/* * Copyright 2010 Tilera Corporation. All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, version 2. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for * more details. */ #include /* * This file shares the implementation of the userspace memcpy and * the kernel's memcpy, copy_to_user and copy_from_user. */ #include /* On TILE64, we wrap these functions via arch/tile/lib/memcpy_tile64.c */ #if !CHIP_HAS_COHERENT_LOCAL_CACHE() #define memcpy __memcpy_asm #define __copy_to_user_inatomic __copy_to_user_inatomic_asm #define __copy_from_user_inatomic __copy_from_user_inatomic_asm #define __copy_from_user_zeroing __copy_from_user_zeroing_asm #endif #define IS_MEMCPY 0 #define IS_COPY_FROM_USER 1 #define IS_COPY_FROM_USER_ZEROING 2 #define IS_COPY_TO_USER -1 .section .text.memcpy_common, "ax" .align 64 /* Use this to preface each bundle that can cause an exception so * the kernel can clean up properly. The special cleanup code should * not use these, since it knows what it is doing. */ #define EX \ .pushsection __ex_table, "a"; \ .align 4; \ .word 9f, memcpy_common_fixup; \ .popsection; \ 9 /* __copy_from_user_inatomic takes the kernel target address in r0, * the user source in r1, and the bytes to copy in r2. * It returns the number of uncopiable bytes (hopefully zero) in r0. */ ENTRY(__copy_from_user_inatomic) .type __copy_from_user_inatomic, @function FEEDBACK_ENTER_EXPLICIT(__copy_from_user_inatomic, \ .text.memcpy_common, \ .Lend_memcpy_common - __copy_from_user_inatomic) { movei r29, IS_COPY_FROM_USER; j memcpy_common } .size __copy_from_user_inatomic, . - __copy_from_user_inatomic /* __copy_from_user_zeroing is like __copy_from_user_inatomic, but * any uncopiable bytes are zeroed in the target. */ ENTRY(__copy_from_user_zeroing) .type __copy_from_user_zeroing, @function FEEDBACK_REENTER(__copy_from_user_inatomic) { movei r29, IS_COPY_FROM_USER_ZEROING; j memcpy_common } .size __copy_from_user_zeroing, . - __copy_from_user_zeroing /* __copy_to_user_inatomic takes the user target address in r0, * the kernel source in r1, and the bytes to copy in r2. * It returns the number of uncopiable bytes (hopefully zero) in r0. */ ENTRY(__copy_to_user_inatomic) .type __copy_to_user_inatomic, @function FEEDBACK_REENTER(__copy_from_user_inatomic) { movei r29, IS_COPY_TO_USER; j memcpy_common } .size __copy_to_user_inatomic, . - __copy_to_user_inatomic ENTRY(memcpy) .type memcpy, @function FEEDBACK_REENTER(__copy_from_user_inatomic) { movei r29, IS_MEMCPY } .size memcpy, . - memcpy /* Fall through */ .type memcpy_common, @function memcpy_common: /* On entry, r29 holds one of the IS_* macro values from above. */ /* r0 is the dest, r1 is the source, r2 is the size. */ /* Save aside original dest so we can return it at the end. */ { sw sp, lr; move r23, r0; or r4, r0, r1 } /* Check for an empty size. */ { bz r2, .Ldone; andi r4, r4, 3 } /* Save aside original values in case of a fault. */ { move r24, r1; move r25, r2 } move r27, lr /* Check for an unaligned source or dest. */ { bnz r4, .Lcopy_unaligned_maybe_many; addli r4, r2, -256 } .Lcheck_aligned_copy_size: /* If we are copying < 256 bytes, branch to simple case. */ { blzt r4, .Lcopy_8_check; slti_u r8, r2, 8 } /* Copying >= 256 bytes, so jump to complex prefetching loop. */ { andi r6, r1, 63; j .Lcopy_many } /* * * Aligned 4 byte at a time copy loop * */ .Lcopy_8_loop: /* Copy two words at a time to hide load latency. */ EX: { lw r3, r1; addi r1, r1, 4; slti_u r8, r2, 16 } EX: { lw r4, r1; addi r1, r1, 4 } EX: { sw r0, r3; addi r0, r0, 4; addi r2, r2, -4 } EX: { sw r0, r4; addi r0, r0, 4; addi r2, r2, -4 } .Lcopy_8_check: { bzt r8, .Lcopy_8_loop; slti_u r4, r2, 4 } /* Copy odd leftover word, if any. */ { bnzt r4, .Lcheck_odd_stragglers } EX: { lw r3, r1; addi r1, r1, 4 } EX: { sw r0, r3; addi r0, r0, 4; addi r2, r2, -4 } .Lcheck_odd_stragglers: { bnz r2, .Lcopy_unaligned_few } .Ldone: /* For memcpy return original dest address, else zero. */ { mz r0, r29, r23; jrp lr } /* * * Prefetching multiple cache line copy handler (for large transfers). * */ /* Copy words until r1 is cache-line-aligned. */ .Lalign_loop: EX: { lw r3, r1; addi r1, r1, 4 } { andi r6, r1, 63 } EX: { sw r0, r3; addi r0, r0, 4; addi r2, r2, -4 } .Lcopy_many: { bnzt r6, .Lalign_loop; addi r9, r0, 63 } { addi r3, r1, 60; andi r9, r9, -64 } #if CHIP_HAS_WH64() /* No need to prefetch dst, we'll just do the wh64 * right before we copy a line. */ #endif EX: { lw r5, r3; addi r3, r3, 64; movei r4, 1 } /* Intentionally stall for a few cycles to leave L2 cache alone. */ { bnzt zero, .; move r27, lr } EX: { lw r6, r3; addi r3, r3, 64 } /* Intentionally stall for a few cycles to leave L2 cache alone. */ { bnzt zero, . } EX: { lw r7, r3; addi r3, r3, 64 } #if !CHIP_HAS_WH64() /* Prefetch the dest */ /* Intentionally stall for a few cycles to leave L2 cache alone. */ { bnzt zero, . } /* Use a real load to cause a TLB miss if necessary. We aren't using * r28, so this should be fine. */ EX: { lw r28, r9; addi r9, r9, 64 } /* Intentionally stall for a few cycles to leave L2 cache alone. */ { bnzt zero, . } { prefetch r9; addi r9, r9, 64 } /* Intentionally stall for a few cycles to leave L2 cache alone. */ { bnzt zero, . } { prefetch r9; addi r9, r9, 64 } #endif /* Intentionally stall for a few cycles to leave L2 cache alone. */ { bz zero, .Lbig_loop2 } /* On entry to this loop: * - r0 points to the start of dst line 0 * - r1 points to start of src line 0 * - r2 >= (256 - 60), only the first time the loop trips. * - r3 contains r1 + 128 + 60 [pointer to end of source line 2] * This is our prefetch address. When we get near the end * rather than prefetching off the end this is changed to point * to some "safe" recently loaded address. * - r5 contains *(r1 + 60) [i.e. last word of source line 0] * - r6 contains *(r1 + 64 + 60) [i.e. last word of source line 1] * - r9 contains ((r0 + 63) & -64) * [start of next dst cache line.] */ .Lbig_loop: { jal .Lcopy_line2; add r15, r1, r2 } .Lbig_loop2: /* Copy line 0, first stalling until r5 is ready. */ EX: { move r12, r5; lw r16, r1 } { bz r4, .Lcopy_8_check; slti_u r8, r2, 8 } /* Prefetch several lines ahead. */ EX: { lw r5, r3; addi r3, r3, 64 } { jal .Lcopy_line } /* Copy line 1, first stalling until r6 is ready. */ EX: { move r12, r6; lw r16, r1 } { bz r4, .Lcopy_8_check; slti_u r8, r2, 8 } /* Prefetch several lines ahead. */ EX: { lw r6, r3; addi r3, r3, 64 } { jal .Lcopy_line } /* Copy line 2, first stalling until r7 is ready. */ EX: { move r12, r7; lw r16, r1 } { bz r4, .Lcopy_8_check; slti_u r8, r2, 8 } /* Prefetch several lines ahead. */ EX: { lw r7, r3; addi r3, r3, 64 } /* Use up a caches-busy cycle by jumping back to the top of the * loop. Might as well get it out of the way now. */ { j .Lbig_loop } /* On entry: * - r0 points to the destination line. * - r1 points to the source line. * - r3 is the next prefetch address. * - r9 holds the last address used for wh64. * - r12 = WORD_15 * - r16 = WORD_0. * - r17 == r1 + 16. * - r27 holds saved lr to restore. * * On exit: * - r0 is incremented by 64. * - r1 is incremented by 64, unless that would point to a word * beyond the end of the source array, in which case it is redirected * to point to an arbitrary word already in the cache. * - r2 is decremented by 64. * - r3 is unchanged, unless it points to a word beyond the * end of the source array, in which case it is redirected * to point to an arbitrary word already in the cache. * Redirecting is OK since if we are that close to the end * of the array we will not come back to this subroutine * and use the contents of the prefetched address. * - r4 is nonzero iff r2 >= 64. * - r9 is incremented by 64, unless it points beyond the * end of the last full destination cache line, in which * case it is redirected to a "safe address" that can be * clobbered (sp - 64) * - lr contains the value in r27. */ /* r26 unused */ .Lcopy_line: /* TODO: when r3 goes past the end, we would like to redirect it * to prefetch the last partial cache line (if any) just once, for the * benefit of the final cleanup loop. But we don't want to * prefetch that line more than once, or subsequent prefetches * will go into the RTF. But then .Lbig_loop should unconditionally * branch to top of loop to execute final prefetch, and its * nop should become a conditional branch. */ /* We need two non-memory cycles here to cover the resources * used by the loads initiated by the caller. */ { add r15, r1, r2 } .Lcopy_line2: { slt_u r13, r3, r15; addi r17, r1, 16 } /* NOTE: this will stall for one cycle as L1 is busy. */ /* Fill second L1D line. */ EX: { lw r17, r17; addi r1, r1, 48; mvz r3, r13, r1 } /* r17 = WORD_4 */ #if CHIP_HAS_WH64() /* Prepare destination line for writing. */ EX: { wh64 r9; addi r9, r9, 64 } #else /* Prefetch dest line */ { prefetch r9; addi r9, r9, 64 } #endif /* Load seven words that are L1D hits to cover wh64 L2 usage. */ /* Load the three remaining words from the last L1D line, which * we know has already filled the L1D. */ EX: { lw r4, r1; addi r1, r1, 4; addi r20, r1, 16 } /* r4 = WORD_12 */ EX: { lw r8, r1; addi r1, r1, 4; slt_u r13, r20, r15 }/* r8 = WORD_13 */ EX: { lw r11, r1; addi r1, r1, -52; mvz r20, r13, r1 } /* r11 = WORD_14 */ /* Load the three remaining words from the first L1D line, first * stalling until it has filled by "looking at" r16. */ EX: { lw r13, r1; addi r1, r1, 4; move zero, r16 } /* r13 = WORD_1 */ EX: { lw r14, r1; addi r1, r1, 4 } /* r14 = WORD_2 */ EX: { lw r15, r1; addi r1, r1, 8; addi r10, r0, 60 } /* r15 = WORD_3 */ /* Load second word from the second L1D line, first * stalling until it has filled by "looking at" r17. */ EX: { lw r19, r1; addi r1, r1, 4; move zero, r17 } /* r19 = WORD_5 */ /* Store last word to the destination line, potentially dirtying it * for the first time, which keeps the L2 busy for two cycles. */ EX: { sw r10, r12 } /* store(WORD_15) */ /* Use two L1D hits to cover the sw L2 access above. */ EX: { lw r10, r1; addi r1, r1, 4 } /* r10 = WORD_6 */ EX: { lw r12, r1; addi r1, r1, 4 } /* r12 = WORD_7 */ /* Fill third L1D line. */ EX: { lw r18, r1; addi r1, r1, 4 } /* r18 = WORD_8 */ /* Store first L1D line. */ EX: { sw r0, r16; addi r0, r0, 4; add r16, r0, r2 } /* store(WORD_0) */ EX: { sw r0, r13; addi r0, r0, 4; andi r16, r16, -64 } /* store(WORD_1) */ EX: { sw r0, r14; addi r0, r0, 4; slt_u r16, r9, r16 } /* store(WORD_2) */ #if CHIP_HAS_WH64() EX: { sw r0, r15; addi r0, r0, 4; addi r13, sp, -64 } /* store(WORD_3) */ #else /* Back up the r9 to a cache line we are already storing to * if it gets past the end of the dest vector. Strictly speaking, * we don't need to back up to the start of a cache line, but it's free * and tidy, so why not? */ EX: { sw r0, r15; addi r0, r0, 4; andi r13, r0, -64 } /* store(WORD_3) */ #endif /* Store second L1D line. */ EX: { sw r0, r17; addi r0, r0, 4; mvz r9, r16, r13 }/* store(WORD_4) */ EX: { sw r0, r19; addi r0, r0, 4 } /* store(WORD_5) */ EX: { sw r0, r10; addi r0, r0, 4 } /* store(WORD_6) */ EX: { sw r0, r12; addi r0, r0, 4 } /* store(WORD_7) */ EX: { lw r13, r1; addi r1, r1, 4; move zero, r18 } /* r13 = WORD_9 */ EX: { lw r14, r1; addi r1, r1, 4 } /* r14 = WORD_10 */ EX: { lw r15, r1; move r1, r20 } /* r15 = WORD_11 */ /* Store third L1D line. */ EX: { sw r0, r18; addi r0, r0, 4 } /* store(WORD_8) */ EX: { sw r0, r13; addi r0, r0, 4 } /* store(WORD_9) */ EX: { sw r0, r14; addi r0, r0, 4 } /* store(WORD_10) */ EX: { sw r0, r15; addi r0, r0, 4 } /* store(WORD_11) */ /* Store rest of fourth L1D line. */ EX: { sw r0, r4; addi r0, r0, 4 } /* store(WORD_12) */ { EX: sw r0, r8 /* store(WORD_13) */ addi r0, r0, 4 /* Will r2 be > 64 after we subtract 64 below? */ shri r4, r2, 7 } { EX: sw r0, r11 /* store(WORD_14) */ addi r0, r0, 8 /* Record 64 bytes successfully copied. */ addi r2, r2, -64 } { jrp lr; move lr, r27 } /* Convey to the backtrace library that the stack frame is size * zero, and the real return address is on the stack rather than * in 'lr'. */ { info 8 } .align 64 .Lcopy_unaligned_maybe_many: /* Skip the setup overhead if we aren't copying many bytes. */ { slti_u r8, r2, 20; sub r4, zero, r0 } { bnzt r8, .Lcopy_unaligned_few; andi r4, r4, 3 } { bz r4, .Ldest_is_word_aligned; add r18, r1, r2 } /* * * unaligned 4 byte at a time copy handler. * */ /* Copy single bytes until r0 == 0 mod 4, so we can store words. */ .Lalign_dest_loop: EX: { lb_u r3, r1; addi r1, r1, 1; addi r4, r4, -1 } EX: { sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 } { bnzt r4, .Lalign_dest_loop; andi r3, r1, 3 } /* If source and dest are now *both* aligned, do an aligned copy. */ { bz r3, .Lcheck_aligned_copy_size; addli r4, r2, -256 } .Ldest_is_word_aligned: #if CHIP_HAS_DWORD_ALIGN() EX: { andi r8, r0, 63; lwadd_na r6, r1, 4} { slti_u r9, r2, 64; bz r8, .Ldest_is_L2_line_aligned } /* This copies unaligned words until either there are fewer * than 4 bytes left to copy, or until the destination pointer * is cache-aligned, whichever comes first. * * On entry: * - r0 is the next store address. * - r1 points 4 bytes past the load address corresponding to r0. * - r2 >= 4 * - r6 is the next aligned word loaded. */ .Lcopy_unaligned_src_words: EX: { lwadd_na r7, r1, 4; slti_u r8, r2, 4 + 4 } /* stall */ { dword_align r6, r7, r1; slti_u r9, r2, 64 + 4 } EX: { swadd r0, r6, 4; addi r2, r2, -4 } { bnz r8, .Lcleanup_unaligned_words; andi r8, r0, 63 } { bnzt r8, .Lcopy_unaligned_src_words; move r6, r7 } /* On entry: * - r0 is the next store address. * - r1 points 4 bytes past the load address corresponding to r0. * - r2 >= 4 (# of bytes left to store). * - r6 is the next aligned src word value. * - r9 = (r2 < 64U). * - r18 points one byte past the end of source memory. */ .Ldest_is_L2_line_aligned: { /* Not a full cache line remains. */ bnz r9, .Lcleanup_unaligned_words move r7, r6 } /* r2 >= 64 */ /* Kick off two prefetches, but don't go past the end. */ { addi r3, r1, 63 - 4; addi r8, r1, 64 + 63 - 4 } { prefetch r3; move r3, r8; slt_u r8, r8, r18 } { mvz r3, r8, r1; addi r8, r3, 64 } { prefetch r3; move r3, r8; slt_u r8, r8, r18 } { mvz r3, r8, r1; movei r17, 0 } .Lcopy_unaligned_line: /* Prefetch another line. */ { prefetch r3; addi r15, r1, 60; addi r3, r3, 64 } /* Fire off a load of the last word we are about to copy. */ EX: { lw_na r15, r15; slt_u r8, r3, r18 } EX: { mvz r3, r8, r1; wh64 r0 } /* This loop runs twice. * * On entry: * - r17 is even before the first iteration, and odd before * the second. It is incremented inside the loop. Encountering * an even value at the end of the loop makes it stop. */ .Lcopy_half_an_unaligned_line: EX: { /* Stall until the last byte is ready. In the steady state this * guarantees all words to load below will be in the L2 cache, which * avoids shunting the loads to the RTF. */ move zero, r15 lwadd_na r7, r1, 16 } EX: { lwadd_na r11, r1, 12 } EX: { lwadd_na r14, r1, -24 } EX: { lwadd_na r8, r1, 4 } EX: { lwadd_na r9, r1, 4 } EX: { lwadd_na r10, r1, 8 /* r16 = (r2 < 64), after we subtract 32 from r2 below. */ slti_u r16, r2, 64 + 32 } EX: { lwadd_na r12, r1, 4; addi r17, r17, 1 } EX: { lwadd_na r13, r1, 8; dword_align r6, r7, r1 } EX: { swadd r0, r6, 4; dword_align r7, r8, r1 } EX: { swadd r0, r7, 4; dword_align r8, r9, r1 } EX: { swadd r0, r8, 4; dword_align r9, r10, r1 } EX: { swadd r0, r9, 4; dword_align r10, r11, r1 } EX: { swadd r0, r10, 4; dword_align r11, r12, r1 } EX: { swadd r0, r11, 4; dword_align r12, r13, r1 } EX: { swadd r0, r12, 4; dword_align r13, r14, r1 } EX: { swadd r0, r13, 4; addi r2, r2, -32 } { move r6, r14; bbst r17, .Lcopy_half_an_unaligned_line } { bzt r16, .Lcopy_unaligned_line; move r7, r6 } /* On entry: * - r0 is the next store address. * - r1 points 4 bytes past the load address corresponding to r0. * - r2 >= 0 (# of bytes left to store). * - r7 is the next aligned src word value. */ .Lcleanup_unaligned_words: /* Handle any trailing bytes. */ { bz r2, .Lcopy_unaligned_done; slti_u r8, r2, 4 } { bzt r8, .Lcopy_unaligned_src_words; move r6, r7 } /* Move r1 back to the point where it corresponds to r0. */ { addi r1, r1, -4 } #else /* !CHIP_HAS_DWORD_ALIGN() */ /* Compute right/left shift counts and load initial source words. */ { andi r5, r1, -4; andi r3, r1, 3 } EX: { lw r6, r5; addi r5, r5, 4; shli r3, r3, 3 } EX: { lw r7, r5; addi r5, r5, 4; sub r4, zero, r3 } /* Load and store one word at a time, using shifts and ORs * to correct for the misaligned src. */ .Lcopy_unaligned_src_loop: { shr r6, r6, r3; shl r8, r7, r4 } EX: { lw r7, r5; or r8, r8, r6; move r6, r7 } EX: { sw r0, r8; addi r0, r0, 4; addi r2, r2, -4 } { addi r5, r5, 4; slti_u r8, r2, 8 } { bzt r8, .Lcopy_unaligned_src_loop; addi r1, r1, 4 } { bz r2, .Lcopy_unaligned_done } #endif /* !CHIP_HAS_DWORD_ALIGN() */ /* Fall through */ /* * * 1 byte at a time copy handler. * */ .Lcopy_unaligned_few: EX: { lb_u r3, r1; addi r1, r1, 1 } EX: { sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 } { bnzt r2, .Lcopy_unaligned_few } .Lcopy_unaligned_done: /* For memcpy return original dest address, else zero. */ { mz r0, r29, r23; jrp lr } .Lend_memcpy_common: .size memcpy_common, .Lend_memcpy_common - memcpy_common .section .fixup,"ax" memcpy_common_fixup: .type memcpy_common_fixup, @function /* Skip any bytes we already successfully copied. * r2 (num remaining) is correct, but r0 (dst) and r1 (src) * may not be quite right because of unrolling and prefetching. * So we need to recompute their values as the address just * after the last byte we are sure was successfully loaded and * then stored. */ /* Determine how many bytes we successfully copied. */ { sub r3, r25, r2 } /* Add this to the original r0 and r1 to get their new values. */ { add r0, r23, r3; add r1, r24, r3 } { bzt r29, memcpy_fixup_loop } { blzt r29, copy_to_user_fixup_loop } copy_from_user_fixup_loop: /* Try copying the rest one byte at a time, expecting a load fault. */ .Lcfu: { lb_u r3, r1; addi r1, r1, 1 } { sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 } { bnzt r2, copy_from_user_fixup_loop } .Lcopy_from_user_fixup_zero_remainder: { bbs r29, 2f } /* low bit set means IS_COPY_FROM_USER */ /* byte-at-a-time loop faulted, so zero the rest. */ { move r3, r2; bz r2, 2f /* should be impossible, but handle it. */ } 1: { sb r0, zero; addi r0, r0, 1; addi r3, r3, -1 } { bnzt r3, 1b } 2: move lr, r27 { move r0, r2; jrp lr } copy_to_user_fixup_loop: /* Try copying the rest one byte at a time, expecting a store fault. */ { lb_u r3, r1; addi r1, r1, 1 } .Lctu: { sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 } { bnzt r2, copy_to_user_fixup_loop } .Lcopy_to_user_fixup_done: move lr, r27 { move r0, r2; jrp lr } memcpy_fixup_loop: /* Try copying the rest one byte at a time. We expect a disastrous * fault to happen since we are in fixup code, but let it happen. */ { lb_u r3, r1; addi r1, r1, 1 } { sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 } { bnzt r2, memcpy_fixup_loop } /* This should be unreachable, we should have faulted again. * But be paranoid and handle it in case some interrupt changed * the TLB or something. */ move lr, r27 { move r0, r23; jrp lr } .size memcpy_common_fixup, . - memcpy_common_fixup .section __ex_table,"a" .align 4 .word .Lcfu, .Lcopy_from_user_fixup_zero_remainder .word .Lctu, .Lcopy_to_user_fixup_done