/* * drivers/usb/musb/ux500_dma.c * * U8500 and U5500 DMA support code * * Copyright (C) 2009 STMicroelectronics * Copyright (C) 2011 ST-Ericsson SA * Authors: * Mian Yousaf Kaukab * Praveena Nadahally * Rajaram Regupathy * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include "musb_core.h" struct ux500_dma_channel { struct dma_channel channel; struct ux500_dma_controller *controller; struct musb_hw_ep *hw_ep; struct work_struct channel_work; struct dma_chan *dma_chan; unsigned int cur_len; dma_cookie_t cookie; u8 ch_num; u8 is_tx; u8 is_allocated; }; struct ux500_dma_controller { struct dma_controller controller; struct ux500_dma_channel rx_channel[UX500_MUSB_DMA_NUM_RX_CHANNELS]; struct ux500_dma_channel tx_channel[UX500_MUSB_DMA_NUM_TX_CHANNELS]; u32 num_rx_channels; u32 num_tx_channels; void *private_data; dma_addr_t phy_base; }; /* Work function invoked from DMA callback to handle tx transfers. */ static void ux500_tx_work(struct work_struct *data) { struct ux500_dma_channel *ux500_channel = container_of(data, struct ux500_dma_channel, channel_work); struct musb_hw_ep *hw_ep = ux500_channel->hw_ep; struct musb *musb = hw_ep->musb; unsigned long flags; DBG(4, "DMA tx transfer done on hw_ep=%d\n", hw_ep->epnum); spin_lock_irqsave(&musb->lock, flags); ux500_channel->channel.actual_len = ux500_channel->cur_len; ux500_channel->channel.status = MUSB_DMA_STATUS_FREE; musb_dma_completion(musb, hw_ep->epnum, ux500_channel->is_tx); spin_unlock_irqrestore(&musb->lock, flags); } /* Work function invoked from DMA callback to handle rx transfers. */ static void ux500_rx_work(struct work_struct *data) { struct ux500_dma_channel *ux500_channel = container_of(data, struct ux500_dma_channel, channel_work); struct musb_hw_ep *hw_ep = ux500_channel->hw_ep; struct musb *musb = hw_ep->musb; unsigned long flags; DBG(4, "DMA rx transfer done on hw_ep=%d\n", hw_ep->epnum); spin_lock_irqsave(&musb->lock, flags); ux500_channel->channel.actual_len = ux500_channel->cur_len; ux500_channel->channel.status = MUSB_DMA_STATUS_FREE; musb_dma_completion(musb, hw_ep->epnum, ux500_channel->is_tx); spin_unlock_irqrestore(&musb->lock, flags); } void ux500_dma_callback(void *private_data) { struct dma_channel *channel = (struct dma_channel *)private_data; struct ux500_dma_channel *ux500_channel = channel->private_data; schedule_work(&ux500_channel->channel_work); } static bool ux500_configure_channel(struct dma_channel *channel, u16 packet_sz, u8 mode, dma_addr_t dma_addr, u32 len) { struct ux500_dma_channel *ux500_channel = channel->private_data; struct musb_hw_ep *hw_ep = ux500_channel->hw_ep; struct dma_chan *dma_chan = ux500_channel->dma_chan; struct dma_async_tx_descriptor *dma_desc; enum dma_data_direction direction; struct scatterlist sg; struct dma_slave_config slave_conf; enum dma_slave_buswidth addr_width; dma_addr_t usb_fifo_addr = (MUSB_FIFO_OFFSET(hw_ep->epnum) + ux500_channel->controller->phy_base); DBG(4, "packet_sz=%d, mode=%d, dma_addr=0x%x, len=%d is_tx=%d\n", packet_sz, mode, dma_addr, len, ux500_channel->is_tx); ux500_channel->cur_len = len; sg_init_table(&sg, 1); sg_set_page(&sg, pfn_to_page(PFN_DOWN(dma_addr)), len, offset_in_page(dma_addr)); sg_dma_address(&sg) = dma_addr; sg_dma_len(&sg) = len; direction = ux500_channel->is_tx ? DMA_TO_DEVICE : DMA_FROM_DEVICE; addr_width = (len & 0x3) ? DMA_SLAVE_BUSWIDTH_1_BYTE : DMA_SLAVE_BUSWIDTH_4_BYTES; slave_conf.direction = direction; slave_conf.src_addr = usb_fifo_addr; slave_conf.src_addr_width = addr_width; slave_conf.src_maxburst = 16; slave_conf.dst_addr = usb_fifo_addr; slave_conf.dst_addr_width = addr_width; slave_conf.dst_maxburst = 16; dma_chan->device->device_control(dma_chan, DMA_SLAVE_CONFIG, (unsigned long) &slave_conf); dma_desc = dma_chan->device-> device_prep_slave_sg(dma_chan, &sg, 1, direction, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!dma_desc) return false; dma_desc->callback = ux500_dma_callback; dma_desc->callback_param = channel; ux500_channel->cookie = dma_desc->tx_submit(dma_desc); dma_async_issue_pending(dma_chan); return true; } static struct dma_channel *ux500_dma_channel_allocate(struct dma_controller *c, struct musb_hw_ep *hw_ep, u8 is_tx) { struct ux500_dma_controller *controller = container_of(c, struct ux500_dma_controller, controller); struct ux500_dma_channel *ux500_channel = NULL; u8 ch_num = hw_ep->epnum - 1; u32 max_ch; /* Max 8 DMA channels (0 - 7). Each DMA channel can only be allocated * to specified hw_ep. For example DMA channel 0 can only be allocated * to hw_ep 1 and 9. */ if (ch_num > 7) ch_num -= 8; max_ch = is_tx ? controller->num_tx_channels : controller->num_rx_channels; if (ch_num >= max_ch) return NULL; ux500_channel = is_tx ? &(controller->tx_channel[ch_num]) : &(controller->rx_channel[ch_num]) ; /* Check if channel is already used. */ if (ux500_channel->is_allocated) return NULL; ux500_channel->hw_ep = hw_ep; ux500_channel->is_allocated = 1; DBG(7, "hw_ep=%d, is_tx=0x%x, channel=%d\n", hw_ep->epnum, is_tx, ch_num); return &(ux500_channel->channel); } static void ux500_dma_channel_release(struct dma_channel *channel) { struct ux500_dma_channel *ux500_channel = channel->private_data; DBG(7, "channel=%d\n", ux500_channel->ch_num); if (ux500_channel->is_allocated) { ux500_channel->is_allocated = 0; channel->status = MUSB_DMA_STATUS_FREE; channel->actual_len = 0; } } static int ux500_dma_is_compatible(struct dma_channel *channel, u16 maxpacket, void *buf, u32 length) { if ((maxpacket & 0x3) || ((int)buf & 0x3) || (length < 512) || (length & 0x3)) return false; else return true; } static int ux500_dma_channel_program(struct dma_channel *channel, u16 packet_sz, u8 mode, dma_addr_t dma_addr, u32 len) { int ret; BUG_ON(channel->status == MUSB_DMA_STATUS_UNKNOWN || channel->status == MUSB_DMA_STATUS_BUSY); if (!ux500_dma_is_compatible(channel, packet_sz, (void *)dma_addr, len)) return false; channel->status = MUSB_DMA_STATUS_BUSY; channel->actual_len = 0; ret = ux500_configure_channel(channel, packet_sz, mode, dma_addr, len); if (!ret) channel->status = MUSB_DMA_STATUS_FREE; return ret; } static int ux500_dma_channel_abort(struct dma_channel *channel) { struct ux500_dma_channel *ux500_channel = channel->private_data; struct ux500_dma_controller *controller = ux500_channel->controller; struct musb *musb = controller->private_data; void __iomem *epio = musb->endpoints[ux500_channel->hw_ep->epnum].regs; u16 csr; DBG(4, "channel=%d, is_tx=%d\n", ux500_channel->ch_num, ux500_channel->is_tx); if (channel->status == MUSB_DMA_STATUS_BUSY) { if (ux500_channel->is_tx) { csr = musb_readw(epio, MUSB_TXCSR); csr &= ~(MUSB_TXCSR_AUTOSET | MUSB_TXCSR_DMAENAB | MUSB_TXCSR_DMAMODE); musb_writew(epio, MUSB_TXCSR, csr); } else { csr = musb_readw(epio, MUSB_RXCSR); csr &= ~(MUSB_RXCSR_AUTOCLEAR | MUSB_RXCSR_DMAENAB | MUSB_RXCSR_DMAMODE); musb_writew(epio, MUSB_RXCSR, csr); } ux500_channel->dma_chan->device-> device_control(ux500_channel->dma_chan, DMA_TERMINATE_ALL, 0); channel->status = MUSB_DMA_STATUS_FREE; } return 0; } static int ux500_dma_controller_stop(struct dma_controller *c) { struct ux500_dma_controller *controller = container_of(c, struct ux500_dma_controller, controller); struct ux500_dma_channel *ux500_channel; struct dma_channel *channel; u8 ch_num; for (ch_num = 0; ch_num < controller->num_rx_channels; ch_num++) { channel = &controller->rx_channel[ch_num].channel; ux500_channel = channel->private_data; ux500_dma_channel_release(channel); if (ux500_channel->dma_chan) dma_release_channel(ux500_channel->dma_chan); } for (ch_num = 0; ch_num < controller->num_tx_channels; ch_num++) { channel = &controller->tx_channel[ch_num].channel; ux500_channel = channel->private_data; ux500_dma_channel_release(channel); if (ux500_channel->dma_chan) dma_release_channel(ux500_channel->dma_chan); } return 0; } static int ux500_dma_controller_start(struct dma_controller *c) { struct ux500_dma_controller *controller = container_of(c, struct ux500_dma_controller, controller); struct ux500_dma_channel *ux500_channel = NULL; struct musb *musb = controller->private_data; struct device *dev = musb->controller; struct musb_hdrc_platform_data *plat = dev->platform_data; struct ux500_musb_board_data *data = plat->board_data; struct dma_channel *dma_channel = NULL; u32 ch_num; u8 dir; u8 is_tx = 0; void **param_array; struct ux500_dma_channel *channel_array; u32 ch_count; void (*musb_channel_work)(struct work_struct *); dma_cap_mask_t mask; if ((data->num_rx_channels > UX500_MUSB_DMA_NUM_RX_CHANNELS) || (data->num_tx_channels > UX500_MUSB_DMA_NUM_TX_CHANNELS)) return -EINVAL; controller->num_rx_channels = data->num_rx_channels; controller->num_tx_channels = data->num_tx_channels; dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); /* Prepare the loop for RX channels */ channel_array = controller->rx_channel; ch_count = data->num_rx_channels; param_array = data->dma_rx_param_array; musb_channel_work = ux500_rx_work; for (dir = 0; dir < 2; dir++) { for (ch_num = 0; ch_num < ch_count; ch_num++) { ux500_channel = &channel_array[ch_num]; ux500_channel->controller = controller; ux500_channel->ch_num = ch_num; ux500_channel->is_tx = is_tx; dma_channel = &(ux500_channel->channel); dma_channel->private_data = ux500_channel; dma_channel->status = MUSB_DMA_STATUS_FREE; dma_channel->max_len = SZ_16M; ux500_channel->dma_chan = dma_request_channel(mask, data->dma_filter, param_array[ch_num]); if (!ux500_channel->dma_chan) { ERR("Dma pipe allocation error dir=%d ch=%d\n", dir, ch_num); /* Release already allocated channels */ ux500_dma_controller_stop(c); return -EBUSY; } INIT_WORK(&ux500_channel->channel_work, musb_channel_work); } /* Prepare the loop for TX channels */ channel_array = controller->tx_channel; ch_count = data->num_tx_channels; param_array = data->dma_tx_param_array; musb_channel_work = ux500_tx_work; is_tx = 1; } return 0; } void dma_controller_destroy(struct dma_controller *c) { struct ux500_dma_controller *controller = container_of(c, struct ux500_dma_controller, controller); kfree(controller); } struct dma_controller *__init dma_controller_create(struct musb *musb, void __iomem *base) { struct ux500_dma_controller *controller; struct platform_device *pdev = to_platform_device(musb->controller); struct resource *iomem; controller = kzalloc(sizeof(*controller), GFP_KERNEL); if (!controller) return NULL; controller->private_data = musb; /* Save physical address for DMA controller. */ iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0); controller->phy_base = (dma_addr_t) iomem->start; controller->controller.start = ux500_dma_controller_start; controller->controller.stop = ux500_dma_controller_stop; controller->controller.channel_alloc = ux500_dma_channel_allocate; controller->controller.channel_release = ux500_dma_channel_release; controller->controller.channel_program = ux500_dma_channel_program; controller->controller.channel_abort = ux500_dma_channel_abort; controller->controller.is_compatible = ux500_dma_is_compatible; return &controller->controller; }