// SPDX-License-Identifier: GPL-2.0-only /* * Based on arch/arm/mm/init.c * * Copyright (C) 1995-2005 Russell King * Copyright (C) 2012 ARM Ltd. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_PIN_MEMORY #include #endif #include #include #include #include #include #include #include #include #include #include #include #include /* * We need to be able to catch inadvertent references to memstart_addr * that occur (potentially in generic code) before arm64_memblock_init() * executes, which assigns it its actual value. So use a default value * that cannot be mistaken for a real physical address. */ s64 memstart_addr __ro_after_init = -1; EXPORT_SYMBOL(memstart_addr); #ifdef CONFIG_PIN_MEMORY struct resource pin_memory_resource = { .name = "Pin memory", .start = 0, .end = 0, .flags = IORESOURCE_MEM, .desc = IORES_DESC_RESERVED }; static void __init reserve_pin_memory_res(void) { unsigned long long mem_start, mem_len; int ret; ret = parse_pin_memory(boot_command_line, memblock_phys_mem_size(), &mem_len, &mem_start); if (ret || !mem_len) return; mem_len = PAGE_ALIGN(mem_len); if (!memblock_is_region_memory(mem_start, mem_len)) { pr_warn("cannot reserve for pin memory: region is not memory!\n"); return; } if (memblock_is_region_reserved(mem_start, mem_len)) { pr_warn("cannot reserve for pin memory: region overlaps reserved memory!\n"); return; } if (!IS_ALIGNED(mem_start, SZ_2M)) { pr_warn("cannot reserve for pin memory: base address is not 2MB aligned\n"); return; } memblock_reserve(mem_start, mem_len); pin_memory_resource.start = mem_start; pin_memory_resource.end = mem_start + mem_len - 1; } #else static void __init reserve_pin_memory_res(void) { } #endif /* CONFIG_PIN_MEMORY */ /* * If the corresponding config options are enabled, we create both ZONE_DMA * and ZONE_DMA32. By default ZONE_DMA covers the 32-bit addressable memory * unless restricted on specific platforms (e.g. 30-bit on Raspberry Pi 4). * In such case, ZONE_DMA32 covers the rest of the 32-bit addressable memory, * otherwise it is empty. */ phys_addr_t arm64_dma_phys_limit __ro_after_init; #ifndef CONFIG_KEXEC_CORE static void __init reserve_crashkernel(void) { } #endif /* * The main usage of linux,usable-memory-range is for crash dump kernel. * Originally, the number of usable-memory regions is one. Now there may * be two regions, low region and high region. * To make compatibility with existing user-space and older kdump, the low * region is always the last range of linux,usable-memory-range if exist. */ #define MAX_USABLE_RANGES 2 #ifdef CONFIG_CRASH_DUMP static int __init early_init_dt_scan_elfcorehdr(unsigned long node, const char *uname, int depth, void *data) { const __be32 *reg; int len; if (depth != 1 || strcmp(uname, "chosen") != 0) return 0; reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len); if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells))) return 1; elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, ®); elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, ®); return 1; } /* * reserve_elfcorehdr() - reserves memory for elf core header * * This function reserves the memory occupied by an elf core header * described in the device tree. This region contains all the * information about primary kernel's core image and is used by a dump * capture kernel to access the system memory on primary kernel. */ static void __init reserve_elfcorehdr(void) { of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL); if (!elfcorehdr_size) return; if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) { pr_warn("elfcorehdr is overlapped\n"); return; } memblock_reserve(elfcorehdr_addr, elfcorehdr_size); pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n", elfcorehdr_size >> 10, elfcorehdr_addr); } #else static void __init reserve_elfcorehdr(void) { } #endif /* CONFIG_CRASH_DUMP */ #ifdef CONFIG_QUICK_KEXEC static int __init parse_quick_kexec(char *p) { if (!p) return 0; quick_kexec_res.end = PAGE_ALIGN(memparse(p, NULL)); return 0; } early_param("quickkexec", parse_quick_kexec); static void __init reserve_quick_kexec(void) { unsigned long long mem_start, mem_len; mem_len = quick_kexec_res.end; if (mem_len == 0) return; /* Current arm64 boot protocol requires 2MB alignment */ mem_start = memblock_find_in_range(0, arm64_dma_phys_limit, mem_len, SZ_2M); if (mem_start == 0) { pr_warn("cannot allocate quick kexec mem (size:0x%llx)\n", mem_len); quick_kexec_res.end = 0; return; } memblock_reserve(mem_start, mem_len); pr_info("quick kexec mem reserved: 0x%016llx - 0x%016llx (%lld MB)\n", mem_start, mem_start + mem_len, mem_len >> 20); quick_kexec_res.start = mem_start; quick_kexec_res.end = mem_start + mem_len - 1; } #endif /* * Return the maximum physical address for a zone accessible by the given bits * limit. If DRAM starts above 32-bit, expand the zone to the maximum * available memory, otherwise cap it at 32-bit. */ static phys_addr_t __init max_zone_phys(unsigned int zone_bits) { phys_addr_t zone_mask = DMA_BIT_MASK(zone_bits); phys_addr_t phys_start = memblock_start_of_DRAM(); if (phys_start > U32_MAX) zone_mask = PHYS_ADDR_MAX; else if (phys_start > zone_mask) zone_mask = U32_MAX; return min(zone_mask, memblock_end_of_DRAM() - 1) + 1; } static void __init zone_sizes_init(unsigned long min, unsigned long max) { unsigned long max_zone_pfns[MAX_NR_ZONES] = {0}; unsigned int __maybe_unused acpi_zone_dma_bits; unsigned int __maybe_unused dt_zone_dma_bits; phys_addr_t __maybe_unused dma32_phys_limit = max_zone_phys(32); #ifdef CONFIG_ZONE_DMA acpi_zone_dma_bits = fls64(acpi_iort_dma_get_max_cpu_address()); dt_zone_dma_bits = fls64(of_dma_get_max_cpu_address(NULL)); zone_dma_bits = min3(32U, dt_zone_dma_bits, acpi_zone_dma_bits); arm64_dma_phys_limit = max_zone_phys(zone_dma_bits); max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit); #endif #ifdef CONFIG_ZONE_DMA32 max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit); if (!arm64_dma_phys_limit) arm64_dma_phys_limit = dma32_phys_limit; #endif if (!arm64_dma_phys_limit) arm64_dma_phys_limit = PHYS_MASK + 1; max_zone_pfns[ZONE_NORMAL] = max; free_area_init(max_zone_pfns); } int pfn_valid(unsigned long pfn) { phys_addr_t addr = pfn << PAGE_SHIFT; if ((addr >> PAGE_SHIFT) != pfn) return 0; #ifdef CONFIG_SPARSEMEM if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) return 0; if (!valid_section(__pfn_to_section(pfn))) return 0; /* * ZONE_DEVICE memory does not have the memblock entries. * memblock_is_map_memory() check for ZONE_DEVICE based * addresses will always fail. Even the normal hotplugged * memory will never have MEMBLOCK_NOMAP flag set in their * memblock entries. Skip memblock search for all non early * memory sections covering all of hotplug memory including * both normal and ZONE_DEVICE based. */ if (!early_section(__pfn_to_section(pfn))) return pfn_section_valid(__pfn_to_section(pfn), pfn); #endif return memblock_is_map_memory(addr); } EXPORT_SYMBOL(pfn_valid); static phys_addr_t memory_limit = PHYS_ADDR_MAX; /* * Limit the memory size that was specified via FDT. */ static int __init early_mem(char *p) { if (!p) return 1; memory_limit = memparse(p, &p) & PAGE_MASK; pr_notice("Memory limited to %lldMB\n", memory_limit >> 20); return 0; } early_param("mem", early_mem); static int __init early_init_dt_scan_usablemem(unsigned long node, const char *uname, int depth, void *data) { struct memblock_region *usable_rgns = data; const __be32 *reg, *endp; int len, nr = 0; if (depth != 1 || strcmp(uname, "chosen") != 0) return 0; reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len); if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells))) return 1; endp = reg + (len / sizeof(__be32)); while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) { usable_rgns[nr].base = dt_mem_next_cell(dt_root_addr_cells, ®); usable_rgns[nr].size = dt_mem_next_cell(dt_root_size_cells, ®); if (++nr >= MAX_USABLE_RANGES) break; } return 1; } static void __init fdt_enforce_memory_region(void) { struct memblock_region usable_rgns[MAX_USABLE_RANGES] = { { .size = 0 }, { .size = 0 } }; of_scan_flat_dt(early_init_dt_scan_usablemem, &usable_rgns); /* * The first range of usable-memory regions is for crash dump * kernel with only one region or for high region with two regions, * the second range is dedicated for low region if exist. */ if (usable_rgns[0].size) memblock_cap_memory_range(usable_rgns[0].base, usable_rgns[0].size); if (usable_rgns[1].size) memblock_add(usable_rgns[1].base, usable_rgns[1].size); } #ifdef CONFIG_ARM64_CPU_PARK struct cpu_park_info park_info = { .start = 0, .len = PARK_SECTION_SIZE * NR_CPUS, .start_v = 0, }; static int __init parse_park_mem(char *p) { if (!p) return 0; park_info.start = PAGE_ALIGN(memparse(p, NULL)); if (park_info.start == 0) pr_info("cpu park mem params[%s]", p); return 0; } early_param("cpuparkmem", parse_park_mem); static int __init reserve_park_mem(void) { if (park_info.start == 0 || park_info.len == 0) return 0; park_info.start = PAGE_ALIGN(park_info.start); park_info.len = PAGE_ALIGN(park_info.len); if (!memblock_is_region_memory(park_info.start, park_info.len)) { pr_warn("cannot reserve park mem: region is not memory!"); goto out; } if (memblock_is_region_reserved(park_info.start, park_info.len)) { pr_warn("cannot reserve park mem: region overlaps reserved memory!"); goto out; } memblock_remove(park_info.start, park_info.len); pr_info("cpu park mem reserved: 0x%016lx - 0x%016lx (%ld MB)", park_info.start, park_info.start + park_info.len, park_info.len >> 20); return 0; out: park_info.start = 0; park_info.len = 0; return -EINVAL; } #endif static int need_remove_real_memblock __initdata; static int __init parse_memmap_one(char *p) { char *oldp; u64 start_at, mem_size; if (!p) return -EINVAL; if (!strncmp(p, "exactmap", 8)) { need_remove_real_memblock = 1; return -EINVAL; } oldp = p; mem_size = memparse(p, &p); if (p == oldp) return -EINVAL; if (!mem_size) return -EINVAL; if (*p == '@') { start_at = memparse(p + 1, &p); /* * use the exactmap defined by nn[KMG]@ss[KMG], remove * memblock populated by DT etc. */ if (need_remove_real_memblock) { need_remove_real_memblock = 0; memblock_remove(0, ULLONG_MAX); } memblock_add(start_at, mem_size); } else if (*p == '$') { start_at = memparse(p + 1, &p); memblock_reserve(start_at, mem_size); } else pr_info("Unrecognized memmap option, please check the parameter.\n"); return *p == '\0' ? 0 : -EINVAL; } static int __init parse_memmap_opt(char *str) { while (str) { char *k = strchr(str, ','); if (k) *k++ = 0; parse_memmap_one(str); str = k; } return 0; } early_param("memmap", parse_memmap_opt); void __init arm64_memblock_init(void) { const s64 linear_region_size = BIT(vabits_actual - 1); /* Handle linux,usable-memory-range property */ fdt_enforce_memory_region(); /* Remove memory above our supported physical address size */ memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX); /* * Select a suitable value for the base of physical memory. */ memstart_addr = round_down(memblock_start_of_DRAM(), ARM64_MEMSTART_ALIGN); /* * Remove the memory that we will not be able to cover with the * linear mapping. Take care not to clip the kernel which may be * high in memory. */ memblock_remove(max_t(u64, memstart_addr + linear_region_size, __pa_symbol(_end)), ULLONG_MAX); if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) { /* ensure that memstart_addr remains sufficiently aligned */ memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size, ARM64_MEMSTART_ALIGN); memblock_remove(0, memstart_addr); } /* * If we are running with a 52-bit kernel VA config on a system that * does not support it, we have to place the available physical * memory in the 48-bit addressable part of the linear region, i.e., * we have to move it upward. Since memstart_addr represents the * physical address of PAGE_OFFSET, we have to *subtract* from it. */ if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52)) memstart_addr -= _PAGE_OFFSET(48) - _PAGE_OFFSET(52); /* * Apply the memory limit if it was set. Since the kernel may be loaded * high up in memory, add back the kernel region that must be accessible * via the linear mapping. */ if (memory_limit != PHYS_ADDR_MAX) { memblock_mem_limit_remove_map(memory_limit); memblock_add(__pa_symbol(_text), (u64)(_end - _text)); } if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) { /* * Add back the memory we just removed if it results in the * initrd to become inaccessible via the linear mapping. * Otherwise, this is a no-op */ u64 base = phys_initrd_start & PAGE_MASK; u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base; /* * We can only add back the initrd memory if we don't end up * with more memory than we can address via the linear mapping. * It is up to the bootloader to position the kernel and the * initrd reasonably close to each other (i.e., within 32 GB of * each other) so that all granule/#levels combinations can * always access both. */ if (WARN(base < memblock_start_of_DRAM() || base + size > memblock_start_of_DRAM() + linear_region_size, "initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) { phys_initrd_size = 0; } else { memblock_remove(base, size); /* clear MEMBLOCK_ flags */ memblock_add(base, size); memblock_reserve(base, size); } } if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) { extern u16 memstart_offset_seed; u64 range = linear_region_size - (memblock_end_of_DRAM() - memblock_start_of_DRAM()); /* * If the size of the linear region exceeds, by a sufficient * margin, the size of the region that the available physical * memory spans, randomize the linear region as well. */ if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) { range /= ARM64_MEMSTART_ALIGN; memstart_addr -= ARM64_MEMSTART_ALIGN * ((range * memstart_offset_seed) >> 16); } } /* * Register the kernel text, kernel data, initrd, and initial * pagetables with memblock. */ memblock_reserve(__pa_symbol(_text), _end - _text); if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) { /* the generic initrd code expects virtual addresses */ initrd_start = __phys_to_virt(phys_initrd_start); initrd_end = initrd_start + phys_initrd_size; } early_init_fdt_scan_reserved_mem(); reserve_elfcorehdr(); high_memory = __va(memblock_end_of_DRAM() - 1) + 1; } void __init bootmem_init(void) { unsigned long min, max; min = PFN_UP(memblock_start_of_DRAM()); max = PFN_DOWN(memblock_end_of_DRAM()); early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT); max_pfn = max_low_pfn = max; min_low_pfn = min; arm64_numa_init(); /* * must be done after arm64_numa_init() which calls numa_init() to * initialize node_online_map that gets used in hugetlb_cma_reserve() * while allocating required CMA size across online nodes. */ #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA) arm64_hugetlb_cma_reserve(); #endif dma_pernuma_cma_reserve(); /* * sparse_init() tries to allocate memory from memblock, so must be * done after the fixed reservations */ sparse_init(); zone_sizes_init(min, max); /* * Reserve the CMA area after arm64_dma_phys_limit was initialised. */ dma_contiguous_reserve(arm64_dma_phys_limit); /* * Reserve park memory before crashkernel and quick kexec. * Because park memory must be specified by address, but * crashkernel and quickkexec may be specified by memory length, * then find one sutiable memory region to reserve. * * So reserve park memory firstly is better, but it may cause * crashkernel or quickkexec reserving failed. */ #ifdef CONFIG_ARM64_CPU_PARK reserve_park_mem(); #endif /* * request_standard_resources() depends on crashkernel's memory being * reserved, so do it here. */ reserve_crashkernel(); #ifdef CONFIG_QUICK_KEXEC reserve_quick_kexec(); #endif reserve_pin_memory_res(); memblock_dump_all(); } #ifndef CONFIG_SPARSEMEM_VMEMMAP static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn) { struct page *start_pg, *end_pg; unsigned long pg, pgend; /* * Convert start_pfn/end_pfn to a struct page pointer. */ start_pg = pfn_to_page(start_pfn - 1) + 1; end_pg = pfn_to_page(end_pfn - 1) + 1; /* * Convert to physical addresses, and round start upwards and end * downwards. */ pg = (unsigned long)PAGE_ALIGN(__pa(start_pg)); pgend = (unsigned long)__pa(end_pg) & PAGE_MASK; /* * If there are free pages between these, free the section of the * memmap array. */ if (pg < pgend) memblock_free(pg, pgend - pg); } /* * The mem_map array can get very big. Free the unused area of the memory map. */ static void __init free_unused_memmap(void) { unsigned long start, end, prev_end = 0; int i; for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) { #ifdef CONFIG_SPARSEMEM /* * Take care not to free memmap entries that don't exist due * to SPARSEMEM sections which aren't present. */ start = min(start, ALIGN(prev_end, PAGES_PER_SECTION)); #endif /* * If we had a previous bank, and there is a space between the * current bank and the previous, free it. */ if (prev_end && prev_end < start) free_memmap(prev_end, start); /* * Align up here since the VM subsystem insists that the * memmap entries are valid from the bank end aligned to * MAX_ORDER_NR_PAGES. */ prev_end = ALIGN(end, MAX_ORDER_NR_PAGES); } #ifdef CONFIG_SPARSEMEM if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION)); #endif } #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ /* * mem_init() marks the free areas in the mem_map and tells us how much memory * is free. This is done after various parts of the system have claimed their * memory after the kernel image. */ void __init mem_init(void) { if (swiotlb_force == SWIOTLB_FORCE || max_pfn > PFN_DOWN(arm64_dma_phys_limit)) swiotlb_init(1); else swiotlb_force = SWIOTLB_NO_FORCE; set_max_mapnr(max_pfn - PHYS_PFN_OFFSET); #ifndef CONFIG_SPARSEMEM_VMEMMAP free_unused_memmap(); #endif /* this will put all unused low memory onto the freelists */ memblock_free_all(); #ifdef CONFIG_PIN_MEMORY /* pre alloc the pages for pin memory */ init_reserve_page_map((unsigned long)pin_memory_resource.start, (unsigned long)(pin_memory_resource.end - pin_memory_resource.start)); #endif mem_init_print_info(NULL); /* * Check boundaries twice: Some fundamental inconsistencies can be * detected at build time already. */ #ifdef CONFIG_COMPAT BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64); #endif if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) { extern int sysctl_overcommit_memory; /* * On a machine this small we won't get anywhere without * overcommit, so turn it on by default. */ sysctl_overcommit_memory = OVERCOMMIT_ALWAYS; } } void free_initmem(void) { free_reserved_area(lm_alias(__init_begin), lm_alias(__init_end), POISON_FREE_INITMEM, "unused kernel"); /* * Unmap the __init region but leave the VM area in place. This * prevents the region from being reused for kernel modules, which * is not supported by kallsyms. */ unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin)); } void dump_mem_limit(void) { if (memory_limit != PHYS_ADDR_MAX) { pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20); } else { pr_emerg("Memory Limit: none\n"); } }