/* * Copyright (c) 2015 Oracle. All rights reserved. * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. */ /* Lightweight memory registration using Fast Registration Work * Requests (FRWR). Also referred to sometimes as FRMR mode. * * FRWR features ordered asynchronous registration and deregistration * of arbitrarily sized memory regions. This is the fastest and safest * but most complex memory registration mode. */ /* Normal operation * * A Memory Region is prepared for RDMA READ or WRITE using a FAST_REG * Work Request (frmr_op_map). When the RDMA operation is finished, this * Memory Region is invalidated using a LOCAL_INV Work Request * (frmr_op_unmap). * * Typically these Work Requests are not signaled, and neither are RDMA * SEND Work Requests (with the exception of signaling occasionally to * prevent provider work queue overflows). This greatly reduces HCA * interrupt workload. * * As an optimization, frwr_op_unmap marks MRs INVALID before the * LOCAL_INV WR is posted. If posting succeeds, the MR is placed on * rb_mws immediately so that no work (like managing a linked list * under a spinlock) is needed in the completion upcall. * * But this means that frwr_op_map() can occasionally encounter an MR * that is INVALID but the LOCAL_INV WR has not completed. Work Queue * ordering prevents a subsequent FAST_REG WR from executing against * that MR while it is still being invalidated. */ /* Transport recovery * * ->op_map and the transport connect worker cannot run at the same * time, but ->op_unmap can fire while the transport connect worker * is running. Thus MR recovery is handled in ->op_map, to guarantee * that recovered MRs are owned by a sending RPC, and not one where * ->op_unmap could fire at the same time transport reconnect is * being done. * * When the underlying transport disconnects, MRs are left in one of * three states: * * INVALID: The MR was not in use before the QP entered ERROR state. * (Or, the LOCAL_INV WR has not completed or flushed yet). * * STALE: The MR was being registered or unregistered when the QP * entered ERROR state, and the pending WR was flushed. * * VALID: The MR was registered before the QP entered ERROR state. * * When frwr_op_map encounters STALE and VALID MRs, they are recovered * with ib_dereg_mr and then are re-initialized. Beause MR recovery * allocates fresh resources, it is deferred to a workqueue, and the * recovered MRs are placed back on the rb_mws list when recovery is * complete. frwr_op_map allocates another MR for the current RPC while * the broken MR is reset. * * To ensure that frwr_op_map doesn't encounter an MR that is marked * INVALID but that is about to be flushed due to a previous transport * disconnect, the transport connect worker attempts to drain all * pending send queue WRs before the transport is reconnected. */ #include "xprt_rdma.h" #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) # define RPCDBG_FACILITY RPCDBG_TRANS #endif static struct workqueue_struct *frwr_recovery_wq; #define FRWR_RECOVERY_WQ_FLAGS (WQ_UNBOUND | WQ_MEM_RECLAIM) int frwr_alloc_recovery_wq(void) { frwr_recovery_wq = alloc_workqueue("frwr_recovery", FRWR_RECOVERY_WQ_FLAGS, 0); return !frwr_recovery_wq ? -ENOMEM : 0; } void frwr_destroy_recovery_wq(void) { struct workqueue_struct *wq; if (!frwr_recovery_wq) return; wq = frwr_recovery_wq; frwr_recovery_wq = NULL; destroy_workqueue(wq); } static int __frwr_init(struct rpcrdma_mw *r, struct ib_pd *pd, unsigned int depth) { struct rpcrdma_frmr *f = &r->frmr; int rc; f->fr_mr = ib_alloc_mr(pd, IB_MR_TYPE_MEM_REG, depth); if (IS_ERR(f->fr_mr)) goto out_mr_err; r->mw_sg = kcalloc(depth, sizeof(*r->mw_sg), GFP_KERNEL); if (!r->mw_sg) goto out_list_err; sg_init_table(r->mw_sg, depth); init_completion(&f->fr_linv_done); return 0; out_mr_err: rc = PTR_ERR(f->fr_mr); dprintk("RPC: %s: ib_alloc_mr status %i\n", __func__, rc); return rc; out_list_err: rc = -ENOMEM; dprintk("RPC: %s: sg allocation failure\n", __func__); ib_dereg_mr(f->fr_mr); return rc; } static void __frwr_release(struct rpcrdma_mw *r) { int rc; rc = ib_dereg_mr(r->frmr.fr_mr); if (rc) pr_err("rpcrdma: final ib_dereg_mr for %p returned %i\n", r, rc); kfree(r->mw_sg); } static int __frwr_reset_mr(struct rpcrdma_ia *ia, struct rpcrdma_mw *r) { struct rpcrdma_frmr *f = &r->frmr; int rc; rc = ib_dereg_mr(f->fr_mr); if (rc) { pr_warn("rpcrdma: ib_dereg_mr status %d, frwr %p orphaned\n", rc, r); return rc; } f->fr_mr = ib_alloc_mr(ia->ri_pd, IB_MR_TYPE_MEM_REG, ia->ri_max_frmr_depth); if (IS_ERR(f->fr_mr)) { pr_warn("rpcrdma: ib_alloc_mr status %ld, frwr %p orphaned\n", PTR_ERR(f->fr_mr), r); return PTR_ERR(f->fr_mr); } dprintk("RPC: %s: recovered FRMR %p\n", __func__, r); f->fr_state = FRMR_IS_INVALID; return 0; } static void __frwr_reset_and_unmap(struct rpcrdma_mw *mw) { struct rpcrdma_xprt *r_xprt = mw->mw_xprt; struct rpcrdma_ia *ia = &r_xprt->rx_ia; int rc; rc = __frwr_reset_mr(ia, mw); ib_dma_unmap_sg(ia->ri_device, mw->mw_sg, mw->mw_nents, mw->mw_dir); if (rc) return; rpcrdma_put_mw(r_xprt, mw); } /* Deferred reset of a single FRMR. Generate a fresh rkey by * replacing the MR. * * There's no recovery if this fails. The FRMR is abandoned, but * remains in rb_all. It will be cleaned up when the transport is * destroyed. */ static void __frwr_recovery_worker(struct work_struct *work) { struct rpcrdma_mw *r = container_of(work, struct rpcrdma_mw, mw_work); __frwr_reset_and_unmap(r); } /* A broken MR was discovered in a context that can't sleep. * Defer recovery to the recovery worker. */ static void __frwr_queue_recovery(struct rpcrdma_mw *r) { INIT_WORK(&r->mw_work, __frwr_recovery_worker); queue_work(frwr_recovery_wq, &r->mw_work); } static int frwr_op_open(struct rpcrdma_ia *ia, struct rpcrdma_ep *ep, struct rpcrdma_create_data_internal *cdata) { int depth, delta; ia->ri_max_frmr_depth = min_t(unsigned int, RPCRDMA_MAX_DATA_SEGS, ia->ri_device->attrs.max_fast_reg_page_list_len); dprintk("RPC: %s: device's max FR page list len = %u\n", __func__, ia->ri_max_frmr_depth); /* Add room for frmr register and invalidate WRs. * 1. FRMR reg WR for head * 2. FRMR invalidate WR for head * 3. N FRMR reg WRs for pagelist * 4. N FRMR invalidate WRs for pagelist * 5. FRMR reg WR for tail * 6. FRMR invalidate WR for tail * 7. The RDMA_SEND WR */ depth = 7; /* Calculate N if the device max FRMR depth is smaller than * RPCRDMA_MAX_DATA_SEGS. */ if (ia->ri_max_frmr_depth < RPCRDMA_MAX_DATA_SEGS) { delta = RPCRDMA_MAX_DATA_SEGS - ia->ri_max_frmr_depth; do { depth += 2; /* FRMR reg + invalidate */ delta -= ia->ri_max_frmr_depth; } while (delta > 0); } ep->rep_attr.cap.max_send_wr *= depth; if (ep->rep_attr.cap.max_send_wr > ia->ri_device->attrs.max_qp_wr) { cdata->max_requests = ia->ri_device->attrs.max_qp_wr / depth; if (!cdata->max_requests) return -EINVAL; ep->rep_attr.cap.max_send_wr = cdata->max_requests * depth; } rpcrdma_set_max_header_sizes(ia, cdata, max_t(unsigned int, 1, RPCRDMA_MAX_DATA_SEGS / ia->ri_max_frmr_depth)); return 0; } /* FRWR mode conveys a list of pages per chunk segment. The * maximum length of that list is the FRWR page list depth. */ static size_t frwr_op_maxpages(struct rpcrdma_xprt *r_xprt) { struct rpcrdma_ia *ia = &r_xprt->rx_ia; return min_t(unsigned int, RPCRDMA_MAX_DATA_SEGS, RPCRDMA_MAX_HDR_SEGS * ia->ri_max_frmr_depth); } static void __frwr_sendcompletion_flush(struct ib_wc *wc, struct rpcrdma_frmr *frmr, const char *wr) { frmr->fr_state = FRMR_IS_STALE; if (wc->status != IB_WC_WR_FLUSH_ERR) pr_err("rpcrdma: %s: %s (%u/0x%x)\n", wr, ib_wc_status_msg(wc->status), wc->status, wc->vendor_err); } /** * frwr_wc_fastreg - Invoked by RDMA provider for each polled FastReg WC * @cq: completion queue (ignored) * @wc: completed WR * */ static void frwr_wc_fastreg(struct ib_cq *cq, struct ib_wc *wc) { struct rpcrdma_frmr *frmr; struct ib_cqe *cqe; /* WARNING: Only wr_cqe and status are reliable at this point */ if (wc->status != IB_WC_SUCCESS) { cqe = wc->wr_cqe; frmr = container_of(cqe, struct rpcrdma_frmr, fr_cqe); __frwr_sendcompletion_flush(wc, frmr, "fastreg"); } } /** * frwr_wc_localinv - Invoked by RDMA provider for each polled LocalInv WC * @cq: completion queue (ignored) * @wc: completed WR * */ static void frwr_wc_localinv(struct ib_cq *cq, struct ib_wc *wc) { struct rpcrdma_frmr *frmr; struct ib_cqe *cqe; /* WARNING: Only wr_cqe and status are reliable at this point */ if (wc->status != IB_WC_SUCCESS) { cqe = wc->wr_cqe; frmr = container_of(cqe, struct rpcrdma_frmr, fr_cqe); __frwr_sendcompletion_flush(wc, frmr, "localinv"); } } /** * frwr_wc_localinv - Invoked by RDMA provider for each polled LocalInv WC * @cq: completion queue (ignored) * @wc: completed WR * * Awaken anyone waiting for an MR to finish being fenced. */ static void frwr_wc_localinv_wake(struct ib_cq *cq, struct ib_wc *wc) { struct rpcrdma_frmr *frmr; struct ib_cqe *cqe; /* WARNING: Only wr_cqe and status are reliable at this point */ cqe = wc->wr_cqe; frmr = container_of(cqe, struct rpcrdma_frmr, fr_cqe); if (wc->status != IB_WC_SUCCESS) __frwr_sendcompletion_flush(wc, frmr, "localinv"); complete_all(&frmr->fr_linv_done); } static int frwr_op_init(struct rpcrdma_xprt *r_xprt) { struct rpcrdma_buffer *buf = &r_xprt->rx_buf; unsigned int depth = r_xprt->rx_ia.ri_max_frmr_depth; struct ib_pd *pd = r_xprt->rx_ia.ri_pd; int i; spin_lock_init(&buf->rb_mwlock); INIT_LIST_HEAD(&buf->rb_mws); INIT_LIST_HEAD(&buf->rb_all); i = max_t(int, RPCRDMA_MAX_DATA_SEGS / depth, 1); i += 2; /* head + tail */ i *= buf->rb_max_requests; /* one set for each RPC slot */ dprintk("RPC: %s: initalizing %d FRMRs\n", __func__, i); while (i--) { struct rpcrdma_mw *r; int rc; r = kzalloc(sizeof(*r), GFP_KERNEL); if (!r) return -ENOMEM; rc = __frwr_init(r, pd, depth); if (rc) { kfree(r); return rc; } r->mw_xprt = r_xprt; list_add(&r->mw_list, &buf->rb_mws); list_add(&r->mw_all, &buf->rb_all); } return 0; } /* Post a REG_MR Work Request to register a memory region * for remote access via RDMA READ or RDMA WRITE. */ static int frwr_op_map(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr_seg *seg, int nsegs, bool writing) { struct rpcrdma_ia *ia = &r_xprt->rx_ia; struct rpcrdma_mr_seg *seg1 = seg; struct rpcrdma_mw *mw; struct rpcrdma_frmr *frmr; struct ib_mr *mr; struct ib_reg_wr *reg_wr; struct ib_send_wr *bad_wr; int rc, i, n, dma_nents; u8 key; mw = seg1->rl_mw; seg1->rl_mw = NULL; do { if (mw) __frwr_queue_recovery(mw); mw = rpcrdma_get_mw(r_xprt); if (!mw) return -ENOMEM; } while (mw->frmr.fr_state != FRMR_IS_INVALID); frmr = &mw->frmr; frmr->fr_state = FRMR_IS_VALID; mr = frmr->fr_mr; reg_wr = &frmr->fr_regwr; if (nsegs > ia->ri_max_frmr_depth) nsegs = ia->ri_max_frmr_depth; for (i = 0; i < nsegs;) { if (seg->mr_page) sg_set_page(&mw->mw_sg[i], seg->mr_page, seg->mr_len, offset_in_page(seg->mr_offset)); else sg_set_buf(&mw->mw_sg[i], seg->mr_offset, seg->mr_len); ++seg; ++i; /* Check for holes */ if ((i < nsegs && offset_in_page(seg->mr_offset)) || offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len)) break; } mw->mw_nents = i; mw->mw_dir = rpcrdma_data_dir(writing); dma_nents = ib_dma_map_sg(ia->ri_device, mw->mw_sg, mw->mw_nents, mw->mw_dir); if (!dma_nents) goto out_dmamap_err; n = ib_map_mr_sg(mr, mw->mw_sg, mw->mw_nents, NULL, PAGE_SIZE); if (unlikely(n != mw->mw_nents)) goto out_mapmr_err; dprintk("RPC: %s: Using frmr %p to map %u segments (%u bytes)\n", __func__, mw, mw->mw_nents, mr->length); key = (u8)(mr->rkey & 0x000000FF); ib_update_fast_reg_key(mr, ++key); reg_wr->wr.next = NULL; reg_wr->wr.opcode = IB_WR_REG_MR; frmr->fr_cqe.done = frwr_wc_fastreg; reg_wr->wr.wr_cqe = &frmr->fr_cqe; reg_wr->wr.num_sge = 0; reg_wr->wr.send_flags = 0; reg_wr->mr = mr; reg_wr->key = mr->rkey; reg_wr->access = writing ? IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE : IB_ACCESS_REMOTE_READ; DECR_CQCOUNT(&r_xprt->rx_ep); rc = ib_post_send(ia->ri_id->qp, ®_wr->wr, &bad_wr); if (rc) goto out_senderr; seg1->rl_mw = mw; seg1->mr_rkey = mr->rkey; seg1->mr_base = mr->iova; seg1->mr_nsegs = mw->mw_nents; seg1->mr_len = mr->length; return mw->mw_nents; out_dmamap_err: pr_err("rpcrdma: failed to dma map sg %p sg_nents %u\n", mw->mw_sg, mw->mw_nents); return -ENOMEM; out_mapmr_err: pr_err("rpcrdma: failed to map mr %p (%u/%u)\n", frmr->fr_mr, n, mw->mw_nents); rc = n < 0 ? n : -EIO; __frwr_queue_recovery(mw); return rc; out_senderr: pr_err("rpcrdma: ib_post_send status %i\n", rc); __frwr_queue_recovery(mw); return rc; } static struct ib_send_wr * __frwr_prepare_linv_wr(struct rpcrdma_mr_seg *seg) { struct rpcrdma_mw *mw = seg->rl_mw; struct rpcrdma_frmr *f = &mw->frmr; struct ib_send_wr *invalidate_wr; f->fr_state = FRMR_IS_INVALID; invalidate_wr = &f->fr_invwr; memset(invalidate_wr, 0, sizeof(*invalidate_wr)); f->fr_cqe.done = frwr_wc_localinv; invalidate_wr->wr_cqe = &f->fr_cqe; invalidate_wr->opcode = IB_WR_LOCAL_INV; invalidate_wr->ex.invalidate_rkey = f->fr_mr->rkey; return invalidate_wr; } /* Invalidate all memory regions that were registered for "req". * * Sleeps until it is safe for the host CPU to access the * previously mapped memory regions. */ static void frwr_op_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) { struct ib_send_wr *invalidate_wrs, *pos, *prev, *bad_wr; struct rpcrdma_ia *ia = &r_xprt->rx_ia; struct rpcrdma_mr_seg *seg; unsigned int i, nchunks; struct rpcrdma_frmr *f; struct rpcrdma_mw *mw; int rc; dprintk("RPC: %s: req %p\n", __func__, req); /* ORDER: Invalidate all of the req's MRs first * * Chain the LOCAL_INV Work Requests and post them with * a single ib_post_send() call. */ invalidate_wrs = pos = prev = NULL; seg = NULL; for (i = 0, nchunks = req->rl_nchunks; nchunks; nchunks--) { seg = &req->rl_segments[i]; pos = __frwr_prepare_linv_wr(seg); if (!invalidate_wrs) invalidate_wrs = pos; else prev->next = pos; prev = pos; i += seg->mr_nsegs; } f = &seg->rl_mw->frmr; /* Strong send queue ordering guarantees that when the * last WR in the chain completes, all WRs in the chain * are complete. */ f->fr_invwr.send_flags = IB_SEND_SIGNALED; f->fr_cqe.done = frwr_wc_localinv_wake; reinit_completion(&f->fr_linv_done); INIT_CQCOUNT(&r_xprt->rx_ep); /* Transport disconnect drains the receive CQ before it * replaces the QP. The RPC reply handler won't call us * unless ri_id->qp is a valid pointer. */ rc = ib_post_send(ia->ri_id->qp, invalidate_wrs, &bad_wr); if (rc) goto reset_mrs; wait_for_completion(&f->fr_linv_done); /* ORDER: Now DMA unmap all of the req's MRs, and return * them to the free MW list. */ unmap: for (i = 0, nchunks = req->rl_nchunks; nchunks; nchunks--) { seg = &req->rl_segments[i]; mw = seg->rl_mw; seg->rl_mw = NULL; ib_dma_unmap_sg(ia->ri_device, mw->mw_sg, mw->mw_nents, mw->mw_dir); rpcrdma_put_mw(r_xprt, mw); i += seg->mr_nsegs; seg->mr_nsegs = 0; } req->rl_nchunks = 0; return; reset_mrs: pr_warn("%s: ib_post_send failed %i\n", __func__, rc); /* Find and reset the MRs in the LOCAL_INV WRs that did not * get posted. This is synchronous, and slow. */ for (i = 0, nchunks = req->rl_nchunks; nchunks; nchunks--) { seg = &req->rl_segments[i]; mw = seg->rl_mw; f = &mw->frmr; if (mw->frmr.fr_mr->rkey == bad_wr->ex.invalidate_rkey) { __frwr_reset_mr(ia, mw); bad_wr = bad_wr->next; } i += seg->mr_nsegs; } goto unmap; } /* Use a slow, safe mechanism to invalidate all memory regions * that were registered for "req". */ static void frwr_op_unmap_safe(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req, bool sync) { struct rpcrdma_mr_seg *seg; struct rpcrdma_mw *mw; unsigned int i; for (i = 0; req->rl_nchunks; req->rl_nchunks--) { seg = &req->rl_segments[i]; mw = seg->rl_mw; if (sync) __frwr_reset_and_unmap(mw); else __frwr_queue_recovery(mw); i += seg->mr_nsegs; seg->mr_nsegs = 0; seg->rl_mw = NULL; } } static void frwr_op_destroy(struct rpcrdma_buffer *buf) { struct rpcrdma_mw *r; /* Ensure stale MWs for "buf" are no longer in flight */ flush_workqueue(frwr_recovery_wq); while (!list_empty(&buf->rb_all)) { r = list_entry(buf->rb_all.next, struct rpcrdma_mw, mw_all); list_del(&r->mw_all); __frwr_release(r); kfree(r); } } const struct rpcrdma_memreg_ops rpcrdma_frwr_memreg_ops = { .ro_map = frwr_op_map, .ro_unmap_sync = frwr_op_unmap_sync, .ro_unmap_safe = frwr_op_unmap_safe, .ro_open = frwr_op_open, .ro_maxpages = frwr_op_maxpages, .ro_init = frwr_op_init, .ro_destroy = frwr_op_destroy, .ro_displayname = "frwr", };