/* * STM32 ALSA SoC Digital Audio Interface (SAI) driver. * * Copyright (C) 2016, STMicroelectronics - All Rights Reserved * Author(s): Olivier Moysan for STMicroelectronics. * * License terms: GPL V2.0. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more * details. */ #include #include #include #include #include #include #include #include #include #include #include #include "stm32_sai.h" #define SAI_FREE_PROTOCOL 0x0 #define SAI_SPDIF_PROTOCOL 0x1 #define SAI_SLOT_SIZE_AUTO 0x0 #define SAI_SLOT_SIZE_16 0x1 #define SAI_SLOT_SIZE_32 0x2 #define SAI_DATASIZE_8 0x2 #define SAI_DATASIZE_10 0x3 #define SAI_DATASIZE_16 0x4 #define SAI_DATASIZE_20 0x5 #define SAI_DATASIZE_24 0x6 #define SAI_DATASIZE_32 0x7 #define STM_SAI_FIFO_SIZE 8 #define STM_SAI_DAI_NAME_SIZE 15 #define STM_SAI_IS_PLAYBACK(ip) ((ip)->dir == SNDRV_PCM_STREAM_PLAYBACK) #define STM_SAI_IS_CAPTURE(ip) ((ip)->dir == SNDRV_PCM_STREAM_CAPTURE) #define STM_SAI_A_ID 0x0 #define STM_SAI_B_ID 0x1 #define STM_SAI_IS_SUB_A(x) ((x)->id == STM_SAI_A_ID) #define STM_SAI_IS_SUB_B(x) ((x)->id == STM_SAI_B_ID) #define STM_SAI_BLOCK_NAME(x) (((x)->id == STM_SAI_A_ID) ? "A" : "B") #define SAI_SYNC_NONE 0x0 #define SAI_SYNC_INTERNAL 0x1 #define SAI_SYNC_EXTERNAL 0x2 #define STM_SAI_PROTOCOL_IS_SPDIF(ip) ((ip)->spdif) #define STM_SAI_HAS_SPDIF(x) ((x)->pdata->conf->has_spdif) #define STM_SAI_HAS_EXT_SYNC(x) (!STM_SAI_IS_F4(sai->pdata)) #define SAI_IEC60958_BLOCK_FRAMES 192 #define SAI_IEC60958_STATUS_BYTES 24 #define SAI_MCLK_NAME_LEN 32 /** * struct stm32_sai_sub_data - private data of SAI sub block (block A or B) * @pdev: device data pointer * @regmap: SAI register map pointer * @regmap_config: SAI sub block register map configuration pointer * @dma_params: dma configuration data for rx or tx channel * @cpu_dai_drv: DAI driver data pointer * @cpu_dai: DAI runtime data pointer * @substream: PCM substream data pointer * @pdata: SAI block parent data pointer * @np_sync_provider: synchronization provider node * @sai_ck: kernel clock feeding the SAI clock generator * @sai_mclk: master clock from SAI mclk provider * @phys_addr: SAI registers physical base address * @mclk_rate: SAI block master clock frequency (Hz). set at init * @id: SAI sub block id corresponding to sub-block A or B * @dir: SAI block direction (playback or capture). set at init * @master: SAI block mode flag. (true=master, false=slave) set at init * @spdif: SAI S/PDIF iec60958 mode flag. set at init * @fmt: SAI block format. relevant only for custom protocols. set at init * @sync: SAI block synchronization mode. (none, internal or external) * @synco: SAI block ext sync source (provider setting). (none, sub-block A/B) * @synci: SAI block ext sync source (client setting). (SAI sync provider index) * @fs_length: frame synchronization length. depends on protocol settings * @slots: rx or tx slot number * @slot_width: rx or tx slot width in bits * @slot_mask: rx or tx active slots mask. set at init or at runtime * @data_size: PCM data width. corresponds to PCM substream width. * @spdif_frm_cnt: S/PDIF playback frame counter * @iec958: iec958 data * @ctrl_lock: control lock * @irq_lock: prevent race condition with IRQ */ struct stm32_sai_sub_data { struct platform_device *pdev; struct regmap *regmap; const struct regmap_config *regmap_config; struct snd_dmaengine_dai_dma_data dma_params; struct snd_soc_dai_driver *cpu_dai_drv; struct snd_soc_dai *cpu_dai; struct snd_pcm_substream *substream; struct stm32_sai_data *pdata; struct device_node *np_sync_provider; struct clk *sai_ck; struct clk *sai_mclk; dma_addr_t phys_addr; unsigned int mclk_rate; unsigned int id; int dir; bool master; bool spdif; int fmt; int sync; int synco; int synci; int fs_length; int slots; int slot_width; int slot_mask; int data_size; unsigned int spdif_frm_cnt; struct snd_aes_iec958 iec958; struct mutex ctrl_lock; /* protect resources accessed by controls */ spinlock_t irq_lock; /* used to prevent race condition with IRQ */ }; enum stm32_sai_fifo_th { STM_SAI_FIFO_TH_EMPTY, STM_SAI_FIFO_TH_QUARTER, STM_SAI_FIFO_TH_HALF, STM_SAI_FIFO_TH_3_QUARTER, STM_SAI_FIFO_TH_FULL, }; static bool stm32_sai_sub_readable_reg(struct device *dev, unsigned int reg) { switch (reg) { case STM_SAI_CR1_REGX: case STM_SAI_CR2_REGX: case STM_SAI_FRCR_REGX: case STM_SAI_SLOTR_REGX: case STM_SAI_IMR_REGX: case STM_SAI_SR_REGX: case STM_SAI_CLRFR_REGX: case STM_SAI_DR_REGX: case STM_SAI_PDMCR_REGX: case STM_SAI_PDMLY_REGX: return true; default: return false; } } static bool stm32_sai_sub_volatile_reg(struct device *dev, unsigned int reg) { switch (reg) { case STM_SAI_DR_REGX: case STM_SAI_SR_REGX: return true; default: return false; } } static bool stm32_sai_sub_writeable_reg(struct device *dev, unsigned int reg) { switch (reg) { case STM_SAI_CR1_REGX: case STM_SAI_CR2_REGX: case STM_SAI_FRCR_REGX: case STM_SAI_SLOTR_REGX: case STM_SAI_IMR_REGX: case STM_SAI_CLRFR_REGX: case STM_SAI_DR_REGX: case STM_SAI_PDMCR_REGX: case STM_SAI_PDMLY_REGX: return true; default: return false; } } static const struct regmap_config stm32_sai_sub_regmap_config_f4 = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = STM_SAI_DR_REGX, .readable_reg = stm32_sai_sub_readable_reg, .volatile_reg = stm32_sai_sub_volatile_reg, .writeable_reg = stm32_sai_sub_writeable_reg, .fast_io = true, .cache_type = REGCACHE_FLAT, }; static const struct regmap_config stm32_sai_sub_regmap_config_h7 = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = STM_SAI_PDMLY_REGX, .readable_reg = stm32_sai_sub_readable_reg, .volatile_reg = stm32_sai_sub_volatile_reg, .writeable_reg = stm32_sai_sub_writeable_reg, .fast_io = true, .cache_type = REGCACHE_FLAT, }; static int snd_pcm_iec958_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; uinfo->count = 1; return 0; } static int snd_pcm_iec958_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *uctl) { struct stm32_sai_sub_data *sai = snd_kcontrol_chip(kcontrol); mutex_lock(&sai->ctrl_lock); memcpy(uctl->value.iec958.status, sai->iec958.status, 4); mutex_unlock(&sai->ctrl_lock); return 0; } static int snd_pcm_iec958_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *uctl) { struct stm32_sai_sub_data *sai = snd_kcontrol_chip(kcontrol); mutex_lock(&sai->ctrl_lock); memcpy(sai->iec958.status, uctl->value.iec958.status, 4); mutex_unlock(&sai->ctrl_lock); return 0; } static const struct snd_kcontrol_new iec958_ctls = { .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_VOLATILE), .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT), .info = snd_pcm_iec958_info, .get = snd_pcm_iec958_get, .put = snd_pcm_iec958_put, }; struct stm32_sai_mclk_data { struct clk_hw hw; unsigned long freq; struct stm32_sai_sub_data *sai_data; }; #define to_mclk_data(_hw) container_of(_hw, struct stm32_sai_mclk_data, hw) #define STM32_SAI_MAX_CLKS 1 static int stm32_sai_get_clk_div(struct stm32_sai_sub_data *sai, unsigned long input_rate, unsigned long output_rate) { int version = sai->pdata->conf->version; int div; div = DIV_ROUND_CLOSEST(input_rate, output_rate); if (div > SAI_XCR1_MCKDIV_MAX(version)) { dev_err(&sai->pdev->dev, "Divider %d out of range\n", div); return -EINVAL; } dev_dbg(&sai->pdev->dev, "SAI divider %d\n", div); if (input_rate % div) dev_dbg(&sai->pdev->dev, "Rate not accurate. requested (%ld), actual (%ld)\n", output_rate, input_rate / div); return div; } static int stm32_sai_set_clk_div(struct stm32_sai_sub_data *sai, unsigned int div) { int version = sai->pdata->conf->version; int ret, cr1, mask; if (div > SAI_XCR1_MCKDIV_MAX(version)) { dev_err(&sai->pdev->dev, "Divider %d out of range\n", div); return -EINVAL; } mask = SAI_XCR1_MCKDIV_MASK(SAI_XCR1_MCKDIV_WIDTH(version)); cr1 = SAI_XCR1_MCKDIV_SET(div); ret = regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX, mask, cr1); if (ret < 0) dev_err(&sai->pdev->dev, "Failed to update CR1 register\n"); return ret; } static long stm32_sai_mclk_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { struct stm32_sai_mclk_data *mclk = to_mclk_data(hw); struct stm32_sai_sub_data *sai = mclk->sai_data; int div; div = stm32_sai_get_clk_div(sai, *prate, rate); if (div < 0) return div; mclk->freq = *prate / div; return mclk->freq; } static unsigned long stm32_sai_mclk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct stm32_sai_mclk_data *mclk = to_mclk_data(hw); return mclk->freq; } static int stm32_sai_mclk_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct stm32_sai_mclk_data *mclk = to_mclk_data(hw); struct stm32_sai_sub_data *sai = mclk->sai_data; int div, ret; div = stm32_sai_get_clk_div(sai, parent_rate, rate); if (div < 0) return div; ret = stm32_sai_set_clk_div(sai, div); if (ret) return ret; mclk->freq = rate; return 0; } static int stm32_sai_mclk_enable(struct clk_hw *hw) { struct stm32_sai_mclk_data *mclk = to_mclk_data(hw); struct stm32_sai_sub_data *sai = mclk->sai_data; dev_dbg(&sai->pdev->dev, "Enable master clock\n"); return regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX, SAI_XCR1_MCKEN, SAI_XCR1_MCKEN); } static void stm32_sai_mclk_disable(struct clk_hw *hw) { struct stm32_sai_mclk_data *mclk = to_mclk_data(hw); struct stm32_sai_sub_data *sai = mclk->sai_data; dev_dbg(&sai->pdev->dev, "Disable master clock\n"); regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX, SAI_XCR1_MCKEN, 0); } static const struct clk_ops mclk_ops = { .enable = stm32_sai_mclk_enable, .disable = stm32_sai_mclk_disable, .recalc_rate = stm32_sai_mclk_recalc_rate, .round_rate = stm32_sai_mclk_round_rate, .set_rate = stm32_sai_mclk_set_rate, }; static int stm32_sai_add_mclk_provider(struct stm32_sai_sub_data *sai) { struct clk_hw *hw; struct stm32_sai_mclk_data *mclk; struct device *dev = &sai->pdev->dev; const char *pname = __clk_get_name(sai->sai_ck); char *mclk_name, *p, *s = (char *)pname; int ret, i = 0; mclk = devm_kzalloc(dev, sizeof(*mclk), GFP_KERNEL); if (!mclk) return -ENOMEM; mclk_name = devm_kcalloc(dev, sizeof(char), SAI_MCLK_NAME_LEN, GFP_KERNEL); if (!mclk_name) return -ENOMEM; /* * Forge mclk clock name from parent clock name and suffix. * String after "_" char is stripped in parent name. */ p = mclk_name; while (*s && *s != '_' && (i < (SAI_MCLK_NAME_LEN - 7))) { *p++ = *s++; i++; } STM_SAI_IS_SUB_A(sai) ? strcat(p, "a_mclk") : strcat(p, "b_mclk"); mclk->hw.init = CLK_HW_INIT(mclk_name, pname, &mclk_ops, 0); mclk->sai_data = sai; hw = &mclk->hw; dev_dbg(dev, "Register master clock %s\n", mclk_name); ret = devm_clk_hw_register(&sai->pdev->dev, hw); if (ret) { dev_err(dev, "mclk register returned %d\n", ret); return ret; } sai->sai_mclk = hw->clk; /* register mclk provider */ return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get, hw); } static irqreturn_t stm32_sai_isr(int irq, void *devid) { struct stm32_sai_sub_data *sai = (struct stm32_sai_sub_data *)devid; struct platform_device *pdev = sai->pdev; unsigned int sr, imr, flags; snd_pcm_state_t status = SNDRV_PCM_STATE_RUNNING; regmap_read(sai->regmap, STM_SAI_IMR_REGX, &imr); regmap_read(sai->regmap, STM_SAI_SR_REGX, &sr); flags = sr & imr; if (!flags) return IRQ_NONE; regmap_write_bits(sai->regmap, STM_SAI_CLRFR_REGX, SAI_XCLRFR_MASK, SAI_XCLRFR_MASK); if (!sai->substream) { dev_err(&pdev->dev, "Device stopped. Spurious IRQ 0x%x\n", sr); return IRQ_NONE; } if (flags & SAI_XIMR_OVRUDRIE) { dev_err(&pdev->dev, "IRQ %s\n", STM_SAI_IS_PLAYBACK(sai) ? "underrun" : "overrun"); status = SNDRV_PCM_STATE_XRUN; } if (flags & SAI_XIMR_MUTEDETIE) dev_dbg(&pdev->dev, "IRQ mute detected\n"); if (flags & SAI_XIMR_WCKCFGIE) { dev_err(&pdev->dev, "IRQ wrong clock configuration\n"); status = SNDRV_PCM_STATE_DISCONNECTED; } if (flags & SAI_XIMR_CNRDYIE) dev_err(&pdev->dev, "IRQ Codec not ready\n"); if (flags & SAI_XIMR_AFSDETIE) { dev_err(&pdev->dev, "IRQ Anticipated frame synchro\n"); status = SNDRV_PCM_STATE_XRUN; } if (flags & SAI_XIMR_LFSDETIE) { dev_err(&pdev->dev, "IRQ Late frame synchro\n"); status = SNDRV_PCM_STATE_XRUN; } spin_lock(&sai->irq_lock); if (status != SNDRV_PCM_STATE_RUNNING && sai->substream) snd_pcm_stop_xrun(sai->substream); spin_unlock(&sai->irq_lock); return IRQ_HANDLED; } static int stm32_sai_set_sysclk(struct snd_soc_dai *cpu_dai, int clk_id, unsigned int freq, int dir) { struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai); int ret; if (dir == SND_SOC_CLOCK_OUT) { ret = regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX, SAI_XCR1_NODIV, (unsigned int)~SAI_XCR1_NODIV); if (ret < 0) return ret; dev_dbg(cpu_dai->dev, "SAI MCLK frequency is %uHz\n", freq); sai->mclk_rate = freq; if (sai->sai_mclk) { ret = clk_set_rate_exclusive(sai->sai_mclk, sai->mclk_rate); if (ret) { dev_err(cpu_dai->dev, "Could not set mclk rate\n"); return ret; } } } return 0; } static int stm32_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask, u32 rx_mask, int slots, int slot_width) { struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai); int slotr, slotr_mask, slot_size; if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) { dev_warn(cpu_dai->dev, "Slot setting relevant only for TDM\n"); return 0; } dev_dbg(cpu_dai->dev, "Masks tx/rx:%#x/%#x, slots:%d, width:%d\n", tx_mask, rx_mask, slots, slot_width); switch (slot_width) { case 16: slot_size = SAI_SLOT_SIZE_16; break; case 32: slot_size = SAI_SLOT_SIZE_32; break; default: slot_size = SAI_SLOT_SIZE_AUTO; break; } slotr = SAI_XSLOTR_SLOTSZ_SET(slot_size) | SAI_XSLOTR_NBSLOT_SET(slots - 1); slotr_mask = SAI_XSLOTR_SLOTSZ_MASK | SAI_XSLOTR_NBSLOT_MASK; /* tx/rx mask set in machine init, if slot number defined in DT */ if (STM_SAI_IS_PLAYBACK(sai)) { sai->slot_mask = tx_mask; slotr |= SAI_XSLOTR_SLOTEN_SET(tx_mask); } if (STM_SAI_IS_CAPTURE(sai)) { sai->slot_mask = rx_mask; slotr |= SAI_XSLOTR_SLOTEN_SET(rx_mask); } slotr_mask |= SAI_XSLOTR_SLOTEN_MASK; regmap_update_bits(sai->regmap, STM_SAI_SLOTR_REGX, slotr_mask, slotr); sai->slot_width = slot_width; sai->slots = slots; return 0; } static int stm32_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt) { struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai); int cr1, frcr = 0; int cr1_mask, frcr_mask = 0; int ret; dev_dbg(cpu_dai->dev, "fmt %x\n", fmt); /* Do not generate master by default */ cr1 = SAI_XCR1_NODIV; cr1_mask = SAI_XCR1_NODIV; cr1_mask |= SAI_XCR1_PRTCFG_MASK; if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) { cr1 |= SAI_XCR1_PRTCFG_SET(SAI_SPDIF_PROTOCOL); goto conf_update; } cr1 |= SAI_XCR1_PRTCFG_SET(SAI_FREE_PROTOCOL); switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { /* SCK active high for all protocols */ case SND_SOC_DAIFMT_I2S: cr1 |= SAI_XCR1_CKSTR; frcr |= SAI_XFRCR_FSOFF | SAI_XFRCR_FSDEF; break; /* Left justified */ case SND_SOC_DAIFMT_MSB: frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF; break; /* Right justified */ case SND_SOC_DAIFMT_LSB: frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF; break; case SND_SOC_DAIFMT_DSP_A: frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF; break; case SND_SOC_DAIFMT_DSP_B: frcr |= SAI_XFRCR_FSPOL; break; default: dev_err(cpu_dai->dev, "Unsupported protocol %#x\n", fmt & SND_SOC_DAIFMT_FORMAT_MASK); return -EINVAL; } cr1_mask |= SAI_XCR1_CKSTR; frcr_mask |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF | SAI_XFRCR_FSDEF; /* DAI clock strobing. Invert setting previously set */ switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: break; case SND_SOC_DAIFMT_IB_NF: cr1 ^= SAI_XCR1_CKSTR; break; case SND_SOC_DAIFMT_NB_IF: frcr ^= SAI_XFRCR_FSPOL; break; case SND_SOC_DAIFMT_IB_IF: /* Invert fs & sck */ cr1 ^= SAI_XCR1_CKSTR; frcr ^= SAI_XFRCR_FSPOL; break; default: dev_err(cpu_dai->dev, "Unsupported strobing %#x\n", fmt & SND_SOC_DAIFMT_INV_MASK); return -EINVAL; } cr1_mask |= SAI_XCR1_CKSTR; frcr_mask |= SAI_XFRCR_FSPOL; regmap_update_bits(sai->regmap, STM_SAI_FRCR_REGX, frcr_mask, frcr); /* DAI clock master masks */ switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBM_CFM: /* codec is master */ cr1 |= SAI_XCR1_SLAVE; sai->master = false; break; case SND_SOC_DAIFMT_CBS_CFS: sai->master = true; break; default: dev_err(cpu_dai->dev, "Unsupported mode %#x\n", fmt & SND_SOC_DAIFMT_MASTER_MASK); return -EINVAL; } /* Set slave mode if sub-block is synchronized with another SAI */ if (sai->sync) { dev_dbg(cpu_dai->dev, "Synchronized SAI configured as slave\n"); cr1 |= SAI_XCR1_SLAVE; sai->master = false; } cr1_mask |= SAI_XCR1_SLAVE; conf_update: ret = regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX, cr1_mask, cr1); if (ret < 0) { dev_err(cpu_dai->dev, "Failed to update CR1 register\n"); return ret; } sai->fmt = fmt; return 0; } static int stm32_sai_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *cpu_dai) { struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai); int imr, cr2, ret; unsigned long flags; spin_lock_irqsave(&sai->irq_lock, flags); sai->substream = substream; spin_unlock_irqrestore(&sai->irq_lock, flags); if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) { snd_pcm_hw_constraint_mask64(substream->runtime, SNDRV_PCM_HW_PARAM_FORMAT, SNDRV_PCM_FMTBIT_S32_LE); snd_pcm_hw_constraint_single(substream->runtime, SNDRV_PCM_HW_PARAM_CHANNELS, 2); } ret = clk_prepare_enable(sai->sai_ck); if (ret < 0) { dev_err(cpu_dai->dev, "Failed to enable clock: %d\n", ret); return ret; } /* Enable ITs */ regmap_write_bits(sai->regmap, STM_SAI_CLRFR_REGX, SAI_XCLRFR_MASK, SAI_XCLRFR_MASK); imr = SAI_XIMR_OVRUDRIE; if (STM_SAI_IS_CAPTURE(sai)) { regmap_read(sai->regmap, STM_SAI_CR2_REGX, &cr2); if (cr2 & SAI_XCR2_MUTECNT_MASK) imr |= SAI_XIMR_MUTEDETIE; } if (sai->master) imr |= SAI_XIMR_WCKCFGIE; else imr |= SAI_XIMR_AFSDETIE | SAI_XIMR_LFSDETIE; regmap_update_bits(sai->regmap, STM_SAI_IMR_REGX, SAI_XIMR_MASK, imr); return 0; } static int stm32_sai_set_config(struct snd_soc_dai *cpu_dai, struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai); int cr1, cr1_mask, ret; /* * DMA bursts increment is set to 4 words. * SAI fifo threshold is set to half fifo, to keep enough space * for DMA incoming bursts. */ regmap_write_bits(sai->regmap, STM_SAI_CR2_REGX, SAI_XCR2_FFLUSH | SAI_XCR2_FTH_MASK, SAI_XCR2_FFLUSH | SAI_XCR2_FTH_SET(STM_SAI_FIFO_TH_HALF)); /* DS bits in CR1 not set for SPDIF (size forced to 24 bits).*/ if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) { sai->spdif_frm_cnt = 0; return 0; } /* Mode, data format and channel config */ cr1_mask = SAI_XCR1_DS_MASK; switch (params_format(params)) { case SNDRV_PCM_FORMAT_S8: cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_8); break; case SNDRV_PCM_FORMAT_S16_LE: cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_16); break; case SNDRV_PCM_FORMAT_S32_LE: cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_32); break; default: dev_err(cpu_dai->dev, "Data format not supported"); return -EINVAL; } cr1_mask |= SAI_XCR1_MONO; if ((sai->slots == 2) && (params_channels(params) == 1)) cr1 |= SAI_XCR1_MONO; ret = regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX, cr1_mask, cr1); if (ret < 0) { dev_err(cpu_dai->dev, "Failed to update CR1 register\n"); return ret; } return 0; } static int stm32_sai_set_slots(struct snd_soc_dai *cpu_dai) { struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai); int slotr, slot_sz; regmap_read(sai->regmap, STM_SAI_SLOTR_REGX, &slotr); /* * If SLOTSZ is set to auto in SLOTR, align slot width on data size * By default slot width = data size, if not forced from DT */ slot_sz = slotr & SAI_XSLOTR_SLOTSZ_MASK; if (slot_sz == SAI_XSLOTR_SLOTSZ_SET(SAI_SLOT_SIZE_AUTO)) sai->slot_width = sai->data_size; if (sai->slot_width < sai->data_size) { dev_err(cpu_dai->dev, "Data size %d larger than slot width\n", sai->data_size); return -EINVAL; } /* Slot number is set to 2, if not specified in DT */ if (!sai->slots) sai->slots = 2; /* The number of slots in the audio frame is equal to NBSLOT[3:0] + 1*/ regmap_update_bits(sai->regmap, STM_SAI_SLOTR_REGX, SAI_XSLOTR_NBSLOT_MASK, SAI_XSLOTR_NBSLOT_SET((sai->slots - 1))); /* Set default slots mask if not already set from DT */ if (!(slotr & SAI_XSLOTR_SLOTEN_MASK)) { sai->slot_mask = (1 << sai->slots) - 1; regmap_update_bits(sai->regmap, STM_SAI_SLOTR_REGX, SAI_XSLOTR_SLOTEN_MASK, SAI_XSLOTR_SLOTEN_SET(sai->slot_mask)); } dev_dbg(cpu_dai->dev, "Slots %d, slot width %d\n", sai->slots, sai->slot_width); return 0; } static void stm32_sai_set_frame(struct snd_soc_dai *cpu_dai) { struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai); int fs_active, offset, format; int frcr, frcr_mask; format = sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK; sai->fs_length = sai->slot_width * sai->slots; fs_active = sai->fs_length / 2; if ((format == SND_SOC_DAIFMT_DSP_A) || (format == SND_SOC_DAIFMT_DSP_B)) fs_active = 1; frcr = SAI_XFRCR_FRL_SET((sai->fs_length - 1)); frcr |= SAI_XFRCR_FSALL_SET((fs_active - 1)); frcr_mask = SAI_XFRCR_FRL_MASK | SAI_XFRCR_FSALL_MASK; dev_dbg(cpu_dai->dev, "Frame length %d, frame active %d\n", sai->fs_length, fs_active); regmap_update_bits(sai->regmap, STM_SAI_FRCR_REGX, frcr_mask, frcr); if ((sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_LSB) { offset = sai->slot_width - sai->data_size; regmap_update_bits(sai->regmap, STM_SAI_SLOTR_REGX, SAI_XSLOTR_FBOFF_MASK, SAI_XSLOTR_FBOFF_SET(offset)); } } static void stm32_sai_init_iec958_status(struct stm32_sai_sub_data *sai) { unsigned char *cs = sai->iec958.status; cs[0] = IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS_NONE; cs[1] = IEC958_AES1_CON_GENERAL; cs[2] = IEC958_AES2_CON_SOURCE_UNSPEC | IEC958_AES2_CON_CHANNEL_UNSPEC; cs[3] = IEC958_AES3_CON_CLOCK_1000PPM | IEC958_AES3_CON_FS_NOTID; } static void stm32_sai_set_iec958_status(struct stm32_sai_sub_data *sai, struct snd_pcm_runtime *runtime) { if (!runtime) return; /* Force the sample rate according to runtime rate */ mutex_lock(&sai->ctrl_lock); switch (runtime->rate) { case 22050: sai->iec958.status[3] = IEC958_AES3_CON_FS_22050; break; case 44100: sai->iec958.status[3] = IEC958_AES3_CON_FS_44100; break; case 88200: sai->iec958.status[3] = IEC958_AES3_CON_FS_88200; break; case 176400: sai->iec958.status[3] = IEC958_AES3_CON_FS_176400; break; case 24000: sai->iec958.status[3] = IEC958_AES3_CON_FS_24000; break; case 48000: sai->iec958.status[3] = IEC958_AES3_CON_FS_48000; break; case 96000: sai->iec958.status[3] = IEC958_AES3_CON_FS_96000; break; case 192000: sai->iec958.status[3] = IEC958_AES3_CON_FS_192000; break; case 32000: sai->iec958.status[3] = IEC958_AES3_CON_FS_32000; break; default: sai->iec958.status[3] = IEC958_AES3_CON_FS_NOTID; break; } mutex_unlock(&sai->ctrl_lock); } static int stm32_sai_configure_clock(struct snd_soc_dai *cpu_dai, struct snd_pcm_hw_params *params) { struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai); int div = 0, cr1 = 0; int sai_clk_rate, mclk_ratio, den; unsigned int rate = params_rate(params); if (!(rate % 11025)) clk_set_parent(sai->sai_ck, sai->pdata->clk_x11k); else clk_set_parent(sai->sai_ck, sai->pdata->clk_x8k); sai_clk_rate = clk_get_rate(sai->sai_ck); if (STM_SAI_IS_F4(sai->pdata)) { /* mclk on (NODIV=0) * mclk_rate = 256 * fs * MCKDIV = 0 if sai_ck < 3/2 * mclk_rate * MCKDIV = sai_ck / (2 * mclk_rate) otherwise * mclk off (NODIV=1) * MCKDIV ignored. sck = sai_ck */ if (!sai->mclk_rate) return 0; if (2 * sai_clk_rate >= 3 * sai->mclk_rate) { div = stm32_sai_get_clk_div(sai, sai_clk_rate, 2 * sai->mclk_rate); if (div < 0) return div; } } else { /* * TDM mode : * mclk on * MCKDIV = sai_ck / (ws x 256) (NOMCK=0. OSR=0) * MCKDIV = sai_ck / (ws x 512) (NOMCK=0. OSR=1) * mclk off * MCKDIV = sai_ck / (frl x ws) (NOMCK=1) * Note: NOMCK/NODIV correspond to same bit. */ if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) { div = stm32_sai_get_clk_div(sai, sai_clk_rate, rate * 128); if (div < 0) return div; } else { if (sai->mclk_rate) { mclk_ratio = sai->mclk_rate / rate; if (mclk_ratio == 512) { cr1 = SAI_XCR1_OSR; } else if (mclk_ratio != 256) { dev_err(cpu_dai->dev, "Wrong mclk ratio %d\n", mclk_ratio); return -EINVAL; } regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX, SAI_XCR1_OSR, cr1); div = stm32_sai_get_clk_div(sai, sai_clk_rate, sai->mclk_rate); if (div < 0) return div; } else { /* mclk-fs not set, master clock not active */ den = sai->fs_length * params_rate(params); div = stm32_sai_get_clk_div(sai, sai_clk_rate, den); if (div < 0) return div; } } } return stm32_sai_set_clk_div(sai, div); } static int stm32_sai_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *cpu_dai) { struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai); int ret; sai->data_size = params_width(params); if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) { /* Rate not already set in runtime structure */ substream->runtime->rate = params_rate(params); stm32_sai_set_iec958_status(sai, substream->runtime); } else { ret = stm32_sai_set_slots(cpu_dai); if (ret < 0) return ret; stm32_sai_set_frame(cpu_dai); } ret = stm32_sai_set_config(cpu_dai, substream, params); if (ret) return ret; if (sai->master) ret = stm32_sai_configure_clock(cpu_dai, params); return ret; } static int stm32_sai_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *cpu_dai) { struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai); int ret; switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: dev_dbg(cpu_dai->dev, "Enable DMA and SAI\n"); regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX, SAI_XCR1_DMAEN, SAI_XCR1_DMAEN); /* Enable SAI */ ret = regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX, SAI_XCR1_SAIEN, SAI_XCR1_SAIEN); if (ret < 0) dev_err(cpu_dai->dev, "Failed to update CR1 register\n"); break; case SNDRV_PCM_TRIGGER_SUSPEND: case SNDRV_PCM_TRIGGER_PAUSE_PUSH: case SNDRV_PCM_TRIGGER_STOP: dev_dbg(cpu_dai->dev, "Disable DMA and SAI\n"); regmap_update_bits(sai->regmap, STM_SAI_IMR_REGX, SAI_XIMR_MASK, 0); regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX, SAI_XCR1_SAIEN, (unsigned int)~SAI_XCR1_SAIEN); ret = regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX, SAI_XCR1_DMAEN, (unsigned int)~SAI_XCR1_DMAEN); if (ret < 0) dev_err(cpu_dai->dev, "Failed to update CR1 register\n"); if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) sai->spdif_frm_cnt = 0; break; default: return -EINVAL; } return ret; } static void stm32_sai_shutdown(struct snd_pcm_substream *substream, struct snd_soc_dai *cpu_dai) { struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai); unsigned long flags; regmap_update_bits(sai->regmap, STM_SAI_IMR_REGX, SAI_XIMR_MASK, 0); regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX, SAI_XCR1_NODIV, SAI_XCR1_NODIV); clk_disable_unprepare(sai->sai_ck); clk_rate_exclusive_put(sai->sai_mclk); spin_lock_irqsave(&sai->irq_lock, flags); sai->substream = NULL; spin_unlock_irqrestore(&sai->irq_lock, flags); } static int stm32_sai_pcm_new(struct snd_soc_pcm_runtime *rtd, struct snd_soc_dai *cpu_dai) { struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev); struct snd_kcontrol_new knew = iec958_ctls; if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) { dev_dbg(&sai->pdev->dev, "%s: register iec controls", __func__); knew.device = rtd->pcm->device; return snd_ctl_add(rtd->pcm->card, snd_ctl_new1(&knew, sai)); } return 0; } static int stm32_sai_dai_probe(struct snd_soc_dai *cpu_dai) { struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev); int cr1 = 0, cr1_mask, ret; sai->cpu_dai = cpu_dai; sai->dma_params.addr = (dma_addr_t)(sai->phys_addr + STM_SAI_DR_REGX); /* * DMA supports 4, 8 or 16 burst sizes. Burst size 4 is the best choice, * as it allows bytes, half-word and words transfers. (See DMA fifos * constraints). */ sai->dma_params.maxburst = 4; /* Buswidth will be set by framework at runtime */ sai->dma_params.addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED; if (STM_SAI_IS_PLAYBACK(sai)) snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params, NULL); else snd_soc_dai_init_dma_data(cpu_dai, NULL, &sai->dma_params); /* Next settings are not relevant for spdif mode */ if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) return 0; cr1_mask = SAI_XCR1_RX_TX; if (STM_SAI_IS_CAPTURE(sai)) cr1 |= SAI_XCR1_RX_TX; /* Configure synchronization */ if (sai->sync == SAI_SYNC_EXTERNAL) { /* Configure synchro client and provider */ ret = sai->pdata->set_sync(sai->pdata, sai->np_sync_provider, sai->synco, sai->synci); if (ret) return ret; } cr1_mask |= SAI_XCR1_SYNCEN_MASK; cr1 |= SAI_XCR1_SYNCEN_SET(sai->sync); return regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX, cr1_mask, cr1); } static const struct snd_soc_dai_ops stm32_sai_pcm_dai_ops = { .set_sysclk = stm32_sai_set_sysclk, .set_fmt = stm32_sai_set_dai_fmt, .set_tdm_slot = stm32_sai_set_dai_tdm_slot, .startup = stm32_sai_startup, .hw_params = stm32_sai_hw_params, .trigger = stm32_sai_trigger, .shutdown = stm32_sai_shutdown, }; static int stm32_sai_pcm_process_spdif(struct snd_pcm_substream *substream, int channel, unsigned long hwoff, void *buf, unsigned long bytes) { struct snd_pcm_runtime *runtime = substream->runtime; struct snd_soc_pcm_runtime *rtd = substream->private_data; struct snd_soc_dai *cpu_dai = rtd->cpu_dai; struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev); int *ptr = (int *)(runtime->dma_area + hwoff + channel * (runtime->dma_bytes / runtime->channels)); ssize_t cnt = bytes_to_samples(runtime, bytes); unsigned int frm_cnt = sai->spdif_frm_cnt; unsigned int byte; unsigned int mask; do { *ptr = ((*ptr >> 8) & 0x00ffffff); /* Set channel status bit */ byte = frm_cnt >> 3; mask = 1 << (frm_cnt - (byte << 3)); if (sai->iec958.status[byte] & mask) *ptr |= 0x04000000; ptr++; if (!(cnt % 2)) frm_cnt++; if (frm_cnt == SAI_IEC60958_BLOCK_FRAMES) frm_cnt = 0; } while (--cnt); sai->spdif_frm_cnt = frm_cnt; return 0; } static const struct snd_pcm_hardware stm32_sai_pcm_hw = { .info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP, .buffer_bytes_max = 8 * PAGE_SIZE, .period_bytes_min = 1024, /* 5ms at 48kHz */ .period_bytes_max = PAGE_SIZE, .periods_min = 2, .periods_max = 8, }; static struct snd_soc_dai_driver stm32_sai_playback_dai[] = { { .probe = stm32_sai_dai_probe, .pcm_new = stm32_sai_pcm_new, .id = 1, /* avoid call to fmt_single_name() */ .playback = { .channels_min = 1, .channels_max = 2, .rate_min = 8000, .rate_max = 192000, .rates = SNDRV_PCM_RATE_CONTINUOUS, /* DMA does not support 24 bits transfers */ .formats = SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE, }, .ops = &stm32_sai_pcm_dai_ops, } }; static struct snd_soc_dai_driver stm32_sai_capture_dai[] = { { .probe = stm32_sai_dai_probe, .id = 1, /* avoid call to fmt_single_name() */ .capture = { .channels_min = 1, .channels_max = 2, .rate_min = 8000, .rate_max = 192000, .rates = SNDRV_PCM_RATE_CONTINUOUS, /* DMA does not support 24 bits transfers */ .formats = SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE, }, .ops = &stm32_sai_pcm_dai_ops, } }; static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config = { .pcm_hardware = &stm32_sai_pcm_hw, .prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config, }; static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config_spdif = { .pcm_hardware = &stm32_sai_pcm_hw, .prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config, .process = stm32_sai_pcm_process_spdif, }; static const struct snd_soc_component_driver stm32_component = { .name = "stm32-sai", }; static const struct of_device_id stm32_sai_sub_ids[] = { { .compatible = "st,stm32-sai-sub-a", .data = (void *)STM_SAI_A_ID}, { .compatible = "st,stm32-sai-sub-b", .data = (void *)STM_SAI_B_ID}, {} }; MODULE_DEVICE_TABLE(of, stm32_sai_sub_ids); static int stm32_sai_sub_parse_of(struct platform_device *pdev, struct stm32_sai_sub_data *sai) { struct device_node *np = pdev->dev.of_node; struct resource *res; void __iomem *base; struct of_phandle_args args; int ret; if (!np) return -ENODEV; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(base)) return PTR_ERR(base); sai->phys_addr = res->start; sai->regmap_config = &stm32_sai_sub_regmap_config_f4; /* Note: PDM registers not available for H7 sub-block B */ if (STM_SAI_IS_H7(sai->pdata) && STM_SAI_IS_SUB_A(sai)) sai->regmap_config = &stm32_sai_sub_regmap_config_h7; sai->regmap = devm_regmap_init_mmio_clk(&pdev->dev, "sai_ck", base, sai->regmap_config); if (IS_ERR(sai->regmap)) { dev_err(&pdev->dev, "Failed to initialize MMIO\n"); return PTR_ERR(sai->regmap); } /* Get direction property */ if (of_property_match_string(np, "dma-names", "tx") >= 0) { sai->dir = SNDRV_PCM_STREAM_PLAYBACK; } else if (of_property_match_string(np, "dma-names", "rx") >= 0) { sai->dir = SNDRV_PCM_STREAM_CAPTURE; } else { dev_err(&pdev->dev, "Unsupported direction\n"); return -EINVAL; } /* Get spdif iec60958 property */ sai->spdif = false; if (of_get_property(np, "st,iec60958", NULL)) { if (!STM_SAI_HAS_SPDIF(sai) || sai->dir == SNDRV_PCM_STREAM_CAPTURE) { dev_err(&pdev->dev, "S/PDIF IEC60958 not supported\n"); return -EINVAL; } stm32_sai_init_iec958_status(sai); sai->spdif = true; sai->master = true; } /* Get synchronization property */ args.np = NULL; ret = of_parse_phandle_with_fixed_args(np, "st,sync", 1, 0, &args); if (ret < 0 && ret != -ENOENT) { dev_err(&pdev->dev, "Failed to get st,sync property\n"); return ret; } sai->sync = SAI_SYNC_NONE; if (args.np) { if (args.np == np) { dev_err(&pdev->dev, "%pOFn sync own reference\n", np); of_node_put(args.np); return -EINVAL; } sai->np_sync_provider = of_get_parent(args.np); if (!sai->np_sync_provider) { dev_err(&pdev->dev, "%pOFn parent node not found\n", np); of_node_put(args.np); return -ENODEV; } sai->sync = SAI_SYNC_INTERNAL; if (sai->np_sync_provider != sai->pdata->pdev->dev.of_node) { if (!STM_SAI_HAS_EXT_SYNC(sai)) { dev_err(&pdev->dev, "External synchro not supported\n"); of_node_put(args.np); return -EINVAL; } sai->sync = SAI_SYNC_EXTERNAL; sai->synci = args.args[0]; if (sai->synci < 1 || (sai->synci > (SAI_GCR_SYNCIN_MAX + 1))) { dev_err(&pdev->dev, "Wrong SAI index\n"); of_node_put(args.np); return -EINVAL; } if (of_property_match_string(args.np, "compatible", "st,stm32-sai-sub-a") >= 0) sai->synco = STM_SAI_SYNC_OUT_A; if (of_property_match_string(args.np, "compatible", "st,stm32-sai-sub-b") >= 0) sai->synco = STM_SAI_SYNC_OUT_B; if (!sai->synco) { dev_err(&pdev->dev, "Unknown SAI sub-block\n"); of_node_put(args.np); return -EINVAL; } } dev_dbg(&pdev->dev, "%s synchronized with %s\n", pdev->name, args.np->full_name); } of_node_put(args.np); sai->sai_ck = devm_clk_get(&pdev->dev, "sai_ck"); if (IS_ERR(sai->sai_ck)) { dev_err(&pdev->dev, "Missing kernel clock sai_ck\n"); return PTR_ERR(sai->sai_ck); } if (STM_SAI_IS_F4(sai->pdata)) return 0; /* Register mclk provider if requested */ if (of_find_property(np, "#clock-cells", NULL)) { ret = stm32_sai_add_mclk_provider(sai); if (ret < 0) return ret; } else { sai->sai_mclk = devm_clk_get(&pdev->dev, "MCLK"); if (IS_ERR(sai->sai_mclk)) { if (PTR_ERR(sai->sai_mclk) != -ENOENT) return PTR_ERR(sai->sai_mclk); sai->sai_mclk = NULL; } } return 0; } static int stm32_sai_sub_dais_init(struct platform_device *pdev, struct stm32_sai_sub_data *sai) { sai->cpu_dai_drv = devm_kzalloc(&pdev->dev, sizeof(struct snd_soc_dai_driver), GFP_KERNEL); if (!sai->cpu_dai_drv) return -ENOMEM; sai->cpu_dai_drv->name = dev_name(&pdev->dev); if (STM_SAI_IS_PLAYBACK(sai)) { memcpy(sai->cpu_dai_drv, &stm32_sai_playback_dai, sizeof(stm32_sai_playback_dai)); sai->cpu_dai_drv->playback.stream_name = sai->cpu_dai_drv->name; } else { memcpy(sai->cpu_dai_drv, &stm32_sai_capture_dai, sizeof(stm32_sai_capture_dai)); sai->cpu_dai_drv->capture.stream_name = sai->cpu_dai_drv->name; } return 0; } static int stm32_sai_sub_probe(struct platform_device *pdev) { struct stm32_sai_sub_data *sai; const struct of_device_id *of_id; const struct snd_dmaengine_pcm_config *conf = &stm32_sai_pcm_config; int ret; sai = devm_kzalloc(&pdev->dev, sizeof(*sai), GFP_KERNEL); if (!sai) return -ENOMEM; of_id = of_match_device(stm32_sai_sub_ids, &pdev->dev); if (!of_id) return -EINVAL; sai->id = (uintptr_t)of_id->data; sai->pdev = pdev; mutex_init(&sai->ctrl_lock); spin_lock_init(&sai->irq_lock); platform_set_drvdata(pdev, sai); sai->pdata = dev_get_drvdata(pdev->dev.parent); if (!sai->pdata) { dev_err(&pdev->dev, "Parent device data not available\n"); return -EINVAL; } ret = stm32_sai_sub_parse_of(pdev, sai); if (ret) return ret; ret = stm32_sai_sub_dais_init(pdev, sai); if (ret) return ret; ret = devm_request_irq(&pdev->dev, sai->pdata->irq, stm32_sai_isr, IRQF_SHARED, dev_name(&pdev->dev), sai); if (ret) { dev_err(&pdev->dev, "IRQ request returned %d\n", ret); return ret; } ret = devm_snd_soc_register_component(&pdev->dev, &stm32_component, sai->cpu_dai_drv, 1); if (ret) return ret; if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) conf = &stm32_sai_pcm_config_spdif; ret = devm_snd_dmaengine_pcm_register(&pdev->dev, conf, 0); if (ret) { dev_err(&pdev->dev, "Could not register pcm dma\n"); return ret; } return 0; } #ifdef CONFIG_PM_SLEEP static int stm32_sai_sub_suspend(struct device *dev) { struct stm32_sai_sub_data *sai = dev_get_drvdata(dev); regcache_cache_only(sai->regmap, true); regcache_mark_dirty(sai->regmap); return 0; } static int stm32_sai_sub_resume(struct device *dev) { struct stm32_sai_sub_data *sai = dev_get_drvdata(dev); regcache_cache_only(sai->regmap, false); return regcache_sync(sai->regmap); } #endif /* CONFIG_PM_SLEEP */ static const struct dev_pm_ops stm32_sai_sub_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(stm32_sai_sub_suspend, stm32_sai_sub_resume) }; static struct platform_driver stm32_sai_sub_driver = { .driver = { .name = "st,stm32-sai-sub", .of_match_table = stm32_sai_sub_ids, .pm = &stm32_sai_sub_pm_ops, }, .probe = stm32_sai_sub_probe, }; module_platform_driver(stm32_sai_sub_driver); MODULE_DESCRIPTION("STM32 Soc SAI sub-block Interface"); MODULE_AUTHOR("Olivier Moysan "); MODULE_ALIAS("platform:st,stm32-sai-sub"); MODULE_LICENSE("GPL v2");