsetof(struct sdpcmd_regs, tosbmailboxdata), &retries); enable = (SDIO_FUNC_ENABLE_1 | SDIO_FUNC_ENABLE_2); brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_0, SDIO_CCCR_IOEx, enable, NULL); timeout = jiffies + msecs_to_jiffies(BRCMF_WAIT_F2RDY); ready = 0; while (enable != ready) { ready = brcmf_sdcard_cfg_read(bus->sdiodev, SDIO_FUNC_0, SDIO_CCCR_IORx, NULL); if (time_after(jiffies, timeout)) break; else if (time_after(jiffies, timeout - BRCMF_WAIT_F2RDY + 50)) /* prevent busy waiting if it takes too long */ msleep_interruptible(20); } brcmf_dbg(INFO, "enable 0x%02x, ready 0x%02x\n", enable, ready); /* If F2 successfully enabled, set core and enable interrupts */ if (ready == enable) { /* Set up the interrupt mask and enable interrupts */ bus->hostintmask = HOSTINTMASK; w_sdreg32(bus, bus->hostintmask, offsetof(struct sdpcmd_regs, hostintmask), &retries); brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_1, SBSDIO_WATERMARK, 8, &err); /* Set bus state according to enable result */ bus_if->state = BRCMF_BUS_DATA; } else { /* Disable F2 again */ enable = SDIO_FUNC_ENABLE_1; brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_0, SDIO_CCCR_IOEx, enable, NULL); } /* Restore previous clock setting */ brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, saveclk, &err); /* If we didn't come up, turn off backplane clock */ if (bus_if->state != BRCMF_BUS_DATA) brcmf_sdbrcm_clkctl(bus, CLK_NONE, false); exit: up(&bus->sdsem); return ret; } void brcmf_sdbrcm_isr(void *arg) { struct brcmf_sdio *bus = (struct brcmf_sdio *) arg; brcmf_dbg(TRACE, "Enter\n"); if (!bus) { brcmf_dbg(ERROR, "bus is null pointer, exiting\n"); return; } if (bus->drvr->bus_if->state == BRCMF_BUS_DOWN) { brcmf_dbg(ERROR, "bus is down. we have nothing to do\n"); return; } /* Count the interrupt call */ bus->intrcount++; bus->ipend = true; /* Shouldn't get this interrupt if we're sleeping? */ if (bus->sleeping) { brcmf_dbg(ERROR, "INTERRUPT WHILE SLEEPING??\n"); return; } /* Disable additional interrupts (is this needed now)? */ if (!bus->intr) brcmf_dbg(ERROR, "isr w/o interrupt configured!\n"); bus->dpc_sched = true; if (bus->dpc_tsk) complete(&bus->dpc_wait); } static bool brcmf_sdbrcm_bus_watchdog(struct brcmf_sdio *bus) { #ifdef BCMDBG struct brcmf_bus *bus_if = dev_get_drvdata(bus->sdiodev->dev); #endif /* BCMDBG */ brcmf_dbg(TIMER, "Enter\n"); /* Ignore the timer if simulating bus down */ if (bus->sleeping) return false; down(&bus->sdsem); /* Poll period: check device if appropriate. */ if (bus->poll && (++bus->polltick >= bus->pollrate)) { u32 intstatus = 0; /* Reset poll tick */ bus->polltick = 0; /* Check device if no interrupts */ if (!bus->intr || (bus->intrcount == bus->lastintrs)) { if (!bus->dpc_sched) { u8 devpend; devpend = brcmf_sdcard_cfg_read(bus->sdiodev, SDIO_FUNC_0, SDIO_CCCR_INTx, NULL); intstatus = devpend & (INTR_STATUS_FUNC1 | INTR_STATUS_FUNC2); } /* If there is something, make like the ISR and schedule the DPC */ if (intstatus) { bus->pollcnt++; bus->ipend = true; bus->dpc_sched = true; if (bus->dpc_tsk) complete(&bus->dpc_wait); } } /* Update interrupt tracking */ bus->lastintrs = bus->intrcount; } #ifdef BCMDBG /* Poll for console output periodically */ if (bus_if->state == BRCMF_BUS_DATA && bus->console_interval != 0) { bus->console.count += BRCMF_WD_POLL_MS; if (bus->console.count >= bus->console_interval) { bus->console.count -= bus->console_interval; /* Make sure backplane clock is on */ brcmf_sdbrcm_clkctl(bus, CLK_AVAIL, false); if (brcmf_sdbrcm_readconsole(bus) < 0) /* stop on error */ bus->console_interval = 0; } } #endif /* BCMDBG */ /* On idle timeout clear activity flag and/or turn off clock */ if ((bus->idletime > 0) && (bus->clkstate == CLK_AVAIL)) { if (++bus->idlecount >= bus->idletime) { bus->idlecount = 0; if (bus->activity) { bus->activity = false; brcmf_sdbrcm_wd_timer(bus, BRCMF_WD_POLL_MS); } else { brcmf_sdbrcm_clkctl(bus, CLK_NONE, false); } } } up(&bus->sdsem); return bus->ipend; } static bool brcmf_sdbrcm_chipmatch(u16 chipid) { if (chipid == BCM4329_CHIP_ID) return true; if (chipid == BCM4330_CHIP_ID) return true; return false; } static void brcmf_sdbrcm_release_malloc(struct brcmf_sdio *bus) { brcmf_dbg(TRACE, "Enter\n"); kfree(bus->rxbuf); bus->rxctl = bus->rxbuf = NULL; bus->rxlen = 0; kfree(bus->databuf); bus->databuf = NULL; } static bool brcmf_sdbrcm_probe_malloc(struct brcmf_sdio *bus) { brcmf_dbg(TRACE, "Enter\n"); if (bus->drvr->maxctl) { bus->rxblen = roundup((bus->drvr->maxctl + SDPCM_HDRLEN), ALIGNMENT) + BRCMF_SDALIGN; bus->rxbuf = kmalloc(bus->rxblen, GFP_ATOMIC); if (!(bus->rxbuf)) goto fail; } /* Allocate buffer to receive glomed packet */ bus->databuf = kmalloc(MAX_DATA_BUF, GFP_ATOMIC); if (!(bus->databuf)) { /* release rxbuf which was already located as above */ if (!bus->rxblen) kfree(bus->rxbuf); goto fail; } /* Align the buffer */ if ((unsigned long)bus->databuf % BRCMF_SDALIGN) bus->dataptr = bus->databuf + (BRCMF_SDALIGN - ((unsigned long)bus->databuf % BRCMF_SDALIGN)); else bus->dataptr = bus->databuf; return true; fail: return false; } static bool brcmf_sdbrcm_probe_attach(struct brcmf_sdio *bus, u32 regsva) { u8 clkctl = 0; int err = 0; int reg_addr; u32 reg_val; u8 idx; bus->alp_only = true; /* Return the window to backplane enumeration space for core access */ if (brcmf_sdcard_set_sbaddr_window(bus->sdiodev, SI_ENUM_BASE)) brcmf_dbg(ERROR, "FAILED to return to SI_ENUM_BASE\n"); #ifdef BCMDBG printk(KERN_DEBUG "F1 signature read @0x18000000=0x%4x\n", brcmf_sdcard_reg_read(bus->sdiodev, SI_ENUM_BASE, 4)); #endif /* BCMDBG */ /* * Force PLL off until brcmf_sdio_chip_attach() * programs PLL control regs */ brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, BRCMF_INIT_CLKCTL1, &err); if (!err) clkctl = brcmf_sdcard_cfg_read(bus->sdiodev, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, &err); if (err || ((clkctl & ~SBSDIO_AVBITS) != BRCMF_INIT_CLKCTL1)) { brcmf_dbg(ERROR, "ChipClkCSR access: err %d wrote 0x%02x read 0x%02x\n", err, BRCMF_INIT_CLKCTL1, clkctl); goto fail; } if (brcmf_sdio_chip_attach(bus->sdiodev, &bus->ci, regsva)) { brcmf_dbg(ERROR, "brcmf_sdio_chip_attach failed!\n"); goto fail; } if (!brcmf_sdbrcm_chipmatch((u16) bus->ci->chip)) { brcmf_dbg(ERROR, "unsupported chip: 0x%04x\n", bus->ci->chip); goto fail; } brcmf_sdio_chip_drivestrengthinit(bus->sdiodev, bus->ci, SDIO_DRIVE_STRENGTH); /* Get info on the SOCRAM cores... */ bus->ramsize = bus->ci->ramsize; if (!(bus->ramsize)) { brcmf_dbg(ERROR, "failed to find SOCRAM memory!\n"); goto fail; } /* Set core control so an SDIO reset does a backplane reset */ idx = brcmf_sdio_chip_getinfidx(bus->ci, BCMA_CORE_SDIO_DEV); reg_addr = bus->ci->c_inf[idx].base + offsetof(struct sdpcmd_regs, corecontrol); reg_val = brcmf_sdcard_reg_read(bus->sdiodev, reg_addr, sizeof(u32)); brcmf_sdcard_reg_write(bus->sdiodev, reg_addr, sizeof(u32), reg_val | CC_BPRESEN); brcmu_pktq_init(&bus->txq, (PRIOMASK + 1), TXQLEN); /* Locate an appropriately-aligned portion of hdrbuf */ bus->rxhdr = (u8 *) roundup((unsigned long)&bus->hdrbuf[0], BRCMF_SDALIGN); /* Set the poll and/or interrupt flags */ bus->intr = true; bus->poll = false; if (bus->poll) bus->pollrate = 1; return true; fail: return false; } static bool brcmf_sdbrcm_probe_init(struct brcmf_sdio *bus) { brcmf_dbg(TRACE, "Enter\n"); /* Disable F2 to clear any intermediate frame state on the dongle */ brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_0, SDIO_CCCR_IOEx, SDIO_FUNC_ENABLE_1, NULL); bus->drvr->bus_if->state = BRCMF_BUS_DOWN; bus->sleeping = false; bus->rxflow = false; /* Done with backplane-dependent accesses, can drop clock... */ brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, 0, NULL); /* ...and initialize clock/power states */ bus->clkstate = CLK_SDONLY; bus->idletime = BRCMF_IDLE_INTERVAL; bus->idleclock = BRCMF_IDLE_ACTIVE; /* Query the F2 block size, set roundup accordingly */ bus->blocksize = bus->sdiodev->func[2]->cur_blksize; bus->roundup = min(max_roundup, bus->blocksize); /* bus module does not support packet chaining */ bus->use_rxchain = false; bus->sd_rxchain = false; return true; } static int brcmf_sdbrcm_watchdog_thread(void *data) { struct brcmf_sdio *bus = (struct brcmf_sdio *)data; allow_signal(SIGTERM); /* Run until signal received */ while (1) { if (kthread_should_stop()) break; if (!wait_for_completion_interruptible(&bus->watchdog_wait)) { brcmf_sdbrcm_bus_watchdog(bus); /* Count the tick for reference */ bus->drvr->tickcnt++; } else break; } return 0; } static void brcmf_sdbrcm_watchdog(unsigned long data) { struct brcmf_sdio *bus = (struct brcmf_sdio *)data; if (bus->watchdog_tsk) { complete(&bus->watchdog_wait); /* Reschedule the watchdog */ if (bus->wd_timer_valid) mod_timer(&bus->timer, jiffies + BRCMF_WD_POLL_MS * HZ / 1000); } } static void brcmf_sdbrcm_release_dongle(struct brcmf_sdio *bus) { brcmf_dbg(TRACE, "Enter\n"); if (bus->ci) { brcmf_sdbrcm_clkctl(bus, CLK_AVAIL, false); brcmf_sdbrcm_clkctl(bus, CLK_NONE, false); brcmf_sdio_chip_detach(&bus->ci); if (bus->vars && bus->varsz) kfree(bus->vars); bus->vars = NULL; } brcmf_dbg(TRACE, "Disconnected\n"); } /* Detach and free everything */ static void brcmf_sdbrcm_release(struct brcmf_sdio *bus) { brcmf_dbg(TRACE, "Enter\n"); if (bus) { /* De-register interrupt handler */ brcmf_sdcard_intr_dereg(bus->sdiodev); if (bus->sdiodev->bus_if->drvr) { brcmf_detach(bus->sdiodev->dev); brcmf_sdbrcm_release_dongle(bus); bus->drvr = NULL; } brcmf_sdbrcm_release_malloc(bus); kfree(bus); } brcmf_dbg(TRACE, "Disconnected\n"); } void *brcmf_sdbrcm_probe(u32 regsva, struct brcmf_sdio_dev *sdiodev) { int ret; struct brcmf_sdio *bus; brcmf_dbg(TRACE, "Enter\n"); /* We make an assumption about address window mappings: * regsva == SI_ENUM_BASE*/ /* Allocate private bus interface state */ bus = kzalloc(sizeof(struct brcmf_sdio), GFP_ATOMIC); if (!bus) goto fail; bus->sdiodev = sdiodev; sdiodev->bus = bus; skb_queue_head_init(&bus->glom); bus->txbound = BRCMF_TXBOUND; bus->rxbound = BRCMF_RXBOUND; bus->txminmax = BRCMF_TXMINMAX; bus->tx_seq = SDPCM_SEQUENCE_WRAP - 1; bus->usebufpool = false; /* Use bufpool if allocated, else use locally malloced rxbuf */ /* attempt to attach to the dongle */ if (!(brcmf_sdbrcm_probe_attach(bus, regsva))) { brcmf_dbg(ERROR, "brcmf_sdbrcm_probe_attach failed\n"); goto fail; } spin_lock_init(&bus->txqlock); init_waitqueue_head(&bus->ctrl_wait); init_waitqueue_head(&bus->dcmd_resp_wait); /* Set up the watchdog timer */ init_timer(&bus->timer); bus->timer.data = (unsigned long)bus; bus->timer.function = brcmf_sdbrcm_watchdog; /* Initialize thread based operation and lock */ sema_init(&bus->sdsem, 1); /* Initialize watchdog thread */ init_completion(&bus->watchdog_wait); bus->watchdog_tsk = kthread_run(brcmf_sdbrcm_watchdog_thread, bus, "brcmf_watchdog"); if (IS_ERR(bus->watchdog_tsk)) { printk(KERN_WARNING "brcmf_watchdog thread failed to start\n"); bus->watchdog_tsk = NULL; } /* Initialize DPC thread */ init_completion(&bus->dpc_wait); bus->dpc_tsk = kthread_run(brcmf_sdbrcm_dpc_thread, bus, "brcmf_dpc"); if (IS_ERR(bus->dpc_tsk)) { printk(KERN_WARNING "brcmf_dpc thread failed to start\n"); bus->dpc_tsk = NULL; } /* Attach to the brcmf/OS/network interface */ bus->drvr = brcmf_attach(bus, SDPCM_RESERVE, bus->sdiodev->dev); if (!bus->drvr) { brcmf_dbg(ERROR, "brcmf_attach failed\n"); goto fail; } /* Allocate buffers */ if (!(brcmf_sdbrcm_probe_malloc(bus))) { brcmf_dbg(ERROR, "brcmf_sdbrcm_probe_malloc failed\n"); goto fail; } if (!(brcmf_sdbrcm_probe_init(bus))) { brcmf_dbg(ERROR, "brcmf_sdbrcm_probe_init failed\n"); goto fail; } /* Register interrupt callback, but mask it (not operational yet). */ brcmf_dbg(INTR, "disable SDIO interrupts (not interested yet)\n"); ret = brcmf_sdcard_intr_reg(bus->sdiodev); if (ret != 0) { brcmf_dbg(ERROR, "FAILED: sdcard_intr_reg returned %d\n", ret); goto fail; } brcmf_dbg(INTR, "registered SDIO interrupt function ok\n"); brcmf_dbg(INFO, "completed!!\n"); /* if firmware path present try to download and bring up bus */ ret = brcmf_bus_start(bus->sdiodev->dev); if (ret != 0) { if (ret == -ENOLINK) { brcmf_dbg(ERROR, "dongle is not responding\n"); goto fail; } } /* add interface and open for business */ if (brcmf_add_if(bus->sdiodev->dev, 0, "wlan%d", NULL)) { brcmf_dbg(ERROR, "Add primary net device interface failed!!\n"); goto fail; } return bus; fail: brcmf_sdbrcm_release(bus); return NULL; } void brcmf_sdbrcm_disconnect(void *ptr) { struct brcmf_sdio *bus = (struct brcmf_sdio *)ptr; brcmf_dbg(TRACE, "Enter\n"); if (bus) brcmf_sdbrcm_release(bus); brcmf_dbg(TRACE, "Disconnected\n"); } void brcmf_sdbrcm_wd_timer(struct brcmf_sdio *bus, uint wdtick) { /* Totally stop the timer */ if (!wdtick && bus->wd_timer_valid == true) { del_timer_sync(&bus->timer); bus->wd_timer_valid = false; bus->save_ms = wdtick; return; } /* don't start the wd until fw is loaded */ if (bus->drvr->bus_if->state == BRCMF_BUS_DOWN) return; if (wdtick) { if (bus->save_ms != BRCMF_WD_POLL_MS) { if (bus->wd_timer_valid == true) /* Stop timer and restart at new value */ del_timer_sync(&bus->timer); /* Create timer again when watchdog period is dynamically changed or in the first instance */ bus->timer.expires = jiffies + BRCMF_WD_POLL_MS * HZ / 1000; add_timer(&bus->timer); } else { /* Re arm the timer, at last watchdog period */ mod_timer(&bus->timer, jiffies + BRCMF_WD_POLL_MS * HZ / 1000); } bus->wd_timer_valid = true; bus->save_ms = wdtick; } }