/* * Scatterlist Cryptographic API. * * Copyright (c) 2002 James Morris * Copyright (c) 2002 David S. Miller (davem@redhat.com) * Copyright (c) 2005 Herbert Xu * * Portions derived from Cryptoapi, by Alexander Kjeldaas * and Nettle, by Niels Möller. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * */ #ifndef _LINUX_CRYPTO_H #define _LINUX_CRYPTO_H #include #include #include #include #include #include #include /* * Autoloaded crypto modules should only use a prefixed name to avoid allowing * arbitrary modules to be loaded. Loading from userspace may still need the * unprefixed names, so retains those aliases as well. * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro * expands twice on the same line. Instead, use a separate base name for the * alias. */ #define MODULE_ALIAS_CRYPTO(name) \ __MODULE_INFO(alias, alias_userspace, name); \ __MODULE_INFO(alias, alias_crypto, "crypto-" name) /* * Algorithm masks and types. */ #define CRYPTO_ALG_TYPE_MASK 0x0000000f #define CRYPTO_ALG_TYPE_CIPHER 0x00000001 #define CRYPTO_ALG_TYPE_COMPRESS 0x00000002 #define CRYPTO_ALG_TYPE_AEAD 0x00000003 #define CRYPTO_ALG_TYPE_BLKCIPHER 0x00000004 #define CRYPTO_ALG_TYPE_ABLKCIPHER 0x00000005 #define CRYPTO_ALG_TYPE_GIVCIPHER 0x00000006 #define CRYPTO_ALG_TYPE_DIGEST 0x00000008 #define CRYPTO_ALG_TYPE_HASH 0x00000008 #define CRYPTO_ALG_TYPE_SHASH 0x00000009 #define CRYPTO_ALG_TYPE_AHASH 0x0000000a #define CRYPTO_ALG_TYPE_RNG 0x0000000c #define CRYPTO_ALG_TYPE_PCOMPRESS 0x0000000f #define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e #define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000c #define CRYPTO_ALG_TYPE_BLKCIPHER_MASK 0x0000000c #define CRYPTO_ALG_LARVAL 0x00000010 #define CRYPTO_ALG_DEAD 0x00000020 #define CRYPTO_ALG_DYING 0x00000040 #define CRYPTO_ALG_ASYNC 0x00000080 /* * Set this bit if and only if the algorithm requires another algorithm of * the same type to handle corner cases. */ #define CRYPTO_ALG_NEED_FALLBACK 0x00000100 /* * This bit is set for symmetric key ciphers that have already been wrapped * with a generic IV generator to prevent them from being wrapped again. */ #define CRYPTO_ALG_GENIV 0x00000200 /* * Set if the algorithm has passed automated run-time testing. Note that * if there is no run-time testing for a given algorithm it is considered * to have passed. */ #define CRYPTO_ALG_TESTED 0x00000400 /* * Set if the algorithm is an instance that is build from templates. */ #define CRYPTO_ALG_INSTANCE 0x00000800 /* Set this bit if the algorithm provided is hardware accelerated but * not available to userspace via instruction set or so. */ #define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000 /* * Mark a cipher as a service implementation only usable by another * cipher and never by a normal user of the kernel crypto API */ #define CRYPTO_ALG_INTERNAL 0x00002000 /* * Transform masks and values (for crt_flags). */ #define CRYPTO_TFM_REQ_MASK 0x000fff00 #define CRYPTO_TFM_RES_MASK 0xfff00000 #define CRYPTO_TFM_REQ_WEAK_KEY 0x00000100 #define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200 #define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400 #define CRYPTO_TFM_RES_WEAK_KEY 0x00100000 #define CRYPTO_TFM_RES_BAD_KEY_LEN 0x00200000 #define CRYPTO_TFM_RES_BAD_KEY_SCHED 0x00400000 #define CRYPTO_TFM_RES_BAD_BLOCK_LEN 0x00800000 #define CRYPTO_TFM_RES_BAD_FLAGS 0x01000000 /* * Miscellaneous stuff. */ #define CRYPTO_MAX_ALG_NAME 64 /* * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual * declaration) is used to ensure that the crypto_tfm context structure is * aligned correctly for the given architecture so that there are no alignment * faults for C data types. In particular, this is required on platforms such * as arm where pointers are 32-bit aligned but there are data types such as * u64 which require 64-bit alignment. */ #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN))) struct scatterlist; struct crypto_ablkcipher; struct crypto_async_request; struct crypto_aead; struct crypto_blkcipher; struct crypto_hash; struct crypto_rng; struct crypto_tfm; struct crypto_type; struct aead_givcrypt_request; struct skcipher_givcrypt_request; typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err); /** * DOC: Block Cipher Context Data Structures * * These data structures define the operating context for each block cipher * type. */ struct crypto_async_request { struct list_head list; crypto_completion_t complete; void *data; struct crypto_tfm *tfm; u32 flags; }; struct ablkcipher_request { struct crypto_async_request base; unsigned int nbytes; void *info; struct scatterlist *src; struct scatterlist *dst; void *__ctx[] CRYPTO_MINALIGN_ATTR; }; /** * struct aead_request - AEAD request * @base: Common attributes for async crypto requests * @assoclen: Length in bytes of associated data for authentication * @cryptlen: Length of data to be encrypted or decrypted * @iv: Initialisation vector * @assoc: Associated data * @src: Source data * @dst: Destination data * @__ctx: Start of private context data */ struct aead_request { struct crypto_async_request base; unsigned int assoclen; unsigned int cryptlen; u8 *iv; struct scatterlist *assoc; struct scatterlist *src; struct scatterlist *dst; void *__ctx[] CRYPTO_MINALIGN_ATTR; }; struct blkcipher_desc { struct crypto_blkcipher *tfm; void *info; u32 flags; }; struct cipher_desc { struct crypto_tfm *tfm; void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst, const u8 *src, unsigned int nbytes); void *info; }; struct hash_desc { struct crypto_hash *tfm; u32 flags; }; /** * DOC: Block Cipher Algorithm Definitions * * These data structures define modular crypto algorithm implementations, * managed via crypto_register_alg() and crypto_unregister_alg(). */ /** * struct ablkcipher_alg - asynchronous block cipher definition * @min_keysize: Minimum key size supported by the transformation. This is the * smallest key length supported by this transformation algorithm. * This must be set to one of the pre-defined values as this is * not hardware specific. Possible values for this field can be * found via git grep "_MIN_KEY_SIZE" include/crypto/ * @max_keysize: Maximum key size supported by the transformation. This is the * largest key length supported by this transformation algorithm. * This must be set to one of the pre-defined values as this is * not hardware specific. Possible values for this field can be * found via git grep "_MAX_KEY_SIZE" include/crypto/ * @setkey: Set key for the transformation. This function is used to either * program a supplied key into the hardware or store the key in the * transformation context for programming it later. Note that this * function does modify the transformation context. This function can * be called multiple times during the existence of the transformation * object, so one must make sure the key is properly reprogrammed into * the hardware. This function is also responsible for checking the key * length for validity. In case a software fallback was put in place in * the @cra_init call, this function might need to use the fallback if * the algorithm doesn't support all of the key sizes. * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt * the supplied scatterlist containing the blocks of data. The crypto * API consumer is responsible for aligning the entries of the * scatterlist properly and making sure the chunks are correctly * sized. In case a software fallback was put in place in the * @cra_init call, this function might need to use the fallback if * the algorithm doesn't support all of the key sizes. In case the * key was stored in transformation context, the key might need to be * re-programmed into the hardware in this function. This function * shall not modify the transformation context, as this function may * be called in parallel with the same transformation object. * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt * and the conditions are exactly the same. * @givencrypt: Update the IV for encryption. With this function, a cipher * implementation may provide the function on how to update the IV * for encryption. * @givdecrypt: Update the IV for decryption. This is the reverse of * @givencrypt . * @geniv: The transformation implementation may use an "IV generator" provided * by the kernel crypto API. Several use cases have a predefined * approach how IVs are to be updated. For such use cases, the kernel * crypto API provides ready-to-use implementations that can be * referenced with this variable. * @ivsize: IV size applicable for transformation. The consumer must provide an * IV of exactly that size to perform the encrypt or decrypt operation. * * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are * mandatory and must be filled. */ struct ablkcipher_alg { int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key, unsigned int keylen); int (*encrypt)(struct ablkcipher_request *req); int (*decrypt)(struct ablkcipher_request *req); int (*givencrypt)(struct skcipher_givcrypt_request *req); int (*givdecrypt)(struct skcipher_givcrypt_request *req); const char *geniv; unsigned int min_keysize; unsigned int max_keysize; unsigned int ivsize; }; /** * struct aead_alg - AEAD cipher definition * @maxauthsize: Set the maximum authentication tag size supported by the * transformation. A transformation may support smaller tag sizes. * As the authentication tag is a message digest to ensure the * integrity of the encrypted data, a consumer typically wants the * largest authentication tag possible as defined by this * variable. * @setauthsize: Set authentication size for the AEAD transformation. This * function is used to specify the consumer requested size of the * authentication tag to be either generated by the transformation * during encryption or the size of the authentication tag to be * supplied during the decryption operation. This function is also * responsible for checking the authentication tag size for * validity. * @setkey: see struct ablkcipher_alg * @encrypt: see struct ablkcipher_alg * @decrypt: see struct ablkcipher_alg * @givencrypt: see struct ablkcipher_alg * @givdecrypt: see struct ablkcipher_alg * @geniv: see struct ablkcipher_alg * @ivsize: see struct ablkcipher_alg * * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are * mandatory and must be filled. */ struct aead_alg { int (*setkey)(struct crypto_aead *tfm, const u8 *key, unsigned int keylen); int (*setauthsize)(struct crypto_aead *tfm, unsigned int authsize); int (*encrypt)(struct aead_request *req); int (*decrypt)(struct aead_request *req); int (*givencrypt)(struct aead_givcrypt_request *req); int (*givdecrypt)(struct aead_givcrypt_request *req); const char *geniv; unsigned int ivsize; unsigned int maxauthsize; }; /** * struct blkcipher_alg - synchronous block cipher definition * @min_keysize: see struct ablkcipher_alg * @max_keysize: see struct ablkcipher_alg * @setkey: see struct ablkcipher_alg * @encrypt: see struct ablkcipher_alg * @decrypt: see struct ablkcipher_alg * @geniv: see struct ablkcipher_alg * @ivsize: see struct ablkcipher_alg * * All fields except @geniv and @ivsize are mandatory and must be filled. */ struct blkcipher_alg { int (*setkey)(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen); int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes); int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes); const char *geniv; unsigned int min_keysize; unsigned int max_keysize; unsigned int ivsize; }; /** * struct cipher_alg - single-block symmetric ciphers definition * @cia_min_keysize: Minimum key size supported by the transformation. This is * the smallest key length supported by this transformation * algorithm. This must be set to one of the pre-defined * values as this is not hardware specific. Possible values * for this field can be found via git grep "_MIN_KEY_SIZE" * include/crypto/ * @cia_max_keysize: Maximum key size supported by the transformation. This is * the largest key length supported by this transformation * algorithm. This must be set to one of the pre-defined values * as this is not hardware specific. Possible values for this * field can be found via git grep "_MAX_KEY_SIZE" * include/crypto/ * @cia_setkey: Set key for the transformation. This function is used to either * program a supplied key into the hardware or store the key in the * transformation context for programming it later. Note that this * function does modify the transformation context. This function * can be called multiple times during the existence of the * transformation object, so one must make sure the key is properly * reprogrammed into the hardware. This function is also * responsible for checking the key length for validity. * @cia_encrypt: Encrypt a single block. This function is used to encrypt a * single block of data, which must be @cra_blocksize big. This * always operates on a full @cra_blocksize and it is not possible * to encrypt a block of smaller size. The supplied buffers must * therefore also be at least of @cra_blocksize size. Both the * input and output buffers are always aligned to @cra_alignmask. * In case either of the input or output buffer supplied by user * of the crypto API is not aligned to @cra_alignmask, the crypto * API will re-align the buffers. The re-alignment means that a * new buffer will be allocated, the data will be copied into the * new buffer, then the processing will happen on the new buffer, * then the data will be copied back into the original buffer and * finally the new buffer will be freed. In case a software * fallback was put in place in the @cra_init call, this function * might need to use the fallback if the algorithm doesn't support * all of the key sizes. In case the key was stored in * transformation context, the key might need to be re-programmed * into the hardware in this function. This function shall not * modify the transformation context, as this function may be * called in parallel with the same transformation object. * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to * @cia_encrypt, and the conditions are exactly the same. * * All fields are mandatory and must be filled. */ struct cipher_alg { unsigned int cia_min_keysize; unsigned int cia_max_keysize; int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen); void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); }; struct compress_alg { int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src, unsigned int slen, u8 *dst, unsigned int *dlen); int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src, unsigned int slen, u8 *dst, unsigned int *dlen); }; /** * struct rng_alg - random number generator definition * @rng_make_random: The function defined by this variable obtains a random * number. The random number generator transform must generate * the random number out of the context provided with this * call. * @rng_reset: Reset of the random number generator by clearing the entire state. * With the invocation of this function call, the random number * generator shall completely reinitialize its state. If the random * number generator requires a seed for setting up a new state, * the seed must be provided by the consumer while invoking this * function. The required size of the seed is defined with * @seedsize . * @seedsize: The seed size required for a random number generator * initialization defined with this variable. Some random number * generators like the SP800-90A DRBG does not require a seed as the * seeding is implemented internally without the need of support by * the consumer. In this case, the seed size is set to zero. */ struct rng_alg { int (*rng_make_random)(struct crypto_rng *tfm, u8 *rdata, unsigned int dlen); int (*rng_reset)(struct crypto_rng *tfm, u8 *seed, unsigned int slen); unsigned int seedsize; }; #define cra_ablkcipher cra_u.ablkcipher #define cra_aead cra_u.aead #define cra_blkcipher cra_u.blkcipher #define cra_cipher cra_u.cipher #define cra_compress cra_u.compress #define cra_rng cra_u.rng /** * struct crypto_alg - definition of a cryptograpic cipher algorithm * @cra_flags: Flags describing this transformation. See include/linux/crypto.h * CRYPTO_ALG_* flags for the flags which go in here. Those are * used for fine-tuning the description of the transformation * algorithm. * @cra_blocksize: Minimum block size of this transformation. The size in bytes * of the smallest possible unit which can be transformed with * this algorithm. The users must respect this value. * In case of HASH transformation, it is possible for a smaller * block than @cra_blocksize to be passed to the crypto API for * transformation, in case of any other transformation type, an * error will be returned upon any attempt to transform smaller * than @cra_blocksize chunks. * @cra_ctxsize: Size of the operational context of the transformation. This * value informs the kernel crypto API about the memory size * needed to be allocated for the transformation context. * @cra_alignmask: Alignment mask for the input and output data buffer. The data * buffer containing the input data for the algorithm must be * aligned to this alignment mask. The data buffer for the * output data must be aligned to this alignment mask. Note that * the Crypto API will do the re-alignment in software, but * only under special conditions and there is a performance hit. * The re-alignment happens at these occasions for different * @cra_u types: cipher -- For both input data and output data * buffer; ahash -- For output hash destination buf; shash -- * For output hash destination buf. * This is needed on hardware which is flawed by design and * cannot pick data from arbitrary addresses. * @cra_priority: Priority of this transformation implementation. In case * multiple transformations with same @cra_name are available to * the Crypto API, the kernel will use the one with highest * @cra_priority. * @cra_name: Generic name (usable by multiple implementations) of the * transformation algorithm. This is the name of the transformation * itself. This field is used by the kernel when looking up the * providers of particular transformation. * @cra_driver_name: Unique name of the transformation provider. This is the * name of the provider of the transformation. This can be any * arbitrary value, but in the usual case, this contains the * name of the chip or provider and the name of the * transformation algorithm. * @cra_type: Type of the cryptographic transformation. This is a pointer to * struct crypto_type, which implements callbacks common for all * trasnformation types. There are multiple options: * &crypto_blkcipher_type, &crypto_ablkcipher_type, * &crypto_ahash_type, &crypto_aead_type, &crypto_rng_type. * This field might be empty. In that case, there are no common * callbacks. This is the case for: cipher, compress, shash. * @cra_u: Callbacks implementing the transformation. This is a union of * multiple structures. Depending on the type of transformation selected * by @cra_type and @cra_flags above, the associated structure must be * filled with callbacks. This field might be empty. This is the case * for ahash, shash. * @cra_init: Initialize the cryptographic transformation object. This function * is used to initialize the cryptographic transformation object. * This function is called only once at the instantiation time, right * after the transformation context was allocated. In case the * cryptographic hardware has some special requirements which need to * be handled by software, this function shall check for the precise * requirement of the transformation and put any software fallbacks * in place. * @cra_exit: Deinitialize the cryptographic transformation object. This is a * counterpart to @cra_init, used to remove various changes set in * @cra_init. * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE * @cra_list: internally used * @cra_users: internally used * @cra_refcnt: internally used * @cra_destroy: internally used * * The struct crypto_alg describes a generic Crypto API algorithm and is common * for all of the transformations. Any variable not documented here shall not * be used by a cipher implementation as it is internal to the Crypto API. */ struct crypto_alg { struct list_head cra_list; struct list_head cra_users; u32 cra_flags; unsigned int cra_blocksize; unsigned int cra_ctxsize; unsigned int cra_alignmask; int cra_priority; atomic_t cra_refcnt; char cra_name[CRYPTO_MAX_ALG_NAME]; char cra_driver_name[CRYPTO_MAX_ALG_NAME]; const struct crypto_type *cra_type; union { struct ablkcipher_alg ablkcipher; struct aead_alg aead; struct blkcipher_alg blkcipher; struct cipher_alg cipher; struct compress_alg compress; struct rng_alg rng; } cra_u; int (*cra_init)(struct crypto_tfm *tfm); void (*cra_exit)(struct crypto_tfm *tfm); void (*cra_destroy)(struct crypto_alg *alg); struct module *cra_module; }; /* * Algorithm registration interface. */ int crypto_register_alg(struct crypto_alg *alg); int crypto_unregister_alg(struct crypto_alg *alg); int crypto_register_algs(struct crypto_alg *algs, int count); int crypto_unregister_algs(struct crypto_alg *algs, int count); /* * Algorithm query interface. */ int crypto_has_alg(const char *name, u32 type, u32 mask); /* * Transforms: user-instantiated objects which encapsulate algorithms * and core processing logic. Managed via crypto_alloc_*() and * crypto_free_*(), as well as the various helpers below. */ struct ablkcipher_tfm { int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key, unsigned int keylen); int (*encrypt)(struct ablkcipher_request *req); int (*decrypt)(struct ablkcipher_request *req); int (*givencrypt)(struct skcipher_givcrypt_request *req); int (*givdecrypt)(struct skcipher_givcrypt_request *req); struct crypto_ablkcipher *base; unsigned int ivsize; unsigned int reqsize; }; struct aead_tfm { int (*setkey)(struct crypto_aead *tfm, const u8 *key, unsigned int keylen); int (*encrypt)(struct aead_request *req); int (*decrypt)(struct aead_request *req); int (*givencrypt)(struct aead_givcrypt_request *req); int (*givdecrypt)(struct aead_givcrypt_request *req); struct crypto_aead *base; unsigned int ivsize; unsigned int authsize; unsigned int reqsize; }; struct blkcipher_tfm { void *iv; int (*setkey)(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen); int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes); int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes); }; struct cipher_tfm { int (*cit_setkey)(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen); void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); }; struct hash_tfm { int (*init)(struct hash_desc *desc); int (*update)(struct hash_desc *desc, struct scatterlist *sg, unsigned int nsg); int (*final)(struct hash_desc *desc, u8 *out); int (*digest)(struct hash_desc *desc, struct scatterlist *sg, unsigned int nsg, u8 *out); int (*setkey)(struct crypto_hash *tfm, const u8 *key, unsigned int keylen); unsigned int digestsize; }; struct compress_tfm { int (*cot_compress)(struct crypto_tfm *tfm, const u8 *src, unsigned int slen, u8 *dst, unsigned int *dlen); int (*cot_decompress)(struct crypto_tfm *tfm, const u8 *src, unsigned int slen, u8 *dst, unsigned int *dlen); }; #define crt_ablkcipher crt_u.ablkcipher #define crt_aead crt_u.aead #define crt_blkcipher crt_u.blkcipher #define crt_cipher crt_u.cipher #define crt_hash crt_u.hash #define crt_compress crt_u.compress struct crypto_tfm { u32 crt_flags; union { struct ablkcipher_tfm ablkcipher; struct aead_tfm aead; struct blkcipher_tfm blkcipher; struct cipher_tfm cipher; struct hash_tfm hash; struct compress_tfm compress; } crt_u; void (*exit)(struct crypto_tfm *tfm); struct crypto_alg *__crt_alg; void *__crt_ctx[] CRYPTO_MINALIGN_ATTR; }; struct crypto_ablkcipher { struct crypto_tfm base; }; struct crypto_aead { struct crypto_tfm base; }; struct crypto_blkcipher { struct crypto_tfm base; }; struct crypto_cipher { struct crypto_tfm base; }; struct crypto_comp { struct crypto_tfm base; }; struct crypto_hash { struct crypto_tfm base; }; enum { CRYPTOA_UNSPEC, CRYPTOA_ALG, CRYPTOA_TYPE, CRYPTOA_U32, __CRYPTOA_MAX, }; #define CRYPTOA_MAX (__CRYPTOA_MAX - 1) /* Maximum number of (rtattr) parameters for each template. */ #define CRYPTO_MAX_ATTRS 32 struct crypto_attr_alg { char name[CRYPTO_MAX_ALG_NAME]; }; struct crypto_attr_type { u32 type; u32 mask; }; struct crypto_attr_u32 { u32 num; }; /* * Transform user interface. */ struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask); void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm); static inline void crypto_free_tfm(struct crypto_tfm *tfm) { return crypto_destroy_tfm(tfm, tfm); } int alg_test(const char *driver, const char *alg, u32 type, u32 mask); /* * Transform helpers which query the underlying algorithm. */ static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm) { return tfm->__crt_alg->cra_name; } static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm) { return tfm->__crt_alg->cra_driver_name; } static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm) { return tfm->__crt_alg->cra_priority; } static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm) { return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK; } static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm) { return tfm->__crt_alg->cra_blocksize; } static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm) { return tfm->__crt_alg->cra_alignmask; } static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm) { return tfm->crt_flags; } static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags) { tfm->crt_flags |= flags; } static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags) { tfm->crt_flags &= ~flags; } static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm) { return tfm->__crt_ctx; } static inline unsigned int crypto_tfm_ctx_alignment(void) { struct crypto_tfm *tfm; return __alignof__(tfm->__crt_ctx); } /* * API wrappers. */ static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast( struct crypto_tfm *tfm) { return (struct crypto_ablkcipher *)tfm; } static inline u32 crypto_skcipher_type(u32 type) { type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV); type |= CRYPTO_ALG_TYPE_BLKCIPHER; return type; } static inline u32 crypto_skcipher_mask(u32 mask) { mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV); mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK; return mask; } /** * DOC: Asynchronous Block Cipher API * * Asynchronous block cipher API is used with the ciphers of type * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto). * * Asynchronous cipher operations imply that the function invocation for a * cipher request returns immediately before the completion of the operation. * The cipher request is scheduled as a separate kernel thread and therefore * load-balanced on the different CPUs via the process scheduler. To allow * the kernel crypto API to inform the caller about the completion of a cipher * request, the caller must provide a callback function. That function is * invoked with the cipher handle when the request completes. * * To support the asynchronous operation, additional information than just the * cipher handle must be supplied to the kernel crypto API. That additional * information is given by filling in the ablkcipher_request data structure. * * For the asynchronous block cipher API, the state is maintained with the tfm * cipher handle. A single tfm can be used across multiple calls and in * parallel. For asynchronous block cipher calls, context data supplied and * only used by the caller can be referenced the request data structure in * addition to the IV used for the cipher request. The maintenance of such * state information would be important for a crypto driver implementer to * have, because when calling the callback function upon completion of the * cipher operation, that callback function may need some information about * which operation just finished if it invoked multiple in parallel. This * state information is unused by the kernel crypto API. */ /** * crypto_alloc_ablkcipher() - allocate asynchronous block cipher handle * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * ablkcipher cipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Allocate a cipher handle for an ablkcipher. The returned struct * crypto_ablkcipher is the cipher handle that is required for any subsequent * API invocation for that ablkcipher. * * Return: allocated cipher handle in case of success; IS_ERR() is true in case * of an error, PTR_ERR() returns the error code. */ struct crypto_ablkcipher *crypto_alloc_ablkcipher(const char *alg_name, u32 type, u32 mask); static inline struct crypto_tfm *crypto_ablkcipher_tfm( struct crypto_ablkcipher *tfm) { return &tfm->base; } /** * crypto_free_ablkcipher() - zeroize and free cipher handle * @tfm: cipher handle to be freed */ static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm) { crypto_free_tfm(crypto_ablkcipher_tfm(tfm)); } /** * crypto_has_ablkcipher() - Search for the availability of an ablkcipher. * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * ablkcipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Return: true when the ablkcipher is known to the kernel crypto API; false * otherwise */ static inline int crypto_has_ablkcipher(const char *alg_name, u32 type, u32 mask) { return crypto_has_alg(alg_name, crypto_skcipher_type(type), crypto_skcipher_mask(mask)); } static inline struct ablkcipher_tfm *crypto_ablkcipher_crt( struct crypto_ablkcipher *tfm) { return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher; } /** * crypto_ablkcipher_ivsize() - obtain IV size * @tfm: cipher handle * * The size of the IV for the ablkcipher referenced by the cipher handle is * returned. This IV size may be zero if the cipher does not need an IV. * * Return: IV size in bytes */ static inline unsigned int crypto_ablkcipher_ivsize( struct crypto_ablkcipher *tfm) { return crypto_ablkcipher_crt(tfm)->ivsize; } /** * crypto_ablkcipher_blocksize() - obtain block size of cipher * @tfm: cipher handle * * The block size for the ablkcipher referenced with the cipher handle is * returned. The caller may use that information to allocate appropriate * memory for the data returned by the encryption or decryption operation * * Return: block size of cipher */ static inline unsigned int crypto_ablkcipher_blocksize( struct crypto_ablkcipher *tfm) { return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm)); } static inline unsigned int crypto_ablkcipher_alignmask( struct crypto_ablkcipher *tfm) { return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm)); } static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm) { return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm)); } static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm, u32 flags) { crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags); } static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm, u32 flags) { crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags); } /** * crypto_ablkcipher_setkey() - set key for cipher * @tfm: cipher handle * @key: buffer holding the key * @keylen: length of the key in bytes * * The caller provided key is set for the ablkcipher referenced by the cipher * handle. * * Note, the key length determines the cipher type. Many block ciphers implement * different cipher modes depending on the key size, such as AES-128 vs AES-192 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 * is performed. * * Return: 0 if the setting of the key was successful; < 0 if an error occurred */ static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm, const u8 *key, unsigned int keylen) { struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm); return crt->setkey(crt->base, key, keylen); } /** * crypto_ablkcipher_reqtfm() - obtain cipher handle from request * @req: ablkcipher_request out of which the cipher handle is to be obtained * * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request * data structure. * * Return: crypto_ablkcipher handle */ static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm( struct ablkcipher_request *req) { return __crypto_ablkcipher_cast(req->base.tfm); } /** * crypto_ablkcipher_encrypt() - encrypt plaintext * @req: reference to the ablkcipher_request handle that holds all information * needed to perform the cipher operation * * Encrypt plaintext data using the ablkcipher_request handle. That data * structure and how it is filled with data is discussed with the * ablkcipher_request_* functions. * * Return: 0 if the cipher operation was successful; < 0 if an error occurred */ static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req) { struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req)); return crt->encrypt(req); } /** * crypto_ablkcipher_decrypt() - decrypt ciphertext * @req: reference to the ablkcipher_request handle that holds all information * needed to perform the cipher operation * * Decrypt ciphertext data using the ablkcipher_request handle. That data * structure and how it is filled with data is discussed with the * ablkcipher_request_* functions. * * Return: 0 if the cipher operation was successful; < 0 if an error occurred */ static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req) { struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req)); return crt->decrypt(req); } /** * DOC: Asynchronous Cipher Request Handle * * The ablkcipher_request data structure contains all pointers to data * required for the asynchronous cipher operation. This includes the cipher * handle (which can be used by multiple ablkcipher_request instances), pointer * to plaintext and ciphertext, asynchronous callback function, etc. It acts * as a handle to the ablkcipher_request_* API calls in a similar way as * ablkcipher handle to the crypto_ablkcipher_* API calls. */ /** * crypto_ablkcipher_reqsize() - obtain size of the request data structure * @tfm: cipher handle * * Return: number of bytes */ static inline unsigned int crypto_ablkcipher_reqsize( struct crypto_ablkcipher *tfm) { return crypto_ablkcipher_crt(tfm)->reqsize; } /** * ablkcipher_request_set_tfm() - update cipher handle reference in request * @req: request handle to be modified * @tfm: cipher handle that shall be added to the request handle * * Allow the caller to replace the existing ablkcipher handle in the request * data structure with a different one. */ static inline void ablkcipher_request_set_tfm( struct ablkcipher_request *req, struct crypto_ablkcipher *tfm) { req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base); } static inline struct ablkcipher_request *ablkcipher_request_cast( struct crypto_async_request *req) { return container_of(req, struct ablkcipher_request, base); } /** * ablkcipher_request_alloc() - allocate request data structure * @tfm: cipher handle to be registered with the request * @gfp: memory allocation flag that is handed to kmalloc by the API call. * * Allocate the request data structure that must be used with the ablkcipher * encrypt and decrypt API calls. During the allocation, the provided ablkcipher * handle is registered in the request data structure. * * Return: allocated request handle in case of success; IS_ERR() is true in case * of an error, PTR_ERR() returns the error code. */ static inline struct ablkcipher_request *ablkcipher_request_alloc( struct crypto_ablkcipher *tfm, gfp_t gfp) { struct ablkcipher_request *req; req = kmalloc(sizeof(struct ablkcipher_request) + crypto_ablkcipher_reqsize(tfm), gfp); if (likely(req)) ablkcipher_request_set_tfm(req, tfm); return req; } /** * ablkcipher_request_free() - zeroize and free request data structure * @req: request data structure cipher handle to be freed */ static inline void ablkcipher_request_free(struct ablkcipher_request *req) { kzfree(req); } /** * ablkcipher_request_set_callback() - set asynchronous callback function * @req: request handle * @flags: specify zero or an ORing of the flags * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and * increase the wait queue beyond the initial maximum size; * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep * @compl: callback function pointer to be registered with the request handle * @data: The data pointer refers to memory that is not used by the kernel * crypto API, but provided to the callback function for it to use. Here, * the caller can provide a reference to memory the callback function can * operate on. As the callback function is invoked asynchronously to the * related functionality, it may need to access data structures of the * related functionality which can be referenced using this pointer. The * callback function can access the memory via the "data" field in the * crypto_async_request data structure provided to the callback function. * * This function allows setting the callback function that is triggered once the * cipher operation completes. * * The callback function is registered with the ablkcipher_request handle and * must comply with the following template * * void callback_function(struct crypto_async_request *req, int error) */ static inline void ablkcipher_request_set_callback( struct ablkcipher_request *req, u32 flags, crypto_completion_t compl, void *data) { req->base.complete = compl; req->base.data = data; req->base.flags = flags; } /** * ablkcipher_request_set_crypt() - set data buffers * @req: request handle * @src: source scatter / gather list * @dst: destination scatter / gather list * @nbytes: number of bytes to process from @src * @iv: IV for the cipher operation which must comply with the IV size defined * by crypto_ablkcipher_ivsize * * This function allows setting of the source data and destination data * scatter / gather lists. * * For encryption, the source is treated as the plaintext and the * destination is the ciphertext. For a decryption operation, the use is * reversed - the source is the ciphertext and the destination is the plaintext. */ static inline void ablkcipher_request_set_crypt( struct ablkcipher_request *req, struct scatterlist *src, struct scatterlist *dst, unsigned int nbytes, void *iv) { req->src = src; req->dst = dst; req->nbytes = nbytes; req->info = iv; } /** * DOC: Authenticated Encryption With Associated Data (AEAD) Cipher API * * The AEAD cipher API is used with the ciphers of type CRYPTO_ALG_TYPE_AEAD * (listed as type "aead" in /proc/crypto) * * The most prominent examples for this type of encryption is GCM and CCM. * However, the kernel supports other types of AEAD ciphers which are defined * with the following cipher string: * * authenc(keyed message digest, block cipher) * * For example: authenc(hmac(sha256), cbc(aes)) * * The example code provided for the asynchronous block cipher operation * applies here as well. Naturally all *ablkcipher* symbols must be exchanged * the *aead* pendants discussed in the following. In addtion, for the AEAD * operation, the aead_request_set_assoc function must be used to set the * pointer to the associated data memory location before performing the * encryption or decryption operation. In case of an encryption, the associated * data memory is filled during the encryption operation. For decryption, the * associated data memory must contain data that is used to verify the integrity * of the decrypted data. Another deviation from the asynchronous block cipher * operation is that the caller should explicitly check for -EBADMSG of the * crypto_aead_decrypt. That error indicates an authentication error, i.e. * a breach in the integrity of the message. In essence, that -EBADMSG error * code is the key bonus an AEAD cipher has over "standard" block chaining * modes. */ static inline struct crypto_aead *__crypto_aead_cast(struct crypto_tfm *tfm) { return (struct crypto_aead *)tfm; } /** * crypto_alloc_aead() - allocate AEAD cipher handle * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * AEAD cipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Allocate a cipher handle for an AEAD. The returned struct * crypto_aead is the cipher handle that is required for any subsequent * API invocation for that AEAD. * * Return: allocated cipher handle in case of success; IS_ERR() is true in case * of an error, PTR_ERR() returns the error code. */ struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask); static inline struct crypto_tfm *crypto_aead_tfm(struct crypto_aead *tfm) { return &tfm->base; } /** * crypto_free_aead() - zeroize and free aead handle * @tfm: cipher handle to be freed */ static inline void crypto_free_aead(struct crypto_aead *tfm) { crypto_free_tfm(crypto_aead_tfm(tfm)); } static inline struct aead_tfm *crypto_aead_crt(struct crypto_aead *tfm) { return &crypto_aead_tfm(tfm)->crt_aead; } /** * crypto_aead_ivsize() - obtain IV size * @tfm: cipher handle * * The size of the IV for the aead referenced by the cipher handle is * returned. This IV size may be zero if the cipher does not need an IV. * * Return: IV size in bytes */ static inline unsigned int crypto_aead_ivsize(struct crypto_aead *tfm) { return crypto_aead_crt(tfm)->ivsize; } /** * crypto_aead_authsize() - obtain maximum authentication data size * @tfm: cipher handle * * The maximum size of the authentication data for the AEAD cipher referenced * by the AEAD cipher handle is returned. The authentication data size may be * zero if the cipher implements a hard-coded maximum. * * The authentication data may also be known as "tag value". * * Return: authentication data size / tag size in bytes */ static inline unsigned int crypto_aead_authsize(struct crypto_aead *tfm) { return crypto_aead_crt(tfm)->authsize; } /** * crypto_aead_blocksize() - obtain block size of cipher * @tfm: cipher handle * * The block size for the AEAD referenced with the cipher handle is returned. * The caller may use that information to allocate appropriate memory for the * data returned by the encryption or decryption operation * * Return: block size of cipher */ static inline unsigned int crypto_aead_blocksize(struct crypto_aead *tfm) { return crypto_tfm_alg_blocksize(crypto_aead_tfm(tfm)); } static inline unsigned int crypto_aead_alignmask(struct crypto_aead *tfm) { return crypto_tfm_alg_alignmask(crypto_aead_tfm(tfm)); } static inline u32 crypto_aead_get_flags(struct crypto_aead *tfm) { return crypto_tfm_get_flags(crypto_aead_tfm(tfm)); } static inline void crypto_aead_set_flags(struct crypto_aead *tfm, u32 flags) { crypto_tfm_set_flags(crypto_aead_tfm(tfm), flags); } static inline void crypto_aead_clear_flags(struct crypto_aead *tfm, u32 flags) { crypto_tfm_clear_flags(crypto_aead_tfm(tfm), flags); } /** * crypto_aead_setkey() - set key for cipher * @tfm: cipher handle * @key: buffer holding the key * @keylen: length of the key in bytes * * The caller provided key is set for the AEAD referenced by the cipher * handle. * * Note, the key length determines the cipher type. Many block ciphers implement * different cipher modes depending on the key size, such as AES-128 vs AES-192 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 * is performed. * * Return: 0 if the setting of the key was successful; < 0 if an error occurred */ static inline int crypto_aead_setkey(struct crypto_aead *tfm, const u8 *key, unsigned int keylen) { struct aead_tfm *crt = crypto_aead_crt(tfm); return crt->setkey(crt->base, key, keylen); } /** * crypto_aead_setauthsize() - set authentication data size * @tfm: cipher handle * @authsize: size of the authentication data / tag in bytes * * Set the authentication data size / tag size. AEAD requires an authentication * tag (or MAC) in addition to the associated data. * * Return: 0 if the setting of the key was successful; < 0 if an error occurred */ int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize); static inline struct crypto_aead *crypto_aead_reqtfm(struct aead_request *req) { return __crypto_aead_cast(req->base.tfm); } /** * crypto_aead_encrypt() - encrypt plaintext * @req: reference to the aead_request handle that holds all information * needed to perform the cipher operation * * Encrypt plaintext data using the aead_request handle. That data structure * and how it is filled with data is discussed with the aead_request_* * functions. * * IMPORTANT NOTE The encryption operation creates the authentication data / * tag. That data is concatenated with the created ciphertext. * The ciphertext memory size is therefore the given number of * block cipher blocks + the size defined by the * crypto_aead_setauthsize invocation. The caller must ensure * that sufficient memory is available for the ciphertext and * the authentication tag. * * Return: 0 if the cipher operation was successful; < 0 if an error occurred */ static inline int crypto_aead_encrypt(struct aead_request *req) { return crypto_aead_crt(crypto_aead_reqtfm(req))->encrypt(req); } /** * crypto_aead_decrypt() - decrypt ciphertext * @req: reference to the ablkcipher_request handle that holds all information * needed to perform the cipher operation * * Decrypt ciphertext data using the aead_request handle. That data structure * and how it is filled with data is discussed with the aead_request_* * functions. * * IMPORTANT NOTE The caller must concatenate the ciphertext followed by the * authentication data / tag. That authentication data / tag * must have the size defined by the crypto_aead_setauthsize * invocation. * * * Return: 0 if the cipher operation was successful; -EBADMSG: The AEAD * cipher operation performs the authentication of the data during the * decryption operation. Therefore, the function returns this error if * the authentication of the ciphertext was unsuccessful (i.e. the * integrity of the ciphertext or the associated data was violated); * < 0 if an error occurred. */ static inline int crypto_aead_decrypt(struct aead_request *req) { if (req->cryptlen < crypto_aead_authsize(crypto_aead_reqtfm(req))) return -EINVAL; return crypto_aead_crt(crypto_aead_reqtfm(req))->decrypt(req); } /** * DOC: Asynchronous AEAD Request Handle * * The aead_request data structure contains all pointers to data required for * the AEAD cipher operation. This includes the cipher handle (which can be * used by multiple aead_request instances), pointer to plaintext and * ciphertext, asynchronous callback function, etc. It acts as a handle to the * aead_request_* API calls in a similar way as AEAD handle to the * crypto_aead_* API calls. */ /** * crypto_aead_reqsize() - obtain size of the request data structure * @tfm: cipher handle * * Return: number of bytes */ static inline unsigned int crypto_aead_reqsize(struct crypto_aead *tfm) { return crypto_aead_crt(tfm)->reqsize; } /** * aead_request_set_tfm() - update cipher handle reference in request * @req: request handle to be modified * @tfm: cipher handle that shall be added to the request handle * * Allow the caller to replace the existing aead handle in the request * data structure with a different one. */ static inline void aead_request_set_tfm(struct aead_request *req, struct crypto_aead *tfm) { req->base.tfm = crypto_aead_tfm(crypto_aead_crt(tfm)->base); } /** * aead_request_alloc() - allocate request data structure * @tfm: cipher handle to be registered with the request * @gfp: memory allocation flag that is handed to kmalloc by the API call. * * Allocate the request data structure that must be used with the AEAD * encrypt and decrypt API calls. During the allocation, the provided aead * handle is registered in the request data structure. * * Return: allocated request handle in case of success; IS_ERR() is true in case * of an error, PTR_ERR() returns the error code. */ static inline struct aead_request *aead_request_alloc(struct crypto_aead *tfm, gfp_t gfp) { struct aead_request *req; req = kmalloc(sizeof(*req) + crypto_aead_reqsize(tfm), gfp); if (likely(req)) aead_request_set_tfm(req, tfm); return req; } /** * aead_request_free() - zeroize and free request data structure * @req: request data structure cipher handle to be freed */ static inline void aead_request_free(struct aead_request *req) { kzfree(req); } /** * aead_request_set_callback() - set asynchronous callback function * @req: request handle * @flags: specify zero or an ORing of the flags * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and * increase the wait queue beyond the initial maximum size; * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep * @compl: callback function pointer to be registered with the request handle * @data: The data pointer refers to memory that is not used by the kernel * crypto API, but provided to the callback function for it to use. Here, * the caller can provide a reference to memory the callback function can * operate on. As the callback function is invoked asynchronously to the * related functionality, it may need to access data structures of the * related functionality which can be referenced using this pointer. The * callback function can access the memory via the "data" field in the * crypto_async_request data structure provided to the callback function. * * Setting the callback function that is triggered once the cipher operation * completes * * The callback function is registered with the aead_request handle and * must comply with the following template * * void callback_function(struct crypto_async_request *req, int error) */ static inline void aead_request_set_callback(struct aead_request *req, u32 flags, crypto_completion_t compl, void *data) { req->base.complete = compl; req->base.data = data; req->base.flags = flags; } /** * aead_request_set_crypt - set data buffers * @req: request handle * @src: source scatter / gather list * @dst: destination scatter / gather list * @cryptlen: number of bytes to process from @src * @iv: IV for the cipher operation which must comply with the IV size defined * by crypto_aead_ivsize() * * Setting the source data and destination data scatter / gather lists. * * For encryption, the source is treated as the plaintext and the * destination is the ciphertext. For a decryption operation, the use is * reversed - the source is the ciphertext and the destination is the plaintext. * * IMPORTANT NOTE AEAD requires an authentication tag (MAC). For decryption, * the caller must concatenate the ciphertext followed by the * authentication tag and provide the entire data stream to the * decryption operation (i.e. the data length used for the * initialization of the scatterlist and the data length for the * decryption operation is identical). For encryption, however, * the authentication tag is created while encrypting the data. * The destination buffer must hold sufficient space for the * ciphertext and the authentication tag while the encryption * invocation must only point to the plaintext data size. The * following code snippet illustrates the memory usage * buffer = kmalloc(ptbuflen + (enc ? authsize : 0)); * sg_init_one(&sg, buffer, ptbuflen + (enc ? authsize : 0)); * aead_request_set_crypt(req, &sg, &sg, ptbuflen, iv); */ static inline void aead_request_set_crypt(struct aead_request *req, struct scatterlist *src, struct scatterlist *dst, unsigned int cryptlen, u8 *iv) { req->src = src; req->dst = dst; req->cryptlen = cryptlen; req->iv = iv; } /** * aead_request_set_assoc() - set the associated data scatter / gather list * @req: request handle * @assoc: associated data scatter / gather list * @assoclen: number of bytes to process from @assoc * * For encryption, the memory is filled with the associated data. For * decryption, the memory must point to the associated data. */ static inline void aead_request_set_assoc(struct aead_request *req, struct scatterlist *assoc, unsigned int assoclen) { req->assoc = assoc; req->assoclen = assoclen; } /** * DOC: Synchronous Block Cipher API * * The synchronous block cipher API is used with the ciphers of type * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto) * * Synchronous calls, have a context in the tfm. But since a single tfm can be * used in multiple calls and in parallel, this info should not be changeable * (unless a lock is used). This applies, for example, to the symmetric key. * However, the IV is changeable, so there is an iv field in blkcipher_tfm * structure for synchronous blkcipher api. So, its the only state info that can * be kept for synchronous calls without using a big lock across a tfm. * * The block cipher API allows the use of a complete cipher, i.e. a cipher * consisting of a template (a block chaining mode) and a single block cipher * primitive (e.g. AES). * * The plaintext data buffer and the ciphertext data buffer are pointed to * by using scatter/gather lists. The cipher operation is performed * on all segments of the provided scatter/gather lists. * * The kernel crypto API supports a cipher operation "in-place" which means that * the caller may provide the same scatter/gather list for the plaintext and * cipher text. After the completion of the cipher operation, the plaintext * data is replaced with the ciphertext data in case of an encryption and vice * versa for a decryption. The caller must ensure that the scatter/gather lists * for the output data point to sufficiently large buffers, i.e. multiples of * the block size of the cipher. */ static inline struct crypto_blkcipher *__crypto_blkcipher_cast( struct crypto_tfm *tfm) { return (struct crypto_blkcipher *)tfm; } static inline struct crypto_blkcipher *crypto_blkcipher_cast( struct crypto_tfm *tfm) { BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER); return __crypto_blkcipher_cast(tfm); } /** * crypto_alloc_blkcipher() - allocate synchronous block cipher handle * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * blkcipher cipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Allocate a cipher handle for a block cipher. The returned struct * crypto_blkcipher is the cipher handle that is required for any subsequent * API invocation for that block cipher. * * Return: allocated cipher handle in case of success; IS_ERR() is true in case * of an error, PTR_ERR() returns the error code. */ static inline struct crypto_blkcipher *crypto_alloc_blkcipher( const char *alg_name, u32 type, u32 mask) { type &= ~CRYPTO_ALG_TYPE_MASK; type |= CRYPTO_ALG_TYPE_BLKCIPHER; mask |= CRYPTO_ALG_TYPE_MASK; return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask)); } static inline struct crypto_tfm *crypto_blkcipher_tfm( struct crypto_blkcipher *tfm) { return &tfm->base; } /** * crypto_free_blkcipher() - zeroize and free the block cipher handle * @tfm: cipher handle to be freed */ static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm) { crypto_free_tfm(crypto_blkcipher_tfm(tfm)); } /** * crypto_has_blkcipher() - Search for the availability of a block cipher * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * block cipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Return: true when the block cipher is known to the kernel crypto API; false * otherwise */ static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask) { type &= ~CRYPTO_ALG_TYPE_MASK; type |= CRYPTO_ALG_TYPE_BLKCIPHER; mask |= CRYPTO_ALG_TYPE_MASK; return crypto_has_alg(alg_name, type, mask); } /** * crypto_blkcipher_name() - return the name / cra_name from the cipher handle * @tfm: cipher handle * * Return: The character string holding the name of the cipher */ static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm) { return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm)); } static inline struct blkcipher_tfm *crypto_blkcipher_crt( struct crypto_blkcipher *tfm) { return &crypto_blkcipher_tfm(tfm)->crt_blkcipher; } static inline struct blkcipher_alg *crypto_blkcipher_alg( struct crypto_blkcipher *tfm) { return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher; } /** * crypto_blkcipher_ivsize() - obtain IV size * @tfm: cipher handle * * The size of the IV for the block cipher referenced by the cipher handle is * returned. This IV size may be zero if the cipher does not need an IV. * * Return: IV size in bytes */ static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm) { return crypto_blkcipher_alg(tfm)->ivsize; } /** * crypto_blkcipher_blocksize() - obtain block size of cipher * @tfm: cipher handle * * The block size for the block cipher referenced with the cipher handle is * returned. The caller may use that information to allocate appropriate * memory for the data returned by the encryption or decryption operation. * * Return: block size of cipher */ static inline unsigned int crypto_blkcipher_blocksize( struct crypto_blkcipher *tfm) { return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm)); } static inline unsigned int crypto_blkcipher_alignmask( struct crypto_blkcipher *tfm) { return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm)); } static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm) { return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm)); } static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm, u32 flags) { crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags); } static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm, u32 flags) { crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags); } /** * crypto_blkcipher_setkey() - set key for cipher * @tfm: cipher handle * @key: buffer holding the key * @keylen: length of the key in bytes * * The caller provided key is set for the block cipher referenced by the cipher * handle. * * Note, the key length determines the cipher type. Many block ciphers implement * different cipher modes depending on the key size, such as AES-128 vs AES-192 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 * is performed. * * Return: 0 if the setting of the key was successful; < 0 if an error occurred */ static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm, const u8 *key, unsigned int keylen) { return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm), key, keylen); } /** * crypto_blkcipher_encrypt() - encrypt plaintext * @desc: reference to the block cipher handle with meta data * @dst: scatter/gather list that is filled by the cipher operation with the * ciphertext * @src: scatter/gather list that holds the plaintext * @nbytes: number of bytes of the plaintext to encrypt. * * Encrypt plaintext data using the IV set by the caller with a preceding * call of crypto_blkcipher_set_iv. * * The blkcipher_desc data structure must be filled by the caller and can * reside on the stack. The caller must fill desc as follows: desc.tfm is filled * with the block cipher handle; desc.flags is filled with either * CRYPTO_TFM_REQ_MAY_SLEEP or 0. * * Return: 0 if the cipher operation was successful; < 0 if an error occurred */ static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { desc->info = crypto_blkcipher_crt(desc->tfm)->iv; return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes); } /** * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV * @desc: reference to the block cipher handle with meta data * @dst: scatter/gather list that is filled by the cipher operation with the * ciphertext * @src: scatter/gather list that holds the plaintext * @nbytes: number of bytes of the plaintext to encrypt. * * Encrypt plaintext data with the use of an IV that is solely used for this * cipher operation. Any previously set IV is not used. * * The blkcipher_desc data structure must be filled by the caller and can * reside on the stack. The caller must fill desc as follows: desc.tfm is filled * with the block cipher handle; desc.info is filled with the IV to be used for * the current operation; desc.flags is filled with either * CRYPTO_TFM_REQ_MAY_SLEEP or 0. * * Return: 0 if the cipher operation was successful; < 0 if an error occurred */ static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes); } /** * crypto_blkcipher_decrypt() - decrypt ciphertext * @desc: reference to the block cipher handle with meta data * @dst: scatter/gather list that is filled by the cipher operation with the * plaintext * @src: scatter/gather list that holds the ciphertext * @nbytes: number of bytes of the ciphertext to decrypt. * * Decrypt ciphertext data using the IV set by the caller with a preceding * call of crypto_blkcipher_set_iv. * * The blkcipher_desc data structure must be filled by the caller as documented * for the crypto_blkcipher_encrypt call above. * * Return: 0 if the cipher operation was successful; < 0 if an error occurred * */ static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { desc->info = crypto_blkcipher_crt(desc->tfm)->iv; return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes); } /** * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV * @desc: reference to the block cipher handle with meta data * @dst: scatter/gather list that is filled by the cipher operation with the * plaintext * @src: scatter/gather list that holds the ciphertext * @nbytes: number of bytes of the ciphertext to decrypt. * * Decrypt ciphertext data with the use of an IV that is solely used for this * cipher operation. Any previously set IV is not used. * * The blkcipher_desc data structure must be filled by the caller as documented * for the crypto_blkcipher_encrypt_iv call above. * * Return: 0 if the cipher operation was successful; < 0 if an error occurred */ static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes); } /** * crypto_blkcipher_set_iv() - set IV for cipher * @tfm: cipher handle * @src: buffer holding the IV * @len: length of the IV in bytes * * The caller provided IV is set for the block cipher referenced by the cipher * handle. */ static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm, const u8 *src, unsigned int len) { memcpy(crypto_blkcipher_crt(tfm)->iv, src, len); } /** * crypto_blkcipher_get_iv() - obtain IV from cipher * @tfm: cipher handle * @dst: buffer filled with the IV * @len: length of the buffer dst * * The caller can obtain the IV set for the block cipher referenced by the * cipher handle and store it into the user-provided buffer. If the buffer * has an insufficient space, the IV is truncated to fit the buffer. */ static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm, u8 *dst, unsigned int len) { memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len); } /** * DOC: Single Block Cipher API * * The single block cipher API is used with the ciphers of type * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto). * * Using the single block cipher API calls, operations with the basic cipher * primitive can be implemented. These cipher primitives exclude any block * chaining operations including IV handling. * * The purpose of this single block cipher API is to support the implementation * of templates or other concepts that only need to perform the cipher operation * on one block at a time. Templates invoke the underlying cipher primitive * block-wise and process either the input or the output data of these cipher * operations. */ static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm) { return (struct crypto_cipher *)tfm; } static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm) { BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER); return __crypto_cipher_cast(tfm); } /** * crypto_alloc_cipher() - allocate single block cipher handle * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * single block cipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Allocate a cipher handle for a single block cipher. The returned struct * crypto_cipher is the cipher handle that is required for any subsequent API * invocation for that single block cipher. * * Return: allocated cipher handle in case of success; IS_ERR() is true in case * of an error, PTR_ERR() returns the error code. */ static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name, u32 type, u32 mask) { type &= ~CRYPTO_ALG_TYPE_MASK; type |= CRYPTO_ALG_TYPE_CIPHER; mask |= CRYPTO_ALG_TYPE_MASK; return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask)); } static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm) { return &tfm->base; } /** * crypto_free_cipher() - zeroize and free the single block cipher handle * @tfm: cipher handle to be freed */ static inline void crypto_free_cipher(struct crypto_cipher *tfm) { crypto_free_tfm(crypto_cipher_tfm(tfm)); } /** * crypto_has_cipher() - Search for the availability of a single block cipher * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * single block cipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Return: true when the single block cipher is known to the kernel crypto API; * false otherwise */ static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask) { type &= ~CRYPTO_ALG_TYPE_MASK; type |= CRYPTO_ALG_TYPE_CIPHER; mask |= CRYPTO_ALG_TYPE_MASK; return crypto_has_alg(alg_name, type, mask); } static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm) { return &crypto_cipher_tfm(tfm)->crt_cipher; } /** * crypto_cipher_blocksize() - obtain block size for cipher * @tfm: cipher handle * * The block size for the single block cipher referenced with the cipher handle * tfm is returned. The caller may use that information to allocate appropriate * memory for the data returned by the encryption or decryption operation * * Return: block size of cipher */ static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm) { return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm)); } static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm) { return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm)); } static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm) { return crypto_tfm_get_flags(crypto_cipher_tfm(tfm)); } static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm, u32 flags) { crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags); } static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm, u32 flags) { crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags); } /** * crypto_cipher_setkey() - set key for cipher * @tfm: cipher handle * @key: buffer holding the key * @keylen: length of the key in bytes * * The caller provided key is set for the single block cipher referenced by the * cipher handle. * * Note, the key length determines the cipher type. Many block ciphers implement * different cipher modes depending on the key size, such as AES-128 vs AES-192 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 * is performed. * * Return: 0 if the setting of the key was successful; < 0 if an error occurred */ static inline int crypto_cipher_setkey(struct crypto_cipher *tfm, const u8 *key, unsigned int keylen) { return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm), key, keylen); } /** * crypto_cipher_encrypt_one() - encrypt one block of plaintext * @tfm: cipher handle * @dst: points to the buffer that will be filled with the ciphertext * @src: buffer holding the plaintext to be encrypted * * Invoke the encryption operation of one block. The caller must ensure that * the plaintext and ciphertext buffers are at least one block in size. */ static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm, u8 *dst, const u8 *src) { crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm), dst, src); } /** * crypto_cipher_decrypt_one() - decrypt one block of ciphertext * @tfm: cipher handle * @dst: points to the buffer that will be filled with the plaintext * @src: buffer holding the ciphertext to be decrypted * * Invoke the decryption operation of one block. The caller must ensure that * the plaintext and ciphertext buffers are at least one block in size. */ static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm, u8 *dst, const u8 *src) { crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm), dst, src); } /** * DOC: Synchronous Message Digest API * * The synchronous message digest API is used with the ciphers of type * CRYPTO_ALG_TYPE_HASH (listed as type "hash" in /proc/crypto) */ static inline struct crypto_hash *__crypto_hash_cast(struct crypto_tfm *tfm) { return (struct crypto_hash *)tfm; } static inline struct crypto_hash *crypto_hash_cast(struct crypto_tfm *tfm) { BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_HASH) & CRYPTO_ALG_TYPE_HASH_MASK); return __crypto_hash_cast(tfm); } /** * crypto_alloc_hash() - allocate synchronous message digest handle * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * message digest cipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Allocate a cipher handle for a message digest. The returned struct * crypto_hash is the cipher handle that is required for any subsequent * API invocation for that message digest. * * Return: allocated cipher handle in case of success; IS_ERR() is true in case * of an error, PTR_ERR() returns the error code. */ static inline struct crypto_hash *crypto_alloc_hash(const char *alg_name, u32 type, u32 mask) { type &= ~CRYPTO_ALG_TYPE_MASK; mask &= ~CRYPTO_ALG_TYPE_MASK; type |= CRYPTO_ALG_TYPE_HASH; mask |= CRYPTO_ALG_TYPE_HASH_MASK; return __crypto_hash_cast(crypto_alloc_base(alg_name, type, mask)); } static inline struct crypto_tfm *crypto_hash_tfm(struct crypto_hash *tfm) { return &tfm->base; } /** * crypto_free_hash() - zeroize and free message digest handle * @tfm: cipher handle to be freed */ static inline void crypto_free_hash(struct crypto_hash *tfm) { crypto_free_tfm(crypto_hash_tfm(tfm)); } /** * crypto_has_hash() - Search for the availability of a message digest * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * message digest cipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Return: true when the message digest cipher is known to the kernel crypto * API; false otherwise */ static inline int crypto_has_hash(const char *alg_name, u32 type, u32 mask) { type &= ~CRYPTO_ALG_TYPE_MASK; mask &= ~CRYPTO_ALG_TYPE_MASK; type |= CRYPTO_ALG_TYPE_HASH; mask |= CRYPTO_ALG_TYPE_HASH_MASK; return crypto_has_alg(alg_name, type, mask); } static inline struct hash_tfm *crypto_hash_crt(struct crypto_hash *tfm) { return &crypto_hash_tfm(tfm)->crt_hash; } /** * crypto_hash_blocksize() - obtain block size for message digest * @tfm: cipher handle * * The block size for the message digest cipher referenced with the cipher * handle is returned. * * Return: block size of cipher */ static inline unsigned int crypto_hash_blocksize(struct crypto_hash *tfm) { return crypto_tfm_alg_blocksize(crypto_hash_tfm(tfm)); } static inline unsigned int crypto_hash_alignmask(struct crypto_hash *tfm) { return crypto_tfm_alg_alignmask(crypto_hash_tfm(tfm)); } /** * crypto_hash_digestsize() - obtain message digest size * @tfm: cipher handle * * The size for the message digest created by the message digest cipher * referenced with the cipher handle is returned. * * Return: message digest size */ static inline unsigned int crypto_hash_digestsize(struct crypto_hash *tfm) { return crypto_hash_crt(tfm)->digestsize; } static inline u32 crypto_hash_get_flags(struct crypto_hash *tfm) { return crypto_tfm_get_flags(crypto_hash_tfm(tfm)); } static inline void crypto_hash_set_flags(struct crypto_hash *tfm, u32 flags) { crypto_tfm_set_flags(crypto_hash_tfm(tfm), flags); } static inline void crypto_hash_clear_flags(struct crypto_hash *tfm, u32 flags) { crypto_tfm_clear_flags(crypto_hash_tfm(tfm), flags); } /** * crypto_hash_init() - (re)initialize message digest handle * @desc: cipher request handle that to be filled by caller -- * desc.tfm is filled with the hash cipher handle; * desc.flags is filled with either CRYPTO_TFM_REQ_MAY_SLEEP or 0. * * The call (re-)initializes the message digest referenced by the hash cipher * request handle. Any potentially existing state created by previous * operations is discarded. * * Return: 0 if the message digest initialization was successful; < 0 if an * error occurred */ static inline int crypto_hash_init(struct hash_desc *desc) { return crypto_hash_crt(desc->tfm)->init(desc); } /** * crypto_hash_update() - add data to message digest for processing * @desc: cipher request handle * @sg: scatter / gather list pointing to the data to be added to the message * digest * @nbytes: number of bytes to be processed from @sg * * Updates the message digest state of the cipher handle pointed to by the * hash cipher request handle with the input data pointed to by the * scatter/gather list. * * Return: 0 if the message digest update was successful; < 0 if an error * occurred */ static inline int crypto_hash_update(struct hash_desc *desc, struct scatterlist *sg, unsigned int nbytes) { return crypto_hash_crt(desc->tfm)->update(desc, sg, nbytes); } /** * crypto_hash_final() - calculate message digest * @desc: cipher request handle * @out: message digest output buffer -- The caller must ensure that the out * buffer has a sufficient size (e.g. by using the crypto_hash_digestsize * function). * * Finalize the message digest operation and create the message digest * based on all data added to the cipher handle. The message digest is placed * into the output buffer. * * Return: 0 if the message digest creation was successful; < 0 if an error * occurred */ static inline int crypto_hash_final(struct hash_desc *desc, u8 *out) { return crypto_hash_crt(desc->tfm)->final(desc, out); } /** * crypto_hash_digest() - calculate message digest for a buffer * @desc: see crypto_hash_final() * @sg: see crypto_hash_update() * @nbytes: see crypto_hash_update() * @out: see crypto_hash_final() * * This function is a "short-hand" for the function calls of crypto_hash_init, * crypto_hash_update and crypto_hash_final. The parameters have the same * meaning as discussed for those separate three functions. * * Return: 0 if the message digest creation was successful; < 0 if an error * occurred */ static inline int crypto_hash_digest(struct hash_desc *desc, struct scatterlist *sg, unsigned int nbytes, u8 *out) { return crypto_hash_crt(desc->tfm)->digest(desc, sg, nbytes, out); } /** * crypto_hash_setkey() - set key for message digest * @hash: cipher handle * @key: buffer holding the key * @keylen: length of the key in bytes * * The caller provided key is set for the message digest cipher. The cipher * handle must point to a keyed hash in order for this function to succeed. * * Return: 0 if the setting of the key was successful; < 0 if an error occurred */ static inline int crypto_hash_setkey(struct crypto_hash *hash, const u8 *key, unsigned int keylen) { return crypto_hash_crt(hash)->setkey(hash, key, keylen); } static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm) { return (struct crypto_comp *)tfm; } static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm) { BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) & CRYPTO_ALG_TYPE_MASK); return __crypto_comp_cast(tfm); } static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name, u32 type, u32 mask) { type &= ~CRYPTO_ALG_TYPE_MASK; type |= CRYPTO_ALG_TYPE_COMPRESS; mask |= CRYPTO_ALG_TYPE_MASK; return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask)); } static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm) { return &tfm->base; } static inline void crypto_free_comp(struct crypto_comp *tfm) { crypto_free_tfm(crypto_comp_tfm(tfm)); } static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask) { type &= ~CRYPTO_ALG_TYPE_MASK; type |= CRYPTO_ALG_TYPE_COMPRESS; mask |= CRYPTO_ALG_TYPE_MASK; return crypto_has_alg(alg_name, type, mask); } static inline const char *crypto_comp_name(struct crypto_comp *tfm) { return crypto_tfm_alg_name(crypto_comp_tfm(tfm)); } static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm) { return &crypto_comp_tfm(tfm)->crt_compress; } static inline int crypto_comp_compress(struct crypto_comp *tfm, const u8 *src, unsigned int slen, u8 *dst, unsigned int *dlen) { return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm), src, slen, dst, dlen); } static inline int crypto_comp_decompress(struct crypto_comp *tfm, const u8 *src, unsigned int slen, u8 *dst, unsigned int *dlen) { return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm), src, slen, dst, dlen); } #endif /* _LINUX_CRYPTO_H */