/* * Copyright 2015 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include #include #include #include "tonga_processpptables.h" #include "ppatomctrl.h" #include "atombios.h" #include "pp_debug.h" #include "hwmgr.h" #include "cgs_common.h" #include "tonga_pptable.h" /** * Private Function used during initialization. * @param hwmgr Pointer to the hardware manager. * @param setIt A flag indication if the capability should be set (TRUE) or reset (FALSE). * @param cap Which capability to set/reset. */ static void set_hw_cap(struct pp_hwmgr *hwmgr, bool setIt, enum phm_platform_caps cap) { if (setIt) phm_cap_set(hwmgr->platform_descriptor.platformCaps, cap); else phm_cap_unset(hwmgr->platform_descriptor.platformCaps, cap); } /** * Private Function used during initialization. * @param hwmgr Pointer to the hardware manager. * @param powerplay_caps the bit array (from BIOS) of capability bits. * @exception the current implementation always returns 1. */ static int set_platform_caps(struct pp_hwmgr *hwmgr, uint32_t powerplay_caps) { PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE16____), "ATOM_PP_PLATFORM_CAP_ASPM_L1 is not supported!", continue); PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE64____), "ATOM_PP_PLATFORM_CAP_GEMINIPRIMARY is not supported!", continue); PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE512____), "ATOM_PP_PLATFORM_CAP_SIDEPORTCONTROL is not supported!", continue); PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE1024____), "ATOM_PP_PLATFORM_CAP_TURNOFFPLL_ASPML1 is not supported!", continue); PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE2048____), "ATOM_PP_PLATFORM_CAP_HTLINKCONTROL is not supported!", continue); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_POWERPLAY), PHM_PlatformCaps_PowerPlaySupport ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_SBIOSPOWERSOURCE), PHM_PlatformCaps_BiosPowerSourceControl ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_HARDWAREDC), PHM_PlatformCaps_AutomaticDCTransition ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_MVDD_CONTROL), PHM_PlatformCaps_EnableMVDDControl ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_VDDCI_CONTROL), PHM_PlatformCaps_ControlVDDCI ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_VDDGFX_CONTROL), PHM_PlatformCaps_ControlVDDGFX ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_BACO), PHM_PlatformCaps_BACO ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_DISABLE_VOLTAGE_ISLAND), PHM_PlatformCaps_DisableVoltageIsland ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_COMBINE_PCC_WITH_THERMAL_SIGNAL), PHM_PlatformCaps_CombinePCCWithThermalSignal ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_TONGA_PLATFORM_LOAD_POST_PRODUCTION_FIRMWARE), PHM_PlatformCaps_LoadPostProductionFirmware ); return 0; } /** * Private Function to get the PowerPlay Table Address. */ const void *get_powerplay_table(struct pp_hwmgr *hwmgr) { int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo); u16 size; u8 frev, crev; void *table_address = (void *)hwmgr->soft_pp_table; if (!table_address) { table_address = (ATOM_Tonga_POWERPLAYTABLE *) cgs_atom_get_data_table(hwmgr->device, index, &size, &frev, &crev); hwmgr->soft_pp_table = table_address; /*Cache the result in RAM.*/ hwmgr->soft_pp_table_size = size; } return table_address; } static int get_vddc_lookup_table( struct pp_hwmgr *hwmgr, phm_ppt_v1_voltage_lookup_table **lookup_table, const ATOM_Tonga_Voltage_Lookup_Table *vddc_lookup_pp_tables, uint32_t max_levels ) { uint32_t table_size, i; phm_ppt_v1_voltage_lookup_table *table; PP_ASSERT_WITH_CODE((0 != vddc_lookup_pp_tables->ucNumEntries), "Invalid CAC Leakage PowerPlay Table!", return 1); table_size = sizeof(uint32_t) + sizeof(phm_ppt_v1_voltage_lookup_record) * max_levels; table = (phm_ppt_v1_voltage_lookup_table *) kzalloc(table_size, GFP_KERNEL); if (NULL == table) return -ENOMEM; memset(table, 0x00, table_size); table->count = vddc_lookup_pp_tables->ucNumEntries; for (i = 0; i < vddc_lookup_pp_tables->ucNumEntries; i++) { table->entries[i].us_calculated = 0; table->entries[i].us_vdd = vddc_lookup_pp_tables->entries[i].usVdd; table->entries[i].us_cac_low = vddc_lookup_pp_tables->entries[i].usCACLow; table->entries[i].us_cac_mid = vddc_lookup_pp_tables->entries[i].usCACMid; table->entries[i].us_cac_high = vddc_lookup_pp_tables->entries[i].usCACHigh; } *lookup_table = table; return 0; } /** * Private Function used during initialization. * Initialize Platform Power Management Parameter table * @param hwmgr Pointer to the hardware manager. * @param atom_ppm_table Pointer to PPM table in VBIOS */ static int get_platform_power_management_table( struct pp_hwmgr *hwmgr, ATOM_Tonga_PPM_Table *atom_ppm_table) { struct phm_ppm_table *ptr = kzalloc(sizeof(ATOM_Tonga_PPM_Table), GFP_KERNEL); struct phm_ppt_v1_information *pp_table_information = (struct phm_ppt_v1_information *)(hwmgr->pptable); if (NULL == ptr) return -ENOMEM; ptr->ppm_design = atom_ppm_table->ucPpmDesign; ptr->cpu_core_number = atom_ppm_table->usCpuCoreNumber; ptr->platform_tdp = atom_ppm_table->ulPlatformTDP; ptr->small_ac_platform_tdp = atom_ppm_table->ulSmallACPlatformTDP; ptr->platform_tdc = atom_ppm_table->ulPlatformTDC; ptr->small_ac_platform_tdc = atom_ppm_table->ulSmallACPlatformTDC; ptr->apu_tdp = atom_ppm_table->ulApuTDP; ptr->dgpu_tdp = atom_ppm_table->ulDGpuTDP; ptr->dgpu_ulv_power = atom_ppm_table->ulDGpuUlvPower; ptr->tj_max = atom_ppm_table->ulTjmax; pp_table_information->ppm_parameter_table = ptr; return 0; } /** * Private Function used during initialization. * Initialize TDP limits for DPM2 * @param hwmgr Pointer to the hardware manager. * @param powerplay_table Pointer to the PowerPlay Table. */ static int init_dpm_2_parameters( struct pp_hwmgr *hwmgr, const ATOM_Tonga_POWERPLAYTABLE *powerplay_table ) { int result = 0; struct phm_ppt_v1_information *pp_table_information = (struct phm_ppt_v1_information *)(hwmgr->pptable); ATOM_Tonga_PPM_Table *atom_ppm_table; uint32_t disable_ppm = 0; uint32_t disable_power_control = 0; pp_table_information->us_ulv_voltage_offset = le16_to_cpu(powerplay_table->usUlvVoltageOffset); pp_table_information->ppm_parameter_table = NULL; pp_table_information->vddc_lookup_table = NULL; pp_table_information->vddgfx_lookup_table = NULL; /* TDP limits */ hwmgr->platform_descriptor.TDPODLimit = le16_to_cpu(powerplay_table->usPowerControlLimit); hwmgr->platform_descriptor.TDPAdjustment = 0; hwmgr->platform_descriptor.VidAdjustment = 0; hwmgr->platform_descriptor.VidAdjustmentPolarity = 0; hwmgr->platform_descriptor.VidMinLimit = 0; hwmgr->platform_descriptor.VidMaxLimit = 1500000; hwmgr->platform_descriptor.VidStep = 6250; disable_power_control = 0; if (0 == disable_power_control) { /* enable TDP overdrive (PowerControl) feature as well if supported */ if (hwmgr->platform_descriptor.TDPODLimit != 0) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PowerControl); } if (0 != powerplay_table->usVddcLookupTableOffset) { const ATOM_Tonga_Voltage_Lookup_Table *pVddcCACTable = (ATOM_Tonga_Voltage_Lookup_Table *)(((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usVddcLookupTableOffset)); result = get_vddc_lookup_table(hwmgr, &pp_table_information->vddc_lookup_table, pVddcCACTable, 16); } if (0 != powerplay_table->usVddgfxLookupTableOffset) { const ATOM_Tonga_Voltage_Lookup_Table *pVddgfxCACTable = (ATOM_Tonga_Voltage_Lookup_Table *)(((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usVddgfxLookupTableOffset)); result = get_vddc_lookup_table(hwmgr, &pp_table_information->vddgfx_lookup_table, pVddgfxCACTable, 16); } disable_ppm = 0; if (0 == disable_ppm) { atom_ppm_table = (ATOM_Tonga_PPM_Table *) (((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usPPMTableOffset)); if (0 != powerplay_table->usPPMTableOffset) { if (1 == get_platform_power_management_table(hwmgr, atom_ppm_table)) { phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EnablePlatformPowerManagement); } } } return result; } static int get_valid_clk( struct pp_hwmgr *hwmgr, struct phm_clock_array **clk_table, const phm_ppt_v1_clock_voltage_dependency_table * clk_volt_pp_table ) { uint32_t table_size, i; struct phm_clock_array *table; PP_ASSERT_WITH_CODE((0 != clk_volt_pp_table->count), "Invalid PowerPlay Table!", return -1); table_size = sizeof(uint32_t) + sizeof(uint32_t) * clk_volt_pp_table->count; table = (struct phm_clock_array *)kzalloc(table_size, GFP_KERNEL); if (NULL == table) return -ENOMEM; memset(table, 0x00, table_size); table->count = (uint32_t)clk_volt_pp_table->count; for (i = 0; i < table->count; i++) table->values[i] = (uint32_t)clk_volt_pp_table->entries[i].clk; *clk_table = table; return 0; } static int get_hard_limits( struct pp_hwmgr *hwmgr, struct phm_clock_and_voltage_limits *limits, const ATOM_Tonga_Hard_Limit_Table * limitable ) { PP_ASSERT_WITH_CODE((0 != limitable->ucNumEntries), "Invalid PowerPlay Table!", return -1); /* currently we always take entries[0] parameters */ limits->sclk = (uint32_t)limitable->entries[0].ulSCLKLimit; limits->mclk = (uint32_t)limitable->entries[0].ulMCLKLimit; limits->vddc = (uint16_t)limitable->entries[0].usVddcLimit; limits->vddci = (uint16_t)limitable->entries[0].usVddciLimit; limits->vddgfx = (uint16_t)limitable->entries[0].usVddgfxLimit; return 0; } static int get_mclk_voltage_dependency_table( struct pp_hwmgr *hwmgr, phm_ppt_v1_clock_voltage_dependency_table **pp_tonga_mclk_dep_table, const ATOM_Tonga_MCLK_Dependency_Table * mclk_dep_table ) { uint32_t table_size, i; phm_ppt_v1_clock_voltage_dependency_table *mclk_table; PP_ASSERT_WITH_CODE((0 != mclk_dep_table->ucNumEntries), "Invalid PowerPlay Table!", return -1); table_size = sizeof(uint32_t) + sizeof(phm_ppt_v1_clock_voltage_dependency_record) * mclk_dep_table->ucNumEntries; mclk_table = (phm_ppt_v1_clock_voltage_dependency_table *) kzalloc(table_size, GFP_KERNEL); if (NULL == mclk_table) return -ENOMEM; memset(mclk_table, 0x00, table_size); mclk_table->count = (uint32_t)mclk_dep_table->ucNumEntries; for (i = 0; i < mclk_dep_table->ucNumEntries; i++) { mclk_table->entries[i].vddInd = mclk_dep_table->entries[i].ucVddcInd; mclk_table->entries[i].vdd_offset = mclk_dep_table->entries[i].usVddgfxOffset; mclk_table->entries[i].vddci = mclk_dep_table->entries[i].usVddci; mclk_table->entries[i].mvdd = mclk_dep_table->entries[i].usMvdd; mclk_table->entries[i].clk = mclk_dep_table->entries[i].ulMclk; } *pp_tonga_mclk_dep_table = mclk_table; return 0; } static int get_sclk_voltage_dependency_table( struct pp_hwmgr *hwmgr, phm_ppt_v1_clock_voltage_dependency_table **pp_tonga_sclk_dep_table, const PPTable_Generic_SubTable_Header *sclk_dep_table ) { uint32_t table_size, i; phm_ppt_v1_clock_voltage_dependency_table *sclk_table; if (sclk_dep_table->ucRevId < 1) { const ATOM_Tonga_SCLK_Dependency_Table *tonga_table = (ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table; PP_ASSERT_WITH_CODE((0 != tonga_table->ucNumEntries), "Invalid PowerPlay Table!", return -1); table_size = sizeof(uint32_t) + sizeof(phm_ppt_v1_clock_voltage_dependency_record) * tonga_table->ucNumEntries; sclk_table = (phm_ppt_v1_clock_voltage_dependency_table *) kzalloc(table_size, GFP_KERNEL); if (NULL == sclk_table) return -ENOMEM; memset(sclk_table, 0x00, table_size); sclk_table->count = (uint32_t)tonga_table->ucNumEntries; for (i = 0; i < tonga_table->ucNumEntries; i++) { sclk_table->entries[i].vddInd = tonga_table->entries[i].ucVddInd; sclk_table->entries[i].vdd_offset = tonga_table->entries[i].usVddcOffset; sclk_table->entries[i].clk = tonga_table->entries[i].ulSclk; sclk_table->entries[i].cks_enable = (((tonga_table->entries[i].ucCKSVOffsetandDisable & 0x80) >> 7) == 0) ? 1 : 0; sclk_table->entries[i].cks_voffset = (tonga_table->entries[i].ucCKSVOffsetandDisable & 0x7F); } } else { const ATOM_Polaris_SCLK_Dependency_Table *polaris_table = (ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table; PP_ASSERT_WITH_CODE((0 != polaris_table->ucNumEntries), "Invalid PowerPlay Table!", return -1); table_size = sizeof(uint32_t) + sizeof(phm_ppt_v1_clock_voltage_dependency_record) * polaris_table->ucNumEntries; sclk_table = (phm_ppt_v1_clock_voltage_dependency_table *) kzalloc(table_size, GFP_KERNEL); if (NULL == sclk_table) return -ENOMEM; memset(sclk_table, 0x00, table_size); sclk_table->count = (uint32_t)polaris_table->ucNumEntries; for (i = 0; i < polaris_table->ucNumEntries; i++) { sclk_table->entries[i].vddInd = polaris_table->entries[i].ucVddInd; sclk_table->entries[i].vdd_offset = polaris_table->entries[i].usVddcOffset; sclk_table->entries[i].clk = polaris_table->entries[i].ulSclk; sclk_table->entries[i].cks_enable = (((polaris_table->entries[i].ucCKSVOffsetandDisable & 0x80) >> 7) == 0) ? 1 : 0; sclk_table->entries[i].cks_voffset = (polaris_table->entries[i].ucCKSVOffsetandDisable & 0x7F); sclk_table->entries[i].sclk_offset = polaris_table->entries[i].ulSclkOffset; } } *pp_tonga_sclk_dep_table = sclk_table; return 0; } static int get_pcie_table( struct pp_hwmgr *hwmgr, phm_ppt_v1_pcie_table **pp_tonga_pcie_table, const PPTable_Generic_SubTable_Header * pTable ) { uint32_t table_size, i, pcie_count; phm_ppt_v1_pcie_table *pcie_table; struct phm_ppt_v1_information *pp_table_information = (struct phm_ppt_v1_information *)(hwmgr->pptable); if (pTable->ucRevId < 1) { const ATOM_Tonga_PCIE_Table *atom_pcie_table = (ATOM_Tonga_PCIE_Table *)pTable; PP_ASSERT_WITH_CODE((atom_pcie_table->ucNumEntries != 0), "Invalid PowerPlay Table!", return -1); table_size = sizeof(uint32_t) + sizeof(phm_ppt_v1_pcie_record) * atom_pcie_table->ucNumEntries; pcie_table = (phm_ppt_v1_pcie_table *)kzalloc(table_size, GFP_KERNEL); if (pcie_table == NULL) return -ENOMEM; memset(pcie_table, 0x00, table_size); /* * Make sure the number of pcie entries are less than or equal to sclk dpm levels. * Since first PCIE entry is for ULV, #pcie has to be <= SclkLevel + 1. */ pcie_count = (pp_table_information->vdd_dep_on_sclk->count) + 1; if ((uint32_t)atom_pcie_table->ucNumEntries <= pcie_count) pcie_count = (uint32_t)atom_pcie_table->ucNumEntries; else printk(KERN_ERR "[ powerplay ] Number of Pcie Entries exceed the number of SCLK Dpm Levels! \ Disregarding the excess entries... \n"); pcie_table->count = pcie_count; for (i = 0; i < pcie_count; i++) { pcie_table->entries[i].gen_speed = atom_pcie_table->entries[i].ucPCIEGenSpeed; pcie_table->entries[i].lane_width = atom_pcie_table->entries[i].usPCIELaneWidth; } *pp_tonga_pcie_table = pcie_table; } else { /* Polaris10/Polaris11 and newer. */ const ATOM_Polaris10_PCIE_Table *atom_pcie_table = (ATOM_Polaris10_PCIE_Table *)pTable; PP_ASSERT_WITH_CODE((atom_pcie_table->ucNumEntries != 0), "Invalid PowerPlay Table!", return -1); table_size = sizeof(uint32_t) + sizeof(phm_ppt_v1_pcie_record) * atom_pcie_table->ucNumEntries; pcie_table = (phm_ppt_v1_pcie_table *)kzalloc(table_size, GFP_KERNEL); if (pcie_table == NULL) return -ENOMEM; memset(pcie_table, 0x00, table_size); /* * Make sure the number of pcie entries are less than or equal to sclk dpm levels. * Since first PCIE entry is for ULV, #pcie has to be <= SclkLevel + 1. */ pcie_count = (pp_table_information->vdd_dep_on_sclk->count) + 1; if ((uint32_t)atom_pcie_table->ucNumEntries <= pcie_count) pcie_count = (uint32_t)atom_pcie_table->ucNumEntries; else printk(KERN_ERR "[ powerplay ] Number of Pcie Entries exceed the number of SCLK Dpm Levels! \ Disregarding the excess entries... \n"); pcie_table->count = pcie_count; for (i = 0; i < pcie_count; i++) { pcie_table->entries[i].gen_speed = atom_pcie_table->entries[i].ucPCIEGenSpeed; pcie_table->entries[i].lane_width = atom_pcie_table->entries[i].usPCIELaneWidth; pcie_table->entries[i].pcie_sclk = atom_pcie_table->entries[i].ulPCIE_Sclk; } *pp_tonga_pcie_table = pcie_table; } return 0; } static int get_cac_tdp_table( struct pp_hwmgr *hwmgr, struct phm_cac_tdp_table **cac_tdp_table, const PPTable_Generic_SubTable_Header * table ) { uint32_t table_size; struct phm_cac_tdp_table *tdp_table; table_size = sizeof(uint32_t) + sizeof(struct phm_cac_tdp_table); tdp_table = kzalloc(table_size, GFP_KERNEL); if (NULL == tdp_table) return -ENOMEM; memset(tdp_table, 0x00, table_size); hwmgr->dyn_state.cac_dtp_table = kzalloc(table_size, GFP_KERNEL); if (NULL == hwmgr->dyn_state.cac_dtp_table) { kfree(tdp_table); return -ENOMEM; } memset(hwmgr->dyn_state.cac_dtp_table, 0x00, table_size); if (table->ucRevId < 3) { const ATOM_Tonga_PowerTune_Table *tonga_table = (ATOM_Tonga_PowerTune_Table *)table; tdp_table->usTDP = tonga_table->usTDP; tdp_table->usConfigurableTDP = tonga_table->usConfigurableTDP; tdp_table->usTDC = tonga_table->usTDC; tdp_table->usBatteryPowerLimit = tonga_table->usBatteryPowerLimit; tdp_table->usSmallPowerLimit = tonga_table->usSmallPowerLimit; tdp_table->usLowCACLeakage = tonga_table->usLowCACLeakage; tdp_table->usHighCACLeakage = tonga_table->usHighCACLeakage; tdp_table->usMaximumPowerDeliveryLimit = tonga_table->usMaximumPowerDeliveryLimit; tdp_table->usDefaultTargetOperatingTemp = tonga_table->usTjMax; tdp_table->usTargetOperatingTemp = tonga_table->usTjMax; /*Set the initial temp to the same as default */ tdp_table->usPowerTuneDataSetID = tonga_table->usPowerTuneDataSetID; tdp_table->usSoftwareShutdownTemp = tonga_table->usSoftwareShutdownTemp; tdp_table->usClockStretchAmount = tonga_table->usClockStretchAmount; } else { /* Fiji and newer */ const ATOM_Fiji_PowerTune_Table *fijitable = (ATOM_Fiji_PowerTune_Table *)table; tdp_table->usTDP = fijitable->usTDP; tdp_table->usConfigurableTDP = fijitable->usConfigurableTDP; tdp_table->usTDC = fijitable->usTDC; tdp_table->usBatteryPowerLimit = fijitable->usBatteryPowerLimit; tdp_table->usSmallPowerLimit = fijitable->usSmallPowerLimit; tdp_table->usLowCACLeakage = fijitable->usLowCACLeakage; tdp_table->usHighCACLeakage = fijitable->usHighCACLeakage; tdp_table->usMaximumPowerDeliveryLimit = fijitable->usMaximumPowerDeliveryLimit; tdp_table->usDefaultTargetOperatingTemp = fijitable->usTjMax; tdp_table->usTargetOperatingTemp = fijitable->usTjMax; /*Set the initial temp to the same as default */ tdp_table->usPowerTuneDataSetID = fijitable->usPowerTuneDataSetID; tdp_table->usSoftwareShutdownTemp = fijitable->usSoftwareShutdownTemp; tdp_table->usClockStretchAmount = fijitable->usClockStretchAmount; tdp_table->usTemperatureLimitHotspot = fijitable->usTemperatureLimitHotspot; tdp_table->usTemperatureLimitLiquid1 = fijitable->usTemperatureLimitLiquid1; tdp_table->usTemperatureLimitLiquid2 = fijitable->usTemperatureLimitLiquid2; tdp_table->usTemperatureLimitVrVddc = fijitable->usTemperatureLimitVrVddc; tdp_table->usTemperatureLimitVrMvdd = fijitable->usTemperatureLimitVrMvdd; tdp_table->usTemperatureLimitPlx = fijitable->usTemperatureLimitPlx; tdp_table->ucLiquid1_I2C_address = fijitable->ucLiquid1_I2C_address; tdp_table->ucLiquid2_I2C_address = fijitable->ucLiquid2_I2C_address; tdp_table->ucLiquid_I2C_Line = fijitable->ucLiquid_I2C_Line; tdp_table->ucVr_I2C_address = fijitable->ucVr_I2C_address; tdp_table->ucVr_I2C_Line = fijitable->ucVr_I2C_Line; tdp_table->ucPlx_I2C_address = fijitable->ucPlx_I2C_address; tdp_table->ucPlx_I2C_Line = fijitable->ucPlx_I2C_Line; } *cac_tdp_table = tdp_table; return 0; } static int get_mm_clock_voltage_table( struct pp_hwmgr *hwmgr, phm_ppt_v1_mm_clock_voltage_dependency_table **tonga_mm_table, const ATOM_Tonga_MM_Dependency_Table * mm_dependency_table ) { uint32_t table_size, i; const ATOM_Tonga_MM_Dependency_Record *mm_dependency_record; phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table; PP_ASSERT_WITH_CODE((0 != mm_dependency_table->ucNumEntries), "Invalid PowerPlay Table!", return -1); table_size = sizeof(uint32_t) + sizeof(phm_ppt_v1_mm_clock_voltage_dependency_record) * mm_dependency_table->ucNumEntries; mm_table = (phm_ppt_v1_mm_clock_voltage_dependency_table *) kzalloc(table_size, GFP_KERNEL); if (NULL == mm_table) return -ENOMEM; memset(mm_table, 0x00, table_size); mm_table->count = mm_dependency_table->ucNumEntries; for (i = 0; i < mm_dependency_table->ucNumEntries; i++) { mm_dependency_record = &mm_dependency_table->entries[i]; mm_table->entries[i].vddcInd = mm_dependency_record->ucVddcInd; mm_table->entries[i].vddgfx_offset = mm_dependency_record->usVddgfxOffset; mm_table->entries[i].aclk = mm_dependency_record->ulAClk; mm_table->entries[i].samclock = mm_dependency_record->ulSAMUClk; mm_table->entries[i].eclk = mm_dependency_record->ulEClk; mm_table->entries[i].vclk = mm_dependency_record->ulVClk; mm_table->entries[i].dclk = mm_dependency_record->ulDClk; } *tonga_mm_table = mm_table; return 0; } /** * Private Function used during initialization. * Initialize clock voltage dependency * @param hwmgr Pointer to the hardware manager. * @param powerplay_table Pointer to the PowerPlay Table. */ static int init_clock_voltage_dependency( struct pp_hwmgr *hwmgr, const ATOM_Tonga_POWERPLAYTABLE *powerplay_table ) { int result = 0; struct phm_ppt_v1_information *pp_table_information = (struct phm_ppt_v1_information *)(hwmgr->pptable); const ATOM_Tonga_MM_Dependency_Table *mm_dependency_table = (const ATOM_Tonga_MM_Dependency_Table *)(((unsigned long) powerplay_table) + le16_to_cpu(powerplay_table->usMMDependencyTableOffset)); const PPTable_Generic_SubTable_Header *pPowerTuneTable = (const PPTable_Generic_SubTable_Header *)(((unsigned long) powerplay_table) + le16_to_cpu(powerplay_table->usPowerTuneTableOffset)); const ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table = (const ATOM_Tonga_MCLK_Dependency_Table *)(((unsigned long) powerplay_table) + le16_to_cpu(powerplay_table->usMclkDependencyTableOffset)); const PPTable_Generic_SubTable_Header *sclk_dep_table = (const PPTable_Generic_SubTable_Header *)(((unsigned long) powerplay_table) + le16_to_cpu(powerplay_table->usSclkDependencyTableOffset)); const ATOM_Tonga_Hard_Limit_Table *pHardLimits = (const ATOM_Tonga_Hard_Limit_Table *)(((unsigned long) powerplay_table) + le16_to_cpu(powerplay_table->usHardLimitTableOffset)); const PPTable_Generic_SubTable_Header *pcie_table = (const PPTable_Generic_SubTable_Header *)(((unsigned long) powerplay_table) + le16_to_cpu(powerplay_table->usPCIETableOffset)); pp_table_information->vdd_dep_on_sclk = NULL; pp_table_information->vdd_dep_on_mclk = NULL; pp_table_information->mm_dep_table = NULL; pp_table_information->pcie_table = NULL; if (powerplay_table->usMMDependencyTableOffset != 0) result = get_mm_clock_voltage_table(hwmgr, &pp_table_information->mm_dep_table, mm_dependency_table); if (result == 0 && powerplay_table->usPowerTuneTableOffset != 0) result = get_cac_tdp_table(hwmgr, &pp_table_information->cac_dtp_table, pPowerTuneTable); if (result == 0 && powerplay_table->usSclkDependencyTableOffset != 0) result = get_sclk_voltage_dependency_table(hwmgr, &pp_table_information->vdd_dep_on_sclk, sclk_dep_table); if (result == 0 && powerplay_table->usMclkDependencyTableOffset != 0) result = get_mclk_voltage_dependency_table(hwmgr, &pp_table_information->vdd_dep_on_mclk, mclk_dep_table); if (result == 0 && powerplay_table->usPCIETableOffset != 0) result = get_pcie_table(hwmgr, &pp_table_information->pcie_table, pcie_table); if (result == 0 && powerplay_table->usHardLimitTableOffset != 0) result = get_hard_limits(hwmgr, &pp_table_information->max_clock_voltage_on_dc, pHardLimits); hwmgr->dyn_state.max_clock_voltage_on_dc.sclk = pp_table_information->max_clock_voltage_on_dc.sclk; hwmgr->dyn_state.max_clock_voltage_on_dc.mclk = pp_table_information->max_clock_voltage_on_dc.mclk; hwmgr->dyn_state.max_clock_voltage_on_dc.vddc = pp_table_information->max_clock_voltage_on_dc.vddc; hwmgr->dyn_state.max_clock_voltage_on_dc.vddci = pp_table_information->max_clock_voltage_on_dc.vddci; if (result == 0 && (NULL != pp_table_information->vdd_dep_on_mclk) && (0 != pp_table_information->vdd_dep_on_mclk->count)) result = get_valid_clk(hwmgr, &pp_table_information->valid_mclk_values, pp_table_information->vdd_dep_on_mclk); if (result == 0 && (NULL != pp_table_information->vdd_dep_on_sclk) && (0 != pp_table_information->vdd_dep_on_sclk->count)) result = get_valid_clk(hwmgr, &pp_table_information->valid_sclk_values, pp_table_information->vdd_dep_on_sclk); return result; } /** Retrieves the (signed) Overdrive limits from VBIOS. * The max engine clock, memory clock and max temperature come from the firmware info table. * * The information is placed into the platform descriptor. * * @param hwmgr source of the VBIOS table and owner of the platform descriptor to be updated. * @param powerplay_table the address of the PowerPlay table. * * @return 1 as long as the firmware info table was present and of a supported version. */ static int init_over_drive_limits( struct pp_hwmgr *hwmgr, const ATOM_Tonga_POWERPLAYTABLE *powerplay_table) { hwmgr->platform_descriptor.overdriveLimit.engineClock = le16_to_cpu(powerplay_table->ulMaxODEngineClock); hwmgr->platform_descriptor.overdriveLimit.memoryClock = le16_to_cpu(powerplay_table->ulMaxODMemoryClock); hwmgr->platform_descriptor.minOverdriveVDDC = 0; hwmgr->platform_descriptor.maxOverdriveVDDC = 0; hwmgr->platform_descriptor.overdriveVDDCStep = 0; if (hwmgr->platform_descriptor.overdriveLimit.engineClock > 0 \ && hwmgr->platform_descriptor.overdriveLimit.memoryClock > 0) { phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ACOverdriveSupport); } return 0; } /** * Private Function used during initialization. * Inspect the PowerPlay table for obvious signs of corruption. * @param hwmgr Pointer to the hardware manager. * @param powerplay_table Pointer to the PowerPlay Table. * @exception This implementation always returns 1. */ static int init_thermal_controller( struct pp_hwmgr *hwmgr, const ATOM_Tonga_POWERPLAYTABLE *powerplay_table ) { const PPTable_Generic_SubTable_Header *fan_table; ATOM_Tonga_Thermal_Controller *thermal_controller; thermal_controller = (ATOM_Tonga_Thermal_Controller *) (((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usThermalControllerOffset)); PP_ASSERT_WITH_CODE((0 != powerplay_table->usThermalControllerOffset), "Thermal controller table not set!", return -1); hwmgr->thermal_controller.ucType = thermal_controller->ucType; hwmgr->thermal_controller.ucI2cLine = thermal_controller->ucI2cLine; hwmgr->thermal_controller.ucI2cAddress = thermal_controller->ucI2cAddress; hwmgr->thermal_controller.fanInfo.bNoFan = (0 != (thermal_controller->ucFanParameters & ATOM_TONGA_PP_FANPARAMETERS_NOFAN)); hwmgr->thermal_controller.fanInfo.ucTachometerPulsesPerRevolution = thermal_controller->ucFanParameters & ATOM_TONGA_PP_FANPARAMETERS_TACHOMETER_PULSES_PER_REVOLUTION_MASK; hwmgr->thermal_controller.fanInfo.ulMinRPM = thermal_controller->ucFanMinRPM * 100UL; hwmgr->thermal_controller.fanInfo.ulMaxRPM = thermal_controller->ucFanMaxRPM * 100UL; set_hw_cap( hwmgr, ATOM_TONGA_PP_THERMALCONTROLLER_NONE != hwmgr->thermal_controller.ucType, PHM_PlatformCaps_ThermalController ); if (0 == powerplay_table->usFanTableOffset) return 0; fan_table = (const PPTable_Generic_SubTable_Header *) (((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usFanTableOffset)); PP_ASSERT_WITH_CODE((0 != powerplay_table->usFanTableOffset), "Fan table not set!", return -1); PP_ASSERT_WITH_CODE((0 < fan_table->ucRevId), "Unsupported fan table format!", return -1); hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay = 100000; phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl); if (fan_table->ucRevId < 8) { const ATOM_Tonga_Fan_Table *tonga_fan_table = (ATOM_Tonga_Fan_Table *)fan_table; hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst = tonga_fan_table->ucTHyst; hwmgr->thermal_controller.advanceFanControlParameters.usTMin = tonga_fan_table->usTMin; hwmgr->thermal_controller.advanceFanControlParameters.usTMed = tonga_fan_table->usTMed; hwmgr->thermal_controller.advanceFanControlParameters.usTHigh = tonga_fan_table->usTHigh; hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin = tonga_fan_table->usPWMMin; hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed = tonga_fan_table->usPWMMed; hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh = tonga_fan_table->usPWMHigh; hwmgr->thermal_controller.advanceFanControlParameters.usTMax = 10900; /* hard coded */ hwmgr->thermal_controller.advanceFanControlParameters.usTMax = tonga_fan_table->usTMax; hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode = tonga_fan_table->ucFanControlMode; hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM = tonga_fan_table->usFanPWMMax; hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity = 4836; hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity = tonga_fan_table->usFanOutputSensitivity; hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM = tonga_fan_table->usFanRPMMax; hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit = (tonga_fan_table->ulMinFanSCLKAcousticLimit / 100); /* PPTable stores it in 10Khz unit for 2 decimal places. SMC wants MHz. */ hwmgr->thermal_controller.advanceFanControlParameters.ucTargetTemperature = tonga_fan_table->ucTargetTemperature; hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit = tonga_fan_table->ucMinimumPWMLimit; } else { const ATOM_Fiji_Fan_Table *fiji_fan_table = (ATOM_Fiji_Fan_Table *)fan_table; hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst = fiji_fan_table->ucTHyst; hwmgr->thermal_controller.advanceFanControlParameters.usTMin = fiji_fan_table->usTMin; hwmgr->thermal_controller.advanceFanControlParameters.usTMed = fiji_fan_table->usTMed; hwmgr->thermal_controller.advanceFanControlParameters.usTHigh = fiji_fan_table->usTHigh; hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin = fiji_fan_table->usPWMMin; hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed = fiji_fan_table->usPWMMed; hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh = fiji_fan_table->usPWMHigh; hwmgr->thermal_controller.advanceFanControlParameters.usTMax = fiji_fan_table->usTMax; hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode = fiji_fan_table->ucFanControlMode; hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM = fiji_fan_table->usFanPWMMax; hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity = 4836; hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity = fiji_fan_table->usFanOutputSensitivity; hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM = fiji_fan_table->usFanRPMMax; hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit = (fiji_fan_table->ulMinFanSCLKAcousticLimit / 100); /* PPTable stores it in 10Khz unit for 2 decimal places. SMC wants MHz. */ hwmgr->thermal_controller.advanceFanControlParameters.ucTargetTemperature = fiji_fan_table->ucTargetTemperature; hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit = fiji_fan_table->ucMinimumPWMLimit; hwmgr->thermal_controller.advanceFanControlParameters.usFanGainEdge = fiji_fan_table->usFanGainEdge; hwmgr->thermal_controller.advanceFanControlParameters.usFanGainHotspot = fiji_fan_table->usFanGainHotspot; hwmgr->thermal_controller.advanceFanControlParameters.usFanGainLiquid = fiji_fan_table->usFanGainLiquid; hwmgr->thermal_controller.advanceFanControlParameters.usFanGainVrVddc = fiji_fan_table->usFanGainVrVddc; hwmgr->thermal_controller.advanceFanControlParameters.usFanGainVrMvdd = fiji_fan_table->usFanGainVrMvdd; hwmgr->thermal_controller.advanceFanControlParameters.usFanGainPlx = fiji_fan_table->usFanGainPlx; hwmgr->thermal_controller.advanceFanControlParameters.usFanGainHbm = fiji_fan_table->usFanGainHbm; } return 0; } /** * Private Function used during initialization. * Inspect the PowerPlay table for obvious signs of corruption. * @param hwmgr Pointer to the hardware manager. * @param powerplay_table Pointer to the PowerPlay Table. * @exception 2 if the powerplay table is incorrect. */ static int check_powerplay_tables( struct pp_hwmgr *hwmgr, const ATOM_Tonga_POWERPLAYTABLE *powerplay_table ) { const ATOM_Tonga_State_Array *state_arrays; state_arrays = (ATOM_Tonga_State_Array *)(((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usStateArrayOffset)); PP_ASSERT_WITH_CODE((ATOM_Tonga_TABLE_REVISION_TONGA <= powerplay_table->sHeader.ucTableFormatRevision), "Unsupported PPTable format!", return -1); PP_ASSERT_WITH_CODE((0 != powerplay_table->usStateArrayOffset), "State table is not set!", return -1); PP_ASSERT_WITH_CODE((0 < powerplay_table->sHeader.usStructureSize), "Invalid PowerPlay Table!", return -1); PP_ASSERT_WITH_CODE((0 < state_arrays->ucNumEntries), "Invalid PowerPlay Table!", return -1); return 0; } int tonga_pp_tables_initialize(struct pp_hwmgr *hwmgr) { int result = 0; const ATOM_Tonga_POWERPLAYTABLE *powerplay_table; hwmgr->pptable = kzalloc(sizeof(struct phm_ppt_v1_information), GFP_KERNEL); PP_ASSERT_WITH_CODE((NULL != hwmgr->pptable), "Failed to allocate hwmgr->pptable!", return -ENOMEM); memset(hwmgr->pptable, 0x00, sizeof(struct phm_ppt_v1_information)); powerplay_table = get_powerplay_table(hwmgr); PP_ASSERT_WITH_CODE((NULL != powerplay_table), "Missing PowerPlay Table!", return -1); result = check_powerplay_tables(hwmgr, powerplay_table); PP_ASSERT_WITH_CODE((result == 0), "check_powerplay_tables failed", return result); result = set_platform_caps(hwmgr, le32_to_cpu(powerplay_table->ulPlatformCaps)); PP_ASSERT_WITH_CODE((result == 0), "set_platform_caps failed", return result); result = init_thermal_controller(hwmgr, powerplay_table); PP_ASSERT_WITH_CODE((result == 0), "init_thermal_controller failed", return result); result = init_over_drive_limits(hwmgr, powerplay_table); PP_ASSERT_WITH_CODE((result == 0), "init_over_drive_limits failed", return result); result = init_clock_voltage_dependency(hwmgr, powerplay_table); PP_ASSERT_WITH_CODE((result == 0), "init_clock_voltage_dependency failed", return result); result = init_dpm_2_parameters(hwmgr, powerplay_table); PP_ASSERT_WITH_CODE((result == 0), "init_dpm_2_parameters failed", return result); return result; } int tonga_pp_tables_uninitialize(struct pp_hwmgr *hwmgr) { int result = 0; struct phm_ppt_v1_information *pp_table_information = (struct phm_ppt_v1_information *)(hwmgr->pptable); kfree(pp_table_information->vdd_dep_on_sclk); pp_table_information->vdd_dep_on_sclk = NULL; kfree(pp_table_information->vdd_dep_on_mclk); pp_table_information->vdd_dep_on_mclk = NULL; kfree(pp_table_information->valid_mclk_values); pp_table_information->valid_mclk_values = NULL; kfree(pp_table_information->valid_sclk_values); pp_table_information->valid_sclk_values = NULL; kfree(pp_table_information->vddc_lookup_table); pp_table_information->vddc_lookup_table = NULL; kfree(pp_table_information->vddgfx_lookup_table); pp_table_information->vddgfx_lookup_table = NULL; kfree(pp_table_information->mm_dep_table); pp_table_information->mm_dep_table = NULL; kfree(pp_table_information->cac_dtp_table); pp_table_information->cac_dtp_table = NULL; kfree(hwmgr->dyn_state.cac_dtp_table); hwmgr->dyn_state.cac_dtp_table = NULL; kfree(pp_table_information->ppm_parameter_table); pp_table_information->ppm_parameter_table = NULL; kfree(pp_table_information->pcie_table); pp_table_information->pcie_table = NULL; kfree(hwmgr->pptable); hwmgr->pptable = NULL; return result; } const struct pp_table_func tonga_pptable_funcs = { .pptable_init = tonga_pp_tables_initialize, .pptable_fini = tonga_pp_tables_uninitialize, }; int tonga_get_number_of_powerplay_table_entries(struct pp_hwmgr *hwmgr) { const ATOM_Tonga_State_Array * state_arrays; const ATOM_Tonga_POWERPLAYTABLE *pp_table = get_powerplay_table(hwmgr); PP_ASSERT_WITH_CODE((NULL != pp_table), "Missing PowerPlay Table!", return -1); PP_ASSERT_WITH_CODE((pp_table->sHeader.ucTableFormatRevision >= ATOM_Tonga_TABLE_REVISION_TONGA), "Incorrect PowerPlay table revision!", return -1); state_arrays = (ATOM_Tonga_State_Array *)(((unsigned long)pp_table) + le16_to_cpu(pp_table->usStateArrayOffset)); return (uint32_t)(state_arrays->ucNumEntries); } /** * Private function to convert flags stored in the BIOS to software flags in PowerPlay. */ static uint32_t make_classification_flags(struct pp_hwmgr *hwmgr, uint16_t classification, uint16_t classification2) { uint32_t result = 0; if (classification & ATOM_PPLIB_CLASSIFICATION_BOOT) result |= PP_StateClassificationFlag_Boot; if (classification & ATOM_PPLIB_CLASSIFICATION_THERMAL) result |= PP_StateClassificationFlag_Thermal; if (classification & ATOM_PPLIB_CLASSIFICATION_LIMITEDPOWERSOURCE) result |= PP_StateClassificationFlag_LimitedPowerSource; if (classification & ATOM_PPLIB_CLASSIFICATION_REST) result |= PP_StateClassificationFlag_Rest; if (classification & ATOM_PPLIB_CLASSIFICATION_FORCED) result |= PP_StateClassificationFlag_Forced; if (classification & ATOM_PPLIB_CLASSIFICATION_ACPI) result |= PP_StateClassificationFlag_ACPI; if (classification2 & ATOM_PPLIB_CLASSIFICATION2_LIMITEDPOWERSOURCE_2) result |= PP_StateClassificationFlag_LimitedPowerSource_2; return result; } /** * Create a Power State out of an entry in the PowerPlay table. * This function is called by the hardware back-end. * @param hwmgr Pointer to the hardware manager. * @param entry_index The index of the entry to be extracted from the table. * @param power_state The address of the PowerState instance being created. * @return -1 if the entry cannot be retrieved. */ int tonga_get_powerplay_table_entry(struct pp_hwmgr *hwmgr, uint32_t entry_index, struct pp_power_state *power_state, int (*call_back_func)(struct pp_hwmgr *, void *, struct pp_power_state *, void *, uint32_t)) { int result = 0; const ATOM_Tonga_State_Array * state_arrays; const ATOM_Tonga_State *state_entry; const ATOM_Tonga_POWERPLAYTABLE *pp_table = get_powerplay_table(hwmgr); PP_ASSERT_WITH_CODE((NULL != pp_table), "Missing PowerPlay Table!", return -1;); power_state->classification.bios_index = entry_index; if (pp_table->sHeader.ucTableFormatRevision >= ATOM_Tonga_TABLE_REVISION_TONGA) { state_arrays = (ATOM_Tonga_State_Array *)(((unsigned long)pp_table) + le16_to_cpu(pp_table->usStateArrayOffset)); PP_ASSERT_WITH_CODE((0 < pp_table->usStateArrayOffset), "Invalid PowerPlay Table State Array Offset.", return -1); PP_ASSERT_WITH_CODE((0 < state_arrays->ucNumEntries), "Invalid PowerPlay Table State Array.", return -1); PP_ASSERT_WITH_CODE((entry_index <= state_arrays->ucNumEntries), "Invalid PowerPlay Table State Array Entry.", return -1); state_entry = &(state_arrays->states[entry_index]); result = call_back_func(hwmgr, (void *)state_entry, power_state, (void *)pp_table, make_classification_flags(hwmgr, le16_to_cpu(state_entry->usClassification), le16_to_cpu(state_entry->usClassification2))); } if (!result && (power_state->classification.flags & PP_StateClassificationFlag_Boot)) result = hwmgr->hwmgr_func->patch_boot_state(hwmgr, &(power_state->hardware)); return result; }