/**************************************************************************** * Driver for Solarflare Solarstorm network controllers and boards * Copyright 2005-2006 Fen Systems Ltd. * Copyright 2005-2011 Solarflare Communications Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation, incorporated herein by reference. */ #include #include #include #include #include #include #include #include #include #include #include #include "net_driver.h" #include "efx.h" #include "nic.h" #include "selftest.h" #include "workarounds.h" /* Preferred number of descriptors to fill at once */ #define EFX_RX_PREFERRED_BATCH 8U /* Number of RX buffers to recycle pages for. When creating the RX page recycle * ring, this number is divided by the number of buffers per page to calculate * the number of pages to store in the RX page recycle ring. */ #define EFX_RECYCLE_RING_SIZE_IOMMU 4096 #define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH) /* Size of buffer allocated for skb header area. */ #define EFX_SKB_HEADERS 128u /* This is the percentage fill level below which new RX descriptors * will be added to the RX descriptor ring. */ static unsigned int rx_refill_threshold; /* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */ #define EFX_RX_MAX_FRAGS DIV_ROUND_UP(EFX_MAX_FRAME_LEN(EFX_MAX_MTU), \ EFX_RX_USR_BUF_SIZE) /* * RX maximum head room required. * * This must be at least 1 to prevent overflow, plus one packet-worth * to allow pipelined receives. */ #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS) static inline u8 *efx_rx_buf_va(struct efx_rx_buffer *buf) { return page_address(buf->page) + buf->page_offset; } static inline u32 efx_rx_buf_hash(const u8 *eh) { /* The ethernet header is always directly after any hash. */ #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0 return __le32_to_cpup((const __le32 *)(eh - 4)); #else const u8 *data = eh - 4; return (u32)data[0] | (u32)data[1] << 8 | (u32)data[2] << 16 | (u32)data[3] << 24; #endif } static inline struct efx_rx_buffer * efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf) { if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask))) return efx_rx_buffer(rx_queue, 0); else return rx_buf + 1; } static inline void efx_sync_rx_buffer(struct efx_nic *efx, struct efx_rx_buffer *rx_buf, unsigned int len) { dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len, DMA_FROM_DEVICE); } void efx_rx_config_page_split(struct efx_nic *efx) { efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + NET_IP_ALIGN, EFX_RX_BUF_ALIGNMENT); efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 : ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) / efx->rx_page_buf_step); efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) / efx->rx_bufs_per_page; efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH, efx->rx_bufs_per_page); } /* Check the RX page recycle ring for a page that can be reused. */ static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue) { struct efx_nic *efx = rx_queue->efx; struct page *page; struct efx_rx_page_state *state; unsigned index; index = rx_queue->page_remove & rx_queue->page_ptr_mask; page = rx_queue->page_ring[index]; if (page == NULL) return NULL; rx_queue->page_ring[index] = NULL; /* page_remove cannot exceed page_add. */ if (rx_queue->page_remove != rx_queue->page_add) ++rx_queue->page_remove; /* If page_count is 1 then we hold the only reference to this page. */ if (page_count(page) == 1) { ++rx_queue->page_recycle_count; return page; } else { state = page_address(page); dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, PAGE_SIZE << efx->rx_buffer_order, DMA_FROM_DEVICE); put_page(page); ++rx_queue->page_recycle_failed; } return NULL; } /** * efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers * * @rx_queue: Efx RX queue * * This allocates a batch of pages, maps them for DMA, and populates * struct efx_rx_buffers for each one. Return a negative error code or * 0 on success. If a single page can be used for multiple buffers, * then the page will either be inserted fully, or not at all. */ static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue) { struct efx_nic *efx = rx_queue->efx; struct efx_rx_buffer *rx_buf; struct page *page; unsigned int page_offset; struct efx_rx_page_state *state; dma_addr_t dma_addr; unsigned index, count; count = 0; do { page = efx_reuse_page(rx_queue); if (page == NULL) { page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC, efx->rx_buffer_order); if (unlikely(page == NULL)) return -ENOMEM; dma_addr = dma_map_page(&efx->pci_dev->dev, page, 0, PAGE_SIZE << efx->rx_buffer_order, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(&efx->pci_dev->dev, dma_addr))) { __free_pages(page, efx->rx_buffer_order); return -EIO; } state = page_address(page); state->dma_addr = dma_addr; } else { state = page_address(page); dma_addr = state->dma_addr; } dma_addr += sizeof(struct efx_rx_page_state); page_offset = sizeof(struct efx_rx_page_state); do { index = rx_queue->added_count & rx_queue->ptr_mask; rx_buf = efx_rx_buffer(rx_queue, index); rx_buf->dma_addr = dma_addr + NET_IP_ALIGN; rx_buf->page = page; rx_buf->page_offset = page_offset + NET_IP_ALIGN; rx_buf->len = efx->rx_dma_len; rx_buf->flags = 0; ++rx_queue->added_count; get_page(page); dma_addr += efx->rx_page_buf_step; page_offset += efx->rx_page_buf_step; } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE); rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE; } while (++count < efx->rx_pages_per_batch); return 0; } /* Unmap a DMA-mapped page. This function is only called for the final RX * buffer in a page. */ static void efx_unmap_rx_buffer(struct efx_nic *efx, struct efx_rx_buffer *rx_buf) { struct page *page = rx_buf->page; if (page) { struct efx_rx_page_state *state = page_address(page); dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, PAGE_SIZE << efx->rx_buffer_order, DMA_FROM_DEVICE); } } static void efx_free_rx_buffer(struct efx_rx_buffer *rx_buf) { if (rx_buf->page) { put_page(rx_buf->page); rx_buf->page = NULL; } } /* Attempt to recycle the page if there is an RX recycle ring; the page can * only be added if this is the final RX buffer, to prevent pages being used in * the descriptor ring and appearing in the recycle ring simultaneously. */ static void efx_recycle_rx_page(struct efx_channel *channel, struct efx_rx_buffer *rx_buf) { struct page *page = rx_buf->page; struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); struct efx_nic *efx = rx_queue->efx; unsigned index; /* Only recycle the page after processing the final buffer. */ if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE)) return; index = rx_queue->page_add & rx_queue->page_ptr_mask; if (rx_queue->page_ring[index] == NULL) { unsigned read_index = rx_queue->page_remove & rx_queue->page_ptr_mask; /* The next slot in the recycle ring is available, but * increment page_remove if the read pointer currently * points here. */ if (read_index == index) ++rx_queue->page_remove; rx_queue->page_ring[index] = page; ++rx_queue->page_add; return; } ++rx_queue->page_recycle_full; efx_unmap_rx_buffer(efx, rx_buf); put_page(rx_buf->page); } static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf) { /* Release the page reference we hold for the buffer. */ if (rx_buf->page) put_page(rx_buf->page); /* If this is the last buffer in a page, unmap and free it. */ if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) { efx_unmap_rx_buffer(rx_queue->efx, rx_buf); efx_free_rx_buffer(rx_buf); } rx_buf->page = NULL; } /* Recycle the pages that are used by buffers that have just been received. */ static void efx_recycle_rx_buffers(struct efx_channel *channel, struct efx_rx_buffer *rx_buf, unsigned int n_frags) { struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); do { efx_recycle_rx_page(channel, rx_buf); rx_buf = efx_rx_buf_next(rx_queue, rx_buf); } while (--n_frags); } /** * efx_fast_push_rx_descriptors - push new RX descriptors quickly * @rx_queue: RX descriptor queue * * This will aim to fill the RX descriptor queue up to * @rx_queue->@max_fill. If there is insufficient atomic * memory to do so, a slow fill will be scheduled. * * The caller must provide serialisation (none is used here). In practise, * this means this function must run from the NAPI handler, or be called * when NAPI is disabled. */ void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue) { struct efx_nic *efx = rx_queue->efx; unsigned int fill_level, batch_size; int space, rc = 0; /* Calculate current fill level, and exit if we don't need to fill */ fill_level = (rx_queue->added_count - rx_queue->removed_count); EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries); if (fill_level >= rx_queue->fast_fill_trigger) goto out; /* Record minimum fill level */ if (unlikely(fill_level < rx_queue->min_fill)) { if (fill_level) rx_queue->min_fill = fill_level; } batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page; space = rx_queue->max_fill - fill_level; EFX_BUG_ON_PARANOID(space < batch_size); netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, "RX queue %d fast-filling descriptor ring from" " level %d to level %d\n", efx_rx_queue_index(rx_queue), fill_level, rx_queue->max_fill); do { rc = efx_init_rx_buffers(rx_queue); if (unlikely(rc)) { /* Ensure that we don't leave the rx queue empty */ if (rx_queue->added_count == rx_queue->removed_count) efx_schedule_slow_fill(rx_queue); goto out; } } while ((space -= batch_size) >= batch_size); netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, "RX queue %d fast-filled descriptor ring " "to level %d\n", efx_rx_queue_index(rx_queue), rx_queue->added_count - rx_queue->removed_count); out: if (rx_queue->notified_count != rx_queue->added_count) efx_nic_notify_rx_desc(rx_queue); } void efx_rx_slow_fill(unsigned long context) { struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context; /* Post an event to cause NAPI to run and refill the queue */ efx_nic_generate_fill_event(rx_queue); ++rx_queue->slow_fill_count; } static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf, int len) { struct efx_nic *efx = rx_queue->efx; unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding; if (likely(len <= max_len)) return; /* The packet must be discarded, but this is only a fatal error * if the caller indicated it was */ rx_buf->flags |= EFX_RX_PKT_DISCARD; if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) { if (net_ratelimit()) netif_err(efx, rx_err, efx->net_dev, " RX queue %d seriously overlength " "RX event (0x%x > 0x%x+0x%x). Leaking\n", efx_rx_queue_index(rx_queue), len, max_len, efx->type->rx_buffer_padding); efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY); } else { if (net_ratelimit()) netif_err(efx, rx_err, efx->net_dev, " RX queue %d overlength RX event " "(0x%x > 0x%x)\n", efx_rx_queue_index(rx_queue), len, max_len); } efx_rx_queue_channel(rx_queue)->n_rx_overlength++; } /* Pass a received packet up through GRO. GRO can handle pages * regardless of checksum state and skbs with a good checksum. */ static void efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf, unsigned int n_frags, u8 *eh) { struct napi_struct *napi = &channel->napi_str; gro_result_t gro_result; struct efx_nic *efx = channel->efx; struct sk_buff *skb; skb = napi_get_frags(napi); if (unlikely(!skb)) { while (n_frags--) { put_page(rx_buf->page); rx_buf->page = NULL; rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf); } return; } if (efx->net_dev->features & NETIF_F_RXHASH) skb->rxhash = efx_rx_buf_hash(eh); skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ? CHECKSUM_UNNECESSARY : CHECKSUM_NONE); for (;;) { skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, rx_buf->page, rx_buf->page_offset, rx_buf->len); rx_buf->page = NULL; skb->len += rx_buf->len; if (skb_shinfo(skb)->nr_frags == n_frags) break; rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf); } skb->data_len = skb->len; skb->truesize += n_frags * efx->rx_buffer_truesize; skb_record_rx_queue(skb, channel->rx_queue.core_index); gro_result = napi_gro_frags(napi); if (gro_result != GRO_DROP) channel->irq_mod_score += 2; } /* Allocate and construct an SKB around page fragments */ static struct sk_buff *efx_rx_mk_skb(struct efx_channel *channel, struct efx_rx_buffer *rx_buf, unsigned int n_frags, u8 *eh, int hdr_len) { struct efx_nic *efx = channel->efx; struct sk_buff *skb; /* Allocate an SKB to store the headers */ skb = netdev_alloc_skb(efx->net_dev, hdr_len + EFX_PAGE_SKB_ALIGN); if (unlikely(skb == NULL)) return NULL; EFX_BUG_ON_PARANOID(rx_buf->len < hdr_len); skb_reserve(skb, EFX_PAGE_SKB_ALIGN); memcpy(__skb_put(skb, hdr_len), eh, hdr_len); /* Append the remaining page(s) onto the frag list */ if (rx_buf->len > hdr_len) { rx_buf->page_offset += hdr_len; rx_buf->len -= hdr_len; for (;;) { skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, rx_buf->page, rx_buf->page_offset, rx_buf->len); rx_buf->page = NULL; skb->len += rx_buf->len; skb->data_len += rx_buf->len; if (skb_shinfo(skb)->nr_frags == n_frags) break; rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf); } } else { __free_pages(rx_buf->page, efx->rx_buffer_order); rx_buf->page = NULL; n_frags = 0; } skb->truesize += n_frags * efx->rx_buffer_truesize; /* Move past the ethernet header */ skb->protocol = eth_type_trans(skb, efx->net_dev); return skb; } void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index, unsigned int n_frags, unsigned int len, u16 flags) { struct efx_nic *efx = rx_queue->efx; struct efx_channel *channel = efx_rx_queue_channel(rx_queue); struct efx_rx_buffer *rx_buf; rx_buf = efx_rx_buffer(rx_queue, index); rx_buf->flags |= flags; /* Validate the number of fragments and completed length */ if (n_frags == 1) { efx_rx_packet__check_len(rx_queue, rx_buf, len); } else if (unlikely(n_frags > EFX_RX_MAX_FRAGS) || unlikely(len <= (n_frags - 1) * EFX_RX_USR_BUF_SIZE) || unlikely(len > n_frags * EFX_RX_USR_BUF_SIZE) || unlikely(!efx->rx_scatter)) { /* If this isn't an explicit discard request, either * the hardware or the driver is broken. */ WARN_ON(!(len == 0 && rx_buf->flags & EFX_RX_PKT_DISCARD)); rx_buf->flags |= EFX_RX_PKT_DISCARD; } netif_vdbg(efx, rx_status, efx->net_dev, "RX queue %d received ids %x-%x len %d %s%s\n", efx_rx_queue_index(rx_queue), index, (index + n_frags - 1) & rx_queue->ptr_mask, len, (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "", (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : ""); /* Discard packet, if instructed to do so. Process the * previous receive first. */ if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) { efx_rx_flush_packet(channel); put_page(rx_buf->page); efx_recycle_rx_buffers(channel, rx_buf, n_frags); return; } if (n_frags == 1) rx_buf->len = len; /* Release and/or sync the DMA mapping - assumes all RX buffers * consumed in-order per RX queue. */ efx_sync_rx_buffer(efx, rx_buf, rx_buf->len); /* Prefetch nice and early so data will (hopefully) be in cache by * the time we look at it. */ prefetch(efx_rx_buf_va(rx_buf)); rx_buf->page_offset += efx->type->rx_buffer_hash_size; rx_buf->len -= efx->type->rx_buffer_hash_size; if (n_frags > 1) { /* Release/sync DMA mapping for additional fragments. * Fix length for last fragment. */ unsigned int tail_frags = n_frags - 1; for (;;) { rx_buf = efx_rx_buf_next(rx_queue, rx_buf); if (--tail_frags == 0) break; efx_sync_rx_buffer(efx, rx_buf, EFX_RX_USR_BUF_SIZE); } rx_buf->len = len - (n_frags - 1) * EFX_RX_USR_BUF_SIZE; efx_sync_rx_buffer(efx, rx_buf, rx_buf->len); } /* All fragments have been DMA-synced, so recycle buffers and pages. */ rx_buf = efx_rx_buffer(rx_queue, index); efx_recycle_rx_buffers(channel, rx_buf, n_frags); /* Pipeline receives so that we give time for packet headers to be * prefetched into cache. */ efx_rx_flush_packet(channel); channel->rx_pkt_n_frags = n_frags; channel->rx_pkt_index = index; } static void efx_rx_deliver(struct efx_channel *channel, u8 *eh, struct efx_rx_buffer *rx_buf, unsigned int n_frags) { struct sk_buff *skb; u16 hdr_len = min_t(u16, rx_buf->len, EFX_SKB_HEADERS); skb = efx_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len); if (unlikely(skb == NULL)) { efx_free_rx_buffer(rx_buf); return; } skb_record_rx_queue(skb, channel->rx_queue.core_index); /* Set the SKB flags */ skb_checksum_none_assert(skb); if (likely(rx_buf->flags & EFX_RX_PKT_CSUMMED)) skb->ip_summed = CHECKSUM_UNNECESSARY; if (channel->type->receive_skb) if (channel->type->receive_skb(channel, skb)) return; /* Pass the packet up */ netif_receive_skb(skb); } /* Handle a received packet. Second half: Touches packet payload. */ void __efx_rx_packet(struct efx_channel *channel) { struct efx_nic *efx = channel->efx; struct efx_rx_buffer *rx_buf = efx_rx_buffer(&channel->rx_queue, channel->rx_pkt_index); u8 *eh = efx_rx_buf_va(rx_buf); /* If we're in loopback test, then pass the packet directly to the * loopback layer, and free the rx_buf here */ if (unlikely(efx->loopback_selftest)) { efx_loopback_rx_packet(efx, eh, rx_buf->len); efx_free_rx_buffer(rx_buf); goto out; } if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM))) rx_buf->flags &= ~EFX_RX_PKT_CSUMMED; if (!channel->type->receive_skb) efx_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh); else efx_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags); out: channel->rx_pkt_n_frags = 0; } int efx_probe_rx_queue(struct efx_rx_queue *rx_queue) { struct efx_nic *efx = rx_queue->efx; unsigned int entries; int rc; /* Create the smallest power-of-two aligned ring */ entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE); EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE); rx_queue->ptr_mask = entries - 1; netif_dbg(efx, probe, efx->net_dev, "creating RX queue %d size %#x mask %#x\n", efx_rx_queue_index(rx_queue), efx->rxq_entries, rx_queue->ptr_mask); /* Allocate RX buffers */ rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer), GFP_KERNEL); if (!rx_queue->buffer) return -ENOMEM; rc = efx_nic_probe_rx(rx_queue); if (rc) { kfree(rx_queue->buffer); rx_queue->buffer = NULL; } return rc; } static void efx_init_rx_recycle_ring(struct efx_nic *efx, struct efx_rx_queue *rx_queue) { unsigned int bufs_in_recycle_ring, page_ring_size; /* Set the RX recycle ring size */ #ifdef CONFIG_PPC64 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU; #else if (efx->pci_dev->dev.iommu_group) bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU; else bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_NOIOMMU; #endif /* CONFIG_PPC64 */ page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring / efx->rx_bufs_per_page); rx_queue->page_ring = kcalloc(page_ring_size, sizeof(*rx_queue->page_ring), GFP_KERNEL); rx_queue->page_ptr_mask = page_ring_size - 1; } void efx_init_rx_queue(struct efx_rx_queue *rx_queue) { struct efx_nic *efx = rx_queue->efx; unsigned int max_fill, trigger, max_trigger; netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, "initialising RX queue %d\n", efx_rx_queue_index(rx_queue)); /* Initialise ptr fields */ rx_queue->added_count = 0; rx_queue->notified_count = 0; rx_queue->removed_count = 0; rx_queue->min_fill = -1U; efx_init_rx_recycle_ring(efx, rx_queue); rx_queue->page_remove = 0; rx_queue->page_add = rx_queue->page_ptr_mask + 1; rx_queue->page_recycle_count = 0; rx_queue->page_recycle_failed = 0; rx_queue->page_recycle_full = 0; /* Initialise limit fields */ max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM; max_trigger = max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page; if (rx_refill_threshold != 0) { trigger = max_fill * min(rx_refill_threshold, 100U) / 100U; if (trigger > max_trigger) trigger = max_trigger; } else { trigger = max_trigger; } rx_queue->max_fill = max_fill; rx_queue->fast_fill_trigger = trigger; /* Set up RX descriptor ring */ rx_queue->enabled = true; efx_nic_init_rx(rx_queue); } void efx_fini_rx_queue(struct efx_rx_queue *rx_queue) { int i; struct efx_nic *efx = rx_queue->efx; struct efx_rx_buffer *rx_buf; netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue)); /* A flush failure might have left rx_queue->enabled */ rx_queue->enabled = false; del_timer_sync(&rx_queue->slow_fill); efx_nic_fini_rx(rx_queue); /* Release RX buffers from the current read ptr to the write ptr */ if (rx_queue->buffer) { for (i = rx_queue->removed_count; i < rx_queue->added_count; i++) { unsigned index = i & rx_queue->ptr_mask; rx_buf = efx_rx_buffer(rx_queue, index); efx_fini_rx_buffer(rx_queue, rx_buf); } } /* Unmap and release the pages in the recycle ring. Remove the ring. */ for (i = 0; i <= rx_queue->page_ptr_mask; i++) { struct page *page = rx_queue->page_ring[i]; struct efx_rx_page_state *state; if (page == NULL) continue; state = page_address(page); dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, PAGE_SIZE << efx->rx_buffer_order, DMA_FROM_DEVICE); put_page(page); } kfree(rx_queue->page_ring); rx_queue->page_ring = NULL; } void efx_remove_rx_queue(struct efx_rx_queue *rx_queue) { netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, "destroying RX queue %d\n", efx_rx_queue_index(rx_queue)); efx_nic_remove_rx(rx_queue); kfree(rx_queue->buffer); rx_queue->buffer = NULL; } module_param(rx_refill_threshold, uint, 0444); MODULE_PARM_DESC(rx_refill_threshold, "RX descriptor ring refill threshold (%)");