/* * Copyright (c) 2005-2011 Atheros Communications Inc. * Copyright (c) 2011-2013 Qualcomm Atheros, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "hif.h" #include "pci.h" #include "ce.h" #include "debug.h" /* * Support for Copy Engine hardware, which is mainly used for * communication between Host and Target over a PCIe interconnect. */ /* * A single CopyEngine (CE) comprises two "rings": * a source ring * a destination ring * * Each ring consists of a number of descriptors which specify * an address, length, and meta-data. * * Typically, one side of the PCIe interconnect (Host or Target) * controls one ring and the other side controls the other ring. * The source side chooses when to initiate a transfer and it * chooses what to send (buffer address, length). The destination * side keeps a supply of "anonymous receive buffers" available and * it handles incoming data as it arrives (when the destination * recieves an interrupt). * * The sender may send a simple buffer (address/length) or it may * send a small list of buffers. When a small list is sent, hardware * "gathers" these and they end up in a single destination buffer * with a single interrupt. * * There are several "contexts" managed by this layer -- more, it * may seem -- than should be needed. These are provided mainly for * maximum flexibility and especially to facilitate a simpler HIF * implementation. There are per-CopyEngine recv, send, and watermark * contexts. These are supplied by the caller when a recv, send, * or watermark handler is established and they are echoed back to * the caller when the respective callbacks are invoked. There is * also a per-transfer context supplied by the caller when a buffer * (or sendlist) is sent and when a buffer is enqueued for recv. * These per-transfer contexts are echoed back to the caller when * the buffer is sent/received. */ static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar, u32 ce_ctrl_addr, unsigned int n) { ath10k_pci_write32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS, n); } static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar, u32 ce_ctrl_addr) { return ath10k_pci_read32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS); } static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar, u32 ce_ctrl_addr, unsigned int n) { ath10k_pci_write32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS, n); } static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar, u32 ce_ctrl_addr) { return ath10k_pci_read32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS); } static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar, u32 ce_ctrl_addr) { return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_SRRI_ADDRESS); } static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar, u32 ce_ctrl_addr, unsigned int addr) { ath10k_pci_write32(ar, ce_ctrl_addr + SR_BA_ADDRESS, addr); } static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar, u32 ce_ctrl_addr, unsigned int n) { ath10k_pci_write32(ar, ce_ctrl_addr + SR_SIZE_ADDRESS, n); } static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar, u32 ce_ctrl_addr, unsigned int n) { u32 ctrl1_addr = ath10k_pci_read32((ar), (ce_ctrl_addr) + CE_CTRL1_ADDRESS); ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS, (ctrl1_addr & ~CE_CTRL1_DMAX_LENGTH_MASK) | CE_CTRL1_DMAX_LENGTH_SET(n)); } static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar, u32 ce_ctrl_addr, unsigned int n) { u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS); ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS, (ctrl1_addr & ~CE_CTRL1_SRC_RING_BYTE_SWAP_EN_MASK) | CE_CTRL1_SRC_RING_BYTE_SWAP_EN_SET(n)); } static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar, u32 ce_ctrl_addr, unsigned int n) { u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS); ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS, (ctrl1_addr & ~CE_CTRL1_DST_RING_BYTE_SWAP_EN_MASK) | CE_CTRL1_DST_RING_BYTE_SWAP_EN_SET(n)); } static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar, u32 ce_ctrl_addr) { return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_DRRI_ADDRESS); } static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar, u32 ce_ctrl_addr, u32 addr) { ath10k_pci_write32(ar, ce_ctrl_addr + DR_BA_ADDRESS, addr); } static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar, u32 ce_ctrl_addr, unsigned int n) { ath10k_pci_write32(ar, ce_ctrl_addr + DR_SIZE_ADDRESS, n); } static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar, u32 ce_ctrl_addr, unsigned int n) { u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS); ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS, (addr & ~SRC_WATERMARK_HIGH_MASK) | SRC_WATERMARK_HIGH_SET(n)); } static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar, u32 ce_ctrl_addr, unsigned int n) { u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS); ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS, (addr & ~SRC_WATERMARK_LOW_MASK) | SRC_WATERMARK_LOW_SET(n)); } static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar, u32 ce_ctrl_addr, unsigned int n) { u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS); ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS, (addr & ~DST_WATERMARK_HIGH_MASK) | DST_WATERMARK_HIGH_SET(n)); } static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar, u32 ce_ctrl_addr, unsigned int n) { u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS); ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS, (addr & ~DST_WATERMARK_LOW_MASK) | DST_WATERMARK_LOW_SET(n)); } static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar, u32 ce_ctrl_addr) { u32 host_ie_addr = ath10k_pci_read32(ar, ce_ctrl_addr + HOST_IE_ADDRESS); ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS, host_ie_addr | HOST_IE_COPY_COMPLETE_MASK); } static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar, u32 ce_ctrl_addr) { u32 host_ie_addr = ath10k_pci_read32(ar, ce_ctrl_addr + HOST_IE_ADDRESS); ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS, host_ie_addr & ~HOST_IE_COPY_COMPLETE_MASK); } static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar, u32 ce_ctrl_addr) { u32 host_ie_addr = ath10k_pci_read32(ar, ce_ctrl_addr + HOST_IE_ADDRESS); ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS, host_ie_addr & ~CE_WATERMARK_MASK); } static inline void ath10k_ce_error_intr_enable(struct ath10k *ar, u32 ce_ctrl_addr) { u32 misc_ie_addr = ath10k_pci_read32(ar, ce_ctrl_addr + MISC_IE_ADDRESS); ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS, misc_ie_addr | CE_ERROR_MASK); } static inline void ath10k_ce_error_intr_disable(struct ath10k *ar, u32 ce_ctrl_addr) { u32 misc_ie_addr = ath10k_pci_read32(ar, ce_ctrl_addr + MISC_IE_ADDRESS); ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS, misc_ie_addr & ~CE_ERROR_MASK); } static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar, u32 ce_ctrl_addr, unsigned int mask) { ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IS_ADDRESS, mask); } /* * Guts of ath10k_ce_send, used by both ath10k_ce_send and * ath10k_ce_sendlist_send. * The caller takes responsibility for any needed locking. */ int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state, void *per_transfer_context, u32 buffer, unsigned int nbytes, unsigned int transfer_id, unsigned int flags) { struct ath10k *ar = ce_state->ar; struct ath10k_ce_ring *src_ring = ce_state->src_ring; struct ce_desc *desc, sdesc; unsigned int nentries_mask = src_ring->nentries_mask; unsigned int sw_index = src_ring->sw_index; unsigned int write_index = src_ring->write_index; u32 ctrl_addr = ce_state->ctrl_addr; u32 desc_flags = 0; int ret = 0; if (nbytes > ce_state->src_sz_max) ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n", __func__, nbytes, ce_state->src_sz_max); if (unlikely(CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) <= 0)) { ret = -ENOSR; goto exit; } desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space, write_index); desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA); if (flags & CE_SEND_FLAG_GATHER) desc_flags |= CE_DESC_FLAGS_GATHER; if (flags & CE_SEND_FLAG_BYTE_SWAP) desc_flags |= CE_DESC_FLAGS_BYTE_SWAP; sdesc.addr = __cpu_to_le32(buffer); sdesc.nbytes = __cpu_to_le16(nbytes); sdesc.flags = __cpu_to_le16(desc_flags); *desc = sdesc; src_ring->per_transfer_context[write_index] = per_transfer_context; /* Update Source Ring Write Index */ write_index = CE_RING_IDX_INCR(nentries_mask, write_index); /* WORKAROUND */ if (!(flags & CE_SEND_FLAG_GATHER)) ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index); src_ring->write_index = write_index; exit: return ret; } void __ath10k_ce_send_revert(struct ath10k_ce_pipe *pipe) { struct ath10k *ar = pipe->ar; struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct ath10k_ce_ring *src_ring = pipe->src_ring; u32 ctrl_addr = pipe->ctrl_addr; lockdep_assert_held(&ar_pci->ce_lock); /* * This function must be called only if there is an incomplete * scatter-gather transfer (before index register is updated) * that needs to be cleaned up. */ if (WARN_ON_ONCE(src_ring->write_index == src_ring->sw_index)) return; if (WARN_ON_ONCE(src_ring->write_index == ath10k_ce_src_ring_write_index_get(ar, ctrl_addr))) return; src_ring->write_index--; src_ring->write_index &= src_ring->nentries_mask; src_ring->per_transfer_context[src_ring->write_index] = NULL; } int ath10k_ce_send(struct ath10k_ce_pipe *ce_state, void *per_transfer_context, u32 buffer, unsigned int nbytes, unsigned int transfer_id, unsigned int flags) { struct ath10k *ar = ce_state->ar; struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int ret; spin_lock_bh(&ar_pci->ce_lock); ret = ath10k_ce_send_nolock(ce_state, per_transfer_context, buffer, nbytes, transfer_id, flags); spin_unlock_bh(&ar_pci->ce_lock); return ret; } int ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe *pipe) { struct ath10k *ar = pipe->ar; struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int delta; spin_lock_bh(&ar_pci->ce_lock); delta = CE_RING_DELTA(pipe->src_ring->nentries_mask, pipe->src_ring->write_index, pipe->src_ring->sw_index - 1); spin_unlock_bh(&ar_pci->ce_lock); return delta; } int __ath10k_ce_rx_num_free_bufs(struct ath10k_ce_pipe *pipe) { struct ath10k *ar = pipe->ar; struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct ath10k_ce_ring *dest_ring = pipe->dest_ring; unsigned int nentries_mask = dest_ring->nentries_mask; unsigned int write_index = dest_ring->write_index; unsigned int sw_index = dest_ring->sw_index; lockdep_assert_held(&ar_pci->ce_lock); return CE_RING_DELTA(nentries_mask, write_index, sw_index - 1); } int __ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr) { struct ath10k *ar = pipe->ar; struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct ath10k_ce_ring *dest_ring = pipe->dest_ring; unsigned int nentries_mask = dest_ring->nentries_mask; unsigned int write_index = dest_ring->write_index; unsigned int sw_index = dest_ring->sw_index; struct ce_desc *base = dest_ring->base_addr_owner_space; struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index); u32 ctrl_addr = pipe->ctrl_addr; lockdep_assert_held(&ar_pci->ce_lock); if ((pipe->id != 5) && CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0) return -ENOSPC; desc->addr = __cpu_to_le32(paddr); desc->nbytes = 0; dest_ring->per_transfer_context[write_index] = ctx; write_index = CE_RING_IDX_INCR(nentries_mask, write_index); ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index); dest_ring->write_index = write_index; return 0; } void ath10k_ce_rx_update_write_idx(struct ath10k_ce_pipe *pipe, u32 nentries) { struct ath10k *ar = pipe->ar; struct ath10k_ce_ring *dest_ring = pipe->dest_ring; unsigned int nentries_mask = dest_ring->nentries_mask; unsigned int write_index = dest_ring->write_index; u32 ctrl_addr = pipe->ctrl_addr; write_index = CE_RING_IDX_ADD(nentries_mask, write_index, nentries); ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index); dest_ring->write_index = write_index; } int ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr) { struct ath10k *ar = pipe->ar; struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int ret; spin_lock_bh(&ar_pci->ce_lock); ret = __ath10k_ce_rx_post_buf(pipe, ctx, paddr); spin_unlock_bh(&ar_pci->ce_lock); return ret; } /* * Guts of ath10k_ce_completed_recv_next. * The caller takes responsibility for any necessary locking. */ int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state, void **per_transfer_contextp, unsigned int *nbytesp) { struct ath10k_ce_ring *dest_ring = ce_state->dest_ring; unsigned int nentries_mask = dest_ring->nentries_mask; unsigned int sw_index = dest_ring->sw_index; struct ce_desc *base = dest_ring->base_addr_owner_space; struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index); struct ce_desc sdesc; u16 nbytes; /* Copy in one go for performance reasons */ sdesc = *desc; nbytes = __le16_to_cpu(sdesc.nbytes); if (nbytes == 0) { /* * This closes a relatively unusual race where the Host * sees the updated DRRI before the update to the * corresponding descriptor has completed. We treat this * as a descriptor that is not yet done. */ return -EIO; } desc->nbytes = 0; /* Return data from completed destination descriptor */ *nbytesp = nbytes; if (per_transfer_contextp) *per_transfer_contextp = dest_ring->per_transfer_context[sw_index]; /* Copy engine 5 (HTT Rx) will reuse the same transfer context. * So update transfer context all CEs except CE5. */ if (ce_state->id != 5) dest_ring->per_transfer_context[sw_index] = NULL; /* Update sw_index */ sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index); dest_ring->sw_index = sw_index; return 0; } int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state, void **per_transfer_contextp, unsigned int *nbytesp) { struct ath10k *ar = ce_state->ar; struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int ret; spin_lock_bh(&ar_pci->ce_lock); ret = ath10k_ce_completed_recv_next_nolock(ce_state, per_transfer_contextp, nbytesp); spin_unlock_bh(&ar_pci->ce_lock); return ret; } int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state, void **per_transfer_contextp, u32 *bufferp) { struct ath10k_ce_ring *dest_ring; unsigned int nentries_mask; unsigned int sw_index; unsigned int write_index; int ret; struct ath10k *ar; struct ath10k_pci *ar_pci; dest_ring = ce_state->dest_ring; if (!dest_ring) return -EIO; ar = ce_state->ar; ar_pci = ath10k_pci_priv(ar); spin_lock_bh(&ar_pci->ce_lock); nentries_mask = dest_ring->nentries_mask; sw_index = dest_ring->sw_index; write_index = dest_ring->write_index; if (write_index != sw_index) { struct ce_desc *base = dest_ring->base_addr_owner_space; struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index); /* Return data from completed destination descriptor */ *bufferp = __le32_to_cpu(desc->addr); if (per_transfer_contextp) *per_transfer_contextp = dest_ring->per_transfer_context[sw_index]; /* sanity */ dest_ring->per_transfer_context[sw_index] = NULL; desc->nbytes = 0; /* Update sw_index */ sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index); dest_ring->sw_index = sw_index; ret = 0; } else { ret = -EIO; } spin_unlock_bh(&ar_pci->ce_lock); return ret; } /* * Guts of ath10k_ce_completed_send_next. * The caller takes responsibility for any necessary locking. */ int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state, void **per_transfer_contextp) { struct ath10k_ce_ring *src_ring = ce_state->src_ring; u32 ctrl_addr = ce_state->ctrl_addr; struct ath10k *ar = ce_state->ar; unsigned int nentries_mask = src_ring->nentries_mask; unsigned int sw_index = src_ring->sw_index; unsigned int read_index; if (src_ring->hw_index == sw_index) { /* * The SW completion index has caught up with the cached * version of the HW completion index. * Update the cached HW completion index to see whether * the SW has really caught up to the HW, or if the cached * value of the HW index has become stale. */ read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr); if (read_index == 0xffffffff) return -ENODEV; read_index &= nentries_mask; src_ring->hw_index = read_index; } read_index = src_ring->hw_index; if (read_index == sw_index) return -EIO; if (per_transfer_contextp) *per_transfer_contextp = src_ring->per_transfer_context[sw_index]; /* sanity */ src_ring->per_transfer_context[sw_index] = NULL; /* Update sw_index */ sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index); src_ring->sw_index = sw_index; return 0; } /* NB: Modeled after ath10k_ce_completed_send_next */ int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state, void **per_transfer_contextp, u32 *bufferp, unsigned int *nbytesp, unsigned int *transfer_idp) { struct ath10k_ce_ring *src_ring; unsigned int nentries_mask; unsigned int sw_index; unsigned int write_index; int ret; struct ath10k *ar; struct ath10k_pci *ar_pci; src_ring = ce_state->src_ring; if (!src_ring) return -EIO; ar = ce_state->ar; ar_pci = ath10k_pci_priv(ar); spin_lock_bh(&ar_pci->ce_lock); nentries_mask = src_ring->nentries_mask; sw_index = src_ring->sw_index; write_index = src_ring->write_index; if (write_index != sw_index) { struct ce_desc *base = src_ring->base_addr_owner_space; struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index); /* Return data from completed source descriptor */ *bufferp = __le32_to_cpu(desc->addr); *nbytesp = __le16_to_cpu(desc->nbytes); *transfer_idp = MS(__le16_to_cpu(desc->flags), CE_DESC_FLAGS_META_DATA); if (per_transfer_contextp) *per_transfer_contextp = src_ring->per_transfer_context[sw_index]; /* sanity */ src_ring->per_transfer_context[sw_index] = NULL; /* Update sw_index */ sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index); src_ring->sw_index = sw_index; ret = 0; } else { ret = -EIO; } spin_unlock_bh(&ar_pci->ce_lock); return ret; } int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state, void **per_transfer_contextp) { struct ath10k *ar = ce_state->ar; struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int ret; spin_lock_bh(&ar_pci->ce_lock); ret = ath10k_ce_completed_send_next_nolock(ce_state, per_transfer_contextp); spin_unlock_bh(&ar_pci->ce_lock); return ret; } /* * Guts of interrupt handler for per-engine interrupts on a particular CE. * * Invokes registered callbacks for recv_complete, * send_complete, and watermarks. */ void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id]; u32 ctrl_addr = ce_state->ctrl_addr; spin_lock_bh(&ar_pci->ce_lock); /* Clear the copy-complete interrupts that will be handled here. */ ath10k_ce_engine_int_status_clear(ar, ctrl_addr, HOST_IS_COPY_COMPLETE_MASK); spin_unlock_bh(&ar_pci->ce_lock); if (ce_state->recv_cb) ce_state->recv_cb(ce_state); if (ce_state->send_cb) ce_state->send_cb(ce_state); spin_lock_bh(&ar_pci->ce_lock); /* * Misc CE interrupts are not being handled, but still need * to be cleared. */ ath10k_ce_engine_int_status_clear(ar, ctrl_addr, CE_WATERMARK_MASK); spin_unlock_bh(&ar_pci->ce_lock); } /* * Handler for per-engine interrupts on ALL active CEs. * This is used in cases where the system is sharing a * single interrput for all CEs */ void ath10k_ce_per_engine_service_any(struct ath10k *ar) { int ce_id; u32 intr_summary; intr_summary = CE_INTERRUPT_SUMMARY(ar); for (ce_id = 0; intr_summary && (ce_id < CE_COUNT); ce_id++) { if (intr_summary & (1 << ce_id)) intr_summary &= ~(1 << ce_id); else /* no intr pending on this CE */ continue; ath10k_ce_per_engine_service(ar, ce_id); } } /* * Adjust interrupts for the copy complete handler. * If it's needed for either send or recv, then unmask * this interrupt; otherwise, mask it. * * Called with ce_lock held. */ static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state) { u32 ctrl_addr = ce_state->ctrl_addr; struct ath10k *ar = ce_state->ar; bool disable_copy_compl_intr = ce_state->attr_flags & CE_ATTR_DIS_INTR; if ((!disable_copy_compl_intr) && (ce_state->send_cb || ce_state->recv_cb)) ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr); else ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr); ath10k_ce_watermark_intr_disable(ar, ctrl_addr); } int ath10k_ce_disable_interrupts(struct ath10k *ar) { int ce_id; for (ce_id = 0; ce_id < CE_COUNT; ce_id++) { u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id); ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr); ath10k_ce_error_intr_disable(ar, ctrl_addr); ath10k_ce_watermark_intr_disable(ar, ctrl_addr); } return 0; } void ath10k_ce_enable_interrupts(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int ce_id; /* Skip the last copy engine, CE7 the diagnostic window, as that * uses polling and isn't initialized for interrupts. */ for (ce_id = 0; ce_id < CE_COUNT - 1; ce_id++) ath10k_ce_per_engine_handler_adjust(&ar_pci->ce_states[ce_id]); } static int ath10k_ce_init_src_ring(struct ath10k *ar, unsigned int ce_id, const struct ce_attr *attr) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id]; struct ath10k_ce_ring *src_ring = ce_state->src_ring; u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id); nentries = roundup_pow_of_two(attr->src_nentries); memset(src_ring->base_addr_owner_space, 0, nentries * sizeof(struct ce_desc)); src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr); src_ring->sw_index &= src_ring->nentries_mask; src_ring->hw_index = src_ring->sw_index; src_ring->write_index = ath10k_ce_src_ring_write_index_get(ar, ctrl_addr); src_ring->write_index &= src_ring->nentries_mask; ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr, src_ring->base_addr_ce_space); ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries); ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max); ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0); ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0); ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries); ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot init ce src ring id %d entries %d base_addr %p\n", ce_id, nentries, src_ring->base_addr_owner_space); return 0; } static int ath10k_ce_init_dest_ring(struct ath10k *ar, unsigned int ce_id, const struct ce_attr *attr) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id]; struct ath10k_ce_ring *dest_ring = ce_state->dest_ring; u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id); nentries = roundup_pow_of_two(attr->dest_nentries); memset(dest_ring->base_addr_owner_space, 0, nentries * sizeof(struct ce_desc)); dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr); dest_ring->sw_index &= dest_ring->nentries_mask; dest_ring->write_index = ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr); dest_ring->write_index &= dest_ring->nentries_mask; ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr, dest_ring->base_addr_ce_space); ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries); ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0); ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0); ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries); ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot ce dest ring id %d entries %d base_addr %p\n", ce_id, nentries, dest_ring->base_addr_owner_space); return 0; } static struct ath10k_ce_ring * ath10k_ce_alloc_src_ring(struct ath10k *ar, unsigned int ce_id, const struct ce_attr *attr) { struct ath10k_ce_ring *src_ring; u32 nentries = attr->src_nentries; dma_addr_t base_addr; nentries = roundup_pow_of_two(nentries); src_ring = kzalloc(sizeof(*src_ring) + (nentries * sizeof(*src_ring->per_transfer_context)), GFP_KERNEL); if (src_ring == NULL) return ERR_PTR(-ENOMEM); src_ring->nentries = nentries; src_ring->nentries_mask = nentries - 1; /* * Legacy platforms that do not support cache * coherent DMA are unsupported */ src_ring->base_addr_owner_space_unaligned = dma_alloc_coherent(ar->dev, (nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN), &base_addr, GFP_KERNEL); if (!src_ring->base_addr_owner_space_unaligned) { kfree(src_ring); return ERR_PTR(-ENOMEM); } src_ring->base_addr_ce_space_unaligned = base_addr; src_ring->base_addr_owner_space = PTR_ALIGN( src_ring->base_addr_owner_space_unaligned, CE_DESC_RING_ALIGN); src_ring->base_addr_ce_space = ALIGN( src_ring->base_addr_ce_space_unaligned, CE_DESC_RING_ALIGN); return src_ring; } static struct ath10k_ce_ring * ath10k_ce_alloc_dest_ring(struct ath10k *ar, unsigned int ce_id, const struct ce_attr *attr) { struct ath10k_ce_ring *dest_ring; u32 nentries; dma_addr_t base_addr; nentries = roundup_pow_of_two(attr->dest_nentries); dest_ring = kzalloc(sizeof(*dest_ring) + (nentries * sizeof(*dest_ring->per_transfer_context)), GFP_KERNEL); if (dest_ring == NULL) return ERR_PTR(-ENOMEM); dest_ring->nentries = nentries; dest_ring->nentries_mask = nentries - 1; /* * Legacy platforms that do not support cache * coherent DMA are unsupported */ dest_ring->base_addr_owner_space_unaligned = dma_alloc_coherent(ar->dev, (nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN), &base_addr, GFP_KERNEL); if (!dest_ring->base_addr_owner_space_unaligned) { kfree(dest_ring); return ERR_PTR(-ENOMEM); } dest_ring->base_addr_ce_space_unaligned = base_addr; /* * Correctly initialize memory to 0 to prevent garbage * data crashing system when download firmware */ memset(dest_ring->base_addr_owner_space_unaligned, 0, nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN); dest_ring->base_addr_owner_space = PTR_ALIGN( dest_ring->base_addr_owner_space_unaligned, CE_DESC_RING_ALIGN); dest_ring->base_addr_ce_space = ALIGN( dest_ring->base_addr_ce_space_unaligned, CE_DESC_RING_ALIGN); return dest_ring; } /* * Initialize a Copy Engine based on caller-supplied attributes. * This may be called once to initialize both source and destination * rings or it may be called twice for separate source and destination * initialization. It may be that only one side or the other is * initialized by software/firmware. */ int ath10k_ce_init_pipe(struct ath10k *ar, unsigned int ce_id, const struct ce_attr *attr) { int ret; if (attr->src_nentries) { ret = ath10k_ce_init_src_ring(ar, ce_id, attr); if (ret) { ath10k_err(ar, "Failed to initialize CE src ring for ID: %d (%d)\n", ce_id, ret); return ret; } } if (attr->dest_nentries) { ret = ath10k_ce_init_dest_ring(ar, ce_id, attr); if (ret) { ath10k_err(ar, "Failed to initialize CE dest ring for ID: %d (%d)\n", ce_id, ret); return ret; } } return 0; } static void ath10k_ce_deinit_src_ring(struct ath10k *ar, unsigned int ce_id) { u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id); ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr, 0); ath10k_ce_src_ring_size_set(ar, ctrl_addr, 0); ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, 0); ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, 0); } static void ath10k_ce_deinit_dest_ring(struct ath10k *ar, unsigned int ce_id) { u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id); ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr, 0); ath10k_ce_dest_ring_size_set(ar, ctrl_addr, 0); ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, 0); } void ath10k_ce_deinit_pipe(struct ath10k *ar, unsigned int ce_id) { ath10k_ce_deinit_src_ring(ar, ce_id); ath10k_ce_deinit_dest_ring(ar, ce_id); } int ath10k_ce_alloc_pipe(struct ath10k *ar, int ce_id, const struct ce_attr *attr) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id]; int ret; /* * Make sure there's enough CE ringbuffer entries for HTT TX to avoid * additional TX locking checks. * * For the lack of a better place do the check here. */ BUILD_BUG_ON(2*TARGET_NUM_MSDU_DESC > (CE_HTT_H2T_MSG_SRC_NENTRIES - 1)); BUILD_BUG_ON(2*TARGET_10X_NUM_MSDU_DESC > (CE_HTT_H2T_MSG_SRC_NENTRIES - 1)); BUILD_BUG_ON(2*TARGET_TLV_NUM_MSDU_DESC > (CE_HTT_H2T_MSG_SRC_NENTRIES - 1)); ce_state->ar = ar; ce_state->id = ce_id; ce_state->ctrl_addr = ath10k_ce_base_address(ar, ce_id); ce_state->attr_flags = attr->flags; ce_state->src_sz_max = attr->src_sz_max; if (attr->src_nentries) ce_state->send_cb = attr->send_cb; if (attr->dest_nentries) ce_state->recv_cb = attr->recv_cb; if (attr->src_nentries) { ce_state->src_ring = ath10k_ce_alloc_src_ring(ar, ce_id, attr); if (IS_ERR(ce_state->src_ring)) { ret = PTR_ERR(ce_state->src_ring); ath10k_err(ar, "failed to allocate copy engine source ring %d: %d\n", ce_id, ret); ce_state->src_ring = NULL; return ret; } } if (attr->dest_nentries) { ce_state->dest_ring = ath10k_ce_alloc_dest_ring(ar, ce_id, attr); if (IS_ERR(ce_state->dest_ring)) { ret = PTR_ERR(ce_state->dest_ring); ath10k_err(ar, "failed to allocate copy engine destination ring %d: %d\n", ce_id, ret); ce_state->dest_ring = NULL; return ret; } } return 0; } void ath10k_ce_free_pipe(struct ath10k *ar, int ce_id) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id]; if (ce_state->src_ring) { dma_free_coherent(ar->dev, (ce_state->src_ring->nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN), ce_state->src_ring->base_addr_owner_space, ce_state->src_ring->base_addr_ce_space); kfree(ce_state->src_ring); } if (ce_state->dest_ring) { dma_free_coherent(ar->dev, (ce_state->dest_ring->nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN), ce_state->dest_ring->base_addr_owner_space, ce_state->dest_ring->base_addr_ce_space); kfree(ce_state->dest_ring); } ce_state->src_ring = NULL; ce_state->dest_ring = NULL; }